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The Computational Plasma Physics Group (CPPG) develops and applies advanced 
computational techniques in the areas of experimental analysis and prediction codes, 
scientific visualization, improved parallel scaling, and algorithmic development.  Some 
of the highlights of the FY2008 year are the following: 
 
Isolver Free Boundary Equilibrium Solution in TRANSP/PTRANSP 
 
The Isolver free-boundary MHD equilibrium code, originally written in IDL by Jon 
Menard, has been ported to Fortran-90 and integrated into the TRANSP/PTRANSP 
experimental analysis and predictive codes.  In addition to calculating a self consistent 
magnetic field both inside and outside the plasma boundary needed for PTRANSP 
simulations, Isolver provides a framework for adding new physics to 
TRANSP/PTRANSP which requires tight coupling to the equilibrium code.  The first 
enhancement to Isolver has been the addition of the effects of plasma rotation on the 
plasma pressure and on the equilibrium flux surfaces.  This is required to support NSTX 
and other tokamaks which can have large rotations, primarily due to neutral beam 
injection.  The centrifugal pressure can become a significant fraction of the total pressure 
causing a distortion of the flux surface representation.  While TRANSP has traditionally 
contained a scalar pressure term due to rotation, including the rotation directly in the 
equilibrium solver accounts for particle densities no longer being flux surface functions.  
Future enhancements to Isolver are expected to include comparison and use of measured 
coil currents for use in TRANSP simulations and coupling of poloidal field diffusion to 
the equilibrium solution for PTRANSP predictive simulations.   Figure CPPG-1a shows a 
typical free-boundary equilibrium solution that is constrained to have the boundary pass 
through a number of boundary points that were inferred from the experimental data.  In 
part (b) of that figure we overlay the plasma flux surfaces with and without the effect of 
plasma rotation included. 
 



 
Figure CPPG-1: (a) a free boundary Isolver solution for NSTX; (b) comparison of core solutions 
showing effects of plasma rotation. 
 
 
A Level-set Approach for Shaped Plasma: 
 
There are a variety of computational approaches to deal with shaped poloidal cross-
sections ranging from unstructured finite elements (as used in the M3D and M3D-C1 

codes) to structured grids with generalized curvilinear meshes. Under the auspices of the 
APDEC SciDAC center, we have developed the AMR-MHD code for solving the 
resistive MHD equations. Using the Chombo library developed at Lawrence Berkeley 
National Laboratory, the AMR-MHD code utilizes block structured adaptive mesh 
refinement to dynamically adapt meshes to resolve small-scale or high-gradient 
phenomena.  In the past, shaped plasma cross-sections were handled with mapped 
curvilinear meshes. This had the advantage that the initial grid may be aligned with 
magnetic flux surfaces. On the other hand, due to the explicit time-stepping nature of the 
algorithm for the ideal-MHD portion of the equations, this method resulted in very small 
time steps because of small cells in the mapped grids. To overcome this, and to generally 
enhance the AMR-MHD code, we developed a level-set approach to handle the shaped 
poloidal cross-section.  

The level-set approach, developed originally by mathematicians Osher and Sethian at 
UCLA in 1988, has had a rich history in many science and engineering applications 



(consult, for example, the book entitled “Level-set Method and Fast Marching Methods”  
by Sethian). In this approach, the boundary between plasma and vacuum is represented 
implicitly. The approach is most useful for moving interfaces but can also be used for 
irregularly shaped boundaries. The interior of the domain is meshed using uniform cells 
with coordinate aligned faces.  This is advantageous over curvilinear meshes in terms of 
simplicity, accuracy and ease of grid generation. Unlike the mapped grid approach, there 
are no coordinate singularities, or large variations in metric terms corrupting solution 
accuracy. Furthermore, elliptic solvers are easier to implement with this approach. The 
disadvantages of the method are that implementation of boundary conditions is more 
complicated because of the implicit nature of the boundary representation; the mesh is 
not flux surface aligned, and mass and energy conservation are not ensured to machine 
precision. Finally, mathematical theories for accuracy, and stability are not very well 
developed for this approach.  

It is not uncommon to use ghost cells to impose boundary conditions in finite volume 
methods. The boundary conditions imposition in the level-set approach is essentially a 
generalization of that approach. We start by defining a “real” fluid region and a “ghost” 
fluid region. This distinction is made via the use of a signed distance function, whose 
zero crossing defines the boundary. In order to impose perfectly conducting boundary 
conditions with no normal flow, we extrapolate all variables using a pseudo-time 
advection equation from the real to the ghost fluid region. The normal velocity and the 
magnetic field components are reflected to satisfy the perfectly conducting wall boundary 
conditions. Further details of this approach will be presented in a publication. It is 
important to realize that the boundary is not represented in a “stair-stepped” fashion and 
is in fact smooth even though visualizations belie this fact.  

Examples of this approach applied to problems relevant to tokamak refueling are shown 
in Figures CPPG-2 and CPPG-3. In Fig CPPG-2, we see the rapid motion on Alfvén time 
scales of a high-density fully ablated pellet cloud in axisymmetry.  In Fig CPPG-3 we 
show a early snapshot of the 3D pellet injection case in which the electrons heat and 
ablate the pellet resulting in a localized high pressure region.  

 



 
 
Figure CPPG-2:  Outward radial motion of a high-beta region, i.e., a high density and pressure 
region initialized to mimic a fully ablated pellet and heated cloud during pellet injection in a 
tokamak.  
 

      
Figure CPPG-3: A fully 3D MHD adaptive mesh simulation of pellet injection with a kinetic electron 
heat flux model. The high-density pellet cloud (peak density ~ 106 times the ambient density) is heated 
at the fringes, which can be seen more easily in the increased pressure at the edges of the pellet cloud. 
 



Improved Scalable Solver for Production M3D Runs: 
 
The M3D code is being used extensively as a production 3D MHD simulation code.  The 
code has used several million processor hours in FY2008 performing a variety of physics 
studies including the simulation of sawteeth, edge localized modes, plasma disruptions, 
and the effects of error fields on the magnetic surfaces and their topology.    The main 
computational task in the M3D code is solving a series of sparse matrix equations each 
time step.  This year, an advanced Algegraic Multigrid / Congujate Gradient solver called 
CG/Hypre  has become available thru the PETSc interface.  We have now installed the 
CG/Hypre  in the production version of M3D and this has eliminated a scaling bottleneck 
that had previously prevented M3D from routinely using thousands of processors.   With 
this new solver package, the production  M3D code now scales well up to thousands of 
processors.   Figure CPPG-4 shows a comparison of the scaling characteristics of M3D 
with the old and new solver.  Starting in May 2008, the new solver package enabled M3D 
to perform production runs on 2,416+ processors. Compared to original solver, the code 
is over 7 times faster on the largest problems on the NERSC Franklin computer.  Because 
of these improvements, the M3D group qualified for the NERSC 2008 "Large Scale 
Reimbursement Program”. 
 

 
Figure CPPG-4:  Comparison of the problem time for a weak scaling study with the old and new 
M3D solver.  In weak scaling, the number of mesh points is increased as the number of processors is 
increased, so that a horizontal line indicates perfect scaling. 
 



Incorporation of Curved Boundary Conditions in M3D-C1 Stability Calculations 
 
The M3D-C1 code is under development as a high-order implicit replacement for the 
existing M3D code.  The M3D-C1 effort has passed another major developmental 
milestone in that it is now able to utilize an arbitrary shaped computational domain. 
Because of the nature of the high-order C1 finite elements, one needs to specify not only 
the value of the function (for example, the poloidal flux), but also the values of the first 
and second tangential derivatives at the domain boundary.  Through a number of 
cancelations, it turns out that this is easily done for rectangular boundaries.  However, for 
non-rectangular boundaries, these conditions need to be rotated into the local coordinates 
of the element, taking into account the boundary curvature and the new surface terms 
which appear in the equations from the integrations by parts associated with the Galerkin 
procedure.  Now that these are handled properly, all the spurious oscillations previously 
seen at the boundary of curved domains have vanished.  This new capability allows 
M3D-C1 to begin a series of "fixed boundary" benchmark problems, including 
benchmarking with M3D and NIMROD.   Figure CPPG-5 shows contours of the 
perturbed plasma current in one of these benchmark studies where the plasma is unstable 
to a pressure driven n=3 mode.  We have also taken steps to enable M3D-C1 to transfer 
equilibrium from a Plasma State file, re-compute it using its own high-order basis and 
adaptively refine the mesh to be able to adequately resolve steep gradients and behavior 
near rational surfaces.  This allows us to seamlessly examine these equilibrium state files 
with respect to ideal, resistive, and two-fluid stability, including the effect of flow.  This 
achievement was done as part of the CEMM and SWIM work-scopes in collaboration 
with N. Ferraro (General Atomics) and with X. Luo and the SCOREC group (Renssalaer 
Polytechnic Institute).   
  



 
 
Figure CPPG-5:  Eigenmode of the perturbed toroidal plasma current for an n=3 pressure driven 
instability in a circular cross section domain as calculated by the M3D-C1 code using its new curved 
boundary capability. 
 
Performance and scalability improvements of PPPL’s Gyrokinetic PIC codes 
 
CPPG continues to be a major contributor in the development and improvement of the 
global gyrokinetic PIC codes GTS and GTC. The implementation of a particle 
distribution scheme in the general geometry Gyrokinetic Tokamak Simulation code 
(GTS) allowed it to meet and even surpass its OMB Joule milestones of scalability and 
performance in FY08. Since this achievement, more improvements in the physics and 
algorithms have been implemented in GTS. A new, fully parallel Poisson solver 
implemented with the PETSc library now replaces the original solver to take advantage 
of the extra MPI processes used for the particle distribution algorithm. In the old solver, 
all the processes in the same toroidal section would redundantly solve the local Poisson 
equation. The amount of work for that step is small as long as the number of particles per 
grid point per MPI process remains high. However, new simulations of large device sizes, 
such as ITER, and of turbulence at electron resolution require a very large number of grid 
points. Memory limitation on current systems along with the availability of a high 
number of processor cores naturally lead us to carry out simulations with a small number 
of particles per process to speed up the calculation. In such cases, redundant grid work 
can start limiting the performance and a fully parallel solver is required. Figure CPPG-6 
shows the new scalability of the GTS code as we keep the device size fixed (fixed 
number of grid points) while increasing the number of particles. The dashed curve 



represents the compute power of the code without taking into account the time spent in 
the solver and in input/output, while the solid curve represents the compute power of the 
whole code. As the number of processor cores increases, the two curves get closer to each 
other, showing how the time spent in the solver gets smaller due to the new parallelism. 
Other improvements to GTS included the optimization of the loop-level OpenMP for the 
new multi-core chips and optimization of the I/O for the Lustre parallel filesystem on the 
Cray XT systems. These code enhancements lead to the largest fusion simulation to date. 
We carried out a GTS simulation of Electron-Temperature-Gradient-driven (ETG) 
turbulence of an NSTX shot and directly compared the results with the tangential 
scattering measurements performed during the actual experiment. This extremely 
challenging and successful simulation ran on 31,232 processor-cores for 72 hours on the 
Jaguar Cray XT4 at the National Center for Computational Sciences (NCCS) at the Oak 
Ridge National Laboratory (ORNL). This run, which used 99.7% of the whole Jaguar 
system, generated over 85 Terabytes of data. 
 
Other improvements to the gyrokinetic codes also included the implementation of a fully 
two-dimensional domain decomposition in the object-oriented version of the GTC code. 
Memory limitations on some current computing systems, such as the Blue Gene/P 
supercomputer, greatly constrain the size of the simulations that can be run in terms of 
device sizes. To resolve this issue, a domain decomposition in the radial direction was 
added to the original toroidal domain decomposition in the GTC code. Loop-level 
OpenMP parallelism was also implemented to take advantage of the multi-core 
processors found on modern systems. With these new improvements, ITER-size 
simulations can easily be run on a very large number of processor cores on the Blue 
Gene/P computer with only a modest amount of memory per node.  



 
Figure CPPG-6.  Scaling of the GTS code for a fixed-sized grid and a fixed number of particles per 
MPI process.  The shrinking gab between the curves with and without the I/O and solver 
contributions shows the scalability of the new parallel solver in GTS. 
 


