
Abstract

This is the user’s manual for DEGAS 2 - A Monte Carlo code for the study of
neutral atom and molecular transport in confined plasmas. It is intended to provide
an introduction to DEGAS 2 from the user’s point-of-view: obtaining the files,
compiling them, setting up the input files, executing the code, and interpreting the
output. References will be provided for the underlying physics, but the essential
aspects will be highlighted. More detailed documentation of the procedures used
to create input files is contained in the typeset source code of the relevant pre-
processors; links to those files are provided.

User’s Guide for DEGAS 2
Release V. 4.61

Daren Stotler and Charles Karney
Princeton Plasma Physics Laboratory

Randall Kanzleiter
Rensselaer Polytechnic Institute

Jaishankar S.
Institute for Plasma Research, India

November 20, 2013

2

1This file is written in TEX. A hyper-linked PDF file is generated from that source
using pdflatex. This document is distributed as part of the DEGAS 2 code. The user
can be best assured of concurrence between code and manual by referring to the version
of the manual that came with the code. Copyright c©2013 PPPL. Permission is granted to
make and distribute verbatim copies of this manual provided the copyright and permission
notice is preserved on all copies. Permission is granted to copy and distribute modified
versions of this manual under the conditions for verbatim copying, provided also that the
entire resulting derived work is distributed under the terms of a permission notice identical
to this one. Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions.

3

Chapter 1

Introduction

1.1 Purpose of Monte Carlo Neutral Transport
The interaction of neutral atoms and molecules with the background plasma is an
important component in the physics of fusion research plasmas. These neutrals
affect both the particle and energy balance of the plasma, providing a source of
new plasma and a channel for heat transport across the magnetic field that confines
the charged particles. In addition, hot neutrals which leave the plasma volume can
interact with the wall of the plasma chamber, sputtering impurities into the plasma
and (in reactors) possibly damaging the wall. Finally, these hot neutrals can also
be used for plasma diagnostics. Therefore, it is worth developing an accurate
description of the neutral behaviour.

The theory of neutral particle kinetics[1] treats the transport of mass, momen-
tum, and energy in a plasma due to neutral particles that are themselves unaffected
by magnetic fields. This transport affects the global power and particle balances
in fusion devices, as well as profile control and plasma confinement quality, par-
ticle and energy fluxes onto device components, performance of pumping sys-
tems, and the design of diagnostics and the interpretation of their measurements.
Though analytic models (solving the Boltzmann equation for the neutrals or using
the diffusion approximation), both single- and multi-species, have been used to
study neutral transport, a variety of approximations must be made. Some numer-
ical methods for solving the Boltzmann equation use simplified geometries and
atomic physics. On the other hand, the Monte Carlo approach to integrating the
Boltzmann equation can treat in great detail asymmetric geometries and complex
atomic physics and wall interactions. Because of the similarity in the problems,

1

Monte Carlo neutral transport codes can build on the techniques developed for
neutron transport in reactor design[2].

1.2 Historical Background
The predecessor to DEGAS 2 was DEGAS[3]. The origin of the “DEGAS” name
can best be explained by pointing out that the first Monte Carlo neutral transport
code written by D. B. Heifetz was named SEURAT. Its name was a direct refer-
ence to the artist Georges Seurat. This appellation was inspired by the analogy
between the artist’s pointillist style and the nature of the Monte Carlo algorithm.
Up close, one sees that Seurat’s paintings consist of a huge number of very tiny
dots of paint of a variety of colors. Only when viewed from a distance is the image
and its coloring clearly apparent. In much the same way, the track of an individual
neutral flight in the Monte Carlo code gives relatively little insight into the prob-
lem being studied. Yet, when the results of many flights are compiled together, an
accurate solution can be obtained.

Heifetz’ fondness for Impressionist artists was also manifested in succeeding
codes like MONET and DEGAS. The latter name was further motivated by two
associated puns. One is that “DEGAS” is an abbreviation of “DEuterium GAS”;
DEGAS was written to satisfy a request for a code that could treat deuterium
as well as hydrogen. The other is that “DEGAS” is just short for “degassing”;
another proposed application for the code was in assessing measurements of wall
degassing in fusion devices.

For those who insist that a code’s name must be an acronym, we will reply
that “DEGAS” stands for Divertor and Edge Gas Analysis System.

By the time the authors began contemplating the concepts that led to DEGAS
2, the original DEGAS code was in widespread use. It also enjoyed a very good
reputation as being easy to use and well documented. For this reason, we were
reluctant to abandon the DEGAS name, even though we knew we would be rewrit-
ing the code largely from scratch. Nonetheless, much of the atomic and surface
physics from the original code has been carried over. Likewise, many of the nu-
merical techniques of DEGAS served as inspiration for those in DEGAS 2.

1.3 Need for DEGAS 2
Two events pointed out limitations in the original DEGAS code[3].

2

• The combined DEGAS-B2 code was too slow (about 100 Cray hours)[4].
The stronger the coupling between neutral and plasma species, the more
difficult it is to arrive at a converged solution. In this case which looked
at a high recycling divertor for a compact, high field reactor, hundreds or
thousands of complete Monte Carlo profiles must be carried out in order to
couple effectively to a fluid code.

• The problem physics was difficult to modify. In the radiative and detached
divertor regimes being investigated for future reactors, it is believed that the
list of important atomic processes will grow to include elastic collisions and
molecular hydrogenic species other than ground state H2.

Hence, it was decided that a new code should be written which draws on the
extensive experience at PPPL and that from Garching and Jülich. The philosophy
behind DEGAS 2 was defined during 1992-1993:

• High speed,

• Flexibility,

• Ease-of-use,

• Well documented.

1.4 DEGAS 2 Features
An effort was made to realise the above mentioned objectives of DEGAS 2 by the
following means:

• Improve speed relative to DEGAS by utilizing the “track length” estimator.

• Ensure flexibility by designing the code using quasi-object oriented pro-
gramming techniques. The modifier “quasi” refers to the fact that DEGAS
2 is written in FORTRAN (compatible with FORTRAN 77 and FORTRAN
90). Even though the basic “classes” in the problem have been abstracted,
the degree of encapsulation actually achieved (via pre-processor macros)
in DEGAS 2 is limited. Furthermore, there is no provision for inheritance
within this programming environment.

3

• Provide an easy-to-use and well documented code by writing it with the
FWEB[8] package. FWEB provides the powerful preprocessing and macro
facility which underlies the “quasi-object oriented” implementation and in-
ternal TEX documentation.

Other significant features of DEGAS 2 include:

• Dynamic memory allocation for optimal performance in large problems,

• Operation on a number of UNIX platforms, compilable with both FOR-
TRAN 77 and FORTRAN 90,

• Input and output data stored in self-describing, platform-independent bi-
nary files. Presently, the main code uses exclusively netCDF[9] (Network
Common Data Format) files for input and output. However, a simple post-
processing utility is included which generates graphics and data in HDF[10]
(Hierarchial Data Format) or Silo[11] files. Hopefully, a single format will
be settled upon eventually.

• Parallel execution on distributed workstations and massively parallel com-
puters. This is the most promising technique for improving the speed of
DEGAS 2. The reason is that most of the future advancements in com-
puter speed will result from increases in the number of processors. Parallel
processing is practical to Monte Carlo since the amount of communication
required per computation is small.

• High quality coding standards. Good programming practices such as use
of the implicit none statement and an assertion facility help to ensure
that the code works properly. This document will eventually describe a basic
test suite which actually demonstrates that the code is correct. In the code
design process, clarity has been given a high priority as well, facilitating
readability and maintainability.

• Code versions numbered and documented with the “CVS” (concurrent ver-
sion system) package.

4

Chapter 2

Background

2.1 Generic Monte Carlo Algorithms
Monte Carlo methods generally involve sampling from some “parent population”.
The sampling process is usually facilitated by pseudo-random numbers generated
via a numerical algorithm. The quantity or quantities sampled are then used as in-
put to a subsequent (deterministic) calculation which results in the desired output.
This process is repeated a number of times, so as to thoroughly sample the parent
population, and a distribution of the output data is compiled. In some cases, only
the mean of this distribution is of interest (as well as some estimate of its error),
while in other cases, the distribution itself is the objective.

Note that the process being simulated need not be random. For example,
Monte Carlo techniques may be the only way of computing the volume of some
complex three-dimensional object. This is just one example of the versatility of
Monte Carlo techniques. But, Monte Carlo is not always the most efficient solu-
tion for a problem because of the significant computational effort required. Two
reasons for using Monte Carlo are:

1. No other solution is available.

2. The details of the problem are sufficiently important that no approximations
can be tolerated.

In the case of particle transport, the latter reason is usually invoked. Examples
of Monte Carlo particle transport include:

1. Neutron tranport in fission devices,

5

2. Radiation transport,

3. Electron transport in semiconductors,

4. Neutral particle transport in plasmas.

2.1.1 Sampling a Distribution
The most fundamental process of a Monte Carlo simulation is the sampling of
probability distributions. Typical examples for a particle simulations would be:

1. Choosing a velocity vector from a Maxwellian distribution,

2. Picking a particle from a spatially varying source,

3. Determining the distance to the next collision.

2.1.2 Sampling Distance to Next Collision
To illustrate the third case, consider particles with a total, macroscopic cross sec-
tion Σt. We write the probability density function for having the next collision
between x and x+ dx, p(x) dx, as:

p(x)dx = Σt exp(−Σtx) dx. (2.1)

Then, the cumulative probability distribution P (y),

P (y) =
∫ y

0
p(x) dx, (2.2)

is the probability of having a collision for any x ≤ y. Note that P (0) = 0 and
P (∞) = 1.

As suggested by the above figure, P (y) can be sampled by choosing a uni-
formly distributed random number ξ, with 0 ≤ ξ < 1. For this example, P (y) is
easily computed and inverted so that

y = − ln ξ

Σt

, (2.3)

where we have surreptitiously replaced 1 − ξ with ξ since both are uniform over
the unit interval. Again the logic of this process, as depicted in the figure, is that
if ξ is uniformly distributed, then numbers between ξ to ξ + ∆ξ are chosen with
the same frequency as particles having collisions between y and y + ∆y. Thus, y
is the sampled distance to next collision.

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Probability Density Probability

P
ro

ba
bi

lit
y

D
en

si
ty

P
robability

y

∆y

ξ+∆ξ

ξ

Figure 2.1: A uniformly sampled ξ value is translated into a sample of y dis-
tributed according to the “Probability Density” curve using the integrated “Prob-
ability” curve.

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70 80

p(x)
P

ro
ba

bi
lit

y
D

en
si

ty

x

(x
1
,ξ

1
)

(x
2
,ξ

2
)

p
max

Figure 2.2: Values of x distributed according to p(x) can be sampled by uniformly
selecting (x, ξ) pairs and tossing out ones with ξ > p(x).

2.1.3 Sampling More Complicated Distributions
Because of the simplicity of the functional form of the collision probability density
function, the distance to the next collision can be easily sampled using a single,
uniform random number. If this were not the case, more general methods, such as
this rejection technique, would have to be employed.

As an example, consider the sampling of a velocity v from a Maxwellian dis-
tribution,

p(v) =
1√
πvth

exp

[
−(v − v0)2

v2
th

]
. (2.4)

For simplicity, limit the v values to |v − v0| < Mvth for some appropriate M .
Now, we choose a pair of random numbers (x, ξ) with x uniformly distributed

over the interval v0 −Mvth ≤ x < v0 +Mvth and ξ uniform over 0 ≤ ξ < pmax,
where pmax is the maximum value of p(v). If ξ < p(x), accept this x as the
sampled velocity. Otherwise, if ξ > p(x), reject these (x, ξ) and sample another
pair. That the resulting set of x values is distributed as required can be seen
by studying the figure above. This figure also makes the case that the rejection
approach may not be very efficient for sampling a Maxwellian (indeed, DEGAS
2 uses the well-known Box-Mueller method for this task).

8

In general, a rejection technique factors the probability density p(x) into two
functions, p(x) = g(x)h(x), where it is known how to sample x from the function
g(x). The acceptance condition is just ξ < h(x). The Maxwellian example simply
sets g(x) = 1.

2.2 Particle Transport
One of the main benefits of doing Monte Carlo particle transport is that most of the
time the algorithm can be understood directly from a physical picture. Namely,
we think of the code as tracking particles through a medium and having collisions
with probabilities determined from the cross sections of the various collision pro-
cesses. The outcome of those collisions is the same as for the actual physical
particles, and so on. This is known as the analog description of Monte Carlo
particle transport.

In this section, we want to give a rough idea of how this picture relates to
the integral equations which provide the actual mathematical basis for Monte
Carlo techniques. Only from these equations can we understand the non-analog
techniques (the rejection technique described in the previous subsection is a non-
analog technique) used to make the Monte Carlo process more efficient. We hope
to familiarize the reader with the integral equations to the point where more de-
tailed references[2, 12] can be readily digested.

From an analog point-of-view, we imagine a Monte Carlo particle simulation
as consisting of four parts:

1. A way to sample an initial particle distribution,

2. A way to track particles from one point in space to another,

3. Tools to treat “interesting things” that might happen along the way,

4. Some useful quantities to compute and record at each stage of the process.

The last of these, referring to “scores” and their “estimators” will be addressed in
Sec. 2.3.

2.2.1 Motivating the Integral Equation
The initial particle distribution, or source, is given by a probability density func-
tion Q(x) > 0. We take x here to represent a point in phase space so that this
function provides both the velocity and spatial distribution of the source.

9

The tracking of particles is described in the integral equation by a function
L(y → x) which gives the probability that a particle starting at a point y in phase
space ends up at point x. This function includes the “interesting things” (colli-
sions) that might happen along the way, as we will describe in the next subsection.

Using these two functions, we can write the density of particles arriving at x,
χ(x) as the sum of two pieces:

1. Arrivals directly from source: Q(x).

2. Particles transported from elsewhere:∫
χ(y)L(y → x) dy (2.5)

And we have
χ(x) = Q(x) +

∫
χ(y)L(y → x) dy. (2.6)

2.2.2 Transport and Collision Kernels
In order to describe the kernel L(y → x) in more detail, substitute for y and x
the phase space variables (~r,~v) and a species index i. The kernel L can then be
broken into two pieces:

L(~r′, ~v′, i′ → ~r,~v, i) = T (~r′ → ~r;~v, i)C(~v′, i′ → ~v, i;~r), (2.7)

where T (~r′ → ~r;~v, i) is the (probability) density of particles leaving a collision
at ~r′ and having a subsequent collision at ~r. The “;” is used in the arguments of T
and C to separate changing parameters (on the left) from those held fixed (on the
right). Basically, sampling from T is as described in Section 2.1.2.

Collisions are described by C(~v′, i′ → ~v, i;~r) which provides the probability
that a particle of velocity ~v′, species i′ will have a collision resulting in a particle
of velocity ~v, species i. In practice, C is a sum over the physical reactions in
which species i′ participates.

2.2.3 Integral Equation Details
One of the problems with reading Monte Carlo particle references is that there are
several slightly different “quantities of interest” equivalent to χ(x). Furthermore,
there is no well-established notation for those quantities. In this subsection, we

10

attempt to list these various quantities and to provide a detailed form of an integral
equation for later reference.

The quantity χ(x) is called the post-collision density. The origin of this des-
ignation should be clear from the previous discussion. Equivalently, the integral
equation can be written in terms of the pre-collision density ψ(x). The two are
related by

ψ(~r,~v, i) =
∫
d3r′χ(~r′, ~v, i)T (~r′ → ~r;~v, i). (2.8)

It is this pre-collision density which is most closely related to the more familiar
particle flux Φ and particle distribution function f by the definitions:

ψ(~r,~v, i) = Σt(~r,~v, i)Φ(~r,~v, i) = Σt(~r,~v, i)|~v|f(~r,~v, i). (2.9)

The integral equation for ψ bears a strong resemblance to that for χ. We write
it out here in detail to illustrate the details as well as to provide a reference point
for the rest of the document and other reading:

ψ(~r,~v, i) = S(~r,~v, i)

+
∫ ∞

0
dR

∫
d3v C(~v′, i′ → ~v, i;~r − ~ΩR)

×T (~r − ~ΩR→ ~r;~v, i)ψ(~r − ~ΩR, ~v′, i′), (2.10)

where

S(~r,~v, i) =
∫ ∞

0
dR Q(~r − ~ΩR,~v, i)T (~r − ~ΩR→ ~r;~v, i), (2.11)

and

T (~r − ~ΩR→ ~r;~v, i) = Σt(~r,~v, i) exp

[
−
∫ R

0
dR′ Σt(~r − ~ΩR′, ~v, i)

]
. (2.12)

The actual form of the collision kernel C need not be written down here. Instead,
in this document we’ll only talk about its implementation from an analog point of
view. The only additional piece of information about it that we could add to the
above equations is that C consists of a sum over the relevant collision processes
involving species i′.

The approach of writing the path integrals as above instead of as general phase-
space volume integrals with the path enforced via delta-functions[12] was copied
from Case and Zweifel[13] We find that this leads to expressions which are easier
to work with and think about.

11

2.3 Estimators
The objective of the Monte Carlo calculation is to evaluate integrals over the dis-
tribution function:

I(g) ≡
∫
d3rd3vf(~r,~v)g(~r,~v). (2.13)

For example, if we wish to estimate a reaction rate ρ ≡ Σ|~v|,

I(ρ) =
∫
d3rd3vΣΦ(~r,~v). (2.14)

Values of ρ are accumulated along the random walk of the neutral flight and
used to estimate I(ρ). The mathematical description of this accumulation process
is called the estimator of I .

2.3.1 Simple Estimators
Consider a random walk γ which consists of k steps, (x1, x2, . . . , xk). I.e., the
particle is absorbed or otherwise terminated at the kth step. The simplest esti-
mator involves writing down the value of ρ at the point of absorption. Thus, the
absorption estimator is

ξa(γ) =
ρ

ρa
wχV , (2.15)

where ρa is the absorption rate in the volume of interest V and w is the statistical
weight of the particle (constant for this random walk process). The function χV

χV (xm) =

{
1 if xm ∈ V
0 if xm 6∈ V

, (2.16)

just permits the score to be localized to the volume of interest.
The expectation value of the estimator is just the sum over all possible random

walks γ of the probability of each walk P (γ) times the corresponding estimator,

E(ξa) =
∑
γ

P (γ)ξa(γ). (2.17)

Obviously, only one data point is collected for each random walk.
We can instead accumulate a score at each step (scattering collision) of the

random walk.

ξc1(γ) =
k∑

m=1

[
ρa(xm)

ρt(xm)

]
wχV (xm), (2.18)

12

where ρt = ρa + ρs is the total reaction rate for the particle, with ρs being the
scattering rate. The subscript c1 denotes the first collision estimator described
here. The expectation value of the estimator is again formally written as

E(ξc1) =
∑
γ

P (γ)ξc1(γ). (2.19)

Because of the greater amount of data accumulated along each particle track, the
variance of this estimator will usually be smaller than that of the absorption esti-
mator.

Consider now a random walk process in which absorption is forbidden. This
is our first departure from the usual analog processes. Instead of an absorption,
the weight of the particle is reduced at each scattering collision by its survival
probability. So, at the mth step of the walk the weight of the particle is

wm = w
m∏
j=1

ρs(xj)

ρt(xj)
. (2.20)

The flight must be terminated in some manner; the usual practice is to have it
undergo Russian roulette[2] when wm < wmin, where wmin is some specified
minimum weight. The collision estimator for this nonanalog random walk process
is then

ξc2(γ) =
k∑

m=1

wm

[
ρa(xm)

ρt(xm)

]
χV (xm). (2.21)

For formal proofs that these expectation values do indeed yield I(ρ), see
Spanier and Gelbard[2].

2.3.2 Generalized Collision and Tracklength Estimators
Two principal estimators are used in DEGAS 2. One is a generalization of the col-
lision estimator described in the previous subsection; the other is the tracklength
estimator.

These estimators can be obtained by making a slight modification of the deriva-
tion given by Macmillan[51] (who had improved upon an earlier approach de-
scribed by Spanier[52]). To make the connection to DEGAS 2 clearer, we replace
the Σ and d variables of Macmillan with ρ and t.

Macmillan’s paper, like the earlier one by Spanier, aims to derive the track-
length estimator. Collisions are described as either scatterings, rate ρs, or ab-
sorptions ρa. The starting point is the nonanalog random walk process described

13

in Sec. 2.3.1. The probability of an event occurring in a time interval dt is
(ρs + ρa) dt. Again, the weight reduction factor applied at each scattering is
ρs/(ρs + ρa).

The trick used by Spanier is to introduce a fictitious “delta scattering” that has
no impact on the particle’s trajectory or weight. These “pseudocollisions” are not
unrelated to those of the original DEGAS code[3]. Additional flexibility in the
final results is obtained by associating some fraction of the absorptions α with the
delta scatterings. To obtain the estimators used in DEGAS 2, we work with a total
fictitious scattering reaction rate

ρt,δ ≡ ρs,δ + αρa, (2.22)

where ρs,δ is equivalent to Macmillan’s Σs,δ. Then, the probability of a delta
scattering in a time interval dt is ρt,δ dt. At each delta scattering, the weight is
reduced by a factor (ρt,δ − αρa)/ρt,δ. The probability of a real scattering in the
same interval is (ρs + (1− α)ρa) dt; at each such event, the weight is reduced by
ρs/[ρs + (1− α)ρa].

If a particle travels a time t in a region of constant parameters before having a
real collision, the conditional probability of having n pseudocollisions is

P (n | d) =
(ρt,δt)

n

n!
exp(−ρt,δd). (2.23)

At each pseudo or real collision, we use the standard collision estimator for the
nonanalog random walk, taken from Eq. (2.21):

ξ =
ρ

ρ∗t
w, (2.24)

where w is the current weight of the particle and

ρ∗t = ρt,δ + ρs + (1− α)ρa (2.25)

is the overall total reaction rate.
The expected value of this estimator over the n collisions in the region is then

E(ξ | t) =
∞∑
n=0

P (n | t) ρ
ρ∗t

n∑
i=0

(
ρt,δ − αρa

ρt,δ

)i
, (2.26)

where we have assumed that the initial weight of the particle is 1. The last factor
represents the subsequent weight reductions with each pseudocollision.

14

Following Macmillan’s evaluation of E(ξ | t), we find that we can write

E(ξ | t) = c′
ρ

ρs + (1− α)ρa
+ (1− c′)ρ1− exp(−αρat)

αρa
, (2.27)

where

c′ ≡ ρs + (1− α)ρa
ρt,δ + ρs + (1− α)ρa

(2.28)

should be compared with Macmillan’s c.
Macmillan’s expression for the weight reduction after time t is exactly the

same in our case:

E(w | t) = exp(−αρat)
ρs

ρs + (1− α)ρa
. (2.29)

The factor at the end represents the weight reduction by the real collision at time
t. If the particle travels a time t through the region without having a real collision,
its weight should be reduced by just exp(−αρat).

In this latter situation in which there is not a real collision at time t, only the
pseudocollisions contribute to the score. An interesting difference from MacMil-
lan’s approach is that if we consider the limit ρt,δ → 0, we should get no score at
all. In contrast, MacMillan’s pure “collision estimator” still compiles a nonzero
score as Σs,δ → 0 through the αΣa contribution to the pseudocollision cross sec-
tion. Thus, MacMillan’s “collision estimator” behaves somewhat like a track-
length estimator if there are no collisions in a region. For simple scores, this
behavior is desirable: lower variances will result in regions of small cross section.
However, a few scores are sufficiently complex that averaging along the particle
path cannot be done, and scoring can only be done at collisions. A pure collision
estimator is required for handling such scores.

In the case of no real collision at time t, the expectation value for our estimator
becomes:

E(ξ | t) =
ρ

ρ∗t
ρt,δ

1− exp(−αρat)
αρa

. (2.30)

Clearly, E(ξ | t) → 0 as ρt,δ → 0. The limiting expressions above for ρt,δ → 0
can be obtained from MacMillan’s with Σs,δ → −αΣa.

We now consider the expressions used in DEGAS 2. We start by using α = 1
so that absorptions occur only at the delta scatterings. This is consistent with
our use of the nonanalog random walk, i.e., suppressed absorption. The collision
estimator is then given by ρt,δ = 0,

ξc ≡
ρ

ρs
exp(−ρat)wχV , (2.31)

15

where w is the weight of the particle at the beginning of timestep t and we have
inserted the characteristic function of V χV for completeness. At the end of the
timestep (after the collision is scored) the weight is reduced by

w′ = w exp(−ρat). (2.32)

The particle track continues from there, and multiple scores may be made inside
the volume V . If the flight travels through the volume V without a collision, no
contribution to the score is made. However, the weight is still reduced by the
factor in Eq. (2.32).

The track-length estimator is obtained with ρt,δ →∞,

ξt ≡ ρ
1− exp(−ρat)

ρa
wχV . (2.33)

Note that Eq. (2.30) yields this same result in the case of no collisions. The same
weight reduction, Eq. (2.32) is applied at the end of t. Conveniently, this allows
us to use the same weight factor for both estimators (true in MacMillan’s case as
well).

Molecules and some other species are not treated with suppressed absorption.
Instead, an ionizing collision terminates the flight (typically changing the species).
The estimators for this case are obtained by setting α = 0 in the above expres-
sions:

ξc ≡
ρ

ρs + ρa
wχV , (2.34)

and
ξt ≡ ρtwχV . (2.35)

There is no weight reduction in this case, and w retains its initial value for the
duration of the flight.

2.3.3 Specification of Tallies
This section briefly covers the practical implementation of the estimators de-
scribed in the previous subsection. DEGAS 2 currently features three primary
types of estimators. These estimators are used in accumulating three types of
tallies. The tally types are

1. test,

2. reaction,

16

3. sector.

These designations can also be viewed as characterizing the nature of the infor-
mation contained in the function g of Eq. (2.13). The following discussion of the
three estimators applies to the first two of these; there is only one estimator for the
sector tallies.

The first estimator, associated with the accumulating test particle information,
is just the track length estimator (see also Sec. 2.3.2),

ξTLE
g = w

1− exp(−σitV)

σi
g, (2.36)

where tV is the time the particle track spent in volume V, w = weight at start
of the time step. Compare this with Eq. (2.33). The function g can be a test
particle attribute, such as mass, momentum, energy, or reaction-related, e.g., ion
momentum source due to charge exchange. The latter g quantity enter the track-
length estimator as averages over the background distribution[17].

The second type of estimator is the collision estimator,

ξCE
g =

∑
ms

wms
g

σs
, (2.37)

where the sum is over ms, all scattering collisions within V . The quantity wms
is the weight at msth collision (by using the instantaneous weight rather than the
initial weight, the exponential weight reduction factor that appears explicitly in
Eq. (2.31) is incorporated automatically). Again, g is a test particle attribute.

There is an analogous expression for the collision estimator associated with a
particular reaction,

ξCE
g =

∑
mj

wmj
g

σj
, (2.38)

where the sum is now over mj collisions of reaction j within V , The function
g is some quantity related to the reaction and is likely something known only at
collisions. One example of such a quantity would be the energy source due to
H2 dissociation (i.e., the energy exchange is determined only once the product
velocities have been determined).

The third type of estimator arises from the observation that many integrals of
interest can be written as:

I(g) ≡
∫
d3rg(~r)

∫
d3vf(~r,~v) =

∫
d3rg(~r)n(~r). (2.39)

17

This leads to the post-processing estimator. The requirement is that g not depend
upon the test or background velocities. An example of this is the Hα emission
rate.

Information accumulated when a flight crosses a diagnostic sector (surface) is
compiled in the sector tallies. The stimator is just wg, where w = is the weight
when the track hits the sector. Examples of the g = functions include mass,
incident angle, and energy. This is effectively a collision estimator.

There is also a “null” or “none” estimator that can be used, say, to eliminate
the contribution of a particular reaction to a tally without having to remove that
reaction from the problem.

For each tally, we need to specify

1. A descriptive label,

2. The type of tally (test, reaction, or sector),

3. Its geometry, [volume (per zone), surface (diagnostic sector), or detector
(e.g., chord-integrated)],

4. The dependent variable (e.g., energy, background momentum, Hα emission
rate). The requested variables are matched directly against the labels in the
atomic physics data files. If a new reaction and data file containing a new
variable are added to the code, that variable can be used as the basis for a
corresponding tally without having to modify the code.

5. The rank (or dimensionality) of the tally,

6. Its independent variables (1→ rank) [e.g., zone, test particle species, energy
bin (diagnostic sector), wavelength bin (detector).

7. The estimator to be used (track-length, collision, post-processed, or null).
For reaction tallies, the estimator chosen can vary with reaction. It may be
advantageous to combine results from than one estimator, but no effort to
implement such a capability has been made yet.

8. Any conversions that must be performed on the tally prior to output. Usu-
ally, these conversion will do some sort of scaling, e.g., by mass or volume.
An important example is converting ~v from Cartesian to cylindrical coordi-
nates when scoring.

18

2.4 Tracking Procedure
The two previous subsections are tied together with an outline of the DEGAS 2
subroutine for following flights in Fig. 2.3.

The flight is initiated as it is sampled from the spatial and velocity distribution
of a source. Conceptually, this step amounts to specifying χ0(~r′, ~v′, i) using the
source term Q(~r′, ~v′). The subscript 0 denotes the initial track for the flight.

The next stage of the algorithm involves computing the reaction rates ρs, ρa,
etc. for the flight. Continuing flights which require a recomputation (due to cross-
ing from one plasma region to another or to a change in species or velocity) repeat
the main loop starting at this same point. The post-collision density χn in Fig. 2.3
is intended to refer to them.

The time to the next collision is randomly sampled (Sec. 2.1.2) from the sum
of the non-absorbing reaction rates using a random number ζ .

The weight w is compared with some minimum weight to guarantee that the
flight terminates at some point. The “End flight” process indicated in Fig. 2.3
actually represents a Russian Roulette procedure[2] which may allow the flight to
live a little longer.

The transport kernel T translates the flight from position ~r′ to ~r. At the same
time, this step represents the conceptual transition from post-collision density to
pre-collision density ψ, Eq. (2.8). The tracking algorithm stops when t = tmax,
the flight crosses a zone boundary (denoting a change in plasma parameters), or
a “sector” (a material or diagnostic surface; these will be discussed in Sec. 2.6)
is reached. If a zone boundary is crossed, the flight continues as is, although the
rates must be recomputed. Processing a sector may result in the continuation or
the termination of the flight, depending on the type of sector. Again, the details
have been omitted for simplicity.

If the flight reaches t = tmax, the implication is that it has had a collision.
A particular collision is randomly chosen from amongst those possible for this
particular flight. At this point, precollision scores are recorded and the collision
itself is processed. Conceptually, this represents the transition via the operator C
from ψn+1 to χn+1. If the reaction chosen results in no particles to track (e.g.,
in no neutral species; particles which DEGAS 2 has been instructed to track are
called “test” particles), the flight is terminated. Test particles resulting from the
collision are tracked in the same manner, starting with the computation of the
reaction rates.

19

Sample Source

Calculate ρs, ρa

tmax = - ln ζ / ρs

Track for time t ≤ tmax

tfac = [1 - exp(-ρa t)] / ρa

Compile track-length scores
ξt = ρ tfac w

Reduce weight
w′ = w exp(-ρa t)

t = tmax?

Compile collision scores
ξc = ρ w exp(-ρa t) / ρs

w < wmin?

Process collision

Any test
products?

End flight

At a sector?

Score & process sector

Cross zone boundary

End flight
yes

yes

yes

yes

no

no

no

no

C

Q

T

χ0(r′,v′)

χn(r′,v′)

ψ1(r,v′),
ψn+1(r,v′)

χ1(r,v),

χn+1(r,v)

Figure 2.3: Simplified flow chart of DEGAS 2 subroutine follow, showing the
steps involved in tracking a flight from its birth to its termination. Note the weight
reduction, and collision and tracklength estimators (Sec. 2.3). The operators from
the integral equations are shown along with the pre- and post-collision densities.
These labels tie the practical algorithmic operations to the equations in Sec. 2.2.3.
Some details have been omitted for clarity.

20

2.5 Random Numbers
The concepts behind the random number generator used in DEGAS 2 are de-
scribed in the file random.web. The documentation at the top of the file pro-
vides a nice introduction.

2.6 Geometry
The hiearchy of geometry-related objects in DEGAS 2 is, from the lowest level to
the highest level, is:

1. surface,

2. cell,

3. polygon,

4. zone.

Individual cells are composed of surfaces, as discussed in the documentation for
the internal geometry (e.g., see geometry.web; follow this link to the PDF ver-
sion of this file). The next level up in two (and three, to a limited extent) dimen-
sions is a polygon. Finally, a zone may consist of one or more polygons; properties
are constant across a zone. For example, a single zone might be used to represent
the vacuum region around the plasma which is comprised of several (possibly dis-
connected) polygons. Or, a plasma flux surface on which density and temperature
are constant might be a single zone. Note that polygons are used only for exter-
nal interfaces to the geometry such as that provided by definegeometry2d
or readgeometry and are not retained in the classes of the main code. Cells
and surfaces are essentially used only by the code itself; the user would have to
deal with them only in debugging. Zones are used primarily for the specification
of input and output data. For more detailed background on the DEGAS 2 geome-
try and some guidance on how to set one up for your particular problem, see the
introductions to the external geomtry interface codes definegeometry (PDF
file here), readgeometry (PDF file here), or boxgen (less well documented).

Another important component of the geometry are the “sectors”; they are de-
fined at interfaces between adjacent zones of different types to facilitate tracking
or between zones of the same type for diagnostic purposes. Namely, flights are
halted at sectors during tracking. If the next zone along the track represents, say,

21

a solid material, the main code hands that flight off to the routines that effect the
interaction of the current particle with that material. While stopped at that sector,
scores to corresponding “diagnostics” (groups of sectors) are also tabulated. The
essential identifying information of a sector are its surface and zone numbers. See
the sector class documentation for a more detailed description. Default diagnostic
sector groups defined by all DEGAS 2 geometry setup programs are discussed in
Sec. 3.11.

2.7 Symmetry and Coordinate Systems
The coordinate system in the main DEGAS 2 code is purely 3-D Cartesian; that’s
essential to an efficient tracking algorithm. There are, however, two coordinate
system related concepts.

1. The geometry’s symmetry. In most problems, the user’s objectives can be
met with an approximate 2-D solution possessing an ignorable coordinate.
The two situations considered in DEGAS 2 are invariance to translation
along the y axis (“plane” symmetry) and invariance to rotation about the
z axis (“cylindrical” symmetry). In both cases, the tracking is still done
in 3-D, but the output results are averaged over the third dimension. As
will be discussed in more detail below, 1-D and 3-D “symmetries” are also
permitted. Most geometry related variables refer to Cartesian coordinates.
However, in cylindrically symmetric or nearly symmetric (3-D) cases, some
geometry related variables are in cylindrical coordinates.

2. Coordinate system of input and output velocity fields. The main need for
this is in cylindrically symmetric or nearly symmetric problems, e.g., when
DEGAS 2 is coupled to a 2-D plasma code like UEDGE. In these cases, the
plasma flow velocities are effectively specified at a toroidal angle φ = 0,
corresponding to y = 0. To use these velocities in a collision at some
particular location for which φ 6= 0 (equivalently, y 6= 0), the velocities
need to be rotated through that angle φ. Likewise, a code like UEDGE
expects to get from DEGAS 2 toroidally symmetric ion momentum sources
specified at φ = 0. So, the scores for those sources need to be rotated
from the local toroidal angle φ 6= 0 to φ = 0 as they are being compiled.
These two transformations are handled by macros in the background class.
In problems with plane or no symmetry, these macros have no effect.

22

The currently permissible symmetry types (see also geometry.hweb) are:

None Currently indicates that the symmetry has not been defined, not that the
geometry has no symmetry.

Plane A 2-D geometry in which the y coordinate is ignored.

Cylindrical A 2-D geometry in which the toroidal angle φ is ignored.

1-D A 1-D (plane) geometry in which the y and z coordinates are ignored.

3-D Plane This geometry is close to be planar symmetric; all of the geometrical
objects are defined using 2-D shapes defined in a single plane. The problem
is bounded in the y direction, and the y variation of the results can be com-
puted and output. The nature (solid vs. plasma or vacuum) of the objects
can also vary in the y direction. The problem is divided in the y direction by
y = constant surfaces. This might be described as a “bread slice” approach
to a 3-D geometry.

3-D Cylinder This is the cylindrical equivalent of the 3-D Plane symmetry. The
full range of toroidal angles (360 degrees or 2π radians) is included in this
case. Obviously, the problem is divided in the φ direction by φ = constant
surfaces. The analogous simplified characterization of this approach is the
“pie slice” technique.

3-D Cylindrical Section This is also a cylindrical equivalent of the 3-D plane
symmetry. The difference is that in this case only a finite range of toroidal
angles is considered. The problem is bounded by φ = constant surfaces
at the extrema of this range. Extending the “pie slice” analogy, this case
represents some number of slices, but less than the whole pie!

2.8 Time Dependence
The default and most frequently used mode of running DEGAS 2 simulates a
steady state or time independent system. The reason for this is physically obvi-
ous: unconstrained by magnetic field lines, neutral particles can travel through a
plasma much more quickly than charged species, and in many cases, the neutral
profile equilibrates on a time scale short compared with global transport times.
For a rapidly evolving system, however, a time dependent calculation may be

23

needed. The implementation of time dependence in DEGAS 2 follows that used
in EIRENE [5].

Only the defineback input preprocessor is presently set up to handle direct
user specification of a time dependent run; see the corresponding source file for
details on how this is done. However, the user can in principle also manually set
the controlling parameters in the source class.

The user specified sources in a time dependent run are either fixed in time dur-
ing a time interval (uniform) or start at the beginning of the interval (δ function).
More complex time variation of the sources can be created by breaking up the
source time dependence into a set of discrete time intervals with the sources being
uniform over each.

To provide continuity between consecutive time intervals, an additional “snap-
shot” source group is set up to sample from the neutral particle distribution func-
tion (PDF) that was in the volume at the end of the end of a previous interval.
Again following [5], we represent this PDF via the particle positions, velocities,
and weights; this is the purpose of the snapshot class. These data are written to
the file indicated by the snapshotfile in degas2.in (Sec. 3.5.1). With this
approach, the amount of kinetic detail in the PDF is maximized.

2.9 Atomic Physics
The interaction of electrons with atoms and ions in a divertor plasma is compli-
cated by having comparable collision and radiative decay times. The techniques
for treating such systems were first described by Bates and McWhirter[6, 7]. The
physical processes included in such a collisional-radiative model are:

1. Electron collisional excitation Ke,mn and de-excitation Kd,mn,

2. Spontaneous radiative transitions Amn,

3. Electron collisional ionization Ki,mn,

4. Three-body recombination Kr,mn,

5. Radiative recombination βrad,m,

6. Dielectronic recombination (for multi-electron atoms) βdia,m,

24

where m and n are principal quantum numbers. For the two state terms, the initial
state is the second number; the final is the first. This apparently backward notation
allegedly has a mathematical origin.

A set of m equations describes the balance between these processes that de-
termines the density of the m-th excited state of the atom, Nm,

dNm

dt
= −Nm

[
ne

(
Ki,m +

∑
n>m

Ke,nm +
∑
n<m

Kd,nm

)

+
∑
n<m

Anm

]

+ne

(∑
n>m

NnKd,mn +
∑
n<m

NnKe,mn

)
+
∑
n>m

NnAmn + neni(βrad,m + βdia,m + neKr,m), (2.40)

where ne is the electron density and ni is the density of ions corresponding to the
atom under consideration (m→∞, effectively).

The basic assumption of the collisional-radiative model[6, 7] is that states
above ground state will decay much more rapidly than the ground state will change.
The evolution of the ground state is considered to be comparable to the transport
time scales. This physical process is the one considered by the neutral transport
code. In other words, the m = 1 equation will essentially be solved by DEGAS 2
and N1 can be treated as an externally known quantity. The relatively rapid equi-
libration of the excited states permits the time derivatives of their densities to be
set to zero. The set of equations for m > 1 can then be solved,

Nm =

(
N (i)
m

N1

)
N1 +

(
N (ii)
m

ni

)
ni. (2.41)

In practice, the solution of these equations involves:

1. Obtaining the various reaction rates, Ke,mn, Kd,mn, Amn, Ki,mn, Kr,mn,
βrad,m, βdia,m, as a function of ne and Te,

2. Solving the m > 1 equations for each ne, Te pair with N1 = 1 and ni = 0,
providing the “coupling to the ground state”,

3. Solving the equations again withN1 = 0 and ni = 1, yielding the “coupling
to the continuum”.

25

Tables of the population coefficients N (i)
m /N1 and N (ii)

m /ni are thus obtained as a
function of ne and Te.

With Eq. (2.41), the m = 1 equation can becomes

dN1

dt
= −N1neSeff + neniReff + transport, etc., (2.42)

with

Seff =
∑
m≥1

(
N (i)
m

N1

)
Ki,m, (2.43)

and

Reff = −
∑
m≥2

(
N (ii)
m

ni

)
Ki,m +

∑
m≥1

(βrad,m + βdia,m + neKr,m) . (2.44)

Seff is thus the effective ionization rate of the ground state neutral, incorporating
the multi-step processes associated with all of the excited states. Likewise, Reff

is the effective recombination rate. Both are functions of ne and Te. Selected
values of the population coefficients N (i)

m /N1 and N (ii)
m /ni may also be tabulated

or used to compute photon emission rates for specific transitions of interest (e.g.,
Balmer-α).

The above assumes that just the ground state evolves on the transport time
scales relevant to DEGAS 2. If metastable excited states are present in the system
(e.g., helium’s 21S and 23S states or hydrogen’s n = 2 in an optically thick
region), they may need to be treated on this same footing. The need for such a
treatment and its formulation go beyond the scope of this presentation. See the
discussion below on helium for some additional references.

Computing the electron energy sources and sinks associated with Eq. (2.40)
involves accounting for the energy exchanges in each of the processes appearing
in Eq. (2.40):

dEe
dt

= E1 (−N1neSeff + neniReff)

−
∑
m,n
n<m

NmAnm (En − Em)

−neni
∑
m≥1

βrad,m (〈Erad,m〉+ Em)

−neni
∑
m≥1

βdia,m (〈Edia,m〉+ Em) , (2.45)

where

26

• E1 is the ionization energy,

• the first term is the loss due to ionization,

• the second is the gain due to recombination.

• The sums represent lost photons from radiative transitions and recombina-
tion,

• 〈Erad,m〉 and 〈Edia,m〉 are the average energies of electrons in radiative and
dielectronic recombination, respectively.

The two average energies are computed using the expression given by Reiter[17],

〈Ex,m〉 = Te

[
3

2
+

Te
βx,m

dβx,m
dTe

]
, (2.46)

where x denotes either rad or dia.
Using Eq. (2.41), Eq. (2.45) becomes

dEe
dt

= −E1 (N1neSeff − neniReff)−N1E
(i)
loss − niE

(ii)
loss, (2.47)

where the terms E(i)
loss, E

(ii)
loss represent the loss rates due to coupling to the ground

state and continuum, respectively. A different arrangement of these terms which
can be generalized to the case involving multiple “transported states” has also
been used:

dEe
dt

= −N1neE
(i)′
loss + nineE

(ii)′
source − nineE

(ii)′
loss . (2.48)

The relationships between the terms are nearly obvious, but potentially prone to
confusion. For clarity, they are:

E
(i)′
loss = E1Seff + E

(i)
loss/ne, (2.49)

E(ii)′
source = E1Reff , (2.50)

E
(ii)′
loss = E

(ii)
loss/ne. (2.51)

Note that the “unprimed” energies have dimensions of power, and the “primed”
versions have dimensions of power times volume. All are stored in tabular form
as functions of ne and Te for use in DEGAS 2.

27

2.9.1 Hydrogen Collisional Radiative Model
The code we use to solve these equations for the hydrogen atom, collrad, is
based on the one described by Weisheit[20]. The original code assumed that ion-
ization and recombination were in balance so that the neutral density could be
expressed in terms of the ion density. While this might be valid in an astrophys-
ical context, it is horribly wrong in fusion devices. The first major change to
the code is to have it use Eq. (2.41) instead. The other change is to replace the
cross sections with those provided in the Janev-Smith database[18]. The result-
ing collisional-radiative data are believed to be in good agreement with ADAS.
Although the collrad code is not itself distributed with DEGAS 2, it can be
obtained from the DEGAS 2 authors (see Sec. 5.1).

The output data from collrad are contained in the file ehr2.dat. Earlier
versions of this same file, eh.dat (as generated by Weisheit’s original code) and
ehr1.dat [generated with Weisheit’s code modified to use Eq. (2.41)] are also
included in the DEGAS 2 distribution since they were both used extensively with
the original DEGAS code.

The ehr2.dat file contains

1. Ionization rate Seff in cm3 s−1,

2. Recombination rate Reff in cm3 s−1,

3. Neutral electron losses E(i)
loss in erg s−1,

4. Continuum electron losses E(ii)
loss in erg s−1,

5. Neutral “n=3 / n=1”, N (i)
3 /N1,

6. Continuum “n=3 / n=1”, N (ii)
3 /ni,

7. Neutral “n=2 / n=1”, N (i)
2 /N1,

8. Continuum “n=2 / n=1”, N (ii)
2 /ni.

Figure 2.4 shows the variation of the effective ionization and recombination rates
with electron density and temperature.

The portion of the file for each quantity consists of 15 separate sections (la-
beled by jn), corresponding to the various electron density values,

ne(jn) = 1010+(jn−1)/2 cm−3. (2.52)

28

10-20

10-19

10-18

10-17

10-16

10-15

10-14

1 10 100

<σ
v>

 (
m

3 s-1
)

T
e
 (eV)

ionizationrecombination

n
e
 (m-3)

1023

1022

1021

1020

1019

1018

Figure 2.4: Effective hydrogen ionization and recombination rates as a function
of electron temperature for selected electron densities.

29

Each section consists of 60 data values, one for each Te(jt),

Te(jt) = 10−1.2+(jt−1)/10 eV. (2.53)

The index jt starts at 1 in the first column and row and proceeds row-by-row.
There are 10 rows of 6 entries each.

The density of the n = 3 excited state can be found with

N3 =

N (i)
3

N1

N1 +

N (ii)
3

ni

ni. (2.54)

The corresponding emission rate for the Balmer-α line (a.k.a. “Hα”, n = 3 → 2)
is given byN3A23 = 4.41×107N3 cm−3 s−1. Note that the energy of this transition
is E23 = 13.595(2−2 − 3−2) eV. Similar expressions give the n = 2 density and
the Lyman-α (n = 2→ 1) emission rate.

The data in ehr2.dat are transformed into netCDF files containing the par-
ticular variables DEGAS 2 expects to find (see Sec. 3.9) by the reactionwrite
code. Separate files for ionization and recombination are written. In these files,
Seff and Reff become the “reaction rates”. The “emission rate” variable is ob-
tained by rewriting the above expression for the Balmer-α emission rate as a
power, per atom (for ionization) or ion (for recombination) and per electron:

P (i)
α = E23A23

N (i)
3

N1

 /ne, (2.55)

P (ii)
α = E23A23

N (ii)
3

ni

 /ne. (2.56)

These quantities have dimensions of power times volume. The wavelengths of this
transition for each of the hydrogen isotopes are also inserted into the file, λHα =
6562.80 Å, λDα = 6561.04 Å, and λTα = 6560.45 Å. The electron energy ex-
change terms in ehr2.dat correspond to those in Eq. (2.47); reactionwrite
transforms them into those of Eq. (2.48).

2.9.2 Helium Collisional Radiative Model
The code used to solve the collisional radiative equations for the helium atom
was developed by Goto[21], based on Fujimoto’s original[22]. This code actually
generates data for two collisional radiative models. In the first, only the ground

30

state (11S) atom is considered slowly varying (i.e., must be treated explicitly as a
transported species in DEGAS 2); this model was designated as “formulation II”
by Fujimoto. In the second, the metastable 21S and 23S states are also considered
slowly varying; Fujimoto called this “formulation I”. The appropriate species,
reactions, and data needed to do simulations based on this model have been incor-
porated into DEGAS 2. However, investigations using it have not demonstrated
that the added detail yields any significant differences in the final results. More-
over, a separate analysis of the helium collisional radiative equations [Eq. (2.40)]
suggests that this particular model may not even be valid for typical fusion edge
conditions. For these reasons, we will not discuss this model any further and will
focus only on the simpler “one state” model.

The primary modification made to Goto’s code in preparation for using its
output with DEGAS 2 were to add the computation of the electron energy ex-
change terms in Eq. (2.48). The resulting formulation II model and data are, not
surprisingly, very similar in structure to those of the hydrogen collisional radia-
tive model. The file he_crII_alad.dat (in directory Aladdin/data) is
an Aladdin formatted version of these data. These same data written in a format
more like that of ehr2.dat are contained in the file he_crII.txt that can be
downloaded from the “Data” section of the DEGAS 2 web site. This file has been
provided as a convenience for those who would just like to use the data, but not
download the entire DEGAS 2 code.

The contents of this file are:

1. Ionization rate Seff in cm3 s−1,

2. Neutral electron losses E(i)′
loss in eV cm3 s−1,

3. Neutral 5877 Å (33D → 23P) emission rate P (i)
5877 in eV cm3 s−1,

4. Neutral 6680 Å (31D → 21P) emission rate P (i)
6680 in eV cm3 s−1,

5. Recombination rate Reff in cm3 s−1,

6. Continuum electron losses E(ii)′
loss in eV cm3 s−1,

7. Continuum electron sources E(ii)′
source in eV cm3 s−1,

8. Continuum 5877 Å (33D → 23P) emission rate P (ii)
5877 in eV cm3 s−1,

9. Continuum 6680 Å (31D → 21P) emission rate P (i)
5877 in eV cm3 s−1,

31

The portion of the file for each quantity consists of 30 separate sections (la-
beled by jn), corresponding to the various electron density values,

ne(jn) = 108+8∗(jn−1)/29 cm−3. (2.57)

Each section consists of 65 data values, one for each Te(jt),

Te(jt) = 10(jt−1)/16 eV. (2.58)

The index jt starts at 1 in the first column and row and proceeds row-by-row.
There are 10 rows of 6 entries each, followed by a single row of 5 entries.

The “emission rates” here correspond to the power in those lines and are anal-
ogous to Eqs. (2.55) and (2.56) above. The total emitted power (per unit volume)
is obtained at run time by combining them with the ground state and ion densities:

P5877 = P
(i)
5877N11Sne + P

(ii)
5877nine. (2.59)

Note thatE33D→23P = 2.10955 eV,A33D→23P = 7.069×107 s−1, andE31D→21P =
1.85606 eV, A31D→21P = 6.369 × 107 s−1. The more precise (vacuum) wave-
lengths for these transitions are 5877.1 Å and 6679.7 Å respectively. The first
ionization energy for helium is E1 = 24.587 eV.

The electron energy losses and sources can be used directly in Eq. (2.48).
The data in he_crII_alad.dat are transformed into netCDF files by the

ratecalc code using the input files heionII.input and herecII.input
(in the data directory). See the DATA_HISTORY file for additional details.

2.10 Elastic Scattering

2.10.1 Neutral-Ion Elastic Scattering
Note: this subsection was extracted from Ref. [23]. A few minor changes in nota-
tion have been made for consistency. Only limited experimental data are available
for ion-neutral elastic scattering at low energies. The monograph by Janev[16] is
one of the most widely used data sources available, but only contains charge ex-
change at moderate to high collision energies and no data for elastic scattering. As
divertor technology has progressed, low temperature operating environments have
become a standard mode of operation. Under these conditions, both charge ex-
change and small-angle elastic scattering must be included in simulations. Below

32

approximately 2 eV forD+ +D collisions, separate treatment of small-angle elas-
tic scattering and resonant charge exchange becomes impossible due to quantum
mechanical effects. The need for a comprehensive treatment of ion-neutral elastic
collisions at low energies motivated the Controlled Fusion Atomic Data Center at
ORNL to produce a collection of total differential elastic scattering cross sections
for 31 various isotopic combinations of hydrogen atoms and molecules[24].

DEGAS 2 represents an improvement over the original DEGAS code in that
the pseudo-collision algorithm originally employed in scoring results[3] is re-
placed with a track-length type estimator. This allows efficient determination of
momentum and energy exchange with the background plasma over a wide range
of background densities. The rate expressions used by the track-length estimator
involve the momentum transfer (or diffusion) cross section, σd[25].

A general expression for the integral cross sections is[25]

σl = 2π
∫ π

0
(1− cos θ)l σ(θ, Er) sin θ dθ, (2.60)

where l = 0 corresponds to the total elastic scattering cross section, l = 1 to the
diffusion cross section and l = 2 to the viscosity cross section; θ is the center-
of-mass scattering angle, Er is the relative energy of the collision, and σ(θ, Er)
is the differential elastic scattering cross section. The total elastic collision cross
section, σt, is used in Monte Carlo simulations to determine the time between
elastic collisions. In this manner the size of the total elastic collision cross section
influences the execution time of numerical simulations.

A simulation technique that reduces the total collision cross section while
keeping the momentum transfer cross section invariant can be developed. Using
the expression for σd and dividing Eq. (2.60) into small and large angle compo-
nents,

σd(Er) = 2π
∫ θmin

0
C(Er)(1−cos θ)δ(θ−θmin)dθ+2π

∫ π

θmin

(1−cos θ)σ(θ, Er)dθ.

(2.61)
Substituting σ(θ, Er) from the ORNL data set here and directly computing σd(Er)
[via Eq. (2.60)], allows Eq. (2.61) to be solved for C(Er) given a particular value
of θmin. The resulting value of C(Er) is then used in a similar expression for the
viscosity cross section. This provides viscosity cross sections accurate to second
order in θmin. The value of θmin is chosen so as to reduce the total elastic cross
section as much as possible while retaining physical realism.

For low energy elastic collisions a significant portion of the collisions involve
small-angle deflections. Due to this behavior, the majority of the reduction in

33

http://www-cfadc.phy.ornl.gov/

total elastic cross section is obtained with a five-degree minimum scattering angle
(Fig. 2.5). Minimum scattering angles greater than five degrees result in little
computational savings. The resulting reduction in σt is approximately a factor of
two at relative energies Er > 10−1 eV. The values for σd are unchanged during
application of a small-angle cut-off.

The use of this small-angle cut-off leads to an efficient algorithm for simulat-
ing the dynamics of elastic collisions in Monte Carlo simulations. Previous mod-
els based on classical collision kinetics for direct elastic scattering face difficulties
in that the cross section is a rapidly varying function of the impact parameter[25].
This precludes the use of efficient table-look-up methods and forces a time con-
suming evaluation of the collision integral for each individual interaction.

Utilization of the differential elastic cross section, σ(θ, Er), allows develop-
ment of a table-look-up interpolation for both direct elastic scattering and resonant
charge exchange. Following the work by Abou-Gabal and Emmert[26], we divide
the total elastic cross section into n pieces and interpret the result as a cumulative
probability distribution function,

Pi = 2π
∫ cos Θi

−1

σ(θ, Er)

σt(Er)
d(cos θ), i = 0, 1, . . . n. (2.62)

Equation 2.62 is inverted to obtain the scattering angle as a function of rela-
tive energy and n equally spaced values of the cumulative probability spacing,
Θi(Pi, Er), where Θi is the scattering angle in the center-of-mass frame. Exam-
ples of Θi(Pi, Er) for the D+ + D and D+ + D2 collisions at a center-of-mass
energy of 1 eV are presented in Fig. 2.6. At this energy, inclusion of direct elas-
tic scattering increases the probability that colliding particles undergo small angle
deflections. Consideration of charge exchange alone would shift the probabil-
ity distribution to favor collisions resulting in Θ = π. As evident in Fig. 2.6,
Θi(Pi, Er) for like-species collisions exhibits a higher probability of undergoing
large-angle collisions compared to the ion-molecular collision case. This is due
to the absence of a charge exchange contribution to the scattering function for
ion-molecular elastic collisions. Monte Carlo collision processing begins with the
sampling of a suitable ion from a Maxwellian distribution at the local ion tem-
perature, yielding, Er. The Pi are next sampled from a uniform distribution. The
collision angle follows from a bi-linear interpolation into this data table without
evaluation of complex integral functions.

Previous treatments of charge exchange in Monte Carlo algorithms employed
a 180◦ collision scattering model in the center-of-mass frame. The approach is
simple to implement, requiring just the exchange of the ion and neutral velocity

34

10
-03

10
-02

10
-01

10
00

10
01

10
02

Er (eV)

10-15

10
-14

10
-13

10-12

C
ro

ss
 S

ec
tio

n
 (c

m
2)

Cross Section
Total Elastic
Total Elastic with Theta min = 5 Degrees
Diffusion
Diffusion with Theta min = 5 Degrees

Figure 2.5: Comparison of total and diffusion cross sections forD++D collisions
with and without the small-angle cut-off approximation.

35

0 0.2 0.4 0.6 0.8 1
Probability

0

0.5

1

1.5

2

2.5

3

3.5

�� ��
cm

 (
ra

di
an

s)

Scattering Interaction
D+ + D
D+ + D2

Θ

Figure 2.6: Scattering function Θi(Pi, Er) for D+ +D and D+ +D2 ion-neutral
elastic interactions at an interaction energy of 1 eV.

36

vectors and yields a momentum transfer cross section of about 2σcx, where σcx is
the charge exchange cross section. This is, in fact, roughly equal to the total diffu-
sion cross section in ion-neutral collisions, σd ∼ 2σcx [27, 28, 29] The accuracy of
this simple expression is demonstrated in Fig. 2.7, which compares the diffusion
cross section with results for the “spin exchange” cross section from the ORNL
data[24]. Spin exchange is defined as the exchange of the intrinsic quantum me-
chanical property of particle spin; for distinguishable particles this is equivalent to
charge exchange. For like-species collisions, spin exchange and charge exchange
are equivalent only within classical regimes. The relation σd ∼ 2σcx holds within
the classical regime above approximately 2 eV for D+ + D. At lower energies,
the particles must be treated as indistinguishable and separation of direct elastic
scattering and charge exchange is no longer possible. At these low energies, spin
exchange is no longer equivalent to charge exchange and the relation σd ∼ 2σcx
no longer holds. This illustrates the difficulties in treating ion-neutral elastic col-
lisions by charge exchange alone under low-temperature detached conditions.

The addition of these data present the user with yet another option for handling
hydrogen charge exchange in DEGAS 2. Figure 2.8 compares the new CFADC
data (labeled “Krstic”) with previous versions and with experimental data. The
cross sections have been plotted as a function of the relative velocity so that both
the hydrogen and deuterium data can be included. The Krstic cross sections are
the “spin exchange” cross sections described in Ref. [24]. They are thus smaller
than the total elastic scattering cross sections that are to be used in DEGAS 2. This
underscores the point that these new elastic scattering cross sections are intended
to replace the existing charge exchange data, not used in addition to them.

The default data used heretofore in DEGAS 2 have been computed from the
“Janev-Smith” fit[18]. This fit was derived from older data published by Barnett[30].
Barnett’s data were a compilation of various experimental results. Included was
the work by Newman[31]. Why the Barnett compilation diverges slightly from the
Newman data at the lowest energies is not clear. The Reviere[32] curve in Fig. 2.8
represents the charge exchange cross section employed in the original DEGAS
code. Not surprisingly, they are used in DEGAS 2 in the Degas box bench
example. Note that Reviere’s intended application was neutral beam penetration.
Hence, the lack of agreement at divertor-relevant velocities is not surprising.

2.10.2 Neutral-Neutral Elastic Scattering
Low temperature (a few eV or less) plasma conditions may result in neutral den-
sities that are comparable to the plasma density. In such cases, collisions amongst

37

0.001 0.01 0.1 1 10 100
Er (eV)

10
-15

10
-14

10
-13

10
-12

C
ro

ss
 S

ec
tio

n
 (c

m
2)

Cross Section
Total Elastic
Momentum Transfer
Spin Exchange
2X Spin Exchange

Figure 2.7: Comparison of diffusion and charge exchange cross sections forD+ +
D elastic collisions.

38

2 10-15

4 10-15

6 10-15

8 10-15

1 10-14

106 107

Newman (1982)

Janev-Smith (1993)

Reviere (1971)

Barnett (1990)

Krstic - H (1998)
Krstic - D (1998)

C
ro

ss
 S

ec
tio

n
 (

cm
2)

v
rel

 (cm/s)

Figure 2.8: Comparison of various charge exchange cross sections. The curve
labeled “Janev-Smith” represents the default data used in DEGAS 2 prior to the
addition of the newer CFADC elastic scattering data, labeled here by “Krstic” (one
curve for H, one for D).

39

the neutral species can be important in determining the exchange of momentum
and energy in the system. For example, hydrogen molecules generated at a sur-
face typically have energies comparable to room temperature, say, 0.03 eV. Yet,
these molecules may be surrounded by much more energetic atoms, say 3 to 5 eV,
resulting from molecular dissociation or charge exchange. Elastic collisions be-
tween the two species can significantly increase the molecules’ energy, enabling
them to penetrate much further into the plasma before becoming dissociated or
ionized.

When the neutral-neutral mean free path is very short, Kn = λmfp/d � 1 (d
is a measure of the system size or of gradient scale lengths; Kn is the Knudsen
number) cases, the most efficient approach would be to use a fluid model for the
neutral species. This regime is also known as the “viscous flow” regime[33].
However, Kn is usually close to one in most fusion problems, even in vacuum
regions. In that case, a kinetic treatment is required. Fortunately, such “transition
regime” cases can be handled effectively with a Monte Carlo code. When Kn �
1, the “molecular flow” regime, neutral-neutral collisions can be neglected. For a
practical discussion of these three regimes as they apply to the tokamak divertor,
see Ref. [34].

The great difficulty with treating neutral-neutral collisions is that they make
the problem nonlinear. Namely, the collision kernel is then a quadratic function
of the neutral distribution function rather than a linear one. The exact problem
is very difficult to solve, and one is forced to resort to approximations. Re-
iter et al. addressed this issue first with the EIRENE code and concluded that
an iterative “BGK” approach (referring to the original algorithm developed by
Bhatnagar, Gross, and Krook[35]; proposed independently by Welander[36]) was
sufficient[37, 38]. The BGK approximation replaces the collision integral with a
much simpler expression in which the distribution function relaxes to a Maxwellian
distribution with a velocity independent collision time. A physically relevant re-
sult is ensured by determining the parameters of the Maxwellian distribution so
as to enforce conservation of mass, momentum, and energy in the collisions. The
collision time remains arbitrary and is chosen so as to reproduce measured viscos-
ity and diffusion rates; this procedure is discussed in greater detail in Sec. 2.10.3.

Neutral-neutral collisions are included in DEGAS 2 in exactly the same way
as in EIRENE. While more details on nature of the BGK algorithm are provided
in Kanzleiter’s thesis[39], the essential elements and references are covered in the
more readily available Ref. [38]. The BGK algorithm approximates the binary

40

collision integral for species i as

∂fi
∂t
≈ Mi − fi

τi
+
∑
j 6=i

Mij − fi
τij

, (2.63)

where the M represent Maxwellian distributions,

Mα ≡ nα

(
mα

2πkTα

)3/2

exp

−mα(~vα − ~Uα)2

2kTα

 . (2.64)

Here, the individual particle velocity is ~vα; the mass mα is always that of the
species represented on the left-hand side of Eq. (2.63). In Eq. (2.63), a single
subscript refers to a physical species. Dual subscripts below refer to fictitious,
“mixed” species introduced for the purpose of handling binary collisions between
unlike neutral species.

Conservation of mass, momentum, and energy in the self-collision case yields

ni =
∫ +∞

−∞
d3vfi(~v), (2.65)

nimi
~Ui =

∫ +∞

−∞
d3vmi~vfi(~v), (2.66)

3

2
nikTi =

∫ +∞

−∞
d3v

1

2
miv

2fi(~v). (2.67)

Conservation of mass, momentum, and energy are also enforced in the the
mixed-species case to determine the Mij . Additional constraints are obtained by
requiring that the ratio of the momentum and energy relaxation rates is the same
as for the full collision integral. The results are[37, 38, 39] are

~Uij = ~Uji =
mi
~Ui +mj

~Uj
mi +mj

, (2.68)

kTij = kTi −
2mimj

(mi +mj)2

[
(kTi − kTj)−

mi

6
(~Ui − ~uj)2

]
. (2.69)

One additional important constraint on the collision times is obtained,

njτij = niτji. (2.70)

With τij ≡ (nj〈σv〉ij)−1 representing the typical time between physical species i
and the fictitious species represented by Mij , this becomes just

〈σv〉ij = 〈σv〉ji. (2.71)

41

May[37, 38] sets the values of the reaction rates for mixed collisions using empiri-
cal diffusion coefficients; the rates for self-collisions come from measured viscos-
ity coefficients. The end result is that in both cases the reaction rate 〈σv〉i ∝ T

1/4
i

or 〈σv〉ij ∝ T
1/4
ij . The validity of these expressions is examined in the next sub-

section.
The practical implementation of the algorithm is iterative. By default, the ini-

tial iteration of the code proceeds without neutral-neutral collisions. The reason
for this is that the neutral “background” with which the test species collide ini-
tially has zero density. A nonzero density could be specified during the setup of
the background, if desired. The fluid moments of Eqs. (2.66), (2.67), and (2.67)
are computed at the end of the iteration and inserted into the background density,
velocity, and temperature arrays for the neutral background species. The calcula-
tion is then restarted; this time the test neutral species scatter against the neutral
background. At the end of the run, the fluid moments are again updated. The
iterations continue either a specified number of times or until some convergence
criterion is satisfied.

Accurately simulating neutral-neutral scattering requires greater care in set-
ting up the geometry and deciding on the number of flights than is exercised in
linear runs. First, the entire problem space must be divided up finely enough to
resolve all anticipated spatial variations of the neutral density and the other fluid
moments. In comparison, without neutral-neutral scattering, the vacuum regions
can be treated as large monolithic zones. The variation of the neutral parameters
between iterations is asymptotically limited by Monte Carlo noise. In other words,
if too few flights are used, the background densities are not accurately determined,
causing the elastic scattering of the test species to be doubly inaccurate. The varia-
tions in neutral density, etc. in a given simulation will be more effectively reduced
by increasing the number of flights than by carrying out more iterations.

2.10.3 Validation of BGK Model and Rates
As described by May[37], the reaction rates for the BGK algorithm can be de-
termined by matching physical quantities, the viscosity and diffusion cofficients,
against measured values. However, since May’s thesis work and the publication
of Reiter[38], the ORNL CFADC has computed differential scattering cross sec-
tions [24], analogous to those described in Sec. 2.10.1, for these neutral-neutral
systems. In this subsection we will show that the two approaches are largely con-
sistent, at least near room temperature.

42

http://www-cfadc.phy.ornl.gov/elastic/elastic0.html
http://www-cfadc.phy.ornl.gov/elastic/elastic0.html

We proceed in a manner analogous to May. Namely, we will obtain from the
CFADC differential cross sections values for the viscosity and diffusion coeffi-
cients. These will be transformed into reaction rates that can be compared with
those described in Sec. 2.10.2.

For self-collisions, consider the viscosity. The general expression derived in
Chapman and Cowling[40] [their Eq. (10.1,4)] is

µ1 =
5

8

kT

Ω
(2)
1 (2)

, (2.72)

where Ω
(l)
1 (n) corresponds directly to the Ωl,n integrals described by Bachmann[25].

The subscript “1” here is to be associated with the cross section and refers to col-
lisions of species “1” with itself (as opposed to collisions between species “1” and
“2” which will be labeled with “12” below).

Likewise, we have for the diffusion coefficient [Eq. (9.81,1) in Ref. [40]],

D12 =
3

16

kT

(n1 + n2)mrΩ
(1)
12 (1)

, (2.73)

where n1 and n2 are the species densities and mr is the reduced mass for the
system, mr = m1m2/(m1 +m2).

The Ω(l)(n) integrals represent averaging of the collision cross sections over
Maxwellian distributions for both species. The ratecalc code is able to inte-
grate these cross sections over a single Maxwellian distribution, namely, the Il,n
described in Reiter[17] and the documentation for ratecalc. Fortunately, the
double integral we need here can be found as a limiting case of the single integral:

〈Il,n〉(up, un) = lim
u′→0

Il,n(u′p, u
′), (2.74)

where u′2p ≡ u2
p + u2

n, and up =
√

2Tp/mp is the thermal velocity of the second

species. Likewise, un =
√

2Tn/mn is the thermal velocity associated with the
Maxwellian distribution used in the averaging over u. The 〈Il,n〉 is then related to
Ω(l)(n),

〈Il,n〉 = 8

(
u′p
up

)n
Ω(l)(n/2). (2.75)

The same result is quoted in Ref. [25] and in [17], although in the latter case the
variable equivalent to u′p is incorrectly defined.

43

With these expressions, we can compute the single species viscosity and two
species diffusion coefficients from the CFADC differential scattering cross sec-
tions. The corresponding expressions for the “Maxwell molecule” interaction [in-
termolecular force given by κ/r5; e.g., see Eq. (12.1,1) in Ref. [40])] are

µ1 =
kT

3πA2(5)

√
2m

κ
, (2.76)

whereA2(5) = 0.436 is the result of a dimensionless integral. And from Eq. (14.2,2)
of Ref. [40],

D12 =
kT

2πA1(5)

1

n
√
κ12mr

, (2.77)

where A1(5) = 0.422 is the result of another dimensionless integration.
The reaction rates needed for the BGK algorithm are related to the constant in

the Maxwell molecule force law by (see Ref. [41] or [37]),

〈σv〉11 = 2
√

2πA1(5)

√
κ

m
, (2.78)

and

〈σv〉12 = 2πA1(5)

√
κ12

mr

. (2.79)

Now, we can use Eq. (2.76) to eliminate κ in Eq. (2.78) in favor of µ1. Then,
we can insert µ1 as given by Eq. (2.72) to obtain an effective BGK reaction rate
that has the same viscosity as that computed directly from the CFADC differential
cross sections:

〈σv〉11 = 2.065Ω
(2)
1 (2). (2.80)

The analogous procedure for the diffusion coefficient yields

〈σv〉12 =
16

3
Ω

(1)
12 (1). (2.81)

Finally, we can use Eqs. (2.74) and (2.75) to replace the Ω integrals with the
equivalent integrals obtainable from ratecalc,

〈σv〉11 =
2.065

32
lim
u′→0

I2,4(u′p =
√

2up, u
′), (2.82)

and

〈σv〉12 =
2

3

u2
p

u2
p + u2

n

lim
u′→0

I1,2(u′p =
√
u2
p + u2

n, u
′). (2.83)

44

In evaluating the latter expression, we will assume that one of the species (e.g.,
molecules at the wall temperature) are much cooler than the other, i.e., un � up.
Equation (2.83) then becomes a function of only up.

The CFADC data exist only for the D + D2 and D + D systems (and iso-
topic equivalents; molecules are computationally intensive, hence, the absence of
molecule-molecule data). These are compared with the May data in Fig. 2.9.

One concern with May’s treatment of the D2 + D2 case is that the empirical
viscosity formula quoted in Ref. [37] does not appear in the literature, nor is its
origin clearly stated. The best guess for its origin is that it was obtained by rescal-
ing the “Fuller” expression for the diffusion coefficient[42] into a viscosity using
the theoretical expressions to relate the two. In Fig. 2.10, we compare May’s ex-
pression with two that do appear directly in Ref. [42] (“Chung” and “Lewis”) and
with individual data points listed in the CRC Handbook[43]. The agreement of
these values near room temperature (∼ 0.03 eV) is expected. However, May’s
formula has a stronger temperature scaling than the others and exceeds them by
about a factor of 15 at 10 eV. The relevant temperature range for this process is
expected to be between 1 and 10 eV.

Figure 2.9 shows that at least near room temperature, May’s expressions are
also consistent with the CFADC data. However, in the 1 to 10 eV range, they
are considerably larger than the CFADC values, suggesting that the values used
in DEGAS 2 (and EIRENE) may be too large. However, we will demonstrate
in Sec. 3.7.2 that the temperature dependence ascribed to these rates by May is
inconsistent with Eq. (2.71). Consequently, DEGAS 2 now uses constant neutral-
neutral reaction rates, i.e., independent of the “background” temperature. Since
agreement of the May expressions with the CFADC and empirical viscosities is
good at room temperature, and since room temperatures are physically relevant
(at least for desorbed D2) we fix the reaction rates at its room temperature (300 K
= 0.02585 eV) value according to May’s formulas.

2.11 Recycling
Recycling of both ions and neutral species in DEGAS 2 is controlled by the set
of PMI (“Plasma Material Interactions”, e.g., see the PMI setup file) and one
additional parameter generically referred to as the “recycling coefficient”. The
value of the recycling coefficient is a constant associated with each wall and target
sector (see the sector class). These are prescribed during geometry definition, e.g.,
via the recyc coef keyword in definegeometry2d.

45

10-11

10-10

10-9

10-8

0.01 0.1 1 10 100

D + D
2
 Elastic Scattering

CFADC Differential Cross Section
May

D Temperature (eV)

<σ
v>

12
 (c

m
3 /s

)

10-11

10-10

10-9

10-8

0.01 0.1 1 10 100

D + D Elastic Scattering

CFADC Differential Cross Section
May

<σ
v>

11
 (c

m
3 /s

)

D Temperature (eV)

Figure 2.9: Comparison of reaction rates for the D + D2 and D + D systems.
The original rates suggested by May[37] and effective rates computed from the
CFADC data are shown.

46

10-6

10-5

0.0001

0.001

0.01

0.01 0.1 1 10 100

Chung

May Lewis

CRC

V
is

co
si

ty
 (

P
a-

s)

Temperature (eV)

Figure 2.10: Comparison of viscosity formulas from May[37], Reid[42] (the
“Chung” and “Lewis” expressions), and the CRC Handbook[43].

47

The best way to understand the recycling coefficient, R, is to note that Pa =
1 − R is the probability for a flight (the “projectile”) striking that sector to be
absorbed. Adsorption, is effectively one of the plasma-material interactions that
the code will choose from in deciding the fate of the projectile.

The second PMI that is always present is referred to as the “default PMI” since
the code defaults to that PMI should none of the other prescribed PMI (including
adsorption) be selected. Since all PMI must have an associated probability or
“yield”, a “default PMI” is assigned a negative (i.e., unphysical) yield. The most
common default PMI is desorption.

The third PMI we consider here is “reflection” or “backscattering” in which
the incident particle returns immediately to the plasma with most of its incident
energy. The data associated with the reflection PMI are used to compute a prob-
ability or yield, Pr, for the process. This probability is, in general, a function of
the projectile energy and angle with respect to the surface normal.

Consider now the common case of an incident hydrogen atom for which both
reflection and desorption (default) PMI’s have been specified, as well as a re-
cycling coefficient R. The probability assigned to the desorption PMI is Pd =
1 − Pr − Pa = R − Pr. In the case of unity recycling (the surface is in steady
state), the physical interpretation is that atoms not reflected are adsorbed, even-
tually recombine with another atom, and are desorbed as molecules. In a steady
state simulation, the time interval associated with “eventually” is meaningless, so
the process might as well be instantaneous.

In the case of less than unity recycling, i.e. net adsorption, the value of Pd is
reduced accordingly. IfR < Pr, Pd is negative and there is no desorption and the
reflection probability is effectivelyR.

If R = 0, the sector is equivalent to an “exit”. One operational difference
is that flights striking an exit are terminated immediately. Flights striking a zero
recycling sector will still undergo the process of selecting a PMI, even though the
result will always be adsorption.

48

Chapter 3

Running DEGAS 2

3.1 Getting DEGAS 2
DEGAS 2 is now govern by a licensing procedure developed and managed by the
PPPL Theory and Computation Department. Prospective users of the code should
visit this site and follow the instructions spelled out there.

The DEGAS 2 source code is available in three formats:

1. degas2.tar An uncompressed tar file; extract with:

tar xf degas2.tar

2. degas2.tar.Z The tar file compressed with the compress utility. To
extract the code,

uncompress degas2.tar.Z
tar xf degas2.tar

3. degas2.tar.gz The tar file compressed with the gzip utility. To ex-
tract the code,

gunzip degas2.tar.gz
tar xf degas2.tar

There are a number of older versions of the code in this directory. The most
recent is always linked to the names listed above. Please consult with the authors
if you think you need an earlier version.

49

http://theorycodes.pppl.wikispaces.net/Theory+Department+Codes

3.2 Getting Supporting Tools
DEGAS 2 relies on several pieces of utility software. In some cases (netCDF),
these utilities are absolutely required. These utilities can be obtained from the
indicated sites. You will probably want to have your system administrator down-
load, compile, and install these packages system-wide for your convenience.

3.2.1 GNU Software
The DEGAS 2 Makefile automates several chores, including generating and com-
piling FORTRAN code, as well as weaving TEX files from from the FWEB source,
The Makefile also controls the application of platform-specific lines of code and
compilation options. Although not completely necessary, using DEGAS 2 without
using GNU Make to run this Makefile would be extraordinarily inconvenient. The
gmake (the GNU Make utility) can be found at ftp://prep.ai.mit.edu/gnu/make/

Likewise, the Emacs editor is not essential, but its use simplifies a number of
tasks. For instance, Emacs provides a facility which allows the user to search for
variable and routine names across many files. For example, say you’re editing
randomtest.web and you’d like to see the source code for subroutine
next seed called there. All you have to do is execute the Emacs command
M-. next_seed (it will ask for the name of the tags file; the default value of
TAGS is correct and you just need to hit Enter here). All of DEGAS 2 source
and header files are included in this list of tags. Additional facilities such as a tag-
query-replace (e.g., to change all occurences of a variable name) are available.
See the Emacs Info file under the node “Tags” for more information.

3.2.2 netCDF
netCDF provides a device-independent binary file format. Furthermore, these
files are self-describing. Most of the effort required to read and write these files
is handled by macros. These are documented in the file netcdf.hweb. By
adding the commands in src/.emacs to your .emacs file, Emacs will be able to
convert automatically these files to text and back to binary for perusal and editing.
netCDF is fully documented in the Info facility of Emacs. The netCDF libraries
are required to run DEGAS 2 since virtually all of the input data is stored in
netCDF files. The associated netCDF utilities ncdump (for translating a netCDF
file into human-readable text) and ncgen (for generating a netCDF binary file
from a text file) are useful for reading and making minor changes to DEGAS 2

50

ftp://prep.ai.mit.edu/gnu/make/

input files. Two short scripts, ncdump-filter and ncgen-filter, allow
Emacs to invoke these utilities via the commands in the .emacs file. These are not
part of the netCDF distribution and are included amongst the DEGAS 2 source
files for your convenience. These should be copied to a directory which is covered
by your shell’s PATH variable.

An additional note: if you use ncgen, be sure to either specify the -b or
-o netcdf_filename option to let the utility know that you want it to gen-
erate a netCDF file (see: man ncgen).

netCDF can be obtained from http://www.unidata.ucar.edu/software/netcdf/.
The version presently being used for DEGAS 2 development is 4.1.1. Note,
however, that the version of ncgen that comes with this library has a bug that
causes problems when creating large files. This is remedied in netCDF V. 4.2,
but a workaround with V. 4.1.1 is to use instead ncgen3. If you are using
ncgen-filter, you would need use ncgen3 there as well.

3.2.3 FWEB
The FWEB package provides a facility for code documentation as well as a pow-
erful preprocessor. The typesetting abilities of FWEB allow authors to insert TEX
(or LATEX) comments into their code. In DEGAS 2, the preprocessor is utilized
extensively for writing macros which allow the code seen by the user to be signif-
icantly more powerful than pure FORTRAN. In fact, the code can be processed
into FORTRAN 77 or FORTRAN 90 as needed. However, FWEB is not optional.
The user must have access to at least its ftangle executable on some system
in order to generate compilable FORTRAN files (once generated, these can be
copied to other systems for compilation). For examples of the overall structure of
FWEB programs, see the *.web files; most of the macros are located in the header
*.hweb files. FWEB is fully documented in the Info facility of Emacs.

FWEB (version 1.62) is available at
ftp://ftp.pppl.gov/pub/fweb/fweb-1.62.tar.gz

To typeset DEGAS 2 source code in “human-readable” formats such as DVI,
PostScript, or PDF, the user will need FWEB’s fweave utility and a version of
TEX or LATEX.

LATEX is available in lots of places. To begin with, see the introductory material
and pointers on the official CTAN TEX network page at http://www.tex.ac.uk/ctan.
The recommended distribution for Unix (including Linux) systems is TEX Live
(http://www.tug.org/texlive/. TEX Live is also available for Windows.

51

http://www.unidata.ucar.edu/software/netcdf/
ftp://ftp.pppl.gov/pub/fweb/fweb-1.62.tar.gz
http://www.tex.ac.uk/ctan
http://www.tug.org/texlive/

3.2.4 Triangle
Jonathan Shewchuck’s Triangle program is used by the definegeometry2d
code to break polygons up into triangles. The home for Triangle is
http://www.cs.cmu.edu/ quake/triangle.html The Triangle V. 1.6 was used in
the creation of the definegeometry2d examples described in Sec. 3.7.3. Any-
one downloading a more recent version should notify the DEGAS 2 authors. The
DEGAS 2 Makefile will expect to find the Triangle files, triangle.c,
triangle.h, etc., in $HOME/Triangle. If your copy is installed elsewhere,
you can either create an appropriate link or modify Makefile.

3.2.5 Silo and HDF
DEGAS 2 produces no direct graphical output. Instead, the geomtesta utility
(see Secs. 3.4.1 and the source code documentation.) generates device-independent
binary files in either the HDF (more specifically, HDF Version 4) or Silo formats
that can be processed by external graphical packages, such as VisIt or IDL. The
VisIt package in particular is freely available
(see https://wci.llnl.gov/codes/visit/home.html), can read Silo files directly, and
can generate both 2-D and 3-D images. A similar alternative to geomtesta,
ucd plot, is now available. It’s more restrictive in that it requires the Silo li-
brary and works only with 2-D geometries created by definegeometry2d.
On the other hand, the data contained in the Silo file are effectively represented
on the actual DEGAS 2 mesh instead of a pixelated representation. Visualization
of the ucd plot Silo has only been performed with VisIt.

The Silo library can be found at https://wci.llnl.gov/codes/silo/index.html. It
can use either its own PDB I/O driver or HDF5. In the latter case, the HDF5 library
must also be installed. For HDF5 and / or HDF4, see http://www.hdfgroup.org/.
Note that as of HDF version 4, some of the netCDF functionality is implemented
in HDF. To avoid conflicts with the official netCDF libraries, do not install the
netCDF portion of the HDF distribution.

Note that definegeometry2d also produces an HDF or Silo file, geomtestc.hdf
or geomtestc.silo, as part of its test of the geometry.

3.2.6 Concurrent Version System
The UNIX CVS (Concurrent Version System) utility is used to coordinate work on
a code by a number of authors. The central DEGAS 2 source code is maintained

52

http://www.cs.cmu.edu/~quake/triangle.html
https://wci.llnl.gov/codes/visit/home.html
https://wci.llnl.gov/codes/silo/index.html
http://www.hdfgroup.org/

in a CVS repository. Users planning to coordinate with the code authors should
become familiar with CVS. Users who will do extensive code development on
their own will find CVS a valuable tool in tracking their work. The average end-
user should be able to work effectively without ever dealing with CVS.

The CVS repository is a central, safe version of the code; authors check out
copies in their own disk space in order to work on the code. By doing a cvs
update, a given author can update his local sources to incorporate changes others
have saved to the central repository. The cvs commit command allows him to save
his own changes to the repository.

The Info page for CVS is the best reference for commands. The manual page
is complete, but lengthy. The man page for rcsintro may also be helpful as an
introduction. Many cvs commands may be executed from within Emacs. See the
Emacs Info page on Pcl-cvs for more details.

3.3 Structure of the DEGAS 2 File System
Here is an example structure of the directories under the top-level degas2 direc-
tory. Those labeled with “(D)” represent source and data directories maintained
with CVS. The others are created by the user as described in the compiling section.
Note that the Makefile assumes that this degas2 directory sits in the directory
pointed to be the $HOME$ environment variable on your workstation. If you have
installed the code elsewhere, see Sec. 3.6.3.

data Input atomic and surface physics data and information (D)

src All source code (D)

dg carre Source and executable files for DG and Carre (D)

Doc Location of the various formats of this document and ancilliary files (D)

examples Input and output files from example and benchmark runs (D)

Aladdin Source code and data for use with IAEA Aladdin package (D)

ALPHA Object and executable files for Dec Alpha machines

LINUX Object and executable files for Linux machines

LINUX64 Object and executable files for 64-bit Linux machines

53

SUN Object and executable files for Sun Solaris and SunOS machines

CRAY Pre-processed source code for export to Cray computers

tex Intermediate files and final DVI documentation files generated from source
code

If you need to have multiple run directories for a given system (e.g., focussed
on different problems or using different compilers), you can create additional di-
rectories with names like SUN-foo where “foo” is any string you like.

3.4 Components of the Code
DEGAS 2 is not a single code, but a complex package of setup, test, simulation,
and post-processing tools. Which ones are needed depend on the user’s objec-
tives and familiarity with DEGAS 2. A few additional “targets” are listed in the
Makefile. These are either sufficiently out of date or infrequently used to warrant
mention here.

3.4.1 Main Code
Virtually every user will be running these executables, usually in this order.

problemsetup Reads a text file describing the species, materials, atomic, and
surface physics required for the current problem. The code accesses the re-
quired ”reference” data, and compiles them into a netCDF file (the problem.nc
file).

definegeometry2d Generates a DEGAS 2 netCDF geometry file from from a text
input file. Input files for simple geometries may be generated manually;
more complex geometries can be specified via other computer generated
text files files referenced by the input file. For example, definegeometry2d
is able to read data produced by the DG package (formerly part of the
B2-Eirene or SOLPS distribution, but now included with DEGAS 2) or
by UEDGE. Of the three tools for setting up DEGAS 2 geometries definegeometry2d
is the most flexible.

54

readgeometry Generates a DEGAS 2 netCDF geometry file from an existing
DEGAS, UEDGE, or SONNET geometry description. This package has
largely been superseded by definegeometry2d. However, users with
legacy input files for the old DEGAS code will still want to use readgeometry.
A short text input file helps readgeometry through the transformation pro-
cess.

defineback Uses a short text input file to control the mapping of plasma data in
external text files onto the DEGAS 2 geometry. Designed to be used in
conjunction with definegeometry2d, defineback can utilize data
produced by other codes, including UEDGE. In particular, defineback
can be run in an iterative mode with UEDGE analogous to that provided by
updatebackground (see below and in the source file defineback.web).

readbackground Plasma data in an external file is mapped onto the zones of the
DEGAS 2 geometry. Presently, only DEGAS and UEDGE files can be used;
readgeometry and readbackground read the same data file.

updatebackground Is similar to readbackground, but is intended for use
in iterations with the UEDGE code only. The source information gener-
ated by the initial run of readbackground is stored in a separate file
(oldsourcefile, Sec. 3.5.1). On subsequent iterations, small changes
in the source terms are accounted for by allowing non-unit weighting fac-
tors at each source segment. Once the accumulated changes exceed a cer-
tain size (specified by parameters in the sources class), the DEGAS 2 source
sampling arrays are re-initialized (i.e., to once again use unit weights) and
the oldsourcefile is rewritten. The effectiveness of this procedure is
currently being evaluated and should be considered as experimental.

tallysetup This code specifies the types of “scores” (the essential output of the
code), along with their dependencies, which will be computed in the DE-
GAS 2 run. Although the input files(s) should not be modified by the novice
user, this code needs to be run to factor the values of physics and geometry
parameters for the problem at hand into the specification of these scores.

flighttest The core of DEGAS 2. This program launches, follows, and scores the
Monte Carlo trajectories which make up a DEGAS 2 simulation. (The name
is a holdover from early versions in which this did tracking with a minimum
of hardwired physics).

55

outputbrowser Reads the output netCDF file generated by flighttest (in
addition to all other netCDF files for the problem) and allows the user to
interactively browse its contents. A script facility is provided for batch-like
operation.

geomtesta Another inappropriately named routine which serves as the principal
post-processing code for DEGAS 2. Although originally designed as a di-
agnostic for the geometry, it has proven too easy to continue extending this
code to warrant development of an honest post-processing tool. The DE-
GAS 2 input and output files are read in by the code. Using the geometry
information, the zone-based plasma and neutral data are transcribed onto a
high density uniform rectangular mesh and dumped into Silo or HDF files
suitable for further manipulation by external graphics packages such as VisIt
or IDL.

ucd plot Alternative post-processing code that uses DEGAS 2’s own mesh for
representing output data. Creates a Silo format file for visualization with
VisIt.

degas2 xgc.a This library contains the core routines of DEGAS 2 and an inter-
face for a subroutine based coupling to a plasma code. The primary quan-
tities exchanged between the codes are moments of the plasma and neu-
tral distribution functions. An interface into the DEGAS 2 atomic physics
routines is also provided. This library was designed for and is used with
the XGC0 guiding center neoclassical particle transport code as part of the
Center for Plasma Edge Simulation [44].

3.4.2 Other Setup Routines
These are occasionally used to add new atomic or surface physics reactions, or to
generate new atomic and surface physics data files.

datasetup This routine possibly belongs in the first list. It reads text files de-
scribing the complete lists of elements, species, reactions, materials, and
plasma-material interactions available to DEGAS 2 and generates the cor-
responding DEGAS 2 netCDF files. These lists are occasionally referred to
in the code as the ”reference” lists; the input file for problemsetup specifies
subsets of these lists. A new reaction is added to DEGAS 2 by inserting the

56

requisite information into the “reactionfile” and rerunning datasetup. The
new reaction can then be added to the problem input file.

ratecalc A routine for computing averages of atomic physics cross sections. Since
it is designed to read data from the Aladdin database, ratecalc is presently
limited in its flexibility. The principal application thus far has been the gen-
eration of reaction rates and higher moments for charge exchange and other
interactions between atoms, molecules, and ions.

reactionwrite A simple routine designed to translate collisional radiative data for
the electron impact ionization of hydrogen from the format used by the old
DEGAS code into netCDF files (ionization and recombination) for DEGAS
2. This code has been run a handful of times as needed to keep up with
changes in the content and format of the atomic physics data files.

pmiwrite Is analogous to reactionwrite, but handles almost all of the plasma-
material interaction data. Presently, two data files from the old DEGAS
code and one from EIRENE are used as input. A few processes describ-
able without external data are also included. This code can be used, in a
somewhat clumsy manner, to add new plasma-material interaction data to
DEGAS 2 using either one of these three existing data bases or via a new
datafile (with the rest of the code serving as an example).

boxgen Is the third of geometry / background generation tool provided with DE-
GAS 2. It is intended to serve as an example of how to generate geometry
and background files from scratch. As the name implies, boxgen sets up
a simple box geometry with a linearly varying plasma. However, no input
file for boxgen has been developed; all modifications have to be effected
through direct source code modification. The typical user in search of a
simple linear geometry to study can be overwhelmed by the complexity of
the code encountered there. For this reason, the definegeometry2d /
defineback pair may be more suitable for setting up simple problems.

3.4.3 Test Routines
reactiontest Can be run after problemsetup to check the computation of the

reaction rate, and collision products (including velocities and scoring data)
for a given reaction.

57

pmitest The analog of reactiontest for plasma-material interactions. Again,
this code can be executed for a given problem once problemsetup has
been run. Since the velocity distributions of some plasma-material interac-
tions are described statistically, pmitest is also set up to average the outcome
of a given interaction over a specified number of trials and print out a list of
the product velocities for external manipulation.

sourcetest Tests the distribution in phase space of the source terms for a partic-
ular problem. Since the source is described in the “background” netCDF
file, defineback, readbackground, boxgen, or something equiva-
lent must be run prior to using this routine. Like pmitest, the code is able
to run many trials, compute averages, and printout data from each individual
trial.

dataexam Provides the user with a convenient interface to the atomic physics
data files. Although netCDF files can be converted to a human-readable
text form, interpreting those data is since DEGAS 2 collapses the multi-
dimensional structure components of the atomic physics data into a single
one-dimensional array. This routine reads the “raw” (at the “reference”
level) data files prior to their insertion into the problem netCDF file and,
thus, can be run at any time. An analogous routine for the plasma material
interactions is needed.

sysdeptest Tests several system-dependent features of DEGAS 2. This would be
run only if the code was being ported to a new operating system or if the op-
erating system on a currently supported architecture underwent a signficant
upgrade.

randomtest Is used to verify that DEGAS 2 will give the same results on different
architectures (provided the random number seeds are set the same!).

3.4.4 Miscellaneous Routines
matchout Is used to compare the current DEGAS 2 output netCDF file with an-

other from an equivalent run (i.e., all of the arrays must be exactly the same
size) on the command line. The most frequent use of matchout is to ver-
ify that two separate runs have yielded results which are the same to within
roundoff error. Because of the size of the ouptut netCDF file, verifying this
by visually comparing the files is impractical.

58

matcheir Is specifically designed for comparing with output from the EIRENE
code. The name of the EIRENE file is specified on the command line. See
Sec. 4.3.

datamatch Provides a means for comparing the contents of the two netCDF data
files specified on the command line.

3.4.5 DG and Carre
The graphical interface DG code is used here in conjunction with definegeometry2d,
as in B2-Eirene (its original application), to simplify specification of 2-D divertor
tokamak geometries . Since DG is also available separately from DEGAS 2, its
manual, dg.pdf is contained in the dg_carre/DG/DOC directory. Carre[14]
generates 2-D quasi-orthogonal meshes of the sort used by B2 and UEDGE. This
version of Carre includes pre- and post-processing scripts that simplify its use
with DG. A number of utility programs for manipulating magnetic equilibrium
files also come with this DG distribution; see the DG manual for details.

3.5 Input Files
The essential inputs to a Monte Carlo neutral transport code are:

• The identity of the “test” species (usually neutral in plasma problems) that
are of interest,

• The identity and phase space distributions of the “background” (typically
electrically charged in plasma problems) species with which the test species
will interact,

• The interaction processes between the test and background species. The
relative probability of these processes as a function of the test and local
background properties are required as well as a prescription for specifying
the outcome of each interaction.

• The simulation geometry, including a framework for holding the background
species data, as are a means for tracking the test species through the back-
ground.

59

• The boundaries of the geometry, including a prescription for specifying the
outcome of interactions between the test species and these boundaries.

DEGAS 2 utilizes several text based input files for controlling the actions of
its component executables (see Sec. 3.4). In this section we will discuss a few of
these input files. The more complex input files are described in their respective
codes; links to the documentation for those files will be given instead. More
detailed information on running DEGAS 2 will follow in later sections.

These text input files are, for the most part, read with the same set of text
processing utilities that adhere to the following guidelines. In some cases, par-
ticularly those involving files generated by other codes, the files are read directly
with formatted FORTRAN read statements.

1. Spacing and blank lines are ignored. The user is free to utilize white space
in whatever way facilitates reading and maintaining the input file.

2. Comments, either a complete line or at the end of a line, are begun with a #
sign.

3. File names can be a relative or full path name.

3.5.1 degas2.in
degas2.in is the input file which controls (most of) the other input files. Each
line consists of DEGAS 2’s symbolic name for the file (this can be changed only
by modifying readfilenames.hweb and readfilenames.web) followed
by the path name for the file to be used in the current problem. The order of the
lines in this file is unimportant.

elementsfile ../data/elements.nc
backgroundfile bk_uers.nc
geometryfile ge_uers.nc
problemfile pr_uers.nc
reactionfile reactions.nc
speciesfile ../data/species.nc
aladinfile ../data/aladinput.nc
aladoutfile ../data/aladoutput.nc
elements_infile ../data/elements.input
problem_infile pr_uers.input

60

reaction_infile reactions.input
species_infile ../data/species.input
materials_infile ../data/materials.input
materialsfile ../data/materials.nc
pmi_infile ../data/pmi.input
pmifile ../data/pmi.nc
cramdproblemfile cramdprob.nc
tallyfile tally_uers.nc
outputfile degas2_uers_out.nc
oldsourcefile os_uers.nc
snapshotfile sn_uers.nc

Note that some of these are outdated or rarely used (unused entries may be
deleted from the file, if desired); see the readfilenames class for more specific
information. Most of the files come in pairs with the name XXX_infile cor-
responding to a text input file and XXXfile being a netCDF file generated by a
program like datasetup, problemsetup, etc.

3.5.2 elements infile
elements infile lists all of the elements available to DEGAS 2 for use in
constructing the species (see Sec. 3.5.3). Additional detail is given at the begin-
ning of the file elementsetup.web.

3.5.3 species infile
Inputs for species are contained in the file with the symbolic name species infile.
Additional detail is given at the beginning of the file speciesetup.web.

3.5.4 reaction infile
The file reaction infile describes all of the reactions available in DEGAS
2. Additional detail is given at the beginning of the file reactionsetup.web.

Note that adding a new reaction to this file involves two tasks beyond insert-
ing the appropriate lines in reaction infile. First, the netCDF file for the
atomic physics data must be generated (see Sec. 3.9). The second task would
be to write subroutines for setting up the products and handling collisions (see

61

Sec. 3.9.3). This would be necessary only if a new reaction type were being
added.

3.5.5 ratecalc Input
The ratecalc code is used to compute atomic physics reaction rates from cross
section data, as well as a few other tasks. The code is documented internally.
Follow this link to the introductory section to learn more.

3.5.6 materials infile
The materials described in materials infile are essentially just labels which
will be used in conjunction with the plasma material interactions (see Sec. 3.5.7)
to specify how test species interact with non-transparent surfaces. Additional de-
tail is given at the beginning of the file materialsetup.web.

3.5.7 pmi infile
The file pmi infile describes all of the plasma-material interactions (PMI)
available in DEGAS 2. Additional detail is given at the beginning of the file
pmisetup.web.

3.5.8 problem infile
As noted already in the section describing the DEGAS 2 components (see Sec. 3.4),
there are two levels of physics input to DEGAS 2. The input files noted thus far
comprise the reference level: in practice, the sum total of the data available to the
code (although in principle it could be smaller). The second level is the problem
level of data. This prescribes the species, reactions, materials, and PMI which will
serve as the physical model to be used in carrying the simulation at hand. In some
parts of the (internal) code, these are also referred to as the subset data since they
represent a subset of the reference data (see also Sec. 3.9 and Fig. 3.2).

Additional concepts alluded to above in connection with the reaction input file
(see Sec. 3.5.4) are those of test species and background species. Most simply,
test species are the ones DEGAS 2 will track as they collide off of background
species. The use of the word species here is important: both of the test and back-
ground lists are subsets of the “species” list (see Sec. 3.5.3). One more precise

62

distinction between the two species types is that we assume that we know the dis-
tribution function (in space and velocity) of the background species; in fact, such
information is required input to DEGAS 2. On the other hand, we are attempting
to compute the test species distribution function, moments of which serve as the
primary output of DEGAS 2.

More information about the input file can be found at the beginning of the file
problemsetup.web.

3.5.9 readgeometry Input
The documentation for readgeometry input is maintained in the source code,
readgeometry.web. For readers of the PDF version of this manual, here’s a
link to the corresponding PDF file.

3.5.10 definegeometry2d Input
The documentation for definegeometry2d input is maintained in the source
code, definegeometry2d.web. For readers of the PDF version of this man-
ual, here’s a link to the corresponding PDF file.

3.5.11 defineback Input
The documentation for defineback input is maintained in the source code,
defineback.web. For readers of the PDF version of this manual, here’s a link
to the corresponding PDF file.

3.5.12 readbackground Input
Currently, the only possible inputs to readbackground are the UEDGE (a
specifically formatted text file generated during UEDGE post-processing) and DEGAS
formats (an input file for the old DEGAS code). This routine makes some specific
assumptions about the contents of these files. Since this situation is unsatisfactory
from a number of viewpoints, a better long-term approach is being contemplated.
For that reason, no additional documentation is provided at this point.

63

3.5.13 tally infile
The documentation on the input file for tallysetup is maintained in the source
code, tallysetup.web. This link will take the reader to the corresponding
PDF file. The tally class contains more extensive and detailed information.

3.5.14 outputbrowser Input
This post-processing utility can be run interactively or with an input file. When
run interactively, the session is logged into a script file called outputscript (in
the run directory) which can be subsequently used as input to outputbrowser.
Details on the use of outputbrowser and on the format of the script file can
be found in the introduction to the file outputbrowser.web.

3.5.15 geomtesta Input
The documentation for geomtesta is maintained in the source code, geomtesta.web.
For readers of the PDF version of the manual, here’s a link to the corresponding
PDF file.

3.5.16 ucd plot Input
The documentation for ucd plot is maintained in the source code, ucd plot.web.
For readers of the PDF version of the manual, here’s a link to the corresponding
PDF file.

3.6 Compiling DEGAS 2
The Makefile has been designed to compile on a variety of architectures and op-
erating systems. It uses the shell command uname to determine the operating
system upon which gmake is being run. The root name of the current directory
(see Sec. 3.6.1) tells it the operating system for which the code is being compiled.
In most cases, these are the same; a mechanism for cross compiling (i.e., target is
a different operating system) is provided (Sec. 3.6.4). The systems used thus far
are:

64

Generic Name uname Run Directory Root
Linux 32-bit Linux LINUX
Linux 64-bit Linux, uname -m

contains 64
LINUX64

Sun Solaris SunOS SUN
IBM AIX AIX IBM
Digital OSF1 OSF1 ALPHA
Silicon Graphics IRIX IRIX or IRIX64 SGI
Mac OS X Darwin MACOSX

Note that due to the proliferation of relatively cheap and fast Linux clusters,
usage of DEGAS 2 on other systems has essentially ceased and support for those
systems cannot be guaranteed. The most frequently used compiler on Linux
systems is Portland Group F90 compiler (PGROUP in the Makefile), albeit
with F77 format code (FORTRAN90=no). The Pathscale (PATHSCALE in the
Makefile) and gfortran (version 4.3) have been successfully tested with the
F90 formatted code (in DEBUG mode only). The use of the F90 option eliminates
the need for system dependent code so that other compilers can be used without
modifications to the sysdep.hweb or sysdep.web files; only the compiler
related variables in the Makefile or Makefile.local need be defined. On
the other hand, some F9x compilers (e.g., Lahey-Fujitsu F95) may result in code
that runs very slowly.

By default, the Makefile assumes that the DEGAS 2 main directory exists at
$HOME/degas2. If you unpacked the tar file in some other location, you’ll
need to tell the Makefile where to look (see Sec. 3.6.3). Blindly change directory
names is not recommended. Some flexibility is again provided; see below for
details.

3.6.1 Basics
Let’s start by compiling the randomtest utility (see Sec. 3.4.3) on a Sun sys-
tem. To use other systems, replace SUN with the appropriate directory root name
(more than one run directory can be used; see Sec. 3.6.3) from the above list.

First, change to the main DEGAS 2 directory and create the SUN subdirectory:

cd ˜/degas2
mkdir SUN
cd SUN
cp ../src/Makefile .

65

Once the Makefile is present here, it will “update itself” with respect to the
copy in the src directory when needed. To get an idea of how ftangle works,
just “make” the main FORTRAN file for randomtest:

gmake randomtest.f

At some point, you may want to visually compare this file with the original source
code randomtest.web (in the src directory, with the other source files) to
gain an appreciation for the amount of work the FWEB macros do in DEGAS 2.
For more information on these macros, see the documentation in array.hweb
and the other header files.

Now, finish making randomtest:

gmake randomtest

To run randomtest, just type

./randomtest

The output to the right of the “=” sign should match the numbers in parentheses.

3.6.2 Making Documents
Generating “woven” (i.e., using FWEB’s fweave utility) documentation is sim-
ilar:

cd ˜/degas2
mkdir tex
cd tex
cp ../src/Makefile .
gmake randomtest.dvi

The DVI file can then be printed or viewed (using xdvi), as desired. In fact, the
Makefile also provides additional “targets”, e.g., randomtest.print (uses
lpr to print to your default printer), randomtest.view (launches xdvi) for
you, and randomtest.ps (a PostScript file generated via dvips). You can
generate woven documents for all of the “.web” source files. For some of the
more useful ones, see Sec. 3.13.

You could also just generate the TEX file (again, from the degas2\tex di-
rectory),

gmake randomtest.tex

You could then use latex, pdflatex, or whatever other TEX application you
wished.

66

3.6.3 Adjustments to Makefile
A number of the default settings in the Makefile can be overridden by placing
the desired values in a file called Makefile.local in the working (e.g., SUN)
directory. Some of the more frequently changed variables are:

• DEBUG=no turns on optimization. The default DEBUG=yes is required for
debugging.

• DEGASROOT=somedir will tell Makefile to find the main DEGAS 2 di-
rectory at somedir/degas2. somedir should be an absolute path name.
E.g.,

DEGASROOT = /u/somedir

• FORTRAN90=yes switches from using the default FORTRAN 77 compiler
to FORTRAN 90. Be aware that only some of the FORTRAN 90 compilers
available work satisfactorily. Some will compile the code, but run slowly.

• FCF77, FCF90 tell Makefile which “normal” (non-MPI) compiler to
use.

• MPI=yes will enable the MPI commands in the source code and direct the
Makefile to use the MPI compiler flags.

• FCMPI77, FCMPI90 tell Makefile which MPI compliant compiler to use.

• NETCDFV2=yes tells DEGAS 2 that your system has only the older ver-
sion 2 of the netCDF library (by default, DEGAS 2 expects version 3).

• The Makefile will accomodate more than one working directory on a given
machine provided the additional directory has a name like SUN-junk,
where “junk” is some string meaningful to you.

• If you would like to have more than one source directory, we recommend
creating a new degas2 directory heirarchy somewhere else in your file
system and use the DEGASROOT variable to get the Makefile working there
(you can set up symbolic links to common directories such as data).

67

3.6.4 Cross-Compiling
The mechanism for cross-compilation has been updated to use ssh and scp
and no longer relies on the presence of AFS. However, this section of the man-
ual has not been correspondingly updated. Please contact the code authors if
you need this capability.

As an example of how to cross-compile, here are the procedures for making
randomtest on the NERSC Crays. This assumes that you have access to AFS
from your local workstation (and at NERSC, of course):

mkdir <some-afs-directory>/degas2/CRAY
ln -s <same-afs-directory>/degas2/CRAY ˜/degas2/CRAY
cd ˜/degas2/CRAY
cp ˜/degas2/src/Makefile .
gmake randomtest

This will use ftangle on the local workstation to generate the FORTRAN
source code files from the FWEB files in the src directory. It is advisable to set
up a Makefile.local (see Sec. 3.6.3) in this directory that contains the same
flags that will be used on the remote machine, particularly DEBUG, FORTRAN90
and MPI.

Then, log on to the remote machine and do:

ln -s <same-afs-directory>/degas2 ˜/degas2
cd <some-work-directory>/CRAY
cp ˜/degas2/CRAY/Makefile .
make randomtest

In addition to the usual variables in Makefile.local, one needs to add
STANDALONE=no. This will tell make that the FORTRAN (e.g., .f) files have
already been generated on your local workstation, and that it can find them in
˜/degas2/CRAY on the remote machine, which should be linked back to your
local workstation via AFS.

The degas2/data directory will likely also be needed on the remote ma-
chine. You can manually copy the directory and its contents to the remote machine
(e.g., via ftp) or keep a copy in the AFS directory and use a link to allow the code
on the remote machine to find the files. E.g., for the second option, starting on the
local workstation:

68

cd ˜/degas2
cp -R data <same-afs-directory>/degas2

And on the remote machine

cd <same-work-directory>
ln -s <same-afs-directory>/degas2/data data

Be aware that in either case, the data directory could eventually get out of sync
with the one on your local workstation. If this is a likely possibility, one could
consider also linking the data directory on the local workstation to the one in the
AFS directory, making the latter the only real copy.

3.6.5 Miscellaneous Targets
The Makefile provides some other occasionally useful targets. Please see the
Makefile for more details.

• clean removes source, object, and other unessential files. This is pretty
thorough and indescriminate; use with caution.

• TAGS updates the Emacs tags table (see Sec. 3.2.1). You may need to do
this if you subtstantially altered any of the source files or have other reason
to believe that the tags table is out-of-date. You would run gmake TAGS
from the src directory only.

• depend updates the Makefile dependencies (in Makefile.depends).
Do this if the header file dependencies of one or more executables have
been changed or if you believe that the dependencies are out of date. Note
that source code (i.e., object files) dependencies are explicitly stated in the
Makefile and must be updated by hand.

• foof dumps out values of some of the internal Makefile variables. This is
useful for debugging Makefile problems.

3.7 Examples
The examples directory contains several documented DEGAS 2 examples, with
input output, and auxiliary files. They are included not only for instructive pur-
poses, but also for verifying that successive versions of the code give the same

69

results. Namely, the user should be able to download the code and generate ex-
actly (to within roundoff error) the results contained within each of the example
subdirectories. Any discrepancies should be reported to the primary code authors
(see Sec. 5.1).

3.7.1 Analytic fluid bench
This simple run demonstrates that DEGAS 2 matches the results of an analytic
model in the fluid limit. More information on this comparison can be found in the
IAEA proceedings[15] or on the Web as a PostScript or PDF file.

To run this example, follow these steps:

1. Set source code switch. The source code file boxgen.web has within it a
few different settings available which can be selected by changing the value
of the flag BOXRUN. With this file open in an editor, change the line

@m BOXRUN 0

so that it now reads

@m BOXRUN 32

Save the file and exit the editor.

2. Switch to the example directory. If the main DEGAS 2 directory sits
within your home directory:

cd ˜/degas2/examples/Analytic_fluid_bench

3. Copy the degas2.in file into your working directory. E.g., if you are
working on a Sun,

cp degas2_boxgen.in ../../SUN/degas2.in
cd ../../SUN

(overwriting any degas2.in file you may have had there already!).

4. Prepare reference data. This example uses the standard reference data
files in the data directory. Hence, this step can be skipped if those files
have not been altered since you downloaded the code.

70

http://www.pppl.gov/pub_report/1997/PPPL-3221.ps
http://www.pppl.gov/pub_report/1997/PPPL-3221.pdf

gmake datasetup
./datasetup

5. Prepare problem data. This and subsequent steps are not optional! Note
that the degas2.in file points back to the examples directory for the
problem input file (see Sec. 3.5.8).

gmake problemsetup
./problemsetup

6. Generate geometry and background files. The boxgen program takes
care of both of these:

gmake boxgen
./boxgen

7. Set the number of flights. The background file bk boxgen.nc contains
the specification of the number of flights to be run. Open this file in an
editor (Emacs will be the most convenient) and find the line

source_num_flights = 100 ;

Change the “100” to either “1600” or “6400”. The example contains the
output for both cases. Save the file and exit the editor.

8. Set up the tallies.

gmake tallysetup
./tallysetup

9. Run the code.

gmake flighttest
./flighttest

10. Check the text output. The file density.out can be directly compared
with either density 1600.out or density 6400.out, depending
on the number of flights. The numbers in here have only five digits of
precision. If an exact match is not obtained, something is amiss. Please
contact the code authors (see Sec. 5.1) if you feel that a problem exists with
the code as you downloaded it.

71

11. Check the binary output. You can use the matchout utility (see Sec. 3.4.4)
to do this.

12. Compare with the analytic solution. The file soln 32 contains the columns:

x Distance along the problem space in meters.

N1(x)/N(0) Relative density (to density at x = 0) predicted by one analytic
model (see the above references) solution.

N2(x)/N(0) Relative density predicted by a second analytic model solution.

Ti(x) Ion temperature profile.

Ni(x) Ion density profile.

The columns of the density.out file contain

(a) First zone number. These zones correspond directly to the x values in
the soln 32 file.

(b) Second zone number. This is always 0 since this is a 1-D problem.

(c) Neutral hydrogen density in m−3. To normalize this column, divide the
whole column by the value in the first row. Since this corresponds to
the first value of x in soln 32 and not to x = 0, multiply the whole
column by the relative density from the analytic solution at the first
value of x, normalizing the DEGAS 2 result to the analytic solution at
one point.

(d) Relative standard deviation of the neutral density (see Sec. 4.4).

(e) Neutral hydrogen pressure in pascals.

(f) Relative standard deviation of the neutral pressure.

(g) The last two columns are no longer used and should be filled with
zeroes.

3.7.2 Neutral-Neutral Scattering Examples
The initial implementation of the BGK algorithm for handling neutral-neutral col-
lisions (see Sec. 2.10.2) in EIRENE has been tested by comparison with analytic
expressions for the time dependence of the relaxation of a distribution function
(both in self-collision and mixed-species collision systems) and against models
describing the Couette flow problem.[37] The relaxation benchmarks have been

72

repeated with DEGAS 2, but have not been formally made into an example run and
will not be discussed here. Further details can be provided upon request. How-
ever, the Couette flow problem can be set up with only a few minor modifications
to the code and does make a suitable example.

Couette Flow

The Couette flow problem of fluid mechanics involves the flow of fluid between
two parallel, sliding plates. The fluid is assumed to have “no slip” boundary con-
dition at the plates. The viscosity of the fluid drags along adjacent fluid elements,
resulting in a velocity gradient between the boundary velocities represented by the
two plates.

In this example, two semi-infinite plates are a distance d apart in the x direc-
tion. Periodic boundary conditions are enforced in the y and z directions so that
the problem is effectively infinite in those directions. Particles are initialized at
the x = 0 plate with a thermally distributed velocity to which a constant veloc-
ity in the y direction, vy0, is added; this represents the velocity of the plate. The
second plate at x = d is treated as stationary. Particles striking it are assumed
to be re-emitted with a thermal distribution pointed in the −x direction. Particles
striking the x = 0 plate are absorbed. Hence, in the no collision limit, particles
make only one round trip across the box.

The choice of the distributions used at the plates is crucial to reproducing
the analytic models. In particular, the “Maxwell flux” distribution [12] must be
used. This distribution describes a recycling thermal flux of particles moving in a
particular direction (in this case, perpendicularly away from the wall). This is the
distribution used in some of the PMI data files, such as in h2_des_maxw_mo.
In this example, however, the distributions of the particles coming off of the two
plates are enforced through hardwired code, not through the data files.

The initial velocity is chosen from the distribution

Q(~v) ∝ vx exp
{
− m

2kT
[v2
x + (vy − vy0)2 + v2

z]
}
. (3.1)

Note the plate velocity vy0 in the exponent. For particles “reflected” at the x = d
surface, vy0 ≡ 0. This is just a thermal (Maxwellian) distribution multiplied by vx,
the velocity in the direction normal to the surface and is required for describing
sources that simulate a recycling process.

A brief digression will clarify the relationship between this source distribution
and the thermal distribution that characterizes the particles in the volume of the

73

fluid. Consider the number of particles of arbitrary volume distribution f that
recycle at, say, the x = 0 surface in a time interval ∆t (a source distribution
specifies a density in phase space per unit time). For particles in the velocity
interval vx → vx + dvx, this is fdvxA∆x, where A is the area of the recycling
surface and ∆x = vx∆t is the distance over which particles with velocity vx
can reach x = 0 in ∆t. So, the phase space density of the recycling particles
per unit time (dividing this number by ∆t and dvx) is ∝ vxf . Another way of
saying this same thing is that the source needs to emphasize the faster particles
in the distribution since more of them will reach the recycling surface in a given
time interval. One upshot is that the average energy of the source particles is
〈E〉source = 2T while the average energy in the volume (for vy0 = 0) is the
familiar 3/2T .

For clarity, we note that the volume distribution function in the free-molecular
limit is

f(~v) = f+(~v) + f−(~v), (3.2)

f+(~v) =
n

2
2
(
m

2πT

)3/2

exp
{
− m

2T
[v2
x + (vy − vy0)2 + v2

z]
}
, vx > 0(3.3)

f−(~v) =
n

2
2
(
m

2πT

)3/2

exp
[
− m

2T
(v2
x + v2

y + v2
z)
]
, vx < 0 (3.4)

With this distribution, one can show that the fluid pressure is

P =
2

3
〈nE〉 = nT +

1

6
mv2

y0. (3.5)

The fluid velocity is

〈~v〉 = 〈~v〉+ + 〈~v〉−

=
1

2
vy0ŷ + 0, (3.6)

so that |〈~v〉| = vy0/2. To compute the fluid temperature used in the BGK distribu-
tions, we need to subtract the drift energy,

T =
P

n
− 1

3
m〈~v〉2 (3.7)

= T +
1

12
v2
y0. (3.8)

74

The primary physical quantity appearing in the analytic models[45, 46, 47] of
Couette flow is the x-y component of the stress tensor,

Πxy ≡
∫
d3v mvxvyf(~v)− nmUxUy, (3.9)

where ~U is the first (velocity) moment of f (the flow velocity). Note that while
we should have Uy 6= 0, Ux should be identically 0 since there is no net flow
in the x direction. In the molecular-flow regime, the distribution function is not
changed by collisions as the particles move across the box. Furthermore, particles
coming from the x = d side of the box make no net contribution to Πxy (since the
integrand is an odd function of vy). Inserting Eq. (3.3), we find

Πfm
xy =

nm

4

(
8T

πm

)1/2

vy0. (3.10)

As collisions become more important, the plate velocity information is dissipated
into random motions of the fluid to a greater and greater extent, and Πxy falls
below Πfm

xy .
The variational theory of Cercignani[46, 47] yields a relatively compact for-

mula for Πxy that matches the numerical results of Willis[45] to within 0.5%. With
δ = 1/Kn,

Πxy

Πfm
xy

=
a+
√
πδ

a+ bδ + cδ2
, (3.11)

where for the case of a BGK collision operator,

a =
4− π
π − 2

b =
π3/2

2(π − 2)

c = 1. (3.12)

The x-y component of the stress tensor is computed along with other test par-
ticle data during tracking. However, final processing of that information into a us-
able form is only done when the COUETTEmacro is enabled in flighttest.web.

The Couette flow problem can be simulated in DEGAS 2 with only a few
code modifications to set up the required boundary conditions (at the moment,
the required particle distributions cannot be specified completely by input or data
files). Because the problem is relatively simple, it represents a good starting point
for learning how to use neutral-neutral collisions in DEGAS 2.

75

Most of these changes are invoked with a COUETTE FWEB macro inserted
into the files

To run this example, follow these steps:

1. Set source code switches. The source code file boxgen.web has within
it a few different settings available which can be selected by changing the
value of the flag BOXRUN. With this file open in an editor, change the lines

@m DIM 2

@m BOXRUN 0
@m SOLN 1

so that they now read

@m DIM 1

@m BOXRUN 41
@m SOLN 0

Save the file and exit the editor. The DIM flag controls the dimensionality
of the geometry. By setting it to 1, we get a purely one-dimensional geome-
try, with periodic boundary conditions in the y and z directions. The SOLN
flag controls the analytic solution used with the “Analytic fluid bench” ex-
ample (Sec. 3.7.1); since that’s not needed here, we can turn it off. The
files plate.web, sources.web, and flighttest.web each have
the line

@m COUETTE 0

near the top. Edit these files, changing the “0” to a “1” in each case (be sure
to revert to the default setting of “0” before running other problems).

2. Switch to the example directory. If the main DEGAS 2 directory sits
within your home directory:

cd ˜/degas2/examples/Couette_flow

76

3. Copy the degas2.in file into your working directory. E.g., if you are
working on a Sun,

cp degas2.in ../../SUN/degas2.in
cd ../../SUN

(overwriting any degas2.in file you may have had there already!).

4. Prepare reference data. This example uses some nonstandard data files
so, unlike the previous example, datasetup must be run. Note that the
degas2.in file points back to the examples directory for the input files
needed here and in subsequent steps.

gmake datasetup
./datasetup

5. Prepare problem data.

gmake problemsetup
./problemsetup

If you look at the problem input file, you will see that there is only one reac-
tion, that for the neutral-neutral collisions. Note also that the test species D2
also appears in the list of background species (the usual background species
e and D+ appear here just because boxgen expects them to be there; they
are not used in this simulation).

6. Generate geometry and background files. The boxgen program takes
care of both of these (be sure that the BOXRUN macro has been set to 41):

gmake boxgen
./boxgen

7. Set the number of flights. The background file bk boxgen.nc contains
the specification of the number of flights to be run. Open this file in an
editor (Emacs will be the most convenient) and find the line

source_num_flights = 100 ;

77

The results in this directory were obtained with 10 BGK iterations of 4000000
flights each. Such a run could easily require more than a day if run on a
single processor (this run was executed in 15 minutes using 16 Dual-core
AMD Opteron 1 GHz processors). You can probably run a smaller number
of flights (say, 100000) and still get reasonable results. Save the file and exit
the editor.

8. Set up the tallies.

gmake tallysetup
./tallysetup

9. Run the code.

gmake flighttest
./flighttest

The number of BGK iterations is controlled by the value of the bgk_max
macro in flighttest.web. The value used here is 10. If you just want to
get an idea of how the calculation proceeds, you can choose a smaller
number. Note that the macro parameters controlling the convergence tests,
bgk_cvg_dens and bgk_cvg_pres, are set to ridiculously small val-
ues (10−8) to ensure that all 10 iterations are completed.

10. Check the text output. At each iteration, the code writes out the test
species density and other data in a file with a name of the form densityxx.out
where xx is replaced by the iteration number. The contents of these files
are analogous to those of the other examples (the density and pressure for
each zone are in the third and fifth columns, respectively; see the descrip-
tion in Sec. 3.7.1), except for the last two columns. These are normally not
used; here, they contain the values and standard deviations of the x-y stress
tensor, Πxy. The comparison of those values with theory will be discussed
below.

At the end of each iteration, the background netCDF file (bk bgktest.nc)
is also updated (overwritten) with the density, velocity, and temperature of
the neutral background species. A third file, cvg global.txt, will pro-
vide information on the global progress of the BGK iterations towards con-
vergence. The four columns are:

78

(a) Iteration number,
(b) Test species number,
(c) Global fractional change in density (dimensionless); this is compared

with bgk_cvg_dens to decide whether or not to stop the iterations.
(d) Global fractional change in pressure. (dimensionless); this is com-

pared with bgk_cvg_pres to decide whether or not to stop the iter-
ations.

Note that on most machines this file does not appear until the unit is closed
at the end of the run.

These files can be directly compared with the corresponding files in the
examples directory. If you have repeated the run at the above-described
length, you should be able to match the text files exactly. The level of
agreement in the netCDF file should be several digits (perhaps as many as
10). If a satisfactory match is not obtained, something is amiss. Please
contact the code authors (see Sec. 5.1) if you feel that a problem exists with
the code as you downloaded it.

11. Check the binary output. You can use the matchout utility (see Sec. 3.4.4)
to do this. Again, you should expect the largest differences to be ∼ 10−8 or
better.

12. Compare with the analytic solution. The rightmost set of data in the
densityxx.out file are the stress tensor values, Πxy. Ideally, these are
constant across the problem space. Some deviation exists here due to Monte
Carlo noise. You can compute the free molecular value from Eq. (3.10).
With both of these numbers in hand, you can compare with Eq. (3.12). To
do that, you need to know δ. The explicit formula used is

δ =
n〈σv〉d√

2T/m
, (3.13)

where n = 1020 m−3 (enforced in flighttest.web by code enabled
with the COUETTEmacro), 〈σv〉 = 1.1×10−16 m3/s (from the d2d2 bgktest.nc
file), d = 0.1 m (set in boxgen.web), and m = mD2 = 6.689 × 10−27

kg (also from boxgen.web). One would expect the temperature T of the
fluid to be equal to that of the wall by virtue of the initial conditions. How-
ever, in cases where the energy associated with the plate velocity vy0 is sig-
nificant compared with Twall, the actual temperature of the fluid is slightly

79

higher than that of the wall as is indicated by Eq. (3.8). In fact, this exam-
ple with vy0 = 1000 m/s shows better agreement with the theoretical result
Eq. (3.12) if T is set to the simulated fluid temperature (e.g., from the the
bk bgktest.nc file).

With T = Twall = 0.0258eV = 4.1336 × 10−21 J, we find δwall = 0.9894.
Plugging this into Eq. (3.12),(

Πxy

Πfm
xy

)
c

(δwall) = 0.6047. (3.14)

The free-molecular stress, Eq. (3.10), is Πfm
xy(Twall) = 0.20977 Pa. If we av-

erage the 10 values for Πxy in the density10.out file, we get Πxy,sim =
0.13045 Pa and (

Πxy

Πfm
xy

)
sim

= 0.6219. (3.15)

This would qualify as pretty good agreement. However, if we average
the fluid temperature values in the bk bgktest.nc file, we get Tsim =
4.5866× 10−21 J. Then, δsim = 0.9394, and(

Πxy

Πfm
xy

)
c

(δsim) = 0.6157, (3.16)

about a factor of two better agreement. Now, one might argue that we
should also use Tsim in computing Πfm

xy . However, the free-molecular stress,
Eq. (3.10) was computed directly from the general distribution function for
arbitrary vy0 so that T = Twall in that formula, without any ambiguity. Qual-
itatively speaking, for small δ the character of the source distribution dom-
inates. As δ approaches or exceeds 1, the temperature of the fluid in the
volume, Tsim computed from Eq. (3.8), better describes the distribution.
The better agreement is shown over a range of inverse Knudsen numbers
and two values of vy0 in Fig. 3.1.

C-Mod 1-D: Conservation Checks

This example demonstrates a run with complete hydrogen physics in a simple ge-
ometry. In particular, this run includes both neutral-ion and neutral-neutral elastic
scattering processes. The complexity of the physics also makes for a good demon-
stration of DEGAS 2’s conservation checks.

80

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Cercignani
V = 100 m/s
V = 1000 m/s, δ(T

wall
)

V = 1000 m/s, δ(T
sim

)

Π
xy

 /
Π

xyfm

δ = d / λ
mfp

Figure 3.1: Comparison of 8 DEGAS 2 simulations (symbols) of the Couette flow
problem with the analytic expression for the normalized shear stress Eq. (3.12)
obtained by Cercignani[46, 47]. Two different plate velocities V = vy0 were used
in the simulations. For the higher velocity, better agreement with the analytic
expression is obtained if the inverse Knudsen parameter is computed from the ac-
tual fluid temperature from the simulation, Tsim, rather than the wall temperature,
Twall. 81

Experiments by Pitcher et al. [54, 55] on the Alcator C-Mod tokamak indi-
cated that the flow of neutral gas through material structures around the plasma
was being limited by its diffusion rate through the divertor plasma. Pitcher [55]
developed a semi-analytic model that reproduced this behavior. An attempt was
made to precisely reproduce the results of that model with DEGAS 2. The over-
all effort consisted of several simulations in which the model assumptions were
gradually relaxed towards those consistent with normal DEGAS 2 operation. This
example is from a simulation in having atomic and surface physics assumptions
more like a normal DEGAS 2 run. The remaining difference from a “full physics”
DEGAS 2 run (apart from the greatly simplified geometry) is that the neutral
source is a gas puff rather than a recycling source. The full physics and geometry
simulations are described in Ref. [56].

To run this example, follow these steps:

1. Set source code switch. The source code file boxgen.web has within it a
few different settings available which can be selected by changing the value
of the flag BOXRUN. With this file open in an editor, change the lines

@m BOXRUN 0
@m SOLN 1

so that they now read

@m BOXRUN 40
@m SOLN 0

Save the file and exit the editor. The second parameter disables the analytic
solutions that are used in the original boxgen example (Sec. 3.7.1). Note
that the DIM parameter should remain at its default value of 2.

2. Switch to the example directory. If the main DEGAS 2 directory sits
within your home directory:

cd ˜/degas2/examples/CMod-1D

3. Copy the degas2.in file into your working directory. E.g., if you are
working on a Sun,

cp degas2.in ../../SUN/degas2.in
cd ../../SUN

82

(overwriting any degas2.in file you may have had there already!).

4. Prepare reference data. This example uses some nonstandard data files
so, unlike the previous example, datasetup must be run. Note that the
degas2.in file points back to the examples directory for the input files
needed here and in subsequent steps.

gmake datasetup
./datasetup

5. Prepare problem data.

gmake problemsetup
./problemsetup

6. Generate geometry and background files. The boxgen program takes
care of both of these. Be sure the BOXRUN macro was set to 40:

gmake boxgen
./boxgen

7. Set the number of flights. The background file bk oned.nc contains the
specification of the number of flights to be run. Open this file in an editor
(Emacs will be the most convenient) and find the line

source_num_flights = 40000 ;

Save the file and exit the editor.

8. Set up the tallies.

gmake tallysetup
./tallysetup

9. Run the code.

gmake flighttest
./flighttest

83

The code will execute 5 iterations automatically, each with 40,000 flights.
The number of BGK iterations is controlled by the parameter bgk_max
in flighttest.web; the default setting is 5. The BGK iterations can alterna-
tively be controlled by the convergence parameters bgk_cvg_dens and
bgk_cvg_pres. The corresponding tests monitor global measures of the
changes in the density and pressure of the BGK species. Note that these
can be satisfied only if there are sufficiently many flights to achieve a corre-
spondingly high precision in the local density and pressure values, no matter
how many BGK iterations are run. In this example, the parameters chosen
are such that bgk_max will be governing the number of iterations.

10. Check the text output. At each iteration, the code writes out the test
species density and other data in a file with a name of the form densityxx.out
where xx is replaced by the iteration number. The contents of these files are
analogous to those of the other examples (the density and pressure for each
zone are in the third and fifth columns, respectively; see the description in
Sec. 3.7.1).

At the end of each iteration, the background netCDF file (bk oned.nc)
is also updated with the density, velocity, and temperature of the neutral
background species. This file can be used to restart the BGK iterations,
e.g., with an increased number of flights. A third file, cvg global.txt,
providea information on the global progress of the BGK iterations towards
convergence. The four columns are:

(a) Iteration number,

(b) Test species number,

(c) Global fractional change in density (dimensionless); this is compared
with bgk_cvg_dens to decide whether or not to stop the iterations.

(d) Global fractional change in pressure. (dimensionless); this is com-
pared with bgk_cvg_pres to decide whether or not to stop the iter-
ations.

Note that on most machines this file does not appear until the unit is closed
at the end of the run. The output netCDF file from this run is included as
well.

These files can be directly compared with the corresponding files in the
examples directory. The numbers in the text files have only five digits

84

of precision and should be matched exactly. The level of agreement in the
netCDF file should be several digits (perhaps as many as 10). If a satis-
factory match is not obtained, something is amiss. Please contact the code
authors (see Sec. 5.1) if you feel that a problem exists with the code as you
downloaded it.

11. Check the binary output. You can use the matchout utility (see Sec. 3.4.4)
to do this. Again, you should expect the largest differences to be ∼ 10−8 or
better.

12. Examine test particle balances To simplify examination of the conserva-
tion checks, an input script for the outputbrowser code is included,
bgkbalances. The results are in bgkbalances.out. The checks can
be performed for the density, momentum, and energy of each of the test
species. Since D2+ does not move, the checks on it are satisfied trivially
and are not considered further.1 For each quantity, the procedure consists
of totaling the negative of the quantity lost to the walls (the ”current into
wall” tally), the quantity coming in from the walls (the ”current out of wall”
tally), and the ”source rate” tally. The last item is further broken down by
reaction (or source) to provide an indication of the relative importance of
each process. For this example, we consider only the X-component of the
momentum (dimension #1) since the problem does not vary in the other two
directions.

For this case, the following totals are obtained:

particles

D −2× 1016

D2 8× 1015

momentum 1

1In fact, the values of the “total” tallies for D2+ are all determined by roundoff errors. For
this reason, you will not likely match these values exactly. You should convince yourself that
they are numerically much smaller than the other totals. If you use matchout to compare with
the reference output netCDF file, these D2+ totals will also stand out as apparently significant
discrepancies.

85

D < 1× 10−6

D2 2× 10−8

energy

D −5× 10−2

D2 7× 10−3

In addition, a global check involving the background particle number can
be performed:

+ Total source of deuterium atoms (the puff source),
+4.0× 1021

− Total number of deuterium atoms lost to the walls,
−(3.48326× 1022 + 2.× 4.11582× 1021)

+(3.23371× 1022 + 2.× 4.76467× 1021)

− Total number of deuterium atoms lost to the plasma (D+ source rate),
−2.80221× 1021

= −1.× 1016

There will usually be a small remainder in these balances; its magnitude in
this case roughly coincides with the accuracy provided by outputbrowser.
This remainder results from the enforcement of a minimum weight via Rus-
sian roulette in subroutine follow. By default, that minimum weight is
10−3 of the initial weight. Consequently, particles, momentum, and energy
are conserved only on the average (i.e., after many flights). You can demon-
strate this effect by reducing the minimum weight (WMIN in flight.web)
to, say, 10−7. Doing so will make the run substantially longer. To see the

86

difference in the conservation checks, you may need to examine the output
netCDF file directly (hint: run outputbrowser first to get “rough” val-
ues for these quantities and then use the search facility in Emacs to locate
the corresponding data in the output netCDF file).

13. Transfers between BGK species. In looking at the energy and momentum
transfers between BGK species, you should notice that no sources appear
for the background partners. The reason for this is that the transfers to
and from these species do not have a clear physical meaning; all relevant
information can be obtained from the corresponding test species.

However, the transfers between BGK test species, say between D and D2
here, are significant. The process d2d_neut (see the “momentum source
vector by reaction” and “energy source by reaction” sections of bgkbalances.out
under reaction 11) transfers energy and momentum between the background
D2 and the test D (problem species, “problem_sp”, number 6); likewise,
dd2_neut (reaction number 12) connects the background D and test D2
(problem_sp 7). One would expect that in a converged state these two
transfer rates would be equal (this actually goes into the derivation of the
algorithm). In this example, they are (to within the error bars),

mom. 1 to D: −9.88463× 10−3 mom. 1 to D2: +9.59007× 10−3

energy to D: −4.46727× 102 energy to D2: +4.35459× 102

(The molecules come off the wall at low energy and are being heated by
the warmer atoms that arise from elastic scattering with the plasma ions and
from dissociation.)

For this to occur, the reaction rate for these two processes must be nu-
merically identical. The original implementation of the BGK algorithm
in EIRENE had the same temperature dependent expression for the two
rates. However, because the temperatures of D2 and D species are different
in general, the resulting rates had different numerical values. The initial
implementation of the BGK algorithm in DEGAS 2 repeated this same mis-
take. Due to a dearth of applications for these reactions, this problem has
not yet been remedied.

To obtain the nearly equal transfer rates seen above, the degas2.in file in
this example actually points to a dedicated reactions.input file in the

87

same directory that uses modified (“hacked”) data files for these two elastic
scattering processes. To see the effect of unequal reaction rates, modify
the degas2.in file to instead point to the reactions.input in the
data directory. Rerun both datasetup and problemsetup, then run
the code again. Note that you should also rerun boxgen to start the code
off in the same initial state. The result after five iterations can be compared
with bgkbalances default.out that comes with the examples:

mom. 1 to D: −5.06271× 10−3 mom. 1 to D2: +7.51898× 10−3

energy to D: −2.16540× 102 energy to D2: +3.55497× 102

14. Other results. For reference purposes, this directory contains output files
from a single iteration (on a Linux machine running Portland Group For-
tran with DEBUG=yes) with 1000 flights. These output files contain the
string 1K. The primary purpose of these files is to serve as a known, repro-
ducible point of contact for testing subsequent code modifications. It also
demonstrates that these conservation checks hold even if the code is run
with relatively few flights. To duplicate these files, you will need to stop
the BGK iteration process after the first (zeroth, actually) iteration. The
easiest way to do this is to change the number of iterations, near the top of
flighttest.web, from:

@m bgk_max 5

to

@m bgk_max 0

You may notice that the tallies used for the conservation checks predomi-
nantly utilize collision estimators while the standard (zone-resolved) tallies
are based on track length estimators. The reason is that the former will
explicitly demonstrate conservation of mass, momentum, and energy since
they are computed using the instantaneous test particle attributes. The track
length estimators will generally provide more accurate values for the code
output, but will exhibit conservation only in a statistical sense. You can
demonstrate this by replacing the estimator lists in each of the “total” tallies
with the lists from the corresponding zone-resolved tallies.

88

3.7.3 definegeometry2d and defineback Examples
The definegeometry2d (for setting up geometries, obviously) and defineback
(for specifying the corresponding sources and plasma background) are sufficiently
flexible and general that specific examples are useful in illustrating the ways that
they can be used.

Gas Puff Imaging Example

This example illustrates the use of the DG and Carre codes with definegeometry2d,
and also demonstrates the 3-D capabilities of definegeometry2d. It is based
on the DEGAS 2 simulation of the NSTX Gas Puff Imaging (GPI) GPI shot
112811, documented in [57].

To run the 2-D version of this example, follow these steps:

1. Switch to the example directory. If the main DEGAS 2 directory sits
within your home directory:

cd ˜/degas2/examples/He_GPI

2. Copy the degas2.in file into your working directory. E.g., if you are
working on a 64-bit Linux machine,

cp degas2.in ../../LINUX64
cd ../../LINUX64

3. Prepare reference data. This example uses the standard reference data
files in the data directory. Hence, this step can be skipped if those files have
not been altered since you downloaded the code.

gmake datasetup
./datasetup

4. Prepare problem data.

gmake problemsetup
./problemsetup

89

5. Generate geometry file. Here, we outline briefly the preliminary steps
leading up to the creation of the objects referred to in the definegeometry2d
input file. Users interested in learning more about that process should con-
sult the DG User’s Manual (in the dg_carre/DG/DOC directory; espe-
cially the DEGAS 2 specific sections under “Customizing DG”).

The starting points for the DG code are a specification of the vacuum vessel
shape [(R,Z) coordinates; nstx_walls in this case] and an equilibrium
(values of the poloidal flux on a rectangularR,Z grid, g112811.00250.equ,
already converted from the EFIT format to DG’s preferred file format).
Once these are loaded into DG, the user proceeds to graphically gener-
ate the input for the Carre code. Carre is run separately outside of DG
to create a nearly orthogonal 2-D mesh with one coordinate that follows
the flux surfaces. Although DEGAS 2 doesn’t really need such a mesh,
having one facilitates specifying plasma parameters (typically a function
of a flux variable). That mesh is then loaded into DG and the user pro-
ceeds to connect it to the vacuum vessel points forming the “DG polygons”
(see the entry in the definegeometry2d manual). This process results in
three files: the DG file (nstx_25.dg), the mesh (nstx.carre.021)
and DG’s objects (nstx_25.dgo). Only the latter two are read in by
definegeometry2d.

There are two definegeometry2d input files here, one for the 2-D (ax-
isymmetric: nstx_25_dg2d.in) case and one for 3-D (nstx_25_dg3d.in).
The results contained in the examples/He_GPI directory are for the
much quicker running 2-D case. Note that many of the 3-D lines appear
in the 2-D file, but are commented out. Both runs utilize just the portion
of the Carre mesh directly in front of the gas manifold (“puffer” in the
definegeometry2d input file); this is done using the additional argu-
ments to the sonnet_mesh keyword. One would establish the values of
these indices during the creation of the DG polygons. The 3-D run then only
simulates a portion of the torus (arguments to the bounds and y_values
keywords). These steps keep the problem size and run time down.

The emulation of the GPI camera view is done with the code in gpicamera.web.
Prior to compiling definegeometry2d, the user should copy this file to
usr2ddetector.web (see the brief explanation at the top of the default
version of the file def2ddetector.web). This is actually just a place-
holder 5×5 pixel version of the camera. The full resolution image is created
during post-processing with the postdetector routine.

90

cd ../src
cp gpicamera.web usr2ddetector.web
cd ../LINUX64
gmake definegeometry2d
./definegeometry2d ../examples/He_GPI/nstx_25_dg2d.in

6. Generate background file. The detailed specification of the plasma param-
eters is actually done with the code in nstxgpi2.web. Like gpicamera.web,
this is a user-defined subroutine (get_n_t) that needs to be compiled into
the driver code. This routine will read the plasma density and temperature
profiles obtained with the NSTX Thomson scattering system, ts_112811_base.TXT
and map them on to the entire geometry assuming that the plasma den-
sity and temperature are constant on flux surfaces. On the Carre-generated
mesh, this is straightforward. Outside of it, where there are only triangles,
an approximate procedure is used.

The plasma_file keyword in the defineback input file has two pa-
rameters used by the nstxgpi2.web get_n_t routine. The second is
the name of the Thomson scattering data file mentioned above. The first
argument provides the subroutine with the location of the separatrix in the
Carre mesh subset used by definegeometry2d. Specifically, the sep-
aratrix is assumed to be between the cells iz_sep and iz_sep+1. If
one knows the number of “cells” used in DG’s “Create Surface(s)...” dia-
log for the core (n_cells) and the minimum iz used in the mesh sub-
set (specified via the sonnet_mesh keyword in definegeometry2d),
iz_min, the value of this is: iz_sep = n_cells - iz_min + 2.

The second piece of input to defineback is the specification of the neu-
tral sources. In the GPI simulations, this is a gas puff from the polygon
representing the gas manifold, a vertical line in the 2-D case. The physical
locations of the 2-D sources are provided by the “stratum” and “segment”
indices in the file source_nstx_26. The “stratum” number corresponds
to the “stratum” keyword used in definegeometry2d. In general, the
simplest way to determine the segment numbers is to use the “*” option
(see the defineback documentation) to select all of the segments associated
with a stratum and then manually identify those desired for the problem
at hand. In this problem, a constant flux source is used since the sizes
of the segments vary. The overall magnitude of the source is arbitrary
in this problem, but physically realistic. The source file for the 3-D case

91

(source_nstx_26_3d) is similar, but also provides the toroidal loca-
tion of the source segments (Segment_iy). These were chosen so that
the source points fall along a nearly straight line at the same angle with
respect to horizontal as the actual gas manifold.

cd ../src
cp nstxgpi2.web usr2dplasma.web
cd ../LINUX64
gmake defineback
./defineback ../examples/He_GPI/nstx_30_db.in

7. Set the number of flights. The background file bk_nstx_30.nc con-
tains the specification of the number of flights to be run. Open this file in an
editor (Emacs will be the most convenient) and find the line:

source_num_flights = 100 ;

The results in this directory were obtained with 100000 flights. However,
the 3-D production run used 2000000.

8. Set up the tallies.

gmake tallysetup
./tallysetup

9. Run the code.

gmake flighttest
./flighttest

10. Check the text output. The file density.out can be directly compared
with the one in the examples/He_GPI directory. The numbers in here
have only five digits of precision. If an exact match is not obtained, some-
thing is amiss. These results were obtained with Triangle V. 1.6.

11. Check the binary output. You can use the matchout utility to do this.
The largest differences should be ∼ 10−10 or smaller.

12. Generate graphical output. For the 2-D simulation,

92

cp ../examples/He_GPI/geometry.inp .
gmake geomtesta
./geomtesta

The currently recommended approach is to compile the code with the GRAPH_FILE=SILO
or SILO_HDF5 option and use VisIt (built with Silo support) to view the
Silo format file generated by geomtesta. The primary output variables in
this problem are the emission rate of the helium 5877 Å (he_5877) viewed
by the GPI camera and the neutral helium density, spHeden.

For 3-D simulations, two example input files for geomtesta are provided.
Keep in mind that these need to be copied to the run directory and renamed
geometry.inp in order for geomtesta to find them.

13. Generate camera image and associated data. The camera simulated by
the main code uses only a 5× 5 mesh in this problem so as to not lengthen
the run. The generation of actual images suitable for comparison with ex-
periment is deferred to postprocessing with the postdetector code. In
principle, postdetector can be parallelized (although recent changes to
the code have yet to be propagated into the MPI-specific sections), further
mitigating the time expense for producing the simulated camera image.

While postdetector has been generalized with regard to species (e.g.,
He or D2), there are still application specific settings in the code. These are
primarily the camera resolution and specification of the target plane; note
that these same quantities appear in the preamble of gpicamera.web.
The orientation of the simulated image can also vary with application; see
subroutine wrdatap in postdetector.web.

Open postdetector.web in an editor and find the section of code:

@#if 0
@m nx 64
@m ny 64
@#else
@m nx 5
@m ny 5
@#endif

Edit the first line to read:

93

@#if 1

This sets the camera resolution to 64 × 64. The 5 × 5 resolution is used as
the default to facilitate testing.

A few lines below this, check that the application is set to “NSTX”:

@m APP NSTX

As was the case in compiling definegeometry2d, the file usr2ddetector.web
should be a copy of gpicamera.web. Note that the camera resolution pa-
rameters in usr2ddetector.web are overridden by those in postdetector.web
and are not needed here.

gmake postdetector
./postdetector

The camera image and other data are written to HDF format files (this code
has not yet been adapted for use with the Silo format). Here are the contents
of the most useful files:

emtt Total emission rate of the 5877 Å line [in W/(m2 ster)]. This is the
simulated camera image.

tane Electron density (in m−3) at the target plane (intersection of the cam-
era view and the idealized gas puff sheet).

tate Electron temperature (in eV) at the target plane.

tarr Major radius (in m) at the target plane.

tarz Vertical coordinate (in m) at the target plane.

tns1 Neutral helium density (in m−3) at the target plane.

Note, however, that the identification of the “target plane zones” is an auto-
mated optimization process that assumes a relatively fine toroidal discretiza-
tion. As such, its results are rather difficult to interpret in the 2-D case.

The quantities in the other files require much more space to explain. The
interested reader can learn more in [58]

14. Three-dimensional simulation. The process for producing the analogous
three-dimensional simulation is the same as above. The only modifications
are:

94

(a) The input file for definegeometry2d is nstx_25_dg3d.in.
Note that definegeometry2d will require much more time (on
the order of an hour) to run.

(b) The pointer to the source file in the defineback input file nstx_30_db.in
must be changed to point to source_nstx_26_3d.

(c) Many more flights are required for the main code, e.g., 2000000, and
the run time is correspondingly longer.

(d) One of the two 3-D input files should be used for geomtesta.

The resulting camera image corresponds to Fig. 4(a) in [57]. However,
the latter also incorporated the effects of camera vignetting, which are not
accounted for by the postdetector routine.

NCSX Example

This example illustrates the use of definegeometry2d with input files gener-
ated with a relatively simple stand-alone code. The same concepts could be used
to manually create definegeometry2d input files. This particular simulation
provided neutral penetraton estimates used in the design of plasma facing com-
ponents for the National Compact Stellarator Experiment [59]. Since the bulk
of the recycled neutrals leave the surface with a cosine distribution (i.e., peaked
about the normal to the material surface), the greatest penetration will be achieved
in the same poloidal plane as the recycling surface. Consequently, toroidally ax-
isymmetric (i.e., a single plasma cross section at a particular toroidal angle) neu-
tral transport calculations can place an upper bound on the neutral penetration
distance.

In scoping problems such as this, satisfactory results can be obtained by as-
suming that the plasma parameters are constant on flux surfaces (of course, if
one does know the plasma variation along a flux surface, this assumption can be
relaxed). The DEGAS 2 geometry can then be constructed out of flux surface
shapes, e.g., from an equilibrium calculation of some sort. The basic approach is
to define a “wall” corresponding to each flux surface and then connect adjacent
walls to form the “polygons” required by definegeometry2d (see its docu-
mentation for detailed descriptions of these objects). More specfically, each pair
of adjacent flux surfaces is used to construct two polygons (e.g., a lower and upper
half) so that the interior of both is topologically well defined.

95

This objective can be in principle be achieved by manual manipulation of the
coordinate data. However, the process is sufficiently straightforward, not to men-
tion tedious, that a code can be constructed that generates the wallfile needed
by definegeometry2d, as well as the polygons created out of those walls that
form the bulk of the definegeometry2d input file.

The starting point in this case was a 3-D equilibrium file generated by the
VMEC code, containing Fourier representations of the NCSX flux surfaces. An
example code distributed with the VMEC file was first modified to evaluate these
surfaces at a set of input toroidal angles (actually just two, with one represented
here). A uniform poloidal angle mesh (an arbitrary choice) was then defined so
that a given flux surface could be represented by a set of discrete points. There
were many more flux surfaces in the VMEC equilibrium than were needed for this
application. The set of surfaces was reduced (again arbitrarily) so that the maxi-
mum distance between two adjacent surfaces was 5 cm. A “wall” was created out
of each of these surfaces, with the constituent points being the R, Z coordinates
of the surface at each of the points along the poloidal angle mesh. Because the
relative location of these walls was known, the generation of the corresponding
polygons was a simple matter. The code also defined walls and polygons filling
the gap between the VMEC surfaces and the vacuum vessel and connecting the
vacuum vessel to the universal cell. Details such as these depend on the particular
application and are, thus, not worth describing here.

Another crucial task that must be begun at this stage is establishing the mech-
anism that will allow defineback to map the plasma parameters onto these
polygons. The first, and generally essential, step to doing this is to label each poly-
gon with a “stratum” number. Note that DEGAS 2’s internal geometry specifica-
tion, contained in the geometry netCDF file, has no record of the polygons used
by definegeometry2d; it only knows about zones. The stratum labels are
used in conjunction with the geometry’s “sectors”, but they are of little use within
the plasma volume. For this reason, definegeometry2d also generates its
polygon_nc_file based on the 2-D geometry class (see the geometry2d class
documentation). Via the g2_polygon_stratum and g2_polygon_zone
arrays in this class, the user can connect these zones back to the polygons spec-
ified on input to definegeometry2d. In this example, this objective is accom-
plished by the subroutine in the ncsxplasma.web file compiled into defineback.
Be aware that the polygons in the polygon_nc_file file are derived from,
but not identical to, those input to definegeometry2d. Specifically, poly-
gons broken up with definegeometry2d’s breakup_polygonwill remain
as individual polygons in the polygon_nc_file. But, those processed with

96

trianglulate_polygon or triangulate_to_zones are represented by
the resulting triangles within the polygon_nc_file and, thus, correspond to
multiple polygons there. The stratum labels are propagated to the triangle poly-
gons in the process, however, permitting them and the zone numbers to be related
to the original polygons.

In this example, the plasma profiles are specified as a function of the square
root of the normalized toroidal flux. Consequently, the geometry setup code also
writes out a file, radiiz1li383, containing the toroidal flux corresponding to
each stratum. Because each pair of adjacent flux surfaces is used to construct
two polygons, these two polygons are assigned the same stratum label in the
definegeometry2d input file. The names of the files containing the plasma
profiles, the effective stratum radii, and the polygon_nc_file are input to
defineback and passed to the routine in ncsxplasma.web.

One will also need to be able to tell defineback where to place the neutral
sources. This usually amounts to manually identifying the “strata” corresponding
to those sources within the definegeometry2d input file, and then following
a simple procedure for deducing the specific “segments” of those strata that are to
be used.

To run this example, follow these steps:

1. Switch to the example directory. If the main DEGAS 2 directory sits
within your home directory:

cd ˜/degas2/examples/NCSX

2. Copy the degas2.in file into your working directory. E.g., if you are
working on a 64-bit Linux machine,

cp degas2.in ../../LINUX64
cd ../../LINUX64

3. Prepare reference data. This example uses the standard reference data
files.

gmake datasetup
./datasetup

4. Prepare problem data.

97

gmake problemsetup
./problemsetup

5. Generate geometry file.

gmake definegeometry2d
./definegeometry2d ../examples/NCSX/dg2dinz1li383

6. Generate background file. As was described above, the detailed specifica-
tion of the plasma parameters is done by the get_n_t routine in ncsxplasma.web.
It requires as input the three files described previously (the effective radii for
each stratum, the plasma profiles, and the polygon_nc_file), and the
plasma density and temperature scrape-off lengths (the plasma parameters
are only given on closed flux surfaces).

The remainder of the defineback input file contains the specification of
the neutral sources. In this example, this is a recycling source at a limiter.
The corresponding “stratum” was established as part of the process of cre-
ating the input files for definegeometry2d. A general, and relatively
quick, technique for determining the source segment numbers is to use the
“*” option (see the defineback documentation) to select all of the segments
associated with a stratum and then manually identify those desired for the
problem at hand. The source strength is arbitrary in this problem, although
a physically realistic value was selected.

cd ../src
cp ncsxplasma.web usr2dplasma.web
cd ../LINUX64
gmake defineback
./defineback ../examples/NCSX/z1li383_db.in

7. Set the number of flights. The background file bk_ncsx.nc contains the
specification of the number of flights to be run. Open this file in an editor
(Emacs will be the most convenient) and find the line:

source_num_flights = 100 ;

The results in this directory were obtained with 10000 flights.

98

8. Set up the tallies.

gmake tallysetup
./tallysetup

9. Run the code.

gmake flighttest
./flighttest

10. Check the text output. The file density.out can be directly compared
with the one in the examples/NCSX directory. The numbers in here have
only five digits of precision. If an exact match is not obtained, something is
amiss. These results were obtained with Triangle V. 1.6.

11. Check the binary output. You can use the matchout utility to do this. The
largest differences should be ∼ 10−10 or smaller.

12. Generate graphical output. For the 2-D simulation,

cp ../examples/NCSX/geometry.inp .
gmake geomtesta
./geomtesta

3.8 Run Control Parameters
Several run control parameters are contained in the sources class. Ideally, these
would be set by the user in a dialog box just prior to the run. For now, they
must be changed manually by editing the background netCDF file. The following
subsections describe the features, roughly in order of usefulness to the average
user:

3.8.1 Time Dependence
The use of time dependence in DEGAS 2 is described above in Sec. 2.8. For com-
pleteness, we only note here the principal controlling parameters in the sources
class. The switch so time dependent will be FALSE (0) for steady-state
runs and TRUE (1) for the time dependent case. For the latter, the time interval for

99

the run will be from so time initial to so time final; both have units
of seconds. There is also a source-group dependent parameter so time varn
that controls the time variation of tahat group.

3.8.2 Checkpoints
By default, the DEGAS 2 output netCDF file is written only at the end of the
run. Each source group can be broken up into an integral number of pieces with
an intermediate output file being written after each such checkpoint. The array
so chkpt(grp) contains the number of checkpoints for source group grp. If
so chkpt(grp) is 0, no file is written. If 1, an intermediate output file will be
written at the end of the source group, and so on.

The intermediate output file does not contain post-processed results and cannot
be used with post-processing utilities. The raw data there are suitable only for a
restart of the code.

3.8.3 Restarting
The two main uses of the restarting capability are

1. To complete an interrupted (and checkpointed) run without having to restart
from the beginning,

2. To increase the number of flights in a run to improve statistics.

In both cases, the user needs to change the value of the flag so restart
from its default value of FALSE (represented by 0 in the background netCDF file)
to TRUE (1). The code will expect to find an existing output file, with the name
specified in the degas2.in file. This can be either an intermediate output file
from a checkpoint or a completed one generated at the end of a run.

The restarted run will extend the number of flights to the value specified in
the background netCDF file (by so nflights). A few different situations may
arise:

1. If the number of flights is the same as those in the output file, no additional
flights are run. This feature permits the data in an intermediate output file
to be post-processed into a “completed” output file.

100

2. If the previous checkpointed run was interrupted, the restarted run resumes
from the point of the last checkpoint and completes the specified number of
flights. The results should match those that would have been obtained if the
run were to have run to completion on the first try.

3. If the user wishes to increase the number of flights for the last source group
of a completed run, the code will compute the required number of flights.
The results will be the same as if the flights were all done at once.

4. If the user wishes to increase the number of flights in more than one source
group, the code will extend the run accordingly. However, the results will
not exactly match those obtained in a single run of the same length. The
reason is that by default a run uses a continuous random number chain for all
source groups. In a restart, that chain is resumed at its end. Hence, the first
source groups will be using random numbers for these new flights different
from those they would have had in a single run. Note that the resulting run
should still be statistically equivalent to the single run. The “spaced seeds”
option has been added to provide a workaround to this minor shortcoming
of the restart procedure.

3.8.4 Seed String
Prior to version 2.6 of DEGAS 2, the initial random number seed was hardwired
in flighttest.web. The user can now change the initial seed (and, hence, the
entire random number chain) via so seed string in the background netCDF
file.

The preferred mechanism for specifying the initial seed is as a character string.
This is transformed into the appropriate integer representation using routines in
random.web (see Sec. 2.5). The default value is “12”. Reasons to use different
values include

1. An unexpected, but perhaps not statistically significant, result has been ob-
tained. A repeat of the run with a different random number seed will aid in
establishing the validity of the result,

2. The DEGAS 2 code package contains several tools for statistically analyz-
ing results (e.g., matchout and matcheir). By changing the random
number seed, the effectiveness of these statistical comparisons can be eval-
uated.

101

3.8.5 Spaced Seeds
If the user anticipates needing to extend a multiple source group run to a larger
number of flights (e.g., to achieve a desired variance) and insists that the results
match those of a single run, the flag so spaced seeds should be set to TRUE
(1) in the initial run. With this option enabled, the code will set the initial seed for
each source group to be 100000000 (set by so seed spacing) flights apart.
Each source group in a restarted run will then be able to “pick up where it left
off”, up to a total of 100000000 flights.

To minimize the chances of compromising the integrity of the random number
chain, so spaced seeds should be left at its default FALSE (0) value, unless
the user truly needs to be able to extend the run and match the single run results.

3.8.6 Direct Sampling
The default (random) method of sampling the initial particle source in DEGAS
2 leads to a source distribution that differs from the ideal, input distribution by a
fraction of order 1/

√
N (N being the number of flights). Yet, if we were to take

those same N flights and divide them up by hand amongst the source segments,
we would obtain an error of order 1/N . Such an approach is impractical in general
as it requires specifying the number of flights once and for all at the beginning of
the run (a restart would not be possible) and the possibility of overlap in the initial
source positions would arise if the number of flights were large enough.

An equally effective alternative can be developed based on hashing algorithms
described by Knuth[53]. The idea is to replace the pseudo-random number ξ
usually used in the source sampling process with

ξ = (x+ i/φ) mod 1, (3.17)

where x is a single, fixed random number, i is the flight number, and

φ−1 =

√
5− 1

2
(3.18)

is the golden ratio. This value yields the desired distribution properties (as can be
verified using sourcetest), but minimizes the possibility of overlap by ensur-
ing that ξ is far from low order rational numbers.

The sampling method used is governed by the flag so sampling. The de-
fault value of so random yields the usual random sampling procedure. This is

102

the recommended value for most applications. The new, direct sampling method
is selected by setting so sampling to so direct. This method was installed
to see if it would lead to more efficient iterations in coupling DEGAS 2 to plasma
transport codes.

3.9 Adding Reactions and PMI

3.9.1 Overview of Data Format
The same, basic approach is used to store all reaction- and PMI-related data in
DEGAS 2. First, the data for each reaction or PMI is stored in its own netCDF
file. That file contains:

1. Name of reaction,

2. Number of dependent variables,

3. Organization of data for each dependent variable (“table” or “fit”),

4. Rank of each dependent variable (number of independent variables),

5. Character name for each dependent and independent variable,

6. Number of values of each independent variable (for tabular data),

7. Data table, a single one-dimensional array. Indices into this array are com-
puted on the fly based on the number of values used for each independent
variable.

For more details, see the description of the cross section class. The corresponding
information for PMI is in the description of the PMI format class.

The only general tool available for creating new data files is ratecalc (see
Sec. 3.4.2 and the ratecalc file itself). Example input files for ratecalc can
be found in the data directory. Two other routines reactionwrite and
pmiwrite (again see Sec. 3.4.2) read existing text files and write the data out
into netCDF files. These two routines can be used as examples for generating
specific data files.

At run time, all of the reaction data files specified in the problem input file (see
Sec. 3.5.8) (and only those) are read in. The reaction rates (for PMI, the corre-
sponding quantity is termed the “yield”) and the descriptions of their independent

103

variables and other characteristics are compiled into one set of arrays. The infor-
mation is organized in a similar manner to that of the original data files, but with
an additional index corresponding to the problem reaction number. Additional
processing is done to replace character strings with integer indices, to make for
more efficient searches. Again, all of the actual reaction rate data values are stored
as a single 1-D array with macros used to provide simple access to individual en-
tries for a particular reaction. The reaction rate is used in computing the current
mean free path of the flight and in choosing amongst the flight’s possible reactions
when a collision is indicated.

All other data present in the reaction data files is compiled into a set of “han-
dling” arrays, indicating that their primary purpose is to control the specification
of collision product velocities for that reaction. In addition to an index for prob-
lem reaction number, there is one for dependent variable number. The collision
routines will search these data arrays for required information and will stop code
execution (in DEBUG mode, anyway) if they are not found. The flow of data
through the various DEGAS 2 classes is shown in Fig. 3.2.

The data format, evaluation routines, and scoring mechanisms are designed so
that specific quantities can be scored just by adding the appropriate data to the
data file and creating a corresponding tally with that quantity as the dependent
variable.

One aspect unique to the PMI is that specification of the outgoing velocity
distribution necessarily involves a “fit” since standard FORTRAN will not permit
a function (in this case, the function which interpolates the data tables) to return a
vector.

3.9.2 An Example: Bateman Format Data
A particularly involved example of a PMI is the specification of “Bateman format”
data[3, 50]. A few uses of this for reflection processes are currently in the code. A
large set of data for PMI in an improved version of this format will soon be added.

For each incident energy and polar angle pair, (Ein, θin), we have a conditional
distribution for the product atom

PEin,θin(v, α, φ)v2dv sinαdα dφ, (3.19)

where α and φ are the outgoing polar and azimuthal angles, respectively.
This distribution is sampled from three separate 1-D distributions. First, the

104

xsection
 (netCDF files, 1 for

each reaction)

ratecalc
(Aladdin data)

element

species

reaction

materials

pmi

pmiwrite
(no general capability)

pmiformat
(netCDF files, 1 for

each reaction

problem

materials
(subset)

background
(species subset)

test
(species subset)

reactiondata
(reaction subset)

pmidata
(pmi subset)

element.input

species.input

reaction.input

ratecalc.input
(same info as
reaction.input) materials.input

pmi.input

Flow of Information

problem
independent
(REFerence)

problem
dependent
(SUBset)

KEY:
DEGAS 2 Classes Input Files

Other entities

problem.input

DEGAS 2 PHYSICS CLASSES

Figure 3.2: Flow of atomic and surface physics data through various DEGAS 2
classes during preprocessing.

105

outgoing velocity v0 is specified by

f 1
Ein,θin

(v) =
∫ ∫

PEin,θin(v, α, φ) sinαdα dφ. (3.20)

The outgoing polar angle α0 obeys the distribution

f 2
Ein,θin

(α) =
∫
PEin,θin(v0, α, φ)dφ. (3.21)

And, finally, the outgoing azimuthal angle φ0 is taken from

f 3
Ein,θin

(φ) = PEin,θin(v0, α0, φ). (3.22)

The inverse cumulative distribution, F (ω) = G−1(ω), with

G(x) = ω =

x∫
0

f(y) dy, (3.23)

is specified, say, 5 values of 0 < ω < 1. For example, for a normally incident
θin) = 0, (Ein = 1 eV H atom being reflected off of Fe, the data are

RN(Ein, θin) =

8.27750E-01

F 1(ξ) =

1.99146E+00 2.25513E+00 2.32691E+00 2.36544E+00 2.40806E+00

Interpolation into this array with a random number ξ yields
√
Eout, and thus v0.

F 2(η, ξ) =

5.16532E-01 6.99576E-01 8.11503E-01 8.99906E-01 9.67300E-01
3.70481E-01 6.11799E-01 7.63020E-01 8.72539E-01 9.61285E-01
3.80010E-01 6.18834E-01 7.63825E-01 8.75375E-01 9.61256E-01
3.57688E-01 5.95520E-01 7.51752E-01 8.59766E-01 9.57489E-01
3.48497E-01 5.17881E-01 6.53833E-01 7.79846E-01 9.23956E-01

A 2-D interpolation into this table with the same first random number ξ and a
second one η gives cos θ0.

F 3(ζ, η, ξ) =

106

-9.54674E-01 -5.93616E-01 -4.55439E-03 6.11607E-01 9.54292E-01
-9.39719E-01 -5.34726E-01 7.70975E-02 5.91124E-01 9.38723E-01
-9.47749E-01 -5.99118E-01 -5.34413E-03 5.58645E-01 9.59176E-01
-9.52932E-01 -5.09963E-01 1.11845E-01 6.68895E-01 9.59592E-01
-9.63812E-01 -6.32861E-01 2.84474E-02 6.49311E-01 9.65024E-01

-9.49486E-01 -5.27460E-01 4.71202E-02 5.40823E-01 9.43092E-01
-9.18789E-01 -5.34890E-01 3.87104E-03 5.97719E-01 9.43635E-01
-9.35546E-01 -5.66353E-01 -6.17420E-02 5.65376E-01 9.28863E-01
-9.39133E-01 -5.88361E-01 4.03247E-02 5.36441E-01 9.41553E-01
-9.42917E-01 -5.66390E-01 4.88304E-03 5.72368E-01 9.58254E-01

-9.59566E-01 -6.35221E-01 -7.50576E-02 5.72627E-01 9.59374E-01
-9.43053E-01 -6.23133E-01 -8.35145E-02 5.13894E-01 9.33565E-01
-9.42753E-01 -6.40605E-01 -1.50300E-02 5.51493E-01 9.32335E-01
-9.28625E-01 -5.03451E-01 3.69856E-02 6.04412E-01 9.51354E-01
-9.47567E-01 -5.75171E-01 6.78900E-02 6.17675E-01 9.61149E-01

-9.42125E-01 -6.25972E-01 -6.74072E-02 5.10579E-01 9.26111E-01
-9.24288E-01 -5.62514E-01 -6.67559E-02 5.49679E-01 9.57450E-01
-9.45958E-01 -5.88903E-01 6.07203E-02 5.98492E-01 9.45981E-01
-9.64714E-01 -6.17340E-01 -2.49212E-02 5.61052E-01 9.49261E-01
-9.59291E-01 -6.47473E-01 -8.40439E-02 4.58677E-01 9.33637E-01

-9.43142E-01 -5.25077E-01 4.79891E-02 6.22436E-01 9.53027E-01
-9.43214E-01 -5.90395E-01 2.32011E-02 5.42675E-01 9.35411E-01
-9.40994E-01 -4.99927E-01 7.81558E-02 6.19613E-01 9.44418E-01
-9.35018E-01 -5.38589E-01 8.60652E-02 6.47157E-01 9.51505E-01
-9.49873E-01 -5.38587E-01 8.93784E-02 6.39298E-01 9.66431E-01

A third random number ζ is used with the other two in a 3-D interpolation of
this table to obtain cosφ0. The re-use of these random numbers in interpolat-
ing these three separate dependent variables means that DEGAS 2 has to treat
the random numbers as fixed independent variables, just like electron density
or ion temperature, rather than generating the random numbers on the fly in
the interpolation process. Hence, the appearance of 1st_random_number,
2nd_random_number, and 3rd_random_number in the independent vari-
ables list (see the PMI format class).

So, each file for such PMI contains

1. RN(Ein, θin),

2. F 1(ξ, Ein, θin),

107

3. F 2(η, ξ, Ein, θin),

4. F 3(ζ, η, ξ, Ein, θin).

Again, all of the data values are stored in a single 1-D array with the array behavior
specified by macros (see the PMI format class).

3.9.3 Reaction Processing Routines
Need to create “set products” and “products” routines, as well as collision and
track-length routines if new type.

3.10 Defining Radiation Detectors
The “detector” class contains the objects needed to assemble synthetic diagnostics
for filterscopes, imaging cameras, and other diagnostics that effectively integrate
light emission along a chord through the problem volume. In the detector class,
each such chord is referred to as a “view”.

All of the views in the problem are characterized by:

1. Two points,

• The first is taken as the starting point,

• The second fixes direction.

2. Angular halfwidth (i.e., each view consists of a cone with apex at the start-
ing point),

3. An averaging algorithm, used to simulate the finite spatial resolution ob-
tained with real detectors. The two techniques, each having 2-D and 3-D
variants, available are

• Uniform weighting (i.e., square),

• Circular weighting.

4. A binning variable,

• Only examples are “none” and “wavelength,”

108

• To use “wavelength”, would also need to specify a minimum, maxi-
mum, and the number of wavelength bins.

The views thus defined can be separated into “groups”. E.g., each group might
represent a different diagnostic. The actual variables are defined and described in
the detector class.

The contribution from the light emitted in each zone to a view is usually pre-
computed so that the signal can be quickly determined during or after the run
from the volumetric emission. However, storing these data can become impracti-
cal when a large number of chords (� 100) are called for since the preprocessing
yields an array of size (number of zones) × (number of chords). In that case,
the user may want to use just a subset of chords during geometry setup and only
generate the full array during postprocessing. The chord signals can be evaluated
independently, in parallel if need be, in this case so that the aforementioned array
is not required.

The first of the three following subsections, Sec. 3.10.1, describes the compu-
tation of these signal contributions. The second subsection, Sec. 3.10.2, outlines
the structure of the subroutine used to set up the detector views and groups of
views. The third subsection, Sec. 3.10.3, describes one approach to computing
the detector signal in post-processing.

3.10.1 Signal Computation
There are two situations:

1. Symmetric (2-D) geometry in which the detector chord is perpendicular
to the ignorable coordinate. E.g., the chord would be in the x - z (planar
symmetry) or R - z (cylindrical symmetry) plane.

2. Symmetric geometry in which the detector chord has a component along
the ignorable component or a 3-D geometry. For simplicity, we will refer to
this as the “3-D” situation.

In the 2-D case, an effective average over a 3-D cone is computed by exploit-
ing the assumed symmetry in the ignorable coordinate. The 2-D viewing cone
is divided into 30 subchords / degree. The code expects, but does not insist (a
warning will be printed), that the apex of the cone does not fall inside a plasma or
vacuum zone. Each subchord is tracked from the apex to the start of a plasma or
vacuum zone. From there, the distance the subchord traverses through each zone

109

is computed. The subchord is terminated when it reaches a solid zone; this is the
actual end point. The resulting contribution made to the view by zone j, call it
f(zj), is for i = 2N + 1 uniformly weighted subchords

f(zj) =
N∑

i=−N
di,jwi/Vj, (3.24)

where di,j = is the distance along subchord i through zone j, and Vj is the volume
of zone j. The relative weight of each subchord is wi with

wuniform
i =

1

4π(2N + 1)
, (3.25)

and
wcircular
i =

1

2π2N
√

1− (i/N)2
. (3.26)

The units of f are m−2/st.
In the 3-D case, each chord is modeled as a pyramid (for uniform weighting)

or cone (for circular weighting) subtending a solid angle on the order of δ2, where
δ is the specified halfwidth expressed in radians. More precisely, the solid angles
are

Ωuniform = 4 arctan
sin2 δ√

1 + 2 sin2 δ
→ 4δ2, (3.27)

and
Ωcircular = 2π(1− cos δ)→ πδ2, (3.28)

where the arrows indicate the value in the δ � 1 limit.
The subchords are used to perform a 2-D integration over this solid angle. The

direction of each subchord is defined relative to that of the detector chord; call
the corresponding unit vector δ̂‖. Two vectors perpendicular to this δ̂⊥,1, δ̂⊥,2 are
determined in a somewhat arbitrary manner with δ̂⊥,2 = δ̂‖ × δ̂⊥,1.

The velocity vector sent to the tracking algorithm in the uniform case is

~vuniform
j,k = δ̂‖ +

(j − 1/2)− n
n

sin δδ̂⊥,1 +
(k − 1/2)− n

n
sin δδ̂⊥,2, (3.29)

where the subchords are labeled by the indices j and k, both ranging from 1 to
2n; currently n = 6. The weighting for each subchord is

wuniform
j,k =

sin2 δ

4πΩuniformn2

∣∣∣~vuniform
j,k

∣∣∣−3/2
. (3.30)

110

In the circular case, the azimuthal angle’s 2π radians are discretized into φj =
(j − 1/2)π/n, with j = 1→ 2n. The polar angle is given by θk = (k− 1/2)δ/n,
with k = 1 → n. Currently, n = 6. In terms of these angles, the velocity vector
sent to the tracking algorithm is

~vcircular
j,k = δ̂‖ + sin θk(cosφj δ̂⊥,1 + sinφj δ̂⊥,2), (3.31)

and the weight for each subchord is

wcircular
j,k =

δ

4Ωcircularn2
sin θk. (3.32)

The resulting contribution to the chord by each zone is again given by Eq. (3.24)
in both cases.

These zone contributions can then be used during execution of the main code
or during post-processing to compute, say, the Hα signal Sα in the absence of
recombination (see Sec. 2.9) as

Sα =
∑
j

N1(zj)
[
N3

N1

A23E23

]
f(zj), (3.33)

where N1 is the number of neutral H atoms in zone j. The bracketed quantity is
interpolated from the input data file, with E23 being the energy of the Balmer-α
transition, and other quantities defined in Sec. 2.9. Note, however, that the code
is completely general regarding wavelength and origin of radiation. Other line
emission rates can be scored in an analogous if the appropriate data are present in
the input data files.

3.10.2 The Detector Setup Subroutine
The subroutine used to set up the detector views and groups of views should be
named detector setup; all DEGAS 2 geometry definition routines (boxgen,
readgeometry, and definegeometry2d) call this subroutine. The default,
null implementation is contained in def2ddetector.web. A user developed
detector setup replacement for this routine should be placed in a file called
usr2ddetector.web in the src directory. Example implementations of this
routine provided with the code are btopdetector.web (a 1-D array) and
gpicamera.web (a 2-D imaging camera; see also its documentation).

The suggested structure of detector setup is:

111

1. For each view,

• Set the two points defining the viewing chord,

• Set the algorithm and half-width values.

• Use these as arguments to the detector view setup subroutine
(in dediagsetup.web).

• This returns the contribution of each zone in the problem to that view’s
signal, f(zj) in Sec. 3.10.1. This quantity is copied into the de zone frags
array.

2. Assemble these views into one or more groups, defining each with a call to
de grp init (in dediagsetup.web).

• If the detector group is to compute the spectrum of light emission, the
requisite parameters are also passed to de grp init.

3.10.3 Detector Computation in Post-Processing
The postdetector (see also its documentation) code provides an example of
detector signal computation during post-processing. As alluded to above, only a
low resolution detector signal would be computed by flighttest (e.g., as a
check) to avoid using large amounts of memory. postdetector would then be
invoked to compute the complete signal.

As is noted in Sec. 3.7.3, the version of postdetector.web distributed
with DEGAS 2 was developed for simulating the camera in Gas Puff Imaging
experiments. Device and experiment specific information (namely a specification
of the “target plane”; see gpicamera.web) appear here. Moreover, it explicitly calls
the gpi views subroutine invoked by detector setup in gpicamera.web.
Both there and in postdetector, the coordinates of a particular pixel are
passed to gpi views; it returns the end points and contributions of each zone to
the signal, f(zj). In this way, the detailed information required to deterimine the
view endpoints can be confined to a single subroutine, gpi views.

3.11 Diagnostic Sectors
As was noted in Sec. 2.6, sectors can be defined for purely diagnostic use. The
zones adjacent to the sector surface can be of any type. A given sector may be

112

used to specify more than one diagnostic (e.g., one may track particle current,
another might tally particle energy).

Diagnostic sectors are defined in a manner closely paralleling that of detec-
tors. Diagnostic sector groups are used to identify sectors of similar functional-
ity. The default sectors defined by DEGAS 2’s geometry setup codes (such as
definegeometry2d, readgeometry and boxgen) are used to construct
the following default diagnostic groups:

Wall and Target Counts Includes all wall and target sectors. No independent
variable is associated with this diagnostic group; it is only capable of sum-
ming a particular test particle property (which will be specified by a corre-
sponding tally, particle mass, for example).

Exit Counts Includes all exit sectors. No independent variable is associated with
this diagnostic group either.

Wall and Target Energy Spectrum Specifies the particle energy as the indepen-
dent variable. As in the “Counts” groups, some as-yet-unspecified particle
property will be tracked. The difference is that the tally will be divided up
into the energy bins defined for this group.

Wall and Target Angle Spectrum Similar to the “Energy Spectrum” group, but
the independent variable is the angle of incidence of the particle.

The particle properties to be associated with these diagnostic groups for the
purpose of defining tallies are directionally dependent. For instance, the particle
current leaving and entering a zone may be specified separately. Details will be
given in Sec. 2.3.3.

Additional diagnostic groups can be defined as needed; this is especially straight-
forward with definegeometry2d.

3.12 Output File
The output netCDF file (outputfile in degas2.in) contains the tally data
in four arrays:

1. Sorted by the neutral source group, prior to post-processing,

2. Summed over neutral sources, prior to post-processing,

113

3. Sorted by neutral sources, after post-processing,

4. Summed over neutral sources, after post-processing.

All have standard deviation data, but their interpretation is not guaranteed for the
latter two since the impact of post-processing (especially the addition of post-
processed scores to a tally) is not accounted for. If the output file is the result of
a checkpoint dump (Sec. 3.8.2), keep in mind that post-processing has not been
done. Navigating these large arrays is extremely tedious and not recommended
except as a last resort. Instead, the user should utilize outputbrowser. There
is a separate output array for data to be passed to 2-D fluid plasma code.

A couple of text output files, largely of historical origin, are generated. The
density.out file has been described already in Sec. 3.7.1. The sources.out
and testdata.out files are unformatted files used to transfer data to the UEDGE
code. All of the information in them is accessible through outputbrowser, so
no further description of them will be given.

3.13 Other Documentation
The file classes.web contains an extensive description of what the code looks
like internally. Most of the common variables (i.e., the contents of the hweb
header files) are documented here as well. Try following this link if you want to
have a look at it now.

114

Chapter 4

EIRENE Benchmark

4.1 Introduction
Since UEDGE was first coupled to EIRENE and since EIRENE is currently the
most widely used neutral transport code in the field, the first step in coupling DE-
GAS 2 is to perform a benchmark against EIRENE. A simple slab, “single-null”
geometry and plasma generated by UEDGE is used as input to both codes. An
initial effort was performed without recombination. Essential information from
that documentation has been included here for completeness.

This chapter describes a second round of benchmark exercises in which re-
combination is accounted for. The plasma Te,i ∼ 1 eV near plate in this case. For
reasons to be explained below, several numerical differences between the codes
are accentuated under these conditions. We will describe here the isolation and
elimination of most of these differences, enabling us to get agreement of densities
and plasma sources to within 5%. In the process we have developed a means for
quantitatively comparing the code results.

The following sections will:

1. Describe the geometry, boundary conditions, and UEDGE plasma,

2. Qualitatively compare “out of the box” code results,

3. Describe how code results are quantitatively compared,

4. Explain several differences between the codes, eliminating or minimizing
them when possible,

5. Characterize the level of agreement between the codes,

115

http://w3.pppl.gov/degas2/DE_Bench/

6. Go through a performance benchmark and optimization of DEGAS 2.

4.2 Problem Description
The geometry is intended to be a 2-D slab representation of a toroidally symmetric
single-null scrape-off layer. The resulting “box” is 1 m long, extending from a
mirror boundary at Z = 0 to a molybdenum target plate at Z = 1 m. Only half
of the scrape-off layer is being simulated; hence, the appearance of the mirror.
The radial width is 0.05 m. An exit is used to represent the core boundary at
R = −0.01 m between Z = 0 and Z = 0.75 m. The outer wall at R = 0.04 m is
assumed to be made of molybdenum. The section representing the wall adjacent
to the private flux region, at R = −0.01 m between Z = 0.75 m and Z = 1 m,
is also taken to be made of molybdenum. Finally, a mirror surface at Z = 0.75
m extending from R = −0.01 m to R = 0 creates a private flux region above it.
The length of the box in the third dimension is 1 m, although periodic boundary
conditions are established at both ends.

The UEDGE mesh has a nonuniform spacing with 64 zones in the Z direction
and 32 in R. The geometry and plasma data are provided to DEGAS 2 in a file
generated during UEDGE post-processing by the BASIS utility. The electron tem-
perature and density computed by UEDGE with its fluid neutral transport model
are shown in Figs. 4.1 and 4.2.

4.3 “Out of the Box” Results
Figures 4.3 and 4.4 show how the atomic deuterium densities computed by EIRENE
and DEGAS 2 using the UEDGE plasma compare with roughly standard physics.
The word “roughly” is meant to imply that some of the changes to be described
later in this chapter have been incorporated into these simulations. For EIRENE,
the random number problem (see Sec. 4.5.2) has been remedied. For DEGAS
2, the treatment of reflection used on the molybdenum surfaces uses the EIRENE
data, including the attempts to mimic EIRENE’s extrapolation behavior (see Secs. 4.5.3
and 4.5.4).

The peak EIRENE density is about 3 × 1020 m−3. For DEGAS 2, the peak is
only about 2 × 1020 m−3. In Sec. 4.5, we will list the causes of this discrepancy
and describe the techniques we use to eliminate or minimize them.

116

electron_temperature_x

Dec 22 1998 Page 1 of 1

-0.010 0.015 0.040

1.00

0.97

0.94

0.91

0.88

0.85

R (m)

Z
 (

m
)

0 5 10 15 20 25

Electron Temperature (eV)

Input Data Generated by UEDGE

Figure 4.1: Electron temperature near the target (Z = 1 m) as computed by
UEDGE with its fluid neutral model.

117

electron_density_x2

Dec 22 1998 Page 1 of 1

-0.010 0.015 0.040

1.00

0.97

0.94

0.91

0.88

0.85

R (m)

Z
 (

m
)

0.0e+000 9.0e+020 1.8e+021

Electron Density (m^-3)

Input Data Generated by UEDGE

Figure 4.2: Electron density near the target (Z = 1 m) as computed by UEDGE
with its fluid neutral model.

118

D_density_10_x

Jan 04 1999 Page 1 of 1

-0.010 0.015 0.040

1.00

0.97

0.94

0.91

0.88

0.85

R (m)

Z
 (

m
)

0.0e+000 1.5e+020 3.0e+020

Atom Density (m^-3)

EIRENE Deuterium Density

Figure 4.3: Neutral deuterium atom density computed by EIRENE.

119

spD_density_x

Jan 04 1999 Page 1 of 1

-0.010 0.015 0.040

1.00

0.97

0.94

0.91

0.88

0.85

R (m)

Z
 (

m
)

0.0e+000 1.5e+020 3.0e+020

Atom Density (m^-3)

DEGAS 2 with Standard Physics

Figure 4.4: Neutral deuterium atom density computed by DEGAS 2 using “stan-
dard physics”.

120

4.4 Statistical Basis for Comparisons
Because Monte Carlo codes provide only a statistical description of a result, e.g.,
the neutral density at a particular point in space and an estimate of its error, com-
parisons between codes require some care. Differences between codes smaller
than the standard error in their results cannot be discerned, as this section will
demonstrate. We will describe a quantitative procedure for comparing code re-
sults which can be used to tell if the differences cannot be statistical in nature.

The standard error decreases with 1/
√
N , where N is the number of flights,

and can in principle be made as small as desired. For the problem at hand, we’ve
used 80,000 flights for each of the source groups, resulting in standard errors of a
few percent near the plate for simple tallies such as the neutral atom density. The
differences between EIRENE and DEGAS 2 remaining after the steps described
in Sec. 4.5 have been taken are slightly larger than this, so raising the number of
flights further would not be useful.

Both DEGAS 2 and EIRENE compute the recombination contributions to the
source terms (e.g., subtracting recombination rate from the ion particle source) di-
rectly and add them to the final Monte Carlo results at the end of the run. DEGAS
2 does provide the option for computing these contributions in the standard Monte
Carlo way (as a check), but the statistical error is increased substantially. Com-
parison of the code results is, thus, further complicated because the computed
variance estimates cannot be used directly with the final output results. Rather,
our statistical comparisons must be made without these “post-processing” contri-
butions.

DEGAS 2 has two sets of output arrays:

1. One written before post-processing and containing relative standard devia-
tions,

2. One with the post-processing results and no variance data.

The screen output generated by EIRENE likewise contains results without these
post-processing contributions and their relative standard deviations, provided they
were requested in the input file. These data along with the first of the two DEGAS
2 output array sets will be analyzed with the procedure outlined here.

The principal basis our statistical comparison is the Central Limit Theorem[2].
Say we have the density score in a particular zone from a run of K flights; call
it µK . This result is effectively a sample drawn from a parent population; call its

121

mean m and the standard deviation σ. The objective of the Monte Carlo method
is to estimate this mean m.

The Central Limit Theorem then says that the relative error

εrel ≡
|µK −m|

σK
, (4.1)

where σK = σ/
√
K is the standard error, has a Maxwellian distribution. That is,

the probability that εrel < 1 is 68.3%, < 2 is 95.4% and < 3 is 99.7%.
To apply this directlyto our situation, we would need to:

• Do many runs of both codes,

• Find values of m for each code which are consistent with those results,

• Compare the m values between codes,

• Repeat the process for each zone.

Such a process is too lengthy to permit extensive comparisons of different
variables and input conditions. We propose using instead a simpler, compromise
procedure. Say we have a density score from DEGAS 2 µD

K and one from EIRENE
µE
K′ , We begin by postulating that they have the samem, If this is true, the random

variable z ≡ µD
K − µE

K′ has mean mz = 0, Then, if each of the codes’ standard
deviation estimates sD

K and sE
K′ are also consistent with σ, one can show that the

distribution of z about its mean 0 will have a standard deviation

sz,K,eff =
√

(sD
K)2 + (sE

K′)2, (4.2)

This is just what one expects from propagation of errors.
We are not done yet in that applying this would still require many runs of both

codes. However, we do have many zones in each run. If the scores in each zone
are uncorrelated with other zones, we could treat the value of

εz,rel = z/sz,K,eff (4.3)

in each zone as a separate sample and compile a distribution of εz,rel by comparing
the results in each zone. If we find this distribution to be Maxwellian, we may infer
that our postulates are correct, i.e., the codes are giving the same results. If the
distribution strongly deviates from a Maxwellian, we can suspect that the codes
do not agree.

122

The extent to which scores in two zones are correlated depends on many fac-
tors. Since we do not require precise statistical agreement between the codes (a
few percent of systematic error is acceptable), we will assume that the effect of
these correlations is too small to prevent this test from detecting significant (more
than a few percent) differences.

One other consideration is that the Central Limit Theorem only applies for
“large enough K”. For a given zone, this effectively means a “small enough
relative standard deviation”. For these comparisons, both codes produce relative
standard deviations near the target of a few percent. If we restrict the comparison
to zones with relative standard deviations below some value, say σmax = 20%, we
should still have a large number of zones to work with.

Note that the codes output the relative standard deviation, σ/(m
√
K). To get

σD
K we multiply the output relative standard deviation by µD

K .

4.5 Code Differences

4.5.1 Atomic Physics
The common ancestry of EIRENE, DEGAS, and DEGAS 2 is apparent in their
atomic physics data. All three codes rely upon the molecular data in the Janev
book[16] (see Sec. 4.5.5, however). The reaction rates are explicitly the same in
all three codes, as are the dissociation energies, and the electron energy loss rates.
Note also that since the scoring of momentum transfer to the plasma in EIRENE is
relatively new, its implementation is incomplete: there is no momentum transfer
for the molecular dissociation processes. However, given the dominance of the
other momentum sources, this should not be a problem. DEGAS 2 tracks all three
components of the momentum transfer in all reactions.

This version of EIRENE (with the present input file) uses the reaction rate
for charge exchange in the Janev book[16]. No attempt is made to ensure that
the sampled background ion velocities are consistent with the charge exchange
cross section[3]. Furthermore, the momentum and energy transfer expressions are
correct only in the limit of 〈σv〉 = σv (see Sec. 4.5.6). More recent versions of
the code certainly do better than this[17].

The DEGAS 2 standard charge exchange data comes from the Janev-Smith
database[18], with consistently computed reaction rates, and energy and momen-
tum transfer rates[17]. The simulation described in Sec. 4.3 used these data. For
subsequent runs, data equivalent to those in EIRENE will be substituted.

123

DEGAS 2 and EIRENE each rely on their own collisional radiative[17] codes
for the multi-step electron-impact ionization and recombination of hydrogen data.
These two codes have been compared several times in the past. The basic dif-
ference is that the EIRENE code, AMJUEL, is based upon the Johnson-Hinnov
ionization cross sections[19]. The data used in DEGAS 2 are described in Sec. 2.9.

Figures 4.5 and 4.6 compare the rate data. The AMJUEL ionization rates are
noticeably lower for Te < 10 eV. This is likely responsible for most of the dif-
ferences between the densities in Figs. 4.3 and 4.4. The energy loss rates agree.
However, when normalized to the ionization rate, to give the energy lost per ion-
ization, the differences of Fig. 4.5 are factored in.

Figure 4.7 shows that the recombination rates agree well. The reason is that
the Johnson-Hinnov[19] recombination cross section data are used in both col-
lisional radiative codes. The energy exchange rates agree for Te < 10 eV, but
disagree at higher temperatures. This quantity includes the average energy of a
radiatively recombining electron; the expression used to compute it involves[17]
d〈σv〉recombination/dTe. Apparently, the AMJUEL values were obtained by differ-
entiating a fit to 〈σv〉recombination. The values used in DEGAS 2, however, were ob-
tained by differentiating closed form expressions for 〈σv〉recombination and should
be correct.

As with charge exchange, in Sec. 4.3 DEGAS 2 used the ehr2.dat data.
For subsequent runs, the AMJUEL data will be used in both codes.

4.5.2 Source Sampling
The ion current distribution to the target is sampled according to the relative frac-
tions of current striking each segment (i.e., each radial zone). Likewise, the prob-
ability distribution used in sampling the “birth” zone of a recombining ion is given
by the fraction of the total recombination occurring in that zone. Whether or not
a code is correctly sampling these distributions can be easily determined. For
DEGAS 2, the sourcetest utility was written to do just this (see Sec. 3.4.3).
Cruder means were used to extract the requisite data from EIRENE.

Figure 4.8 shows that the two codes are able to match the input distribution
(to within the error bars). To make the comparison quantitative, we use a χ2

test[48]. The result is p, the probability that sampled distribution matches the
parent distribution. For the 5000 samples used in generating Fig. 4.8, the DEGAS
2 results yield p = 0.97. For EIRENE, we get p = 0.69. Since p in both cases
is not too much smaller than 1, we conclude that the input distribution is being
adequately sampled.

124

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 10 100 1000 104

n
e
 = 1014 cm-3

n
e
 = 1012 cm-3

<
σ v

>
A

M
JU

E
L /

<
σ v

>
e

h
r2

T
e
 (eV)

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

1 10 100 1000 104

AMJUEL

ehr2

AMJUEL

ehr2

<
σ v

>
io

n (
cm

3
 /

s)

T
e
 (eV)

n
e
 = 1014 cm-3

n
e
 = 1012 cm-3

Compare e + H -> e + H+ + e Data
Between AMJUEL and ehr2.dat

Figure 4.5: Comparison of effective collisional radiative electron impact hydrogen
ionization rate from EIRENE’s AMJUEL data file and from DEGAS 2’s IRLS
code (contained in the publicly distributed file ehr2.dat) at densities of 1018

m−3 and 1020 m−3. The lower figure shows the ratios of the rates computed by the
two codes.

125

10

100

1000

1 10 100 1000 104 105

AMJUEL, n
e
 = 1012 cm-3

AMJUEL, n
e
 = 1014 cm-3

ehr2, n
e
 = 1012 cm-3

ehr2, n
e
 = 1014 cm-3

E
ne

rg
y

Lo
st

 P
er

 Io
ni

za
tio

n
(e

V
)

T
e
 (eV)

Electron Energy Losses in e + H -> e + H+ + e

10-11

10-10

10-9

10-8

10-7

10-6

1 10 100 1000 104 105

E
ne

rg
y

Lo
ss

 R
at

e
 (

eV
 c

m
3
 /

s)

T
e
 (eV)

Figure 4.6: Comparison of effective collisional radiative electron energy loss rate
from EIRENE’s AMJUEL data file and from DEGAS 2’s IRLS code (contained
in the publicly distributed file ehr2.dat) at densities of 1018 m−3 and 1020 m−3.
The upper figure shows the energy lost per ionization; the lower gives the power
lost.

126

10-17

10-16

10-15

10-14

10-13

10-12

10-11

1 10 100 1000 104

n
e
 = 1016 cm-3

EIRENE: n
e
 = 1010 cm-3

DEGAS 2: n
e
 = 1010 cm-3

n
e
 = 1016 cm-3

T
e
 (eV)

< σ
v>

re
co

m
bi

na
tio

n (
cm

3

s-1
)

Rates Agree
 Energy Exchanges Differ at Large T

e

10-27

10-26

10-25

10-24

10-23

10-22

1 10 100 1000 104

n
e
 = 1016 cm-3

EIRENE: n
e
 = 1010 cm-3

DEGAS 2: n
e
 = 1010 cm-3

n
e
 = 1016 cm-3

T
e
 (eV)

∆E
e
< σ

v>
 (

er
g

cm
3 s

-1
)

Figure 4.7: Comparison of effective collisional radiative electron recombination
rates from EIRENE’s AMJUEL data file and from DEGAS 2’s IRLS code (con-
tained in the publicly distributed file ehr2.dat) at densities of 1016 m−3 and
1022 m−3. The upper figure shows the effective recombination rates; the lower
gives the power lost.

127

1

2

3

4

5

6

0 5 10 15 20 25 30 35

Both Codes Correctly Sample
the Prescribed Flux Distribution

Input
EIRENE
DEGAS2

P
er

ce
nt

ag
e

of
 T

ot
al

 F
lu

x
P

er
 Z

on
e

Radial Zone

Figure 4.8: Sampled target flux distributions, as a function of radial zone, for
DEGAS 2 and EIRENE. The curve labeled “Input” is the ideal result.

128

We use 50,000 samples of the recombination source. Because of the large
number of zones, a simple plot analogous to Fig. 4.8 is unintelligible. Further-
more, not all of the problem zones are adequately sampled to permit the applica-
tion of a χ2 test to the whole problem space. Instead, we isolate the 648 zones
with highest recombination rate (the lowest temperature region, chosen somewhat
arbitrarily). Applying a χ2 test to samples taken in those zones yields for DEGAS
2 p = 0.94. But, for EIRENE p = 0.21. Sensing that this is small enough to cause
concern, we repaired a known problem with the EIRENE random number gener-
ator (as received, the code had random number seeds which differed by unity; the
fix is to make one of these integers very different). The result is much improved:
p = 0.79. All other EIRENE runs described in this chapter utilize this bug fix.

4.5.3 Energy Distribution of Reflected Atoms
The EIRENE surface physics is more detailed than that of the old DEGAS and,
hence, DEGAS 2. Consequently, we will not make an overall comparison with
different surface physics data. Instead, we have translated the Bateman format
data for reflection of D off of Mo taken from EIRENE’s TRIM input file into a
DEGAS 2 format. To be more precise, the Mo data obtained from Fe data using a
scaling argument[49].

These data prescribe the reflection coefficient, the outgoing energy, and two
outgoing angles as a function of the incident energy and polar angle. The Bateman
format is described in detail elsewhere[3]. Briefly, these data specify these param-
eter values (e.g., the outgoing energy) at intervals of the cumulative distribution
function: 0.1, 0.3, 0.5, 0.7, 0.9. One can also establish data points at each end of
the distribution. For example, a minimum energy might be the wall temperature; a
maximum would be the incident energy. As originally implemented in DEGAS 2,
this additional information to extrapolate beyond the ends of the data. Doing this
carefully required specifying additional cumulative distribution values at 0, 0.2,
0.4, 0.6, 0.8, and 1.0 (intermediate values being obtained by linear interpolation).

EIRENE, however, mindlessly extrapolates the data and enforces the mini-
mum and maximum values after sampling. The result is that the sampled maxi-
mum and minimum may be noticeably different from what one expects. The first
set of benchmark runs indicated that the difference in the handling of the lowest
reflected energy atoms was significant. The reason is that the atom density near
the target plate (i.e., where ionization is lowest) scales like the inverse of the atom
velocity, and hence is impacted strongly by the lowest energy atoms. To eliminate
this difference, we reset the lower bound on the energy so DEGAS 2 would mimic

129

http://w3.pppl.gov/~dstotler/DE_Bench/full_code.html
http://w3.pppl.gov/~dstotler/DE_Bench/full_code.html

the EIRENE extrapolation. Figure 4.9 shows that the original DEGAS 2 reflected
energies for a normally incident 19 eV atom match the input data well (the differ-
ence at the lower end is due to the use of logarithmic interpolation in DEGAS 2).
The revised DEGAS 2 reflected energies differ from the input, but better match
the values obtained from EIRENE.

A second difference becomes significant with the present set of benchmarks
including recombination. The temperatures in this plasma are sufficiently low that
a significant number of atoms are striking the target with energies below 1 eV.
EIRENE assumes that such atoms are always absorbed (and desorbed thermally
as molecules in this simulation). DEGAS 2 treats the data literally; the reflection
coefficient is about 0.2 at 1 eV. For the initial comparison run (see Sec. 4.3),
DEGAS 2 was run in this manner, although the energy and angular extrapolation
changes described above and in the next subsection were implemented. For all
subsequently discussed benchmark simulations, DEGAS 2 will assume absorption
for incident atoms of less than 1 eV energy.

4.5.4 Angular Distribution of Reflected Atoms
The cosines of the angular distribution are sampled in a way analogous to the
energy. In this case, the bounds of the sampled parameters are clearer still since
they are the cosines of the angles (i.e., 0 and 1). However, during this benchmark
exercise, a discrepancy in the near target deuterium density was again connected
with the distribution of neutral velocities in the Z direction. With the difference
due to energy extrapolation (see Sec. 4.5.3) having been eliminated, the cause this
time was traced to the extrapolation of the cosine of the outgoing polar angle,
cos(θout).

Figure 4.10 shows the sampled cumulative distribution from two DEGAS 2
runs and from an EIRENE run. These data were compiled from all of the ions
incident on the target in a particular zone (normal incidence at 6.88 eV). The
curve labeled “original” shows the DEGAS 2 treatment extending down to near
cos(θout) ' 0. The “revised” curve demonstrates that our modifications to the
DEGAS 2 data successfully mimic the EIRENE extrapolation behavior.

4.5.5 H2 Dissociation Rate
Significant differences in the electron energy sink were traced to a discrepancy
in the H2 dissociation rate (reaction 2.2.5 in the Janev book[16]) at the lowest
electron temperatures, Te ' 1 eV. Unfortunately, both the plot and the fit for these

130

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

EIRENE
DEGAS 2

Data

DEGAS 2 (revised)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

E
0
 (eV)

DEGAS 2 Data Have Been Revised
to Mimic EIRENE Low Energy Extrapolation

Figure 4.9: Comparison of the cumulative distribution of reflected energies sam-
pled in DEGAS 2 and EIRENE with the input data obtained from EIRENE’s
TRIM file. The “revised” DEGAS 2 curve indicates that the code is now able
to mimic the simple extrapolation used in EIRENE. These data are for a 19 eV
deuterium atom incident on molybdenum.

131

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

DEGAS 2 Original Data
DEGAS 2 Revised
EIRENE

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

cos(θ
out

)

Revised Data To Mimic EIRENE's Extrapolation

Figure 4.10: Comparison of the cumulative distribution of reflected outgoing po-
lar angles sampled in DEGAS 2 and EIRENE with the input data obtained from
EIRENE’s TRIM file. These distributions were compiled from all of the initial
incident ions (i.e., at the start of the flight) in a particular zones. All of these ions
strike the target normally with 6.88 eV.

132

data in the Janev book are wrong. One needs to refer to the corresponding preprint
even to get the correct values for the fit coefficients. EIRENE has those values,
but applies them down to the smallest Te used in the code, 1 eV. However, the
fit is valid down to only 1.2 eV. The dissociation rate values used in DEGAS 2
at these lowest temperatures were taken directly from the tabular data provided
with the original DEGAS code[3], not from the fit. The point is that these values
differ from those computed by the fit (presumably due to the fit not being valid
there). No record explaining the origin of the DEGAS values, but we assume that
they were taken from the initial data compilation from which the fit was derived.
Regardless, the remedy for the objectives of this benchmark is to replace these
low Te dissociation rates with the same values used in EIRENE. The results of
Sec. 4.3 have the DEGAS values; runs discussed in subsequent sections will have
the EIRENE values.

4.5.6 Estimator Differences
With DEGAS 2 run as in Sec. 4.3, the relative standard deviations for the electron
and ion energy sources were substantially larger than those for EIRENE (these dif-
ferences were most noticeable close to the target). The cause of the higher electron
energy source variance was that DEGAS 2 was using a collision estimator for the
molecular contributions to that quantity (for historical reasons), while EIRENE
was using a track length estimator. Switching the estimator used in DEGAS 2
required a minor change to tallysetup (see Sec. 3.4.1). At the same time, we
changed the scoring of the electron impact ionization of deuterium contributions
to the ion energy and momentum sources from being done “post process” (i.e.,
computed from the neutral density at the end of the run) to a track length esti-
mator. This allowed the variance contributions from this process to be accounted
for in these scores and was essential for comparing with the EIRENE values (see
Sec. 4.4).

The main reason for the larger ion energy source variance in DEGAS 2, how-
ever, was that charge exchange was being treated by the collision estimator, rather
than the track length estimator used in EIRENE. The original reason for choosing
the collision estimator in DEGAS 2 was that the charge exchange data file did
not have the required integrals of the cross section needed to score the energy and
momentum exchanges[17]. We have now worked out the forms these integrals
must have to emulate the EIRENE assumption of constant σv and incorporated
them into the charge exchange data file.

The runs of Sec. 4.3 do not employ these estimator changes (and utilize a

133

different charge exchange cross section altogether, as was noted previously), while
runs in subsequent sections have these modifications incorporated.

4.5.7 Other Differences
We suspect that there are other differences remaining which will prevent the two
codes from being brought into closer agreement. For example, DEGAS 2 uses
a logarithmic interpolation in incident energy for the Bateman format reflection
data. EIRENE assumes a linear interpolation. The interpolation schemes in DE-
GAS 2 presently require a uniform spacing, either linearly or logarithmically, be-
tween data points (a nonuniform spacing option was tried at one point, but aban-
doned as too difficult to maintain). Hence, the interpolation technique used by
EIRENE cannot be emulated without significant changes to the code. On the other
hand, the subtlety of some of the differences which have been detailed in this sec-
tion suggests that remaining nonstatistical discrepancies in the code results are
unlikely to be of physical significance and are consistent with minor numerical
differences between the codes.

4.6 Characterize Comparison
The principal means of comparing the code results is now considered to be the
quantitative prescription given in Sec. 4.4. We will, however, begin this section
with plots to illustrate two points.

4.6.1 Density Differences
In Fig. 4.11, we show the relative error,

εrel =
nD
D − nE

E

σD
rsd

√
(nD

D)2 + (nE
E)2

. (4.4)

This expression is equivalent to Eq. (4.3) with σrsd being the relative standard
deviation. Within the geomtesta post-processor (see Sec. 3.4.1), we do not
have access to the EIRENE error estimates (see Sec. 4.4). However, in the case of
the deuterium density, the EIRENE and DEGAS 2 relative standard deviations are
sufficiently similar that we can treat them as equal for this purpose. Both are on
the order of a one to a few percent near the target. The scale in Fig. 4.11 indicates

134

the number of standard errors between the DEGAS 2 and EIRENE density values.
Note that this is a signed quantity. The white zones indicate areas with differences
greater than 3 times the standard error; the black areas indicate likewise that the
lower bound has been exceeded.

The dominance of the green areas is indicative of the nearly complete sta-
tistical agreement (see Sec. 4.6.3). The red, orange, and yellow zones near the
target likely point to a remaining systematic discrepancy between the codes, as
suggested in Sec. 4.5.7.

4.6.2 Comparison of Momentum Source
As indicated by Figs. 4.12 and 4.13, the deuterium ion parallel momentum sources
computed by the two codes are qualitatively (i.e., visually) similar. However,
the statistical errors are extremely high (Fig. 4.14), presumably caused by the
tight coupling with the background ions through charge exchange (i.e., the net
momentum source due to charge exchange is the difference of two nearly equal
numbers).

The lack of regions with small relative standard deviations makes comparison
of the code results (see Sec. 4.4) problematic since we require a large number
of (independent, ideally) zones with “good statistics” (so that the Central Limit
Theorem applies) for the analysis. As will be seen in Sec. 4.6.3, relaxing one of
these two constraints permits a comparison to be made. In each case, the results
are consistent with the two codes being in agreement. The deuterium ion energy
source likewise has significant relative standard deviations, although smaller than
those shown in Fig. 4.14. The consequences for the stability of a coupling to a
plasma transport code may be more serious, however. Future work will assess and
remedy this situation, if necessary.

4.6.3 Results of Quantitative Comparison
The procedure outlined in Sec. 4.4 must be amended slightly to accomodate the
remaining few-percent systematic differences in some of the code results. The
relative error is given instead by

εrel =
µD
K − µE

K′

max
(√

(sD
K)2 + (sE

K′)2, σmin
µDK+µE

K′
2

) , (4.5)

135

-0.010 0.015 0.040

1.00

0.97

0.94

0.91

0.88

0.85

R (m)

Z
 (

m
)

-3 -2 -1 0 1 2

Relative Error

D Density Difference / Standard Error

Figure 4.11: Difference between DEGAS 2 and EIRENE deuterium density rela-
tive to the standard error estimate.

136

-0.010 0.015 0.040

1.00

0.97

0.94

0.91

0.88

0.85

R (m)

Z
 (

m
)

-4.0e-003 -1.0e-003 2.0e-003

Parallel Momentum Source (N)

DEGAS 2 with EIRENE Physics

Figure 4.12: Source of deuterium ion parallel momentum computed by DEGAS
2.

137

-0.010 0.015 0.040

1.00

0.97

0.94

0.91

0.88

0.85

R (m)

Z
 (

m
)

-4.0e-003 -1.0e-003 2.0e-003

Parallel Momentum Source (N)

EIRENE Momentum Source

Figure 4.13: Source of deuterium ion parallel momentum computed by EIRENE.

138

-0.010 0.015 0.040

1.00

0.97

0.94

0.91

0.88

0.85

R (m)

Z
 (

m
)

0.0 0.2 0.4 0.6 0.8 1.0

Relative Standard Deviation

DEGAS 2 Toroidal Momentum R.S.D.

Figure 4.14: Relative standard deviation for the deuterium ion momentum source
computed by DEGAS 2.

139

where again the sK refers to the standard error for a simulation of K flights (i.e.,
sK = σrsdµK). The additional parameter, σmin is associated with the statistical
error (expressed as a fraction, like the relative standard deviation).

For all of these except the ion energy and momentum source, σmax = 20%
and σmin is given. For those two, σmin = 0 and σmax is given. In the former
case, the relative standard deviation is required to be < 20% to ensure that the
Central Limit Theorem is applicable and σmin represents the systematic error. Of
the tested values of σmin the one which yields a set of percentages most closely
matching the Maxwellian ideal (68%, 95%, 99.7%) is taken as our estimate of the
systematic error. For the ion energy and momentum sources, we are unable to get
“good statistics” with σmax = 20%; hence, larger values are tested. The relative
standard deviations are too large for any systematic error to be detected, so we use
σmin = 0.

140

Source: Plate Recombination
1σ 2σ 3σ 1σ 2σ 3σ

D Density
σmin = 7% 82% 99.2% 100% 90% 99.4% 99.9%
σmin = 5% 75% 95% 99.8% 82% 98% 99.9%
σmin = 0% 56% 86% 96% 52% 88% 99%

D2 Density
σmin = 0% 64% 92% 98% 59% 92% 99.2%

D+
2 Density
σmin = 0% 63% 92% 100% 68% 97% 100%

D+ Ion Source Rate
σmin = 7% 74% 99.6% 100% 83% 99.3% 100%
σmin = 5% 57% 94% 100% 63% 98% 99.8%
σmin = 0% 38% 73% 93% 38% 66% 85%

Electron Energy Source Rate
σmin = 7% 92% 99% 99.1% 93% 99% 99.3%
σmin = 5% 79% 98% 99.1% 86% 98% 99.1%
σmin = 0% 38% 72% 91% 45% 78% 94%

D+ Ion Energy Source Rate
σmax = 70% 69% 94% 99% 68% 96% 99.7%
σmax = 50% 69% 94% 99.1% 65% 97% 100%
σmax = 20% 68% 94% 100% 61% 98% 100%
D+ Ion Parallel Momentum Source Rate
σmax = 70% 72% 88% 99.2% 75% 92% 99.4%
σmax = 50% 74% 97% 100% 76% 97% 99%
σmax = 20% 58% 89% 100% 0% 0% 0%

The two molecular densities fare the best, given nearly Maxwellian percent-
ages without allowing for any systematic error. The atom density, electron energy
source (which is given by the atom density times a function of Te, apart from a
small contribution due to molecules), and ion source rate are all roughly consis-
tent with a 5% systematic error. Again, the ion energy and momentum sources are
too noisy to permit an estimate of the systematic error. However, these numbers
indicate that the two codes do agree within the estimated statistical errors.

141

4.7 Performance Benchmark and Optimization
Although efficiency was kept in mind during all stages of the design process, no
effort was made to optimize the performance of DEGAS 2 along the way. In this
section, we describe the benchmark of the code’s performance against EIRENE.
Speed bottlenecks were discovered through profiling. Improvements eliminating
those bottlenecks.were implemented. Some involved significant code revisions;
others were effected by simple changes to source or input files. The end result
was that the run time for DEGAS 2 was roughly equal to that of EIRENE within
the variations normally experienced in a time-sharing environment.

The implemented code revisions were motivated by profiling the code to de-
termine which subroutines were the most time-consuming. At one point, assign-
ments and comparisons of string variables were using significant fractions of the
run time. The strings responsible were being used to describe auxiliary data as-
sociated with the atomic physics reactions. The code was modified to compile a
list of all of these strings at the beginning of the run and to use an integer pointer
into that list for the run-time comparisons and assignments. Because these code
changes were pervasive, their impact on the run time could not be documented as
carefully as the other improvements noted below. Roughly, however, they resulted
in a reduction of about 10 seconds per 1000 flights.

4.7.1 Starting Point
The starting assumptions were the same as those associated with the code as run
for the initial EIRENE benchmark (specifically, the DEGAS 2 version with the
CVS tag V1_8a). The “EIRENE physics” set was used to minimize differences
due to the number of collisions and to permit direct comparisons of the variances.

For each code configuration, runs were performed at 1000, 2000, and 4000
flights. The time for the 1000 flight case was subtracted from the other two and
the results used to estimate the incremental time required to track 1000 flights.
The idea is that production runs would be substantially longer than these (with
relative standard deviations on the order of 1%) so that the overhead associated
with input and output would be negligible. In a few cases, production length runs
(e.g., 80,000 flights) were done; for those, the run time was just taken to be the
time consumed divided by 80.

These runs were performed on a Sun UltraSPARC 2 running SunOS 5.5.1
and V. 4.2 of f77 with -O4 optimization. Again, because this computer is a time-
sharing system, these run times are only approximate. The estimated error is about

142

10%. The baseline run time for DEGAS 2 was: 136 seconds per 1000 flights.

4.7.2 Charge Exchange Rejection
The charge exchange cross section depends on the relative ion-neutral veloc-
ity. However, collisions are decided upon using a cross section averaged over
a Maxwellian distribution. In the baseline, the ion collision partners were chosen
so as to be consistent with the actual cross section using a rejection technique,
sampling several ions before finding one which is satisfactory. The version of
EIRENE used in this benchmark does not do this (neither did the original DE-
GAS).

For the first change, charge exchange rejection was turned off. A cursory
examination of the results showed no significant impact on the neutral density.
However, a stronger effect may have occurred elsewhere (e.g., energy transferred
to background species). Run time after disabling charge exchange rejection: 119
seconds per 1000 flights.

4.7.3 Reduce Number of Scores
One impressive feature of EIRENE is how thoroughly its default operation has
been pared down to the minimum necessary for coupling to the fluid plasma codes.
In particular, no data on the variances are kept. DEGAS 2 was written with the
philosophy that the mean value for a score is meaningless without a corresponding
variance, and the two data values are kept together. For this comparison, a short
list of variances was requested in the EIRENE input file. These will be needed
later.

As presently distributed, DEGAS 2 by default sets up about 14 scores or tal-
lies. This list was reduced to 7 at this step (later, 3 more will be eliminated leaving
the neutral density and the 3 scores representing the particle, momentum, and en-
ergy transfer to the background species). Run time after cutting the number of
scores to 7: 95 seconds per 1000 flights.

4.7.4 Compression of Scores
The first offender in the profiling exercise was the routine responsible for compil-
ing the scores accumulated during a single flight into the global total. As originally
written, both the total and incremental scoring arrays were full-sized (roughly the
number of zones times the number of scores times the number of background

143

species). However, each flight visits only a small fraction of the problem space,
and this routine was spending a significant amount of time adding 0 to 0.

These scoring arrays were modified to contain only the non-zero scores, with
an array of pointers mapping their contents back to the corresponding locations in
the full-sized arrays (which were still used for the final output stage). Run time
after implementation of compressed scoring: 49 seconds per 1000 flights.

4.7.5 Other Changes with Minimal Effects
Further reducing the number of scores from 7 to 4 had little impact on the run,
probably because of the use of compression at this point.

DEGAS 2 (and EIRENE) employ a 10 term quadratic representation of all
surfaces in the geometry. In some problems, such as this one, only the linear
terms are needed. The inclusion of the quadratic terms was made a compile-time
option so that they could be turned off for fully linear geometries. Earlier tests of
the impact of this change showed a reduction of about 4 seconds per 1000 flights.
However, in this more systematic series of trials, the improvement could not be
quantified with certainty.

4.7.6 Variance-Altering Changes
Thus far, all of the changes made led to the same final results as the run with
“EIRENE physics”. Most of the subsequent changes, while reducing the run time,
also result in increases in the variance of the results. In a given Monte Carlo
calculation, the variance is inversely proportional to the number of flights and,
hence, to the run time. So, the performance Figure of Merit (FOM) is the variance
times the run time. An attempt will be made below to quantify this FOM, but
we can also compare qualitatively the variance over the most relevant portion of
the problem space (near the target plate) via the relative standard deviation σrsd.
Figure 4.15 shows σrsd for the deuterium density in the baseline case.

Below we will use σrsd for the source rate of D+ due to ionization of neutrals.
Although not computed for this baseline run, this σrsd should be comparable to
that shown in Fig. 4.15 except for the first one or two zones adjacent to the plate
in which the contributions from D2 are significant.

144

spD_density_rsd_ex vs. (row, col)

0.000 0.020 0.040

1.000

0.980

0.960

R (m)

Z
 (

m
)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Standard Deviation

D Density Relative Standard Deviation - Baseline

Figure 4.15: Relative standard deviation of the atomic deuterium density in the
baseline run of the performance benchmark.

145

4.7.7 Removal of Suppressed Ionization
The simplest (“analog”) Monte Carlo simulation kills off neutrals at their first
ionizing collision. However, this makes finding the solution more than one mean
free path from the source difficult. The predominant non-analog improvement is
to assign a weight to each neutral flight (e.g., initially 1) and reduce that weight
at each step to reflect the amount of ionization which should have occurred along
the way. As a result, smaller variances are obtained in low probability regions of
the problem. Because each flight will thus be tracked for more steps, a run using
suppressed ionization will take longer. Whether or not that time is well spent
depends on the problem at hand.

These EIRENE runs do not use suppressed ionization. For the purposes of
comparison, we turned it off in DEGAS 2 as well. The run time without sup-
pressed ionization dropped to 15 seconds per 1000 flights. Figure 4.16 shows the
resulting σrsd.

4.7.8 Collision Estimator
Some of the scores in DEGAS 2, e.g., the neutral density and the D+ source rate,
are computed via the track-length estimator. The other scores are compiled using
data only at collisions (though most of these can also be done by track-length).
Since the collision routines get executed regardless of whether or not the resulting
data are used in the scores, we felt that it would be interesting to switch all of the
estimators to collision (except density) and eliminate the overhead associated with
generating the track-length scores. Of course, doing this increases the variance as
is shown in Fig. 4.17. The run with using the collision estimator (again without
suppressed absorption) needed 10 seconds per 1000 flights.

4.7.9 Russian Roulette for Molecules
Two of the seven reactions involving D2 and D+

2 in DEGAS 2 result in two D
atoms. DEGAS 2 normally tracks both of these. EIRENE, however, like the orig-
inal DEGAS, chooses one of the two to follow and “kills” off the other. This is
a simple example of a general nonanalog Monte Carlo technique known as “Rus-
sian roulette”. Whether the use (or non-use) of this technique improves the vari-
ance again depends on the problem. For the purposes of this benchmark, Russian
roulette was added to DEGAS 2’s molecular dissociation routine. Those scores
switched to collision estimator in the previous section were reverted to the track-

146

D__Ion_Source_is_rsd vs. (row, col)

0.000 0.020 0.040

1.000

0.980

0.960

R (m)

Z
 (

m
)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Standard Deviation

D+ Source Relative Standard Deviation - No Ionization Suppression

Figure 4.16: Relative standard deviation of the D+ ion source without suppressed
ionization.

147

D__Ion_Source_col_rsd vs. (row, col)

0.000 0.020 0.040

1.000

0.980

0.960

R (m)

Z
 (

m
)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Standard Deviation

D+ Source Relative Standard Deviation - Collision Estimator

Figure 4.17: Relative standard deviation of the D+ ion source using a collision
estimator and without suppressed ionization.

148

length estimator for this configuration. Figure 4.18 shows the corresponding σrsd.
This run used only 8 seconds per 1000 flights.

4.7.10 Figures of Merit
We now have four different configurations with which to evaluate this figure of
merit, variance times run time. Presently, there is no single “answer” in these
simulations which we can use to compute the FOM. Somewhat arbitrarily, we
have selected a region of the problem spanning the width (radius) of this geometry
and encompassing most of the integrated D+ source (the selection was made by
eyeballing the plot; 83% of the integrated source was included). The σrsd for each
configuration was divided by that of the baseline and integrated over this region.
We then defined the FOM as the product of the 1000 flight run times (quoted
above) and the square (to get the variance) of this ratio.

Configuration Seconds / 1000 flights σrsd ratio FOM
Baseline 49 1.0 49

No Suppressed Ionization 15 1.9 54
Collision Estimator 10 4.3 185
D2 Russian Roulette 8 2.3 41

Clearly, using the collision estimator is not a good idea. The effectiveness of
suppressed ionization could go either way. However, doing Russian roulette on
the molecular products (this run was done without ionization suppression) looks
to be the overall winner. Probably not by accident, this configuration is the closest
to the default mode of operation for EIRENE.

4.7.11 EIRENE Performance
Of course, the whole point of this portion of the benchmark is to compare the
performance of DEGAS 2 against that of EIRENE. Apart from the addition of the
variance output to EIRENE, no other modifications have been made to its default
mode of operation. However, the compiler optimization was changed from the
-O3 value specified with the IPP-Garching version to the -O4 which appears to
work well for DEGAS 2 with the Sun FORTRAN 77 compiler. Over several runs
of length 1000 to 10000 flights, the incremental time for 1000 flights is 12 sec-
onds. The relative standard deviations computed by EIRENE were consistent with
those of the corresponding DEGAS 2 configuration (Russian roulette), although a
direct comparison was not made here (see Sec. 4.5.6).

149

D__Ion_Source_rr_rsd vs. (row, col)

0.000 0.020 0.040

1.000

0.980

0.960

R (m)

Z
 (

m
)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Standard Deviation

D+ Source Relative Standard Deviation - Russian Roulette

Figure 4.18: Relative standard deviation of the D+ ion source using Russian
roulette for molecules.

150

Within normal variations, the two codes are thus running at the same speed.
The particular DEGAS 2 configuration should be chosen according to the needs
of the problem at hand. Keep in mind that the original objective of DEGAS 2 was
to be faster than DEGAS; the hope was that the code would yield performance
comparable to that of EIRENE while retaining flexibility. That objective has been
met. DEGAS 2 is also able to take full advantage of the substantial benefits of
parallel processing.

Note, however, that EIRENE’s computation of variances is less than optimal.
Disabling them in the input file and turning off unneeded tallies reduces the incre-
mental run time to 3 seconds per 1000 flights. At this point, EIRENE is substan-
tially faster than DEGAS 2 since turning off its variance computation (which has
been optimized) will not have a significant impact. The performance comparison
between the two codes will be revisited as part of a later benchmark utilizing a
more realistic divertor geometry.

The advantages of dynamic memory allocation of all run-time arrays, another
design feature of DEGAS 2, have also been demonstrated during this benchmark.
The run-time sizes were: DEGAS 2 - 7 MB, EIRENE - 142 MB. By reducing
the dimensioning parameters in EIRENE to values more appropriate for this input
file, the size of the code was reduced from 142 MB to 55 MB.

151

Chapter 5

Troubleshooting

5.1 Help!
Daren Stotler
Princeton Plasma Physics Laboratory, MS 27
P. O. Box 451
Princeton NJ 08543-0451
(609) 243-2063
E-mail: dstotler@pppl.gov

152

mailto:dstotler@pppl.gov

Bibliography

[1] The development of analytic, numerical, and Monte Carlo methods of solv-
ing the time-independent Boltzmann equation describing neutral kinetics is
reviewed in:
M. Tendler and D. Heifetz, Fusion Tech. 11, 289 (1987).

[2] The “bible” of Monte Carlo transport techniques is:
J. Spanier and E. M. Gelbard, “MonteCarlo Principles and Neutron Trans-
port Problems” (Addison-Wesley Publishing Company, Reading Mas-
sachusetts, 1969).
Other references from the neutron transport field include:
J. M. Hammersley and D. C. Handscomb, “Monte Carlo Methods”
(Metuchen, London, 1964).
L. L. Carter and E. D. Cashwell, “Particle-Transport Simulation with the
Monte Carlo Method” (National Technical Information Service, Springfield,
Virginia, 1975).
Ivan Lux and Laszlo Koblinger, “Monte Carlo Particle Transport Methods:
Neutron and Photon Calculations” (CRC Press, Boca Raton, 1991).

[3] The Algorithm and applications of DEGAS are discussed in:
D. Heifetz, D. Post, M. Petravic, J. Weisheit, and G. Bateman, J. Comp.
Phys. 46 309 (1982).
The Proceedings from a NATO-sponsored school in Val-Morin, Canada
(1984) are an invaluable reference for scrape-off layer physics. In addition
to again describing the algorithms and applications of DEGAS, Heifetz cov-
ers in his article some of the basics of neutral transport in a plasma: D. B.
Heifetz, in Physics of Plasma-Wall Interactions in Controlled Fusion, D.
Post and R. Behrisch, Eds., (Plenum, New York, 1986), p. 695.

[4] D. P. Stotler et al., J. Nucl. Mater. 196-198, 894 (1992).

153

[5] D. Reiter et al., J. Nucl. Mater. 220–222 987 (1995).

[6] D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc. R. Soc. A 267,
297 (1962).

[7] R. W. P. McWhirter, in Plasma Diagnostic Techniques, R. H. Huddlestone
and S. L. Leonard, Eds. (Academic, New York, 1965).

[8] http://w3.pppl.gov/˜krommes/fweb_toc.html (FWEB home
page)

[9] http://www.unidata.ucar.edu/software/netcdf/ (netCDF
home page)

[10] http://www.hdfgroup.org/ (HDF home page)

[11] https://wci.llnl.gov/codes/silo/index.html (Silo home
page)

[12] Although never formally published and not readily available online, the
EIRENE User’s Manual is a very useful reference on the physics and
algorithms of Monte Carlo neutral transport:
D. Reiter, “The EIRENE Code, Version: Jan. 92, Users Manual”,
EURATOM-KFA Institut für Plasmaphysik Report JUL-2599 (1992).
One source for a recent version of this document is the
“SOLPS” package maintained R. Schneider and D. Coster of
the Max Planck Insitut für Plasmaphysik in Garching. Try the
http://www.rzg.mpg.de/˜dpc/solps.html SOLPS home
page for more information.

[13] K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley,
Reading, MA, 1967).

[14] R. Marchand and M. Dumberry, Comp. Phys. Comm. 96, 232 (1996).

[15] D. P. Stotler, A. Yu. Pigarov, C. F. F. Karney, S. I. Krasheninnikov, B.
LaBombard, B. Lipschultz, G. M. McCracken, A. Niemczewski, J. A.
Snipes, J. L. Terry, and R. A. Vesey, in Fusion Energy 1996 (Proc. 16th
Int. Conf. Montreal, 1996), Vol. 2 (IAEA, Vienna, 1997) p. 633 (see also the
corresponding PPPL Report).

154

http://w3.pppl.gov/~krommes/fweb_toc.html
http://w3.pppl.gov/~krommes/fweb_toc.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/
https://wci.llnl.gov/codes/silo/index.html
https://wci.llnl.gov/codes/silo/index.html
http://www.rzg.mpg.de/~dpc/solps.html
http://www.rzg.mpg.de/~dpc/solps.html
http://www.pppl.gov/pub_report/1997/PPPL-3221-abs.html

[16] R. K. Janev, W. D. Langer, K. Evans, Jr., and D. E. Post, Jr., Elementary
Processes in Hydrogen-Helium Plasmas (Springer-Verlag, Berlin, 1987) (see
also the corresponding Aladdin data file).

[17] D. Reiter, in Atomic and Plasma-Material Interaction Processes in Con-
trolled Thermonuclear Fusion, R. K. Janev and H. W. Drawin, Eds., (Else-
vier, New York, 1993), p. 243.

[18] R. K. Janev and J. J. Smith, Atomic and Plasma-Material Interaction Data
for Fusion (Supplement to the journal Nuclear Fusion) 4 (1993) (see also the
corresponding Aladdin data file).

[19] L. C. Johnson and E. Hinnov, J. Quant. Spectrosc. Radiat. Transfer 13, 333
(1973).

[20] J. C. Weisheit, J. Phys. B: Atom. Molec. Phys. 8, 2556 (1975).

[21] M. Goto, J. Quant. Spectrosc. Radiat. Transfer 76, 331 (2003).

[22] T. Fujimoto, J. Quant. Spectrosc. Radiat. Transfer 21, 439 (1979).

[23] R. J. Kanzleiter, D. P. Stotler, C. F. F. Karney, and D. Steiner Phys. Plasmas
7, 5064 (2000).

[24] P. S. Krstic and D. R. Schultz, Atomic and Plasma-Material Data for Fusion
8, 1 (1998).

[25] P. Bachmann and D. Reiter, Contrib. Plasma Phys. 35, 45 (1995).

[26] H. H. Abou-Gabal and G. A. Emmert, Nucl. Fusion 31, 407 (1991).

[27] A. Dalgarno, Phil. Trans. R. Soc. London, Ser. A 250, 426 (1958).

[28] T. Holstein, J. Phys. Chem. 56, 832 (1952).

[29] J. M. Wadehra, Phys. Rev. A 20, 1859 (1979).

[30] C. F. Barnett, Atomic Data for Fusion, Oak Ridge National Laboratory Re-
port ORNL-6086, Vol. 1 (1990).

[31] J. H. Newman, J. D. Cogan, D. L. Ziegler et al., Phys. Rev. A 25, 2976 (1982).

[32] A. C. Reviere, Nucl. Fusion 11, 363 (1971).

155

http://www-cfadc.phy.ornl.gov/aladdin/aladdin_list.html
http://www-cfadc.phy.ornl.gov/aladdin/aladdin_list.html

[33] J. F. O’Hanlon, A User’s Guide to Vacuum Technology (John Wiley & Sons,
New York, 1989).

[34] A. Niemczewski, Ph. D. Thesis, Massachusetts Institute of Technology,
Plasma Fusion Center Report PFC/RR-95-8 (1995).

[35] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).

[36] P. Welander, Arkiv Fysik 7, 507 (1954).

[37] Chr. May, Ph. D. Thesis.

[38] D. Reiter, Chr. May, M. Baelmans, and P. Börner, J. Nucl. Mater. 241, 342
(1997).

[39] R. J. Kanzleiter, Ph. D. Thesis, Rensselaer Polytechnic Institute (1999).

[40] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform
Gases (Cambridge University Press, 1970).

[41] T. F. Morse, Phys. Fluids 6, 1420 (1963).

[42] R. C. Reid, J. M. Prausnitz, B. E. Poling, The Properties of Liquids and
Gases (McGraw-Hill Book Company, New York, 1987).

[43] CRC Handbook of Chemistry and Physics, 75th Edition, 1913–1995, D. R.
Lide, Ed., p. 6-239 (CRC Press, Boca Raton, 1994).

[44] C. S. Chang, S. Klasky, J. Cummings et al., J. Phys.: Conf. Ser. 125, 012040
(2008).

[45] D. R. Willis, Phys. Fluids 5, 127 (1962).

[46] C. Cercignani, J. Stat. Phys. 1, 297 (1969).

[47] C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish
Academic Press, New York, 1975).

[48] P. R. Bevington, Data Reduction and Error Analysis for the Physical Sci-
ences (McGraw-Hill Book Company, New York, 1969).

[49] W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer-
Verlag, New York, 1991).

156

[50] G. Bateman, “Distribution of Neutrals Scattered Off A Wall”, PPPL Applied
Physics Division Report # 1 (1980).

[51] D. B. Macmillan, SIAM J. Appl. Math. 15, 264 (1967).

[52] J. Spanier, SIAM J. Appl. Math. 14, 702 (1966).

[53] D. E. Knuth, The Art of Computer Programming (Addison-Wesley, Reading,
MA, 1997).

[54] C. S. Pitcher, C. J. Boswell, J. A. Goetz et al., Phys. Plasmas 7, 1894 (2000).

[55] C. S. Pitcher, C. J. Boswell, T. Chung et al., J. Nucl. Mater. 290-293, 812
(2001).

[56] D. P. Stotler, C. S. Pitcher, C. J. Boswell et al., J. Nucl. Mater. 290-293, 967
(2001).

[57] D. P. Stotler, J. Boedo, B. LeBlanc, R. J. Maqueda, and S. J. Zweben, J.
Nucl. Mater. 363-365, 686 (2007).

[58] D. P. Stotler, D. A. D’Ippolito, B. LeBlanc, R. J. Maqueda, J. R. Myra, S. A.
Sabbagh, and S. J. Zweben, Contrib. Plasma Phys. 44, 294 (2004).

[59] M. C. Zarnstorff, L. A. Berry, A. Brooks et al., Plasma Phys. Control. Fusion
43, A237 (2001). See also the NCSX web site.

157

http://w3.pppl.gov/degas2/Bateman_distribution.pdf
http://w3.pppl.gov/degas2/Bateman_distribution.pdf
http://ncsx.pppl.gov

Index

adsorption, 62
Allocation, memory, 3
Atomic physics, 24

background species, 62
BGK, 42
Boltzmann equation, 1
boxgen, 56

Carre, 59, 89
Charge exchange, 32
chargex, 61
checkpoints, 100
collisional-radiative, 24
CVS, 4, 52

dataexam, 57
datamatch, 58
datasetup, 56
defineback, 23, 54, 89
defineback input, 63
definegeometry2d, 52, 54, 89
definegeometry2d input, 63
DEGAS, 2
desorption, 62
DG, 59, 89
Differential cross section, 32
Diffusion, 42
Diffusion cross section, 32
directories, 53
dissoc, 61

dissoc rec, 61
Distribution, probability, 5

elastic, 61
Elastic scattering, 32
elements infile, 61
elementsfile, 61
Emacs, 50
emacs, 50

flighttest, 54
ftangle, 51
fweave, 51
FWEB, 3, 51

Generators, random number, 5
generic, 61
generic PMI, 62
generic reactions, 61
geometry.inp, 64
geomtesta, 54
gmake, 50

HDF, 4, 52
HDF5, 52
HOME, 53

ionization, 24
ionize, 61
ionize suppress, 61

LaTeX, 51

158

Macros, 3
make, 50
Makefile, 50
Makefile.local, 53
matcheir, 58
matchout, 58
materials infile, 62
materialsfile, 62
Maxwell molecules, 42
Monte Carlo, 5

ncdum, 50
ncdump-filter, 50
ncgen, 50
ncgen-filter, 50
NetCDF, 4
netCDF, 50
Neutral Transport, 1
Neutral-ion scattering, 32
Neutral-neutral scattering, 42
non-generic PMI, 62
non-generic reactions, 61

Object oriented programming, 3
outputscript, 64

Pcl-cvs, 52
PMI, 62
pmi infile, 62
pmitest, 57
pmiwrite, 56
problem infile, 62
problemfile, 62
problemsetup, 54
Processing, parallel, 4

Random, 5
randomtest, 57
ratecalc, 56

rates, atomic physics, 24
reaction type, 61
reaction infile, 61
reactionfile, 61
reactiontest, 57
reactionwrite, 56
readbackground, 54
readbackground input, 63
readgeometry, 54
readgeometry input, 63
recombination, 24, 61
reference level, 62
reflection, 62
restarting, 100

Scattering angle, 32
Scoring, 5
Silo, 52
snapshot, 23
sourcetest, 57
species, 61
species infile, 61
speciesfile, 61
Spin exchange, 32
subset data, 62
symbolic name, 60
sysdeptest, 57

Tags, 50
tally, 64
tally infile, 64
tallyfile, 64
tallysetup, 54, 64
test species, 62
TeX, 51
Theory, transport, 1
time dependence, 23, 99
Total cross section, 32

159

Tracking, 5
Transport codes, 1
Triangle, 52

ucd plot, 54

Viscosity, 42
Viscosity cross section, 32

160

Contents

1 Introduction 1
1.1 Purpose of Monte Carlo Neutral Transport 1
1.2 Historical Background . 2
1.3 Need for DEGAS 2 . 2
1.4 DEGAS 2 Features . 3

2 Background 5
2.1 Generic Monte Carlo Algorithms 5

2.1.1 Sampling a Distribution 6
2.1.2 Sampling Distance to Next Collision 6
2.1.3 Sampling More Complicated Distributions 8

2.2 Particle Transport . 9
2.2.1 Motivating the Integral Equation 9
2.2.2 Transport and Collision Kernels 10
2.2.3 Integral Equation Details 10

2.3 Estimators . 12
2.3.1 Simple Estimators . 12
2.3.2 Generalized Collision and Tracklength Estimators 13
2.3.3 Specification of Tallies 16

2.4 Tracking Procedure . 19
2.5 Random Numbers . 21
2.6 Geometry . 21
2.7 Symmetry and Coordinate Systems 22
2.8 Time Dependence . 23
2.9 Atomic Physics . 24

2.9.1 Hydrogen Collisional Radiative Model 28
2.9.2 Helium Collisional Radiative Model 30

2.10 Elastic Scattering . 32

161

2.10.1 Neutral-Ion Elastic Scattering 32
2.10.2 Neutral-Neutral Elastic Scattering 37
2.10.3 Validation of BGK Model and Rates 42

2.11 Recycling . 45

3 Running DEGAS 2 49
3.1 Getting DEGAS 2 . 49
3.2 Getting Supporting Tools . 50

3.2.1 GNU Software . 50
3.2.2 netCDF . 50
3.2.3 FWEB . 51
3.2.4 Triangle . 52
3.2.5 Silo and HDF . 52
3.2.6 Concurrent Version System 52

3.3 Structure of the DEGAS 2 File System 53
3.4 Components of the Code . 54

3.4.1 Main Code . 54
3.4.2 Other Setup Routines . 56
3.4.3 Test Routines . 57
3.4.4 Miscellaneous Routines 58
3.4.5 DG and Carre . 59

3.5 Input Files . 59
3.5.1 degas2.in . 60
3.5.2 elements infile . 61
3.5.3 species infile . 61
3.5.4 reaction infile . 61
3.5.5 ratecalc Input . 62
3.5.6 materials infile . 62
3.5.7 pmi infile . 62
3.5.8 problem infile . 62
3.5.9 readgeometry Input . 63
3.5.10 definegeometry2d Input 63
3.5.11 defineback Input . 63
3.5.12 readbackground Input 63
3.5.13 tally infile . 64
3.5.14 outputbrowser Input . 64
3.5.15 geomtesta Input . 64
3.5.16 ucd plot Input . 64

162

3.6 Compiling DEGAS 2 . 64
3.6.1 Basics . 65
3.6.2 Making Documents . 66
3.6.3 Adjustments to Makefile 67
3.6.4 Cross-Compiling . 68
3.6.5 Miscellaneous Targets 69

3.7 Examples . 69
3.7.1 Analytic fluid bench . 70
3.7.2 Neutral-Neutral Scattering Examples 72
3.7.3 definegeometry2d and defineback Examples 89

3.8 Run Control Parameters . 99
3.8.1 Time Dependence . 99
3.8.2 Checkpoints . 100
3.8.3 Restarting . 100
3.8.4 Seed String . 101
3.8.5 Spaced Seeds . 102
3.8.6 Direct Sampling . 102

3.9 Adding Reactions and PMI . 103
3.9.1 Overview of Data Format 103
3.9.2 An Example: Bateman Format Data 104
3.9.3 Reaction Processing Routines 108

3.10 Defining Radiation Detectors . 108
3.10.1 Signal Computation . 109
3.10.2 The Detector Setup Subroutine 111
3.10.3 Detector Computation in Post-Processing 112

3.11 Diagnostic Sectors . 112
3.12 Output File . 113
3.13 Other Documentation . 114

4 EIRENE Benchmark 115
4.1 Introduction . 115
4.2 Problem Description . 116
4.3 “Out of the Box” Results . 116
4.4 Statistical Basis for Comparisons 121
4.5 Code Differences . 123

4.5.1 Atomic Physics . 123
4.5.2 Source Sampling . 124
4.5.3 Energy Distribution of Reflected Atoms 129

163

4.5.4 Angular Distribution of Reflected Atoms 130
4.5.5 H2 Dissociation Rate . 130
4.5.6 Estimator Differences 133
4.5.7 Other Differences . 134

4.6 Characterize Comparison . 134
4.6.1 Density Differences . 134
4.6.2 Comparison of Momentum Source 135
4.6.3 Results of Quantitative Comparison 135

4.7 Performance Benchmark and Optimization 142
4.7.1 Starting Point . 142
4.7.2 Charge Exchange Rejection 143
4.7.3 Reduce Number of Scores 143
4.7.4 Compression of Scores 143
4.7.5 Other Changes with Minimal Effects 144
4.7.6 Variance-Altering Changes 144
4.7.7 Removal of Suppressed Ionization 146
4.7.8 Collision Estimator . 146
4.7.9 Russian Roulette for Molecules 146
4.7.10 Figures of Merit . 149
4.7.11 EIRENE Performance 149

5 Troubleshooting 152
5.1 Help! . 152

164

	Introduction
	Purpose of Monte Carlo Neutral Transport
	Historical Background
	Need for DEGAS 2
	DEGAS 2 Features

	Background
	Generic Monte Carlo Algorithms
	Sampling a Distribution
	Sampling Distance to Next Collision
	Sampling More Complicated Distributions

	Particle Transport
	Motivating the Integral Equation
	Transport and Collision Kernels
	Integral Equation Details

	Estimators
	Simple Estimators
	Generalized Collision and Tracklength Estimators
	Specification of Tallies

	Tracking Procedure
	Random Numbers
	Geometry
	Symmetry and Coordinate Systems
	Time Dependence
	Atomic Physics
	Hydrogen Collisional Radiative Model
	Helium Collisional Radiative Model

	Elastic Scattering
	Neutral-Ion Elastic Scattering
	Neutral-Neutral Elastic Scattering
	Validation of BGK Model and Rates

	Recycling

	Running DEGAS 2
	Getting DEGAS 2
	Getting Supporting Tools
	GNU Software
	netCDF
	FWEB
	Triangle
	Silo and HDF
	Concurrent Version System

	Structure of the DEGAS 2 File System
	Components of the Code
	Main Code
	Other Setup Routines
	Test Routines
	Miscellaneous Routines
	DG and Carre

	Input Files
	degas2.in
	elements_infile
	species_infile
	reaction_infile
	ratecalc Input
	materials_infile
	pmi_infile
	problem_infile
	readgeometry Input
	definegeometry2d Input
	defineback Input
	readbackground Input
	tally_infile
	outputbrowser Input
	geomtesta Input
	ucd_plot Input

	Compiling DEGAS 2
	Basics
	Making Documents
	Adjustments to Makefile
	Cross-Compiling
	Miscellaneous Targets

	Examples
	Analytic_fluid_bench
	Neutral-Neutral Scattering Examples
	definegeometry2d and defineback Examples

	Run Control Parameters
	Time Dependence
	Checkpoints
	Restarting
	Seed String
	Spaced Seeds
	Direct Sampling

	Adding Reactions and PMI
	Overview of Data Format
	An Example: Bateman Format Data
	Reaction Processing Routines

	Defining Radiation Detectors
	Signal Computation
	The Detector Setup Subroutine
	Detector Computation in Post-Processing

	Diagnostic Sectors
	Output File
	Other Documentation

	EIRENE Benchmark
	Introduction
	Problem Description
	``Out of the Box'' Results
	Statistical Basis for Comparisons
	Code Differences
	Atomic Physics
	Source Sampling
	Energy Distribution of Reflected Atoms
	Angular Distribution of Reflected Atoms
	H2 Dissociation Rate
	Estimator Differences
	Other Differences

	Characterize Comparison
	Density Differences
	Comparison of Momentum Source
	Results of Quantitative Comparison

	Performance Benchmark and Optimization
	Starting Point
	Charge Exchange Rejection
	Reduce Number of Scores
	Compression of Scores
	Other Changes with Minimal Effects
	Variance-Altering Changes
	Removal of Suppressed Ionization
	Collision Estimator
	Russian Roulette for Molecules
	Figures of Merit
	EIRENE Performance

	Troubleshooting
	Help!

