
Chapter 3

Finite Difference Methods

The finite difference (FD) method transforms a differential equation or PDE into a difference equation that
can be solved numerically. The basic elements of FD are as follows:

1. Grid. This is a set of points at which the unknown function in the PDE is sampled. Commonly,
a grid is evenly spaced, so that in 1D the grid points can be written in the form xn = n∆x, where
n = 1, 2, . . . , N . In 2D, a rectangular grid of points is often used, such that (xm, yn) = (m∆x, n∆y).
A rectangular or cubic 3D grid is defined similarly. Other types of grids include polar, hexagonal, and
conformal. Conformal grids are used when it is advantageous to have grid points conform to the shape
of a material object. For problems involving both space and time coordinates, a temporal grid for the
time coordinate is also required.

2. Stencil. This is a difference approximation for the derivative of a quantity at one grid point in terms
of values at neighboring points. The most common stencil for 1D problems is the first order central
difference

∂u(x)

∂y
' u(x + ∆x) − u(x − ∆x)

2∆x
(3.1)

Using a grid, this can be expressed as the difference equation f(xn) = [u(xn+1) − u(xn−1)]/∆x.

3. Boundary Conditions. At the edges of the grid, the stencil applied at points in the interior of the grid
typically cannot be used. Some type of rule for handling the edge points is required. There are several
different types of boundary conditions:

- Dirichlet: u|bd = 0. Sometimes instead of vanishing, the unknown may be equal to some given
function at the boundary.

- Neumann: ∂u
∂n

∣
∣
bd

= 0, where n represents the coordinate that is normal to the boundary. Imple-
menting this boundary condition on the FD grid using a forward difference approximation for
the derivative leads to the relationship x1 = x2, where x1 is a point on the grid boundary.

- Mixed: A linear combination of f and its normal derivative are set to a constant.

- Absorbing boundary condition (ABC): This type of boundary condition is very important in
applications of the finite difference method. Most electromagnetics problems involve unbounded
regions, which cannot be modeled computationally. One option is to use one of the above
boundary conditions and make the simulation region very large, and terminate the simulation
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before reflections from the boundary perturb the solution in the region of interest. The drawback
of this approach is that the larger the simulation region, the greater the computational cost of the
simulation. A better approach is to use a boundary condition that absorbs waves and reflects as
little energy as possible. This is the computational analogue of an anechoic chamber. There are
several types of ABCs, including:

One-way wave equation. These are easy to implement but imperfect in 2D and higher
dimensions.
Perfectly matched layer with loss.
Surface integral equation on the boundary (MOM-TDIE).

Boundary conditions may also be required at material interfaces inside the simulation region.

4. Solution method. Applying a stencil at each grid points leads to a system of difference equations
which can be solved for the unknown sample values. Solution methods can be grouped into two
categories:

- Explicit: update the value at one grid point at a time in terms of neighboring values.

- Implicit: Arrange the difference equations into a linear system and solve for all of the unknowns
at one time.

3.1 Hyperbolic PDEs - FDTD-1D

The simplest hyperbolic PDE is the 1D wave equation

∂2u(x, t)

∂x2
=

1

c2

∂2u(x, t)

∂t2
(3.2)

One physical problem that is modeled by this PDE is a planar time-domain current source that varies in
intensity only in the x direction. Since the source varies only in the x direction, the radiated electric field
also only varies in the x direction, and the components Ey(x, t) and Ez(x, t) both satisfy Eq. (3.2) where
the source is zero.

In order to apply the finite difference method to the wave equation, difference approximations for the deriva-
tives are required. The stencil for the second derivative in x is

∂2u(x)

∂x2
' ∂

∂x

[
u(x + ∆x/2) − u(x − ∆x/2)

∆x

]

' u(x + ∆x) − 2u(x) + u(x − ∆x)

(∆x)2
(3.3)

where the t dependence of u(x, t) is suppressed for brevity. The stencil for the right-hand side of (3.2) is
very similar. Substituting difference approximations into the wave equation leads to

r2 [u(x + ∆x, t) − 2u(x, t) + u(x − ∆x, t)] = u(x, t + ∆t) − 2u(x, t) + u(x, t − ∆t) (3.4)

where r = c∆t/∆x.

If we define a grid by the points xn = (n−1)∆x and tn = (n−1)∆t, then u(xm, tn) = u[(m−1)∆x, (n−
1)∆t]. As a shorthand notation, we write this as un

m. The difference equation becomes

r2
(
un

m+1 − 2un
m + un

m−1

)
= un+1

m − 2un
m + un−1

m (3.5)



Now, we can solve this for un+1 to obtain an explicit finite difference method:

un+1
m = r2

(
un

m+1 − 2un
m + un

m−1

)
+ 2un

m − un−1
m (3.6)

This algorithm is known as the finite difference time domain method (FDTD), because a time coordinate is
involved.

Initial Condition

Because the wave equation involves time, part of the boundary condition required for the finite difference
approach is actually a boundary condition in time, or an initial condition. Since the PDE involves a second
order time derivative, initial conditions at two time steps are required. This means that u1

m and u2
m must be

specified as given functions. One common situation is the initial condition u1
m = u2

m = 0, and a source is
applied at one of the spatial boundaries of the region.

Boundary Conditions

The simplest boundary condition is Dirichlet: u(0, t) = 0 and u(d, t) = 0, where [0, d] is the simulation
region. The Neumann condition is implemented by setting the endpoint value equal to the point next to it:
un

2 = un
1 , and similarly for the right boundary point.

An absorbing boundary condition can be obtained by discretizing the one-way wave equation at the end-
points of the region. This is known as the Mur boundary condition. At the right-hand side, we enforce the
PDE

∂u

∂x
= −1

c

∂u

∂t
(3.7)

This equation has solutions of the form u(x, t) = u0(x − ct), which is a wave of arbitrary shape moving
to the right as time increases. This allows waves to move out of the simulation region without reflection.
We have to be careful in discretizing this equation, because the approximations for the spatial and time
derivatives in the one-way wave equation need to be evaluated at the same point. This can be accomplished
using averaging of sample values of u:
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∆x
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∆x
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= − 1

2c
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N

∆t
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at (xN ,tm+∆t/2)

+
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∆t
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at (xN−1,tm+∆t/2)








(3.8)

By averaging the derivatives at two different locations, both derivative approximations in this expression are
evaluated at the point (xN − ∆x/2, tm + ∆t/2). Solving for um+1

N gives

um+1
N = um

N−1 +
r − 1

r + 1
(um+1

N−1 − um
N ) (3.9)

The boundary condition at x = 0 can be derived similarly. For 1D problems, the Mur ABC is a perfect
absorber.



Sources

There are two types of sources that can be used in the FDTD method, hard sources and soft sources. A hard
source simply sets the value of the field at one or more grid points equal to a specified function of time, and
so is a type of Dirichlet boundary condition. This corresponds to an EM problem in which the electric field
at some point is known, and we wish to find the values of the radiated field at other points. One property of
a hard source is that waves propagating towards the source are reflected by the source.

A soft source corresponds to an impressed electric current. In order to allow for a soft source, we must
rederive (3.2) from Maxwell’s equations. If we take the curl of Faraday’s law and substitute in Ampere’s
law, we obtain

∇×∇× E +
1

c2

∂2E
∂t2

= −µ
∂J
∂t

(3.10)

where c = 1/
√

µε. If we use the vector calculus identity

−∇×∇× E + ∇(∇ · E) = ∇2E (3.11)

and assume that the permittivity is constant and the net electric charge is zero, so that ∇ · D = ∇ · E = 0,
then we arrive at the wave equation

∇2E − 1

c2

∂2E
∂t2

= µ
∂J
∂t

(3.12)

For a problem in which the current density vector is in one direction only, and the source varies also only
in one direction, this reduces to a 1D wave equation of the same form as (3.2) but with a forcing function
determined by the current source. If Eq. (3.12) is discretized using the finite difference method, we arrive at
the difference equation

un+1
m = r2

(
un

m+1 − 2un
m + un

m−1

)
+ 2un

m − un−1
m − c2(∆t)2µ

∂J(xm, t)

∂t

∣
∣
∣
∣
t=tn

(3.13)

where u represents a component of the electric field. A time harmonic plane current of the form Jy =
J0 sin (ωt)δ(x − xs) launches plane waves traveling away from the source on both sides. To obtain a plane
wave with an electric field of amplitude E0, using the fact that the discretized source has a width ∆x, the
difference equation becomes

un+1
m = r2

(
un

m+1 − 2un
m + un

m−1

)
+ 2un

m − un−1
m − 2rω∆tE0 cos (ωtn)δm,ms

(3.14)

where xms
= xs is the location of the source.

One problem with a soft source is that in general it leads to a nonzero DC component in the solution. To avoid
this, the modified source function [Cyntha Furse, et al., IEEE Transactions on Antennas and Propagation,
vol. 48, Aug. 2000, pp. 1198-1201]

r(t) sin (ωt) (3.15)

can be used. The function r(t) is a turn-on function defined by

r(t) =







0 t < 0
0.5[1 − cos (ωt/(2α))] 0 ≤ t ≤ αT

1 t > αT
(3.16)

where T is the period of the time-harmonic source and α = 1/2, 3/2, 5/2, . . . .



3.1.1 Stability

By running simulations for different values of ∆x and ∆t, it is easy to see that the FDTD method is unstable
for some values of the discretization lengths. We can study the solution to the FDTD difference equation
analytically to gain insight into this problem. A single-frequency solution to the 1D wave equation is

u(x, t) = cos (kx ± ωt) (3.17)

where k = ω/c. For convenience in the following analysis, we use the fact that sin (kx ± ωt) is also
a solution to put this into complex exponential form ejkx+jωt. The FDTD-1D difference equation has a
discrete solution of similar form:

un
m = ejkm∆x+jωn∆t (3.18)

By substituting this solution into the difference equation, we can obtain a dispersion relation that will be
different from the free space dispersion relation k = ω/c.

This procedure leads to the relationship

cos (ω∆t) = r2[cos (k∆x) − 1] + 1 (3.19)

This is the numerical dispersion relation for the FDTD-1D algorithm. Notice that if the right-hand side of
(3.19) is greater than one in magnitude for some value of k, then ω must have a nonzero imaginary part.
If this is the case, then the time exponential in solution (3.18) becomes a real exponential, and the solution
blows up as time increases. Restricting the right-hand side of (3.19) to be less than or equal to one in
magnitude leads to the stability criterion

c∆t

∆x
≤ 1 (3.20)

This condition leads to a nice physical picture. If we consider a given grid point (xm, tn), the light cone for
that point is defined to be all points in the future that can be reached by traveling at the speed of light. If
(3.20) is met, then only one grid point at the n + 1 time step is inside the light cone. If more than one grid
point at the next time step were inside the cone, then in a loose sense, too much energy is transferred from
the solution at one time step to the solution at the next time step, and unwanted signal amplification occurs.


