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Turbulence: Role of Observation/Experiment

® Observation (ISM, Solar Wind, Corona, etc) is driver
for studies of MHD turbulence; excellent data on
spectrum, particle heating, temperature
anisotropy...

® Continuation/enhancement of observation is
critical

® What role can laboratory experiments play:

® Controlled experiments: scaling with parameters

® Isolation of physical phenomena (e.g. basic

physics of waves, instabilities)



Issues which could be addressed in
laboratory experiment

® Basic physics of nonlinear wave interactions, wave damping
(e.g. at high plasma [)

® Basic studies of important instabilities: e.g. mirror, firehose

® Drive turbulent cascade through stirring at large scale,
either through driven flows or injected Alfvén waves.
Study:

® Spectrum, structure, anisotropy, intermittency.
® Dissipation, heating

® Identify role of instabilities (e.g. firehose/mirror in high
beta plasma) in establishing spectrum, causing dissipation



Trade-offs in lab experiments
® “Basic plasma devices” (e.g. LAPD, MRX; ..))

® Low temperature (10eV), probe diagnostics (very detailed,
relatively easy measurements), simple geometry

® But, typically high collisionality (except with low density,
but then can’t contain all important scales in expt)

® Confinement (fusion) devices
® Low collisionality, high temperature, density, high S
® Difficult to diagnose, complicated magnetic geometry

® No lab experiment will match space/astro parameters: have
to carefully identify physical processes that are common to
both, use theory/simulation to bridge the parameter gap



Laboratory experiments on Turbulence
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Laboratory experiments on Turbulence

Turbulence is widely studied in laboratory plasmas; focus is
on gradient-driven modes (drift waves, ITG, etc)

® Astrophysical impact: gyrokinetic codes tested against lab

measurements now used to simulate, e.g. solar wind,
accretion disks, ISM

(Fig. 3 from Bale et al. 2005) (Howes et al. 2008a)
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Laboratory experiments on Turbulence

® Turbulence is widely studied in laboratory plasmas; focus is
on gradient-driven modes

® Astrophysical impact: gyrokinetic codes tested against lab
measurements now used to simulate, e.g. solar wind,
accretion disks, ISM

® Fusion experiments have and can continue to contribute:

tearing driven turbulence in MST, Alfvén Eigenmode cascade
in ST/Tokamak (e.g. NSTX)



Turbulence studies in fusion plasmas (MST)
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® Broadband magnetic fluctuation spectrum observed, with
tearing modes acting as “‘stirring scale”. lon heating observed
(may be connected to cascade, especially for impurities
‘Tangrim, et al])

® Ongoing studies of spectrum (in some cases appears to be
exponential, consistent with dominant dissipation?)



NSTX is an excellent |laboratory for
studying Alfvénic turbulence

High Vee/Vame, drives many sub-
harmonic Alfvén modes unstable

— e.g., Fredrickson, et al_, Phys. >
Plasmas 11 (2004) 3653 S

. . . 3

lon heating in excess of the heating g
due to beam-plasma collisions has -
been observed on NSTX >
— D. A.Gates, et al_, Phys. Plasmas, §
10 (2003) 1659 g

(VR

Amplitudes of the observed modes
are of the correct order to explain
the observed heating

(P.W. Ross, Astrophysics Dept.,

Princeton University, thesis to be
submitted Jan. 2010)
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Nonlinear interactions among AEs in NSTX
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® Multimode excitation can lead to
nonlinear interactions (Crocker,
PRL 2006)
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Studies in LAPD

® Nonlinear interactions between co- and counter-
propagating kinetic Alfven waves

® Strong beat-wave interaction between co-propagating
waves observed (below)

® Ongoing: Single wave collisions
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Desired characteristics of new experiment

® Desirable for new experiment have less dissipation, have
access to higher B. Important characteristics:

® Low collisionality (high T or low n)

® May be able to study inertial range with collisional damping,
but would like to study kinetic damping processes,
instabilities

® Would like Amfp >> pi, Amfp > A (preferably Amgp ~ device

size)

® eg LAPD (5eV, 10'2 cm3), Aei~20cm, Aja~2m; need 25eV
(hard to do without lots of power or better confinement)

® But density can’t be too low: causes problems in having
Alfvéen waves of low enough frequency fit in the device!
Minimum wavelength ~ va/Qi « 1/vn (1.4m for 102 cm)



Desired characteristics, cont.

® Large enough magnetic field

® Would like to have room between outerscale
(machine size) and ion gyroradius to allow a
turbulent spectrum to develop

® Could be relaxed for firehose/mirror studies?
® But, want to be able to access larger B

® Need reasonable mechanism for injecting energy at
“stirring” scale: driving flows, exciting Alfven waves
of sufficient amplitude (directly, or through instability)



Next steps

® Strong case for dedicated experiment(s) on
turbulence and instabilities in collisionless
plasma, with access to high beta

® Coupled to theory and simulation, can make
significant progress on understanding of basic
physics of turbulence relevant to
astrophysical plasmas

® To indicate what might be possible, briefly
discuss new experimental facilities that might
produce suitable plasmas for these studies



Enormous Toroidal Plasma Device at UCLA

gPlasma discharge,visible light

< Major Radius = 5m

~  Plasma
l Source

® Former Electric Tokamak, (5m major radius, I|m minor
radius) operating now with LaB¢ cathode discharge into
toroidal+vertical field

® Produces ~100m long, magnetized, unity beta plasma (up to
~5x10'3 em3, Te, Ti ~ 20-50eV, B~200G, B ~ ). Small
(20cm) source operating presently, developing large area
source (60cm wide plasma column planned).



Possible turbulence studies in ETPD

A 1 f Vé N wave (30kHz)

Alfvén waves, damping at f~| (underway, data above), many
(~100) Alfvén parallel wavelengths in device

Wave-wave interactions, driven Alfvénic cascade at B~ (collisional
damping reduced over LAPD through higher temperatures)

Gradient-driven/interchange turbulence at high 8

Mirror/firehose: Drive anisotropy, higher beta through expansion
(drive plasma into low field region)



Madison Plasma Dynamo Experiment
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