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Outline 

•  Simplified supernova taxonomy


•  Hydro instabilities in core-collapse supernova explosions


•  Hydro instabilities in thermonuclear supernova explosions


•  Linking the supernova explosion and remnant stages


•  Hydro instabilities in supernova remnants


•  Summary of forefront issues


•  Opportunities for significant progress
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Simplified supernova (SN) taxonomy 
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Core-collapse SNe: Standing Accretion Shock Instability (SASI) 

Shock revival & successful explosion might depend on an instability 
that is poorly understood and has never been directly observed


Onset of supernova explosion of a 15 solar mass 
star at 0.53-0.7 s after collapse.
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Sub-second after collapse


•  Successful explosion requires shock 
revival following bounce and stall


•  Standing accretion shock instability has 
been observed in numerical simulations


•  One interpretation is an acoustic-advective 
cycle: 


•  Perturbed SAS generates vorticity 
that is advected inward 

•  Deceleration of vorticity generates 
acoustic waves that propagate back 
out to the shock 

•  Shock perturbations are reinforced




5 Lawrence Livermore National Laboratory 

Core-collapse SNe: Steep density gradients at composition interfaces are 
driven unstable by the blast wave 

t = 1300 sec

1011 cm


Kifonidis et al., Astron. Astrophys. 408, 621 (2003).


Observe very fast mixing of core material into 
the outer layers of the star - Not typically seen in 
2D simulations


•  Large-amplitude low-modes can give high 
velocities early enough via Richtmyer-
Meshkov instability


•  Convection yields perturbed shocks 
as well as interfaces

•  How are the initial perturbations 
affected by differential rotation?


•  Interaction of multiple mixing zones


•  Transition to inherently 3D turbulent 
mixing zone following growth to large 
amplitudes: Numerical simulations limited in 
attainable effective Reynolds number


http://people.sc.fsu.edu/~tomek/SNII/index.html12


Seconds to minutes


Minutes to hours
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Thermonuclear SNe: How do intrinsic instabilities of wave fronts affect 
their global dynamics? 

•  Observations favor explosion models with transition 
from an initial subsonic deflagration phase to a 
supersonic detonation phase (DDT)


•  Deflagration phase

•  Carbon “cooking” yields rising ash bubbles that 
are unstable to buoyancy-driven instabilities

•  Bubble boundaries are unstable deflagration 
fronts that become corrugated and turbulent, and 
propagate much faster than the laminar flame 
speed

•  Turbulent flame propagation speeds are not 
known from first principles


•  Detonation-deflagration mechanism is unknown 
(several are proposed) and often proscribed ad-hoc in 
calculations


GCD 
detonation


DOE / NNSA / ASC / Alliance Flash 
Center / Univ. of Chicago
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Linking the supernova explosion and remnant stages: Are there 
connections between their instability structure? 
•  Core-collapse: Bipolar jet explosion models (Khokhlov et 
al) would likely produce correspondingly-asymmetric 
remnants


•  Thermonuclear: Can explosion-phase instabilities explain 
why the perturbed interface in Tycho is “too close” to the 
forward blast wave shock


•  Large-scale ash bubbles can perturb the outgoing 
detonation wave after delayed detonation

•  Large-amplitude low-mode perturbed shock should 
drive RM instability growth at the outer surface of the 
star 

•  Signature of the instability might survive into the 
remnant stage and perturb the forward shock out to 
scaled Tycho time

•  SNR calculations are initiated with spherical explosion 
profiles from models or simulations


Is the implicit assumption that SNR instabilities are 
independent of the explosion initial conditions valid? 


V.
N.

 G
am

ez
o 

et
 a

l, 
Ap

J 
62

3,
 3

37
 (2

00
5)



t~400 years


R/R0~1e10

Observed spectral 
peak @ mode 6


Shock front


OMEGA RM experiment, 
Glendinning et al
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Interfacial instabilities in supernova remnants (SNR) 

SN1987A


•  Deceleration of expanding layers by circumstellar medium 
drives RT instabilities that develop against spatially 
nonuniform backgrounds


•  SN1987A ring interaction: Supernova blast wave 
collides with ring of material ejected earlier in the 
progenitorʼs evolution

•  Can ISM clumps explain proximity of mixing zone to 
forward shock in Tycho?


•   Radiative blast wave fronts are susceptible to thin-shell 
(Vishniac) instabilities (see C. Kuranz talk)


•  What is the connection to the complex structure  
observed in supernova remnants?

•  Computationally intensive due to huge range of scales


Cygnus 
loop 
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Summary of forefront issues by common theme 

•  Newly-discovered instabilities that have never been directly observed 

•  Standing accretion shock instability


•  Initial conditions and RM/RT interplay

•  Differential rotation of SN progenitors


•  Instabilities of interfaces in complex fluids (Beyond classical gravitational RT)

•  Multiple interfaces in core collapse SNe

•  Interfacial instabilities in spatially nonuniform fluids

•  Interfacial instabilities in reacting fluids

•  Interfacial instabilities developing in a fluid with a pre-existing turbulent field


•  Problems spanning a wide range of scales

•  Transition and turbulence

•  SN-SNR connections

•  Radiative shock-front instabilities

•  Flame physics
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Opportunities for significant progress 
•  Standing Accretion Shock Instability (SASI): Observe, characterize, and explain 
experimentally as well as numerically


•  Fast outward mixing of core material in core-collapse SNe

•  Initial conditions for the instabilities

•  Interplay of Richtmyer-Meshkov and Rayleigh-Taylor instabilities

•  Both computational and experimental aspects


•  Turbulent flame propagation and deflagration-detonation transition


•  Establish connections between instability structure created during the rapid explosion 
and the structure observed much later in the remnant


•  Enablers of near-term progress potential

•  New HEDP facilities (NIF, ZR) and massively parallel computers offer larger range 
of temporal and spatial scales

•  Reynolds numbers are ~10,000 in direct numerical simulations, and sub-grid 
scale models are implemented in many codes (Classical RT remains a good first 
use of the newest, biggest machine)

•  New 3D astrophysics codes enable multi-physics numerical study of relevant 
complex flows



