Experimental documentation of magnetic reconnec

Magnetic Reconnection Experiment

Poloidal Flux Evolution Null-helicity Reconnection

Princeton Plasma Physics Laboratory, Princeton University

Laboratory experiments available for dedicated study of magnetic reconnection

Device	Where	Since	Geometry	B_g/B_rec	Main Issues
3D-CS	Russia	1970	Linear	0-20	Heating
LPD, LAPD	UCLA	1980	Linear	1-10	Heating, waves
TS-3/4	Tokyo	1990	Merging	0-10	Rate, heating
MRX	Princeton	1995	Toroidal, merging	0-20	Rate, heating, waves, boundary, scaling, impulsive
SSX	Swarthmore	1996	Merging	0-1	Heating
VTF	MIT	1998	Toroidal	>~15	Trigger/impulsive, heating
RSX	Los Alamos	2002	Linear	2-40	Boundary, impulsive
RWM	Wisconsin	2002	Linear	10-30	Boundary

Recent Progress in Study of Reconnection Layer and Rate

M. Yamada, PPPL

Major progress made in

- 1) Numerical simulations
- 2) Space observations
- 3) Lab experiments
- Profiles of reconnection layer documented
- <u>Reconnection rate</u> measured <u>quantitatively</u>
 Enhanced resistivity was measured

Identified possible causes of fast reconnection

- Two fluid physics dominant in the collisionless regime.
 <u>Hall effects</u> verified
- Turbulence/ fluctuations in the sheet
- Recognized main issues for global reconnection
 - 3-D MHD modes trigger fast reconnection toroidal pinch systems
 - Impulsive reconnection studied

The Sweet-Parker 2-D MHD Model for Magnetic Reconnection

Assumptions:

- 2D
- Steady-state
- Incompressibility
- Classical Spitzer resistivity

Mass conservation + Pressure balance

⊠_{reconn} << **⊠**_{SP} ~ 3-10 months

$$S = \frac{\mu_0 L V_A}{\eta_{Spitz}}$$

S=Lundquist number

Models for Fast Reconnection

Generalized Sweet-Parker model with enhanced resistivity caused by turbulence. Two-fluid model in which electrons and ions decouple in the diffusion region ($\sim c/[x]_{pi}$)

=> Generalized Ohm's law $\mathbf{E} + \mathbf{V} \times \mathbf{B} = \eta \mathbf{J} + \frac{\mathbf{J} \times \mathbf{B} - \nabla p}{\mathbf{I}}$ $+\frac{m_e}{m_e^2}\frac{\mathrm{d}^2}{\mathrm{d}^2}$ en

The Hall Effect During Reconnection Shown in 2D Simulation

- Black lines \rightarrow magnetic flux.
- Blue lines \rightarrow ion flow streamlines.
- Red arrows \rightarrow electron flow velocity vectors.
- Brown arrows \rightarrow In-plane current.

Different motions of ions and electrons

Dedicated lab experiments systematically studied reconnection layer and rate

• Five fine structure probe arrays with resolution up to Δx = 2.5 mm in radial direction are placed with separation of Δz = 2-3 cm

Change of Neutral sheet Profile

from "Rectangular S-P" type to "Double edge X" shape as collisionality is reduced

Rectangular shape Collisional regime: Mmfp <™™

Slow reconnection

No Q-P field

x 10

2

X-type shape

- Collisionless regime: 🕅 mfp
- Fast reconnection

Q-P field present

Ma and Bhattacharjee, GRL 1996 Cassak et al PRL 2005

Magnetic Reconnection in the Magnetosphere

A reconnection layer has been documented in the magnetopause

 $d \sim c/w_{pi}$

Fast Reconnection <=> Large E_{rec} **=> Enhanced effective resistivity**

We have observed:

- Hall MHD Effects create a large E field (no dissipation)
- Electrostatic Turbulence
- Electromagnetic Fluctuations
- Electron diffusion region identified

How does energy dissipation occur?
How is the reconnection rate really determined?
What is role of the pressure tensor in Gen-Ohm's law?

=> Next level of intensive study

MRX Scaling:

A linkage between space and lab on reconnection

Atransition from the MHD to 2 fluid regime when $(c/M_{pi}) \sim M_{sp}$

Major issues for future reconnection layer research

- How is the reconnection rate determined?
 - Hall effects + Pressure Tensor + Turbulence
 - Turbulence
 - Multiple reconnection layers
 - Impulsive reconnection
 - Effects of boundaries
- What is a key mechanism for energy conversion (dissipation)?
 => Particle acceleration and heating
- *How does it affect global magnetic self-organization?*

Major opportunities for magnetic reconnection research

<u>Space satellite missions:</u>
 <u>MMS cluster satellite mission</u>
 Study multi-scale reconnection regions
 with kinetic information
 Solar satellite missions

IRIS, Solar Probe Plus, Chromosphere reconnection, effects of weakly ionized plasmas, impulsive reconnection

<u>Advanced computer simulations</u>
 3-D large S simulation, multiple reconnection layers, kinetic effects

=> Larger laboratory experiments [<= NRC 2010 report]

Multiple reconnection layers Particle heating and acceleration Impulsive reconnection Effects of boundary