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Outline of Talk

o General Background Regarding
Heliospheric Shocks
o Taxonomy of heliospheric shocks.
o Energetic particles and shocks.

o Current major issues:

o Particle acceleration at quasi-perpendicular
shocks - the injection problem.

o The role of large-scale, upstream
turbulence.



Shocks in the heliosphere
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Each shock is a source of energetic particles. Some with energies up to
several GeV.



Energetic Particles and Shocks

Collisionless shocks always produce energetic particles.
These are generally isotropic in pitch angle.

The particle spectrum produced is generally a power
law up to a time-dependent or geometry-related
cutoff.

The power-law index is in a narrow range (“universal”)
and insensitive to parameters, as is observed.

Energetic particles are often well-described by the
Parker equation, even at shocks, since they are nearly
always observed to be nearly isotropic.



Co-rotating Interaction Regions
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The Parker Equation - first order in w/U
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_Vd : Vf = Grad & Curvature Drift
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Where the drift velocity due to the large scale curvature
and gradient of the average magnetic field is:

L pcw B
This is well-tested and establlshed. Not useful at low particle
speeds w <~ U. Can be applied to shocks.
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lllustration of the time-asymptotic solution to Parker’s
equation for a one-dimensional shock.

The spectrum is a power law in momentum with index
depending only on the shock ratio r.



This predicted behavior is observed at shocks. This led to the
well-established paradigm of diffusive shock acceleration. It
explained a lot, including the universal energy spectrum.

Unfortunately, this classic observation
IS not easy to repeat.

Apparently even Kennel et al were
forced to look at many shocks before
finding the one illustrated.

Kennel, etal,
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Fig. 1. Solar wind flow speed and energetic protons. The top
panel shows the solar wind speed measured by the ISEE-3 solar wind
plasma instrument [Bame et al., 1978] and the bottom panel shows
the differential fluxes of 30-36 keV, 58-75 keV, and 112-157 keV
protons measured by the ISEE-3 nuclear and ionic charge distri-
bution Experiment [Hovestadt et al., 1978]. The period 0000-0100
UT on November 12, 1978, includes the passage of the interplanetary
shock over ISEE-3 at 0028:16 UT. The solar wind proton bulk veloci-
ty increased slightly, from 380 km s~ ! to 400 s~, upstream of the
shock and increased to 571 km s~' at the first downstream measure-
ment. The energetic proton fluxes increased roughly exponentially
ahead of the shock, with a scale length that increased with increasing
energy. The fluxes maximized at the shock, and remained approxi-
mately constant downstream of the shock.



Perpendicular vs Parallel Shocks
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The maximum energy

Parallel shocks = slow f
Perpendicular shocks = fast

for any given situation, a
|oerpend|cular shock will yield a

arger maximum energy than a
parallel shock.



The acceleration rate
depends inversely on
the diffusion coefficient
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FI1G. 1.—Plot of the ratio of energy gain rate with a transverse magnetic field to that neglecting the magnetic field giv_en in eq. (8), as a_function of angle bel_ween
the upstream magnetic field and shock normal, 8,. The upper curve is for a scattering mean free path 4, equal to 100 times the gyroradius r,, and the lower is for
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Acceleration at low energies:
The injection problem

W = W, Diffusive
W = W, Non-Diffusive
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The limit of diffusive shock acceleration

Vinj > Ugpseclpy



— Field-line random walk
leads to a larger
diffusion coefficient that
expected from hard-
sphere scattering

— Numerical simulations
show that K1 /K IS
large and nearly
independent of energy

z/L
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With this general picture, a general consensus arose that diffusive
Shock acceleration was a well-established phenomenon that, with
few exceptions, agreed with energetic-particle observations.

It became a possible ‘universal’ accelerator, applied from the
heliosphere to intergalactic space.



However, in reality, often the /n situ observed energy spectrum, at a
given observer, does not agree with theory, and the accelerated
particles were often not even observed to peak at the shock crossing
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_Fig. 10. Intensity-time profiles of low energy protons in three
V different energy intervals during the July 6-7, 1979, interplanetary
shock event. Solid line shows the time of the shock passage.



Hence the nice picture of shock acceleration was too simple.

o It did not agree with many, if not most, observations of energetic particles
at propagating shocks.

0 An attractive interpretation of these various observations is that they are

related to the pre-existing upstream turbulence and related fluctuations.
oThe propagation of the shock waves through the ubiquitous large-
scale turbulence in the plasmas causes significant, changes to the
shock which are essentially unpredictable.

oThe properties of individual shock waves vary in important ways both
along the shock face and as a function of time along the shock.

oDifferent spacecraft crossing the same shock at different points will
generally see quite different phenomena.

These phenomena are best studied statistically, just like turbulence itself,
using data from multiple shock crossings, by multiple spacecratt.



A cartoon illustrating the
Interaction of a shock with
pre-existing turbulence.
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A tidal bore is a good analogy.
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“rippled” interplanetary disturbances
(STEREO/HI2 difference images)

May, 27 2008 Dec 16 2007

r ]

HI2 B: 20074246 000921 .

We at Arizona have suggested that many of the difficulties can be
understood in terms of pre-existing, large-scale turbulence interacting with
a shock.
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Multiple-Spacecraft Observations near Earth Allow
Determination of Shock Shape and Normals (Giacalone and
Neugebauer, 2005, 2007)

Example: Wind/Geotail saw this Distribution of shock radii of
shock nearly simultaneously curvature for many shocks
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This is the coherence scale of interplanetary
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Conclusions from these multi-
spacecraft observations:

Shock ripple radius of curvature = 2-3
Mkm.

Persistence of EP features for L~3 Mkm

These are comparable to the correlation
length of interplanetary magnetic field
~L.~ 2 Mkm.

We suggest that these are caused by pre-
existing interplanetary turbulence.



The heliospheric termination shock shows similar behavior.

The kitchen sink analogue
exhibits a turbulent
termination shock, which
Voyager 2 observed.

J. R. JOKIPII



The Voyager 2 Termination Shock Crossing
Provided Strong Evidence for such Turbulence

« The functioning plasma detector helped to provide richer data
set than from V1.

* Also, the crossing was at a much slower shock speed.
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Anomalous cosmic rays are probably accelerated in this region.

The radial dependence
obtained from solving Parkers
equation for a termination
shock.

What was actually observed
at the termination shock.

We attribute this
discrepancy to turbulence
hitting the shock..
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Conclusions

Collisonless shock waves are observed in the heliosphere
from the Sun to the termination shock of the solar wind.

They produce many different populations of energetic
particles.

Many of these, including the important termination
shock, are nearly perpendicular shocks.

Recent analyses suggest that many of the anomalies seen
are the result of the shocks interacting with pre-existing,
upstream turbulence.
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