Interfacial instabilities in supernovae and supernova remnants

January 18-22, 2010

Aaron R. Miles

Lawrence Livermore National Laboratory

Carolyn Kuranz, Ian Mann, Marc Pound, Dmitri Ryutov, Uri Shumlak

Outline

- Simplified supernova taxonomy
- Hydro instabilities in core-collapse supernova explosions
- Hydro instabilities in thermonuclear supernova explosions
- Linking the supernova explosion and remnant stages
- Hydro instabilities in supernova remnants
- Summary of forefront issues
- Opportunities for significant progress

Simplified supernova (SN) taxonomy

Progenitor Explosion stage Remnant stage Binding Core energy/ => collapse nucleon (Type II) curve CASA Massive star 3.6 hr NASA/CXC/MIT/UMass Amherst/ SN1987A M.D.Stage et al. Muller, Fryxell, and Arnett, Astron. Astrophys. 251 (1991) C/O Thermo- $+ \left[\left(\frac{dM}{dt} \right) > 0 \right] \implies$ white nuclear => dwarf (Type Ia) Accretion **Tycho** D.M. Townsley et al., ApJ 701,1582 (2009) http://chandra.harvard.edu/photo/

2005/tycho/index.html

Core-collapse SNe: Standing Accretion Shock Instability (SASI)

- Successful explosion requires shock revival following bounce and stall
- Standing accretion shock instability has been observed in numerical simulations
- One interpretation is an acoustic-advective cycle:
 - Perturbed SAS generates vorticity that is advected inward
 - Deceleration of vorticity generates acoustic waves that propagate back out to the shock
 - Shock perturbations are reinforced

Sub-second after collapse

Onset of supernova explosion of a 15 solar mass star at 0.53-0.7 s after collapse.

A. Marek & H. Th. Janka, http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news0902_thomas-en.html

Shock revival & successful explosion might depend on an instability that is poorly understood and has never been directly observed

Core-collapse SNe: Steep density gradients at composition interfaces are driven unstable by the blast wave

Observe very fast mixing of core material into the outer layers of the star - Not typically seen in 2D simulations

- Large-amplitude low-modes can give high velocities early enough via Richtmyer-Meshkov instability
 - Convection yields perturbed shocks as well as interfaces
 - How are the initial perturbations affected by differential rotation?
- Interaction of multiple mixing zones
- Transition to inherently 3D turbulent mixing zone following growth to large amplitudes: Numerical simulations limited in attainable effective Reynolds number

Minutes to hours

Kifonidis et al., Astron. Astrophys. 408, 621 (2003).

Seconds to minutes

http://people.sc.fsu.edu/~tomek/SNII/index.html12

Thermonuclear SNe: How do intrinsic instabilities of wave fronts affect their global dynamics?

• Observations favor explosion models with transition from an initial subsonic deflagration phase to a supersonic detonation phase (DDT)

- Deflagration phase
 - Carbon "cooking" yields rising ash bubbles that are unstable to buoyancy-driven instabilities
 - Bubble boundaries are unstable deflagration fronts that become corrugated and turbulent, and propagate much faster than the laminar flame speed
 - Turbulent flame propagation speeds are not known from first principles
- Detonation-deflagration mechanism is unknown (several are proposed) and often proscribed ad-hoc in calculations

• Core-collapse: Bipolar jet explosion models (Khokhlov et al) would likely produce correspondingly-asymmetric remnants

• Thermonuclear: Can explosion-phase instabilities explain why the perturbed interface in Tycho is "too close" to the forward blast wave shock

- Large-scale ash bubbles can perturb the outgoing detonation wave after delayed detonation
- Large-amplitude low-mode perturbed shock should drive RM instability growth at the outer surface of the star
- Signature of the instability might survive into the remnant stage and perturb the forward shock out to scaled Tycho time
- SNR calculations are initiated with spherical explosion profiles from models or simulations

Is the implicit assumption that SNR instabilities are independent of the explosion initial conditions valid?

Observed spectral peak @ mode 6

OMEGA RM experiment, Glendinning et al

V.N. Gamezo et al, S.,G. Glendinning et al ApJ 623, 337 (2005)

_

Lawrence Livermore National Laboratory

Interfacial instabilities in supernova remnants (SNR)

- Deceleration of expanding layers by circumstellar medium drives RT instabilities that develop against spatially nonuniform backgrounds
 - SN1987A ring interaction: Supernova blast wave collides with ring of material ejected earlier in the progenitor's evolution
 - Can ISM clumps explain proximity of mixing zone to forward shock in Tycho?

- Radiative blast wave fronts are susceptible to thin-shell (Vishniac) instabilities (see C. Kuranz talk)
 - What is the connection to the complex structure observed in supernova remnants?
 - Computationally intensive due to huge range of scales

J.J. Hester (Arizona State University), and NASA.

Summary of forefront issues by common theme

- Newly-discovered instabilities that have never been directly observed
 - Standing accretion shock instability
- Initial conditions and RM/RT interplay
 - Differential rotation of SN progenitors
- Instabilities of interfaces in complex fluids (Beyond classical gravitational RT)
 - Multiple interfaces in core collapse SNe
 - Interfacial instabilities in spatially nonuniform fluids
 - Interfacial instabilities in reacting fluids
 - Interfacial instabilities developing in a fluid with a pre-existing turbulent field
- Problems spanning a wide range of scales
 - Transition and turbulence
 - SN-SNR connections
 - Radiative shock-front instabilities
 - Flame physics

Opportunities for significant progress

- Standing Accretion Shock Instability (SASI): Observe, characterize, and explain experimentally as well as numerically
- Fast outward mixing of core material in core-collapse SNe
 - Initial conditions for the instabilities
 - Interplay of Richtmyer-Meshkov and Rayleigh-Taylor instabilities
 - Both computational and experimental aspects
- Turbulent flame propagation and deflagration-detonation transition
- Establish connections between instability structure created during the rapid explosion and the structure observed much later in the remnant
- Enablers of near-term progress potential
 - New HEDP facilities (NIF, ZR) and massively parallel computers offer larger range of temporal and spatial scales
 - Reynolds numbers are ~10,000 in direct numerical simulations, and sub-grid scale models are implemented in many codes (Classical RT remains a good first use of the newest, biggest machine)
 - New 3D astrophysics codes enable multi-physics numerical study of relevant complex flows