Angular Momentum Transport in Astrophysical Plasmas

Matt Browning (CITA) Greg Hammett (PPPL) Mark Nornberg (Wisconsin) Eliot Quataert (Berkeley) Jim Stone (Princeton)

Overview

- Astrophysical Impt. of Angular Momentum Transport
- Key Science Questions & Opportunities
 - Accretion Disks (Jim Stone)
 - Stars: Life & Death (Matt Browning)
 - Experimental Opportunities (Mark Nornberg)
- Broader Context (Eliot Quataert)

Astrophysical Importance of Angular Momentum Transport

Astrophysical Importance of Angular Momentum Transport

Formation of Structure in the Universe

- galaxies & massive black holes
- star formation & stellar death
- planet formation

Astrophysical Importance of Angular Momentum Transport

Formation of Structure in the Universe

- galaxies & massive black holes
- star formation & stellar death
- planet formation
- Powering the brightest sources of EM radiation
 - redistribution of angular momentum \Rightarrow accretion $\dot{E} = \frac{GM\dot{M}}{R} \equiv \epsilon \dot{M}c^2$
 - $\epsilon \sim 10^{-6}$ for solar-type stars
 - $\epsilon \sim 0.25$ for neutron stars & black holes
 - >> ϵ ~ 0.007 for H fusion

Structure Formation

 large-scale structure set by dark matter w/ ang mom. set by tidal torques & mergers

- plasma progressively cools & sheds ang. momentum, forming
 - galaxies
 - stars & planets in galaxies
 - massive black holes in galaxies
 -
 - ang. mom. redistribution critical at all stages of structure formation

• gravity & magnetic stresses dominate: long-range

Angular Momentum on Galactic Scales

Gaseous & Stellar Disks (size ~ set by

ang. conservation)

Stellar Bulges (~ spherical)

Formed by gas inflow; torques largely gravitational (e.g., bars)

Massive Black Holes in Galactic Nuclei

 $M_{BH} \sim 10^{-3} M_{Bulge}$ J_{BH} ~ 10⁻⁶ J_{disk} (per unit mass)

best guess grav. torques bring gas to small radii where magnetic stresses take over ... but poorly understood

> simulation of central kpc during merger of 2 massive galaxies

Resimulate central ~10s pc down to ~ 0.1 pc; sufficient gas inflow to fuel massive BH

lopkins & Quataert

Star Formation in Galaxies

- self-gravity & cooling ⇒
 gas in galaxies collapses
- ang. mom. shed via grav. torques & large-scale B-fields
- ang mom barrier ⇒ accretion
 disk at final stages of inflow

Angular Momentum Transport in Accretion Disks

- Most astrophysical disks well-magnetized (Re_M >> 1), but not all ...
 - proto-stellar disks, in which planets form
 - outer parts of disks around compact objects
- Hydro turbulence not generic to Keplerian Ω
 - sims & PPPL expt (Hantao et al.)
- MHD turbulence generic in disks: dominant transport absent self-gravity (small radii)
 - large-scale B stresses, internal transport, or both? (large-scale dynamo) (small-scale dynamo)

Angular Momentum Transport in Accretion Disks

- Analytic theory critical for isolating key physics
- Disk transport key frontier in Dynamo theory
- Significant physics reqts for realistic models
 - radiation field energetically impt (luminous BHs, NSs)
 - low ionization in proto-stellar disks
 - Hall terms & ambipolar diffusion impt
 - turbulence can influence planet formation/migration
 - kinetic theory (low-luminosity BHs, NSs)
 - radiative transfer to connect models/sims to observations

Stellar Angular Momentum Transport

Differential Rotation in the Sun from Helioseismology

- Understanding solar Ω grand challenge computational project: getting there
 - intimately connected to solar dynamo
 - interior solid body Ω poorly understood
 - Large body of data on rotation, B, coronal activity, etc. in other stars

Stellar Angular Momentum Transport

- Stars spindown in time via magnetized winds
- core-surface coupling (i.e., internal ang. mom. redistribution) poorly understood, particularly in later stages of stellar evolution
 - critical for B & Ω of compact objects (e.g., pulsars)
 - critical for physics of stellar explosions: supernovae

Stellar Angular Momentum Transport

- Stars spindown in time via magnetized winds
 - core-surface coupling (i.e., internal ang. mom. redistribution) poorly understood, particularly in later stages of stellar evolution
 - critical for B & Ω of compact objects (e.g., pulsars)
 - critical for physics of stellar explosions: supernovae

Overview

- Astrophysical Impt. of Angular Momentum Transport
- Key Science & Opportunities
 - Accretion Disks (Jim Stone)
 - Stars: Life & Death (Matt Browning)

 B-field transport (not gravity)
 confluence of theoretical, observational, computational & experimental opportunities

 central problems in astrophysics & connections to other areas of plasmas astro

- Experimental Opportunities (Mark Nornberg)
- Broader Context (Eliot Quataert)

Major Questions/Opportunities

• Disks

- How do disk dynamos operate? generation of large-scale B?
 - relation to classical dynamo work? stellar dynamos?
- What is the origin of time-dependent, non-thermal disk emission?
 - depends on the details of energy generation and heating in disks

• Stars

- How is angular momentum redistributed within stars?
 - dependence on convection, rotation (Ro), initial B, ...
 - critical for stellar evolution and stellar death
- questions accessible via observations, theory, & experiments

Major Questions/Opportunities

• Disks

- How do disk dynamos operate? generation of large-scale B?
 - relation to classical dynamo work? stellar dynamos?
- What is the origin of time-dependent, non-thermal disk emission?
 - depends on the details of energy generation and heating in disks

• Stars

- How is angular momentum redistributed within stars?
 - dependence on convection, rotation (Ro), initial B, ...
 - critical for stellar evolution and stellar death
- questions accessible via observations, theory, & experiments

Broader Connections

- Angular momentum transport by B-fields closely tied to origin, coherence, & destruction of magnetic fields
 - dynamos, turbulence, reconnection, & transport intimately connected
- Properties of stellar/disk turbulence and transport set the 'boundary conditions' for stellar/disk outflows: jets & winds
 - e.g., large-scale B-field?
- Proto-stellar disks fundamentally a dusty plasma!
 - physics key for planet formation & migration
- Radiation MHD crucial in Massive Stars & Luminous BH/NS Disks