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1 Introduction 
The purpose of this discussion is to look at the different finite difference schemes for first 
and second order wave equations in 1-D and 2-D. Since we have covered much of the 
first order 1-D wave equation material in the 18.086 course, I will not dwel too deeply on 
derivations of stability and order of accuracy for each finite difference scheme, but rather 
focus more on the general performance of the schemes. Second order wave equations, as 
it turns out, generally do not have as many finite difference schemes associated with them, 
unless they are split into several first order equations. Thus each of these schemes will be 
discussed in a bit more detail. All schemes are implemented in MATLAB 7.0.4, and can 
be found online at http://mit.edu/dongs/Public/18.086/Project1.  

2 First order one-way wave equation 
 
The first order wave equation in one-dimensional space is as follows: 
 
  xt cuu =  (1) 
 
where c is a positive constant, and ( )txu ,  is subject to the initial condition 
 
  ( ) ( ) ∞<<∞−= xxfxu ,0, . (2) 
 
The solution for and all x is a family of characteristics, which are straight lines 
shifted to the left in the x,t-plane, inclined to the x-axis at an angle 

0≥t

 
  ( )c

11tan −=θ . (3) 
 
The explicit solution is 
  ( ) ( )ctxftxu +=, . (4) 

2.1 Finite difference schemes 
There are several finite difference schemes that I implemented for the first order 1-D 
wave equation. These include the explicit schemes: Forward Euler, Upwind, Lax-
Friedrichs, Lax-Wendroff, Leapfrog, and Fourth-order Leapfrog; and the implicit 
schemes: Backward Euler, Crank-Nicolson, and Box. These schemes were found in 

[Threfethen 1994], and are outlined in Table 1 and 2. In all cases, 
x
tcr

Δ
Δ

= . It is also 

http://mit.edu/dongs/Public/18.086/Project1


useful to keep in mind the stability and order of accuracy for each of these schemes. I 
include in Table 3 the same stability and accuracy information found in Chapter 4 of 
[Threfethen 1994]. Many of these values are verified by experimentation in a later section. 
 
Table 1. Explicit finite difference schemes for first order 1-D wave equation 

FD Scheme Matrix Representation 
Forward Euler (FEU) 
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Lax-Friedrichs (LXF) 
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Lax-Wendroff (LXW) 
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Leapfrog (LFG) 
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Fourth-order Leapfrog (LF4) 
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Table 2. Implicit finite difference schemes for first order 1-D wave equation 
Backward Euler (BEU) 
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Crank-Nicolson (CNS) 
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Box (BOX) 
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Table 3. Stability and order of accuracy for finite difference schemes 
FD Scheme Order of accuracy CFL stability 

restriction 
Exact stability 
restriction 

Forward Euler 1 1≤r  Unstable 
Upwind 1 1≤r  1≤r  
Lax-Friedrichs 1 1≤r  1≤r  
Lax-Wendroff 2 1≤r  1≤r  
Leapfrog 2 1≤r  1≤r  
4th-order Leapfrog 2 2≤r  ...728.0≤r  
Backward Euler 1 None None 
Crank-Nicolson 2 None None 
Box 2 None  None  

2.2 Performance of finite difference schemes 

2.2.1 Setup 
Let’s see how each finite difference scheme performs on some sample problems. The 
three sample initial conditions that I will use for experimentation include a step function, 
a discrete approximation of the delta function, and a smooth sinusoidal function. The 
initial conditions are written out in equations 5-7. Although they are quite arbitrarily 
chosen, I hope they will produce some interesting results. 
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 ( ) ( )xxu 2sin0,3 =  (7) 
 
The other input factors include values for c, tΔ , and xΔ . I have chosen some 
representative combinations for experimentation, as shown in Table 4. 
 
Table 4. Representative trials for c, tΔ , and xΔ  
Trial c xΔ  tΔ  r 
1 0.5 0.04 0.02 0.25 
2 0.5 0.02 0.02 0.5 
3 0.5 0.0137 0.02 0.728 
4 0.5 0.0101 0.02 0.99 
5 0.5 0.0099 0.02 1.11 
6 0.5 0.02 0.01 0.25 
7 0.5 0.02 0.04 1 



2.2.2 Results 
Using the step function initial condition and Trial 1 input values from Table 4 produces 
the results for each finite difference scheme shown in Figures 1 and 2 below. 

 

 
Figure 1. Results of explicit methods using step initial condition and Trial 1 inputs. 



 
Figure 2. Results of implicit methods using step initial condition and Trial 1 inputs. 

 
The inputs provide an r value of 0.25, which is quite small and should produce fairly 
stable results. From Figure 1, it is apparent that Forward Euler is not very stable, even for 
such a small r. Upwind and Lax-Friedrichs both produce nice inosculating results, but 
have much longer shock widths (i.e. take much longer to make the step) than most of the 
other schemes. Several schemes including the Leapfrogs, Backward Euler, and Crank-
Nicolson produce oscillations between ctx −0 and ctx +0 , where is the initial position 
of the step. The sudden discontinuity of the step function causes the ripple in the 
Leapfrog and implicit algorithms. The Box method anticipates a smooth and quick step 
by creating oscillations before the step. Lax-Wendroff initially overshoots the step, but 
then quickly dampens out the oscillations.  

0x

 
From the initial glance, each finite difference scheme has different merits and limitations, 
save Forward Euler, which simply leaves much to be desired.  
 
Now let’s try the delta function using the same input values as before. The results are 
shown in Figures 3 and 4. 



 

 
 

Figure 3. Results of explicit methods using delta initial condition and Trial 1 inputs. 
 



 
 

Figure 4. Results of implicit methods using delta initial condition and Trial 1 inputs. 
 

The implementation of the delta function is a discrete approximation of the real delta 
function. One can also think of this approximation as a very thin triangle wave. The most 
difficult thing for each finite difference scheme to maintain is the height of the peak as it 
travels through time. The peak height was initialized to xΔ

1 or 25. When , most of the 
finite difference schemes have reduced the peak to around 5. An interesting thing to note 
is that although Forward Euler is very unstable, it does maintain the highest peak of any 
of the finite difference schemes.  

2=t

 
Now let’s try the sinusoidal initial condition with the same input values as before. Results 
are shown in Figures 5 and 6.  

 



 
 

Figure 5. Results of explicit methods using sinusoidal initial condition and Trial 1 inputs. 
 



 
Figure 6. Results of implicit methods using sinusoidal initial condition and Trial 1 inputs. 

 
The sinusoidal initial condition causes some interesting oscillations on the left boundary 
in many of the finite difference schemes. This is likely a boundary setup issue. If we 
assume that we are dealing with a boundless problem, we can ignore the boundary 
oscillations. The smoothness of the sinusoid gives the finite difference methods an easier 
time in modeling – most of the finite difference schemes return errors that are very close 
to zero. Lax-Friedrichs tended to shrink or smooth out the size of the wave, so it 
produced slightly more error than the other schemes. Pretty much all of the other finite 
difference methods produced fairly good results on the sinusoidal initial condition. 
 
Now that we have looked at the performance of the 9 finite difference schemes using 
three different initial conditions, we can also look at different input values for c, , and 

. I will use the step function initial condition and follow Table 4 for the input values. 
Instead of showing all of the results as I have done in the past three cases, I will just show 
the errors for each trial to make it easier for comparison. See Figure 7 for the details. 

tΔ
xΔ

 



 
 (a)  (b)  25.0=r 5.0=r
 

 
 (c)  (d)  725.0=r 73.0=r
 

 
 (e)  (f)  99.0=r 11.1=r
 

Figure 7(a-f). Procession of errors as r increases. Once a scheme is unstable, it is not shown. 



Figure 7 experimentally verifies the exact stability restrictions in Table 3. We can see that 
from the beginning, Forward Euler is unstable, even for very small r. Fourth-order 
Leapfrog goes unstable at some point between 725.0=r and 73.0=r . It is described as 
unstable for in Table 3. At 728.0>r 99.0=r , the explicit schemes that have not gone 
unstable already are preparing to; and we see that all the explicit schemes go unstable at 

.  11.1=r
 
If we look very closely at the error plots, we can verify that the orders of accuracies for 
the different schemes are as stated in Table 3.  

3 Second order 1-D wave equation 
The second order wave equation in one-dimensional space is as follows: 
 
   (8) xxtt ucu 2=
 
where c is a positive constant, and ( )txu ,  is subject to the initial conditions 
 
  ( ) ( ) ∞<<∞−= xxfxu ,0,  and (9) 
  ( ) ( ) ∞<<∞−= xxgxut ,0, . 
 
The analytical solution as given by d’Alembert as found in [Hilderbrand 1968] is 
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For the purposes of demonstrating the effectiveness of the finite difference methods, I 
will assume . ( ) 0=xg

3.1 Explicit difference method (EXP) 
The standard and most natural difference method for the second order wave equation is  
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which can be rewritten as 
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then the explicit finite difference scheme can be written in matrix form as 
 
 ( ) buuKIu 1nn1n 222 rr −−−= −+ . (14) 
 
The von Neumann necessary condition for stability holds for the explicit difference 
equation if 1≤r . The derivation can be found in [Mitchell 1980], p198-199. This is 
shown experimentally in a later section. 

3.2 Implicit difference method (IMP) 
An implicit difference approximation to the second order wave equation is given by 
[Mitchell 1980] as 
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which can be rewritten as 
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then the implicit finite difference scheme can be written in matrix form as 
 
 ( ) ( ) ( ) buKIbuKIbuKI 1nn1n −+−−−=++ −+

222
444 22
rrr

. (17) 
 



or  
 ( ) ( ) ( )[ ]buKIuKIKIu 1nn1n 42 222

4414 −+−−+= −−+
rrr

 (18) 

3.3 Performance of finite difference methods 
I will now try the explicit and implicit finite difference methods for the same initial 
conditions as in equations 5-7. Figure 8 shows the results of the two methods on the delta 
function initial condition. 
 

 
Figure 8. Explicit and implicit finite difference solutions with the delta initial condition 

 
The general performance of both methods is generally about the same; that is, both 
methods produce similar errors. Now in Figure 9, I will produce the results for the 
sinusoidal initial condition. 
 

 
Figure 9. Explicit and implicit finite difference solutions with the sinusoidal initial condition 



The finite difference schemes are designed to maintain the same boundary conditions as 
in the initial condition. The real solution was constructed without maintaining boundary 
conditions, so that is why there are seemingly large errors near the bounds. Ignoring these 
errors, the performance of the explicit and implicit finite difference schemes on the 
smooth initial condition produces very accurate results.  
 
In Figures 10-12, I will use the step function initial condition with varying . xΔ

 

 
Figure 10. Finite difference solutions with the step initial condition and  5.0=r

 
At small values of r, the performances of the explicit and implicit finite difference 
solutions are very similar. Both are fairly accurate and have similar behaviors. 
 

 
Figure 11. Finite difference solutions with the step initial condition and  975.0=r

 
When r approaches 1, the explicit method behaves more vigorously, as it anticipates the 
instability boarder. The implicit method performs about the same as before. 



 
Figure 11. Finite difference solutions with the step initial condition and 1=r  

 
When 1=r , the explicit solution reaches the instability boarder. Although it does not go 
unbounded until 1>r , it oscillates violently between the two values of the step function. 
Meanwhile, the implicit method is not affected by the r value.  

4 Second order 2-D wave equation 
The second order wave equation in two-dimensional space is as follows: 
 
  ( )yyxxtt uucu += 2  (19) 
 
where c is a positive constant, and ( )tyxu ,,  is subject to the initial conditions 
 
  ( ) ( ) ∞<<∞−= yxyxfyxu ,,,0,,  and (20) 
  ( ) ( ) ∞<<∞−= yxyxgyxut ,,,0,, . 
 
For the purposes of demonstrating the effectiveness of the finite difference methods, I 
will assume . ( ) 0, =yxg

4.1 Explicit difference method 
As in the 1-D case, the standard and most natural difference method for the second order 
wave equation is  
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If we let 
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= , equation (21) can be rewritten as 
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If we let  
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where the flip function simply reverses the order of elements in a vector, and let 
 
 ( ) ( )IKKIK2D 22 ,, yx rkronrkron += , (24) 
 
where kron is the Kronecker product, then the explicit finite difference scheme can be 
written in matrix form as 
 
 ( ) b2DuuK2DIu 1nn1n −−−= −+ 2 . (25) 
 
The stability of the explicit finite difference method for second order 2-D wave is 
dictated by the CFL condition 

 
s

r 1
≤ , (26) 

 
where s is the space dimensions of the wave equation, and yx rrr == . In the 2-D case, 

the explicit scheme is stable for 
2

1
≤r , or 0.7071.  

4.2 Performance of the explicit difference method 
There are several different initial conditions which I adapted from [Wakefield 2003], 
including a cube-like protrusion, a sinusoidal hump, a cylindrical protrusion, a dome, and 
a step-like protrusion. Since these initial conditions are for general demonstration, I will 
not go into the details of each of them. Instead, I will just focus on the sinusoid, since it is 
easy to derive a true solution with which to compare the finite difference solution. The 
initial condition is 
 ( ) ( ) ( )yxyxu 44 sinsin20,, ππ= , (27) 
 
so the analytical solution is 
 
 ( ) ( ) ( ) ( )tcyxtyxu 2

244 cossinsin2,, πππ= . (28) 



 
The following Figure 11 shows the progression of the explicit difference method, the true 
solution, and the error over a period of time, sampling at every second. Apologies for 
having Figure 11 span over multiple pages, but I want to be somewhat complete. The 
MATLAB animation gives a much better idea of what happens as the scheme is run.  
 
 

 
 
 

Figure 11 (continued on next page) 



 
 

 
 

 
 

Figure 11 (continued on next page) 
 



 

 

 
 

 
Figure 11. Results with slightly offset sinusoidal initial condition, 

1.0,1.0,7.0 =Δ=Δ=Δ= tyxc  
 
The explicit scheme performs fairly well, with small error. There is a ripple that flows 
diagonally across the explicit difference solution, which is the result of the set boundary 
condition that the explicit difference solution is required to adhere to, but the true 
solution does not. The reason why the ripple flows diagonally is that the initial condition 
was diagonally offset by and xΔ yΔ . Without the offset, there are reflective waves that 
bounce off of the boundaries on all sides, as exemplified in Figure 12.  



 

 
 
 

Figure 12. Sample results with centered sinusoidal initial condition, 
1.0,1.0,7.0 =Δ=Δ=Δ= tyxc  

 
The boundary conditions are set by the b vector in the matrix form of the finite difference 
equations. I have currently set the bounds to match the boundaries on the initial condition. 
Thus whenever the wave reaches a boundary, there will be a small higher order reflective 
wave that is returned. This boundary condition was an arbitrary choice and may be 
representative of certain physical situations but not others. For a good discussion of 
boundary conditions, see [Threfethen 1994], Ch. 6.  
 
Let’s verify that the stability of the explicit finite difference method really is defined by  
 

 
2

1
≤r , or 0.7071,  

 
as mentioned earlier. Figures 11 and 12 show example results for 7.0=r . Now I will try 

, which is outside the stability boundary. Figure 13 shows the results. 71.0=r
 



 
Figure 13. Sample unstable results with 1.0,1.0,71.0 =Δ=Δ=Δ= tyxc  



Sure enough, for 
2

1>r , the explicit difference method goes unstable. Since stability is 
limited by s, or space dimension, the explicit difference scheme could be problematic for 
higher spatial dimensions, as the operable range for r is reduced more and more.  
 
Now let’s see what would happen if I double xΔ  and yΔ  while keeping c at 0.7. Results 
are shown in Figure 14.  
 

 
 

Figure 14. Results with sinusoidal initial condition, 1.0,2.0,7.0 =Δ=Δ=Δ= tyxc  



Doubling  and has led to the increase of the error by a factor of about four, which 
can be verified by looking at the actual error values. Now we can safely believe that the 
explicit difference algorithm indeed has second order accuracy, as many sources (such as 
[Buchner]) have mentioned. 

xΔ yΔ

 
Now let’s just have some fun with different initial conditions. I have included here one 
trial with the cube-shaped protrusion initial condition and one with the dome initial 
condition. Figures 15 and 16 show the results of the explicit difference method on these 
two initial conditions.  
 
 

 
 

Figure 15. Cube protrusion input condition, 1.0,1.0,7.0 =Δ=Δ=Δ= tyxc  
 
It is interesting to note how the square shape causes fluctuations in the wave. In Figure 15 
at t = 1, the corners of the square have been reduced before the sides of the square. Then 
at t = 4, the square shape reforms with reinforcement from the boundary reflections. 
 
Now let’s look at the results of a dome initial condition. 



 
 

Figure 16. Dome protrusion input condition, 1.0,1.0,7.0 =Δ=Δ=Δ= tyxc  
 
The first thing to note is that the dome shape is much smoother than the cube protrusion, 
and thus the finite difference result is also much smoother. The small dome causes a 
donut ripple outwards, like a water wave. At t = 3, the wave is still moving outward in a 
circular shape, but by t = 4, the wave has reached the boundary and builds up a square 
shaped reflection.  
 
The overall performance of the explicit difference method is quite good for stable values 
of r and small , and , with second order accuracy. The stability could be 
improved by going to an implicit difference method, but often implicit schemes tend to 
be too complicated to use in a simple manner. 

yx ΔΔ , tΔ

 

4.3 Implicit difference method 
An implicit difference formula is given by [Mitchell 1980] in the form 
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where is the second order centered difference formula, and a, b, c, d, e, f are 
coefficients dependent on r. There are different ways to set the coefficients. Fairweather 
and Mitchell suggested the following which produces a 4

2δ

th order accurate scheme: 
 
 ( ) ( ) ( ) 242

72
12
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12

12
1 ,101,51,1 afdrrerbrca ==++−=+−=−== . (30) 

 
Due to the symmetries, equation 29 can be rewritten as 
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The non-linearity in u makes this a very difficult scheme to implement. Due to time 
constraints, I will not be implementing this method, but only mention it here for those 
interested in the setup of the implicit finite difference method. 

5 Conclusion and future work 
In this discussion, I have covered first order 1-D, second order 1-D, and second order 2-D 
wave equations. I compared 9 different finite difference schemes for first order equations, 
and looked at explicit and implicit schemes for second order equations. In the literature, I 
have come across discussions of higher order finite difference schemes for second order 
hyperbolic equations, which might be an interesting expansion for future work. Another 
area which I have not touched upon is splitting second order equations into multiple 
simultaneous first order equations. Each of these topics merits more discussion than I 
have the temporal resources to provide presently, but some interesting work has been 
done by [Wakefield 2003] on the implementation of splitting methods.  
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