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Abstract
A two-dimensional wave propagation code, developed specifically to simulate
correlation reflectometry in large-scale fusion plasmas, is described. The code
makes use of separate computational methods in the vacuum, underdense and
reflection regions of the plasma in order to obtain the high computational
efficiency necessary for correlation analysis. Simulations of TFTR plasma with
internal transport barriers are presented and compared with one-dimensional
full-wave simulations. It is shown that the two-dimensional simulations are
remarkably similar to the results of the one-dimensional full-wave analysis for
a wide range of turbulent correlation lengths. Implications for the interpretation
of correlation reflectometer measurements in fusion plasma are discussed.

1. Introduction

Reflectometry [1,2] is routinely used to infer turbulent fluctuation levels and correlation lengths
in both small-scale laboratory plasma [3, 4] and large-scale fusion research devices [5]. The
basic technique is to launch an electromagnetic wave with frequency chosen so that there exists
a reflection layer in the plasma. The time-dependent reflected signal is collected either by the
transmitting antenna or by a nearby receiving antenna. The time-dependent product of the
reflected signal and a local oscillator is accumulated.

The measurements are of two types: the coherent reflected signal strength measured at
the transmitting antenna and the cross correlation between signals at a reference frequency
ω0 and a number of secondary frequencies ω1, chosen so that the range of reflection points
encompasses the turbulent correlation length. The cross-correlation signal monotonically
decays with increasing separation between reflection points.

Various models have been applied to simulate the signal expected for models of turbulent
fluctuations imposed on an otherwise smooth plasma profile. One-dimensional models, either
in the geometrical optics approximation [6,7] or in solutions of the full-wave equation [8–10],
have been routinely used to infer the relation between measured correlation functions and the
properties of the turbulent fluctuations. Bruskin et al [11, 12] analysed the resolution limit of
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correlation reflectometry in two dimensions within the confines of the Born approximation.
Mazzucato [13] computed scattering from two-dimensional turbulence in a planar plasma
profile. Cohen et al [15] demonstrated the applicability of short-pulse reflectometry [16]
to correlation reflectometry in two-dimensional simulations. Investigation of amplitude and
phase variations arising during O-mode propagation in two-dimensional plasmas was studied
by Irby et al [14] for several assumed forms of density fluctuation. Lin et al [17] solved the
two-dimensional full-wave equation for a single scattering realization in realistic geometry,
appropriate to Alcator CMOD. However, direct numerical solutions of the full-wave equations
in two dimensions have had limited application to correlation analysis because of the substantial
computational resources required to simulate a realistically sized system.

In this paper we describe a two-dimensional wave propagation code which has been
constructed in order to help interpret the experimental signals from large-scale tokamak
experiments. To facilitate quantitative comparison between computational and experimental
results, the model includes a realistic antenna radiation pattern and the capability to input
experimentally inferred two-dimensional profiles [18,19] of density, electron temperature and
magnetic field strength. We find that the convergence of the coherent and cross-correlation
signals is quite slow with increasing ensemble size—typically several hundred realizations
are required to obtain a meaningful result. An efficient computational algorithm is therefore a
prerequisite if a model is to be a useful part of the data analysis process. The algorithm presented
here is sufficiently fast (requiring 30 CPU seconds for computation of a single realization in
a large tokamak) to make this practical. Efficiency is obtained by several means. First, the
computational domain is divided into regions as shown in figure 1. The full-wave equation

Figure 1. Electron density profile Ne(R,Z) used for reflectometry simulations. The profile is
reconstructed from TFTR Enhanced Reverse Shear shot #65601 at time 2.5 s. The rectangular
domains labelled ‘Full Wave’ (respectively ‘Paraxial Approximation’) are the regions in which
equation (1) (respectively equation (10)) are solved. The solutions are matched on the dotted strip
R = 319 cm, −13 cm � Z � 13 cm.
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is solved only where necessary (near the reflection layer). An implicit algorithm is used to
speed approach to steady state. Elsewhere, computationally less demanding models suffice:
the paraxial approximation is used in the underdense plasma. The wave field is projected
through vacuum using the free-space Green’s function.

The model is described in section 2. Results are presented in section 3, in which a
comparison of one- and two-dimensional results for experimental profiles in a TFTR discharge
is shown. It is found that the results of the two-dimensional correlation analysis bear a
remarkable similarity to those obtained from the one-dimensional full-wave simulations over
a wide range of turbulent scale lengths. Implications of this result for the interpretation of
correlation reflectometry and future directions are presented in section 4.

2. Computational model

The propagation of the electric field amplitude E(x, t) is described by the wave equation

2iω
∂E

∂t
+ LE = 0, (1)

with

L ≡ c2∇2 + ω2ε, (2)

where we have made the assumption of quasi-monochromaticity at frequency ω. Here E(x, t)
is a complex field amplitude, in terms of which the full time–space variation is given as

E(x, t) = Re[exp(−iωt)E(x, t)], (3)

where Re designates the real part. The time variation of E(x, t) is assumed slow compared to
that of the phase factor. The plasma dielectric ε is modelled by the magnetized cold plasma
X- or O-mode dielectric [20] with electron thermal corrections added [21, 22]. For large
tokamaks, thermal effects result in significant shifts in the reflection point relative to the cold
plasma result.

Since the wave transit time (∼Ln/vgr ∼ 100 cm/c ∼ 3 × 10−9 s) is short compared to the
time over which the turbulent fluctations vary (∼10−5 s), a set of steady solutions is computed
for a given macroscopic profile and microwave parameters. The relative amplitude δnks of
the microscopic fluctuations at each wavevector k for simulation s is assigned in terms of an
assumed fluctuation spectrum Ik, specifically |δnks | ∝ I 1/2

k . The phases of the fluctuations are
chosen randomly. Thus, for simulations s and s ′, and wavevectors k and k′, the fluctuation
correlation satisfies

〈δnks
∗δnk′s ′ 〉 = δkk′δss ′ Ik. (4)

The inverse Fourier transform of δnk yields the relative fluctuation amplitude δn(x)/n0(x)
where n0(x) is the smoothly varying equilibrium density profile. The total density

n(x) = n0(x)[1 + δn(x)]. (5)

For comparison with experimental data, the spectral intensity is parameterized by
an amplitude I0, a mean wavevector km and a two-dimensional width �k. The specific form
chosen for the simulation results is

Ik = I0 exp −



[
(k − km) · R̂

�k · R̂

]2

+

[
(k − km) · Ẑ

�k · Ẑ

]2

 , (6)

where R̂ (respectively Ẑ) are unit vectors in the radial (respectively vertical) directions in the
poloidal plane. Many (usually several hundred) runs are made for a given choice (I0, km,�k).
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An average over the solution ensemble is identified with the experimentally obtained time
series data.

A major challenge is that the computational domain—a poloidal cross section—measures
many wavelengths in both dimensions. The wavelength of the probing radiation is set by the
parameters at the desired reflecting layer. In large-scale tokamaks such as JT60 and TFTR, the
wavelength is 2–3 mm. The distance between the antenna and reflecting layer is typically 2 m,
of which approximately 50–100 cm is in plasma, with the remainder in vacuum. Propagation
in vacuum is most efficiently handled by making use of the free-space Green’s function to
project the wave field between the antenna and plasma boundary. Considering, then, only the
plasma region for direct numerical solution, the radial extent of the computational domain,
LR ∼ 400λ. Even for a well-collimated incident beam, curvature of the reflecting layer and
turbulent scattering typically lead to a finite cone angle of order ±30◦ for the reflected radiation.
Thus the vertical extent LZ is also of order 400λ.

An explicit solution of the wave equation requires a time step which satisfies the Courant
stability condition. Assume discretization on a grid of cell size�d = λ/nd with nd points per
wavelength in the d = {R,Z} direction. Then, �t � min(�R,�Z)/2c, with c the speed of
light. Solving for a time of order the crossing time τcr ∼ 2LR/c, requiresNt = max{NR,NZ}
time steps with Nd = ndLd/λ. The CPU time per time step τstep = CNRNZ , with
C ∼ 5 × 10−6 s on a fast RISC workstation. Typically nR = 20, nZ = 2, so that Nt ∼ 104

and NRNZ ∼ 107. A single such run takes of order 100 CPU hours. Hundreds of runs are
required to achieve statistically significant results for a given set of parameters, making an
explicit solution impractical.

For these reasons we use an implicit algorithm, which is stable for arbitrarily large time
step, limited only by accuracy considerations. We write(

2iω

�t
+

1

2
L
)
En+1 = Sn (7)

for En+1 ≡ E[(n + 1)�t]. Here the source

Sn =
(

2iω

�t
+

1

2
L
)
En

involves quantities at only the nth time level. Inversion of the Laplacian on the left-hand side
then becomes the limiting step. By making use of the observation that, experimentally, the
wavevectors are aligned principally along one of the (Cartesian) coordinate directions (R), an
efficient iterative solution can be employed—the line Jacobi method [23]. Introducing iteration
index m, the Laplacian (L = LR + LZ) is solved directly in R and iteratively in Z:(

2iω

�t
+

1

2
LR

)
En+1,m = −1

2
LZEn+1,m−1 + Sn . (8)

Taking m = 5 is sufficient, given the rapid convergence.
The solution time for realistic large tokamak profiles on four Compaq 750 MHz Alpha

21264 processors (with domain decomposition into radial strips, and with essentially perfect
scaling with processor number) is of order 10 min—marginally acceptable for required
throughput.

Because |c∇ε/ωε| � 1 away from the reflection layer, further efficiency is obtained
there through the use of the paraxial approximation. Defining the radial wavevector kR(R) ≡√
ε(R,Z0) and phase φ ≡ ∫ R dR kR along the centroid, Z = Z0, of the incident wave packet

and decomposing the field into incoming (I) and reflected (R) components,

E(x, t) = EPI exp (−iφ) + EPR exp (iφ), (9)
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we have, away from the reflection point,

±2i
∂

∂R
k

1/2
R EP + LZk1/2

R EP + [ε(R,Z)− ε(R,Z0)]k
1/2
R EP = 0, (10)

with the + (respectively −) sign taken for EPI (respectively EPR) and where the time variation
is ignored as slow compared to the wave transit time across the simulation domain. Again, the
solution in R is done implicitly, requiring an inversion of LZ . This is done directly through
Gaussian elimination.

In summary, as shown in figure 2, the computation proceeds as follows:

(a) Specify the (complex) incident amplitude at the antenna plane.
(b) Project the incident amplitude onto the plasma boundary using the free-space Green’s

function.
(c) Solve the paraxial equation for EPI up to a surface R = RFW within a few wavelengths of

the reflection point.
(d) From RFW inward solve the full-wave equation, equation (1), implicitly for E, with EPI

as the incoming wave amplitude. Advance the solution until steady state is reached.

Figure 2. Counterclockwise, from upper right: (a) Real (blue) and imaginary (red) components of
the prescribed incident field amplitude EAI(Z) at the antenna plane, R = 400 cm. Pseudocolour
plots of: (b) The intensity of the incident component |EPI(R,Z)|2 in the paraxial domain and
(c) |E(R,Z)|2 in the full-wave region. (d) The intensity of the reflected component |EPR(R,Z)|2
in the paraxial domain. (e) The final subplot shows the outgoing field amplitude EAR(Z) at the
antenna plane, as in subplot (a). The pseudocolour plots extend over subsets of the respective
computational domains in which the field strengths are non-negligible. The computational domain
for the paraxial solution extends from 319 cm � R � 400 cm, −40 cm � Z � 40 cm. The
computational domain for the full-wave solution extends from 313 cm � R � 319 cm, −13 cm �
Z � 13 cm.
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(e) Take the outgoing component ER of E as an initial condition for the reflected paraxial
field

EPR(RFW, Z) = ER(RFW, Z). (11)

Apply step (c), then step (b) in the outgoing direction to compute the amplitude of the reflected
field at the receiver plane.

The method is efficient and accurate. A single realization for a system size of 360×240λ2

takes 30 CPU seconds to solve on a single alpha processor.

3. Results

A principal result of the computations is the value of both the coherent reflected signal, g(ω),
and the cross correlation r(ω0, ω1). These are constructed from the numerical results as
follows: for probe frequency ω, let EAI(ω,Z) and EAR(ω,Z) designate the complex incident
and reflected field amplitudes at R = RA, with RA the radius of the antenna plane (figure 2,
right-hand side). For any function  (R = RA, Z), define the projection

M(ω) ≡
∫

dZEAR(ω,Z)E
∗
AI(ω,Z). (12)

Let 〈 〉 denote an average over the run ensemble. Then

g(ω) ≡ 〈M(ω)〉√
〈|M(ω)|2〉

(13)

and

r(ω0, ω1) ≡ 〈M(ω0)M(ω1)〉√
〈|M(ω0)|2〉〈|M(ω1)|2〉

. (14)

Results for g and r from two series of two-dimensional simulations are presented in
figure 3 (symbols), together with their values as calculated from a one-dimensional full-wave
simulation (solid lines). Both were done for a typical TFTR plasma (shot #65601, at time
2.5 s). The main plasma parameters are: major radius 2.93 m, minor radius 1.06 m, magnetic
field 4.0 T, central density 1.0 × 1020 m−3 and central electron temperature 7.0 keV. X-mode
waves were launched horizontally into the plasma midplane at 11 frequencies between 121
and 137 GHz (vacuum wavelengths between 0.248 and 0.219 cm) from an antenna of focal
length 135 cm located at R = 400 cm, Z = 0.

One series (left-hand side of figure 3) was performed for a turbulent radial correlation
length λcR = 0.2 cm, the other for λcR = 2.0 cm. The poloidal correlation length
λcZ = 0.4 cm. The short poloidal correlation length was chosen so as to maximize the
difference expected between two- and one-dimensional simulations. The volume-averaged
relative fluctuation level f = ∫

V
d2x (δn/n)2/ V = 2.5 × 10−5. These parameters were

achieved by choosing, in equation (6), �k · R̂ = 10 and 1 cm−1, �k · Ẑ = 5 cm−1, km = 0
and I0 = 4π(�k · R̂)(�k · Ẑ)f .

It can be seen that the calculated two-dimensional cross correlation agrees remarkably
well with the one-dimensional calculations [10] over this wide variation of radial correlation
lengths. The fact that the coherent reflected signal is systematically higher in the two-
dimensional calculations can be explained by the scattering of waves out of the receiver
aperture. Nevertheless, it is remarkable that the one- and two-dimensional coherent reflection
coefficients bear such a strong similarity, given the very short poloidal correlation lengths
used in these simulations. For comparison with |r|, the respective turbulent radial correlation
functions are plotted as dashed lines in the upper figures, from which the radial resolution
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Figure 3. Top: magnitude of the cross-correlation coefficient |r(ω0, ω1)| versus the separation
between reflection points from one-dimensional (——) and two-dimensional (�) simulations.
Bottom: the magnitude of coherent signal |g(ω)| versus location of the reflection point at the
plasma midplane relative to that for f = 128 GHz. Solid lines (respectively crosses) are results
of one-dimensional (respectively two-dimensional) simulations. Left-hand plots are for a radial
correlation length λcR = 0.2 cm. Right-hand plots are for λcR = 2.0 cm. The dashed lines
in the upper figures show the turbulent radial correlation function which generated the fluctuation
ensemble in each case. Other parameters: volume averaged relative fluctuation level = 2.5×10−5,
poloidal correlation length λcZ = 0.4 cm.

limit appears to be about 1 cm. This is somewhat larger than would be obtained from
previous estimates, which range from the free-space wavelength of the probing radiation [8]
(λ0 = 0.23 cm) to the width of the last Airy fringe near the turning point [1]

WAiry = 0.48L1/3
n λ

2/3
0 , (15)

expressed here in terms of λ0 and the local density gradient scale length Ln = |n/∇n|. Taking
a radial cut of the density profile at the vertical midplane yields an estimate Ln = 10.2 cm at
the turning point (approximately 316 cm), which yieldsWAiry = 0.39 cm.

Figure 4 shows the variation in |g| with number of runs in the ensemble. Because of the
slow rate of convergence, 500 simulations were performed at each frequency. Thus, each point
in figure 3 represents an ensemble average of 500 separate runs.

A measure of the resolution expected from correlation reflectometry is shown in figure 5
where the full-width half maximum of |r| is plotted versus that of the radial density correlation
length both from the two-dimensional simulations (squares) as well as from a series of one-
dimensional simulations (solid line). Again, one- and two-dimensional results are nearly
identical and indicate a resolution limit <1 cm. For comparison, the value of WAiry is shown
as a vertical line.
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Figure 4. Measurement of the ensemble averaged coherent reflected signal g, equation (13), at a
probe frequency of 128 GHz versus the number of simulations included in the ensemble.
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Figure 5. Measured value of the full-width half maximum of |r(ω0, ω1)| versus that of the density
correlation function from full-wave one-dimensional simulations (——) and two-dimensional
simulations ( ). The value of the width of the last Airy fringe, WAiry, as given by equation (15),
is shown as a vertical line.

4. Discussion

The surprising result of this analysis is that the correlation and coherent reflection level is
essentially identical to that obtained with a one-dimensional full-wave analysis despite the fact
that the transverse wavenumber of the perturbations is of the order of the wavelength of the
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probing beam. To understand this result in greater detail, many more simulations are certainly
required. However, in a recent work [17], it was pointed out that the curvature of the reflecting
layer can have a significant effect to broaden the spectral response of the receiver for high
transverse wavenumbers. Similar results have also been obtained using a two-dimensional
full-wave analysis on the JT-60U tokamak [24], suggesting that the close correspondence
of two- and one-dimensional simulations observed in our analysis may also hold for other
large-scale devices. However, the same analysis outlined in this paper needs to be repeated
on a case-by-case basis to confirm the similarity of two- and one-dimensional simulations.
Indications that the two- and one-dimensional simulations can also diverge significantly in
their predictions is shown in the case of X- to O-mode correlation reflectometry performed on
a laboratory-scale facility [10]. In that case, the different radiation patterns at the reflecting
layer for very different wave frequencies can lead to a degradation of the correlation coefficient
at low fluctuation levels which is not apparent in the one-dimensional analysis.

These results were computed only for microwave beams launched normal to the surface
of reflection. An important issue for future investigation is how sensitive the correspondence
of the one- and two-dimensional simulations of the radial correlation are to small angles of
misalignment of the waves incident on the reflecting layer or for a receiver slightly misaligned
to the direction of specular reflection. Such systematic studies of correlation reflectometry in
large-scale facilities are now computationally tractable with the advent of efficient full-wave
algorithm as discussed in this study.

5. Conclusion

A two-dimensional simulation program has been developed specifically to model reflectometry
measurements in large tokamaks. By implementing algorithms tailored to the vacuum,
underdense plasma and reflection layer regions, the high efficiency required for statistical
studies has been achieved.

Results have been presented for a relatively large and relatively short radial correlation
length of model density fluctuations. These results pertain to waves injected at normal
incidence to the surface of reflection. Future studies will include an investigation of the
degree to which the correspondence of one- and two-dimensional simulations breaks down
with oblique angles of incidence.

The authors thank Doug McCune for help with the importation of TRANSP generated TFTR
profiles. This work was funded by DOE Contract No DE-AC02-76CH03073.
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