
Computational Plasma Physics Group
FY2008 Highlights

The Computational Plasma Physics Group (CPPG) develops and applies advanced
computational techniques in the areas of experimental analysis and prediction codes,
scientific visualization, improved parallel scaling, and algorithmic development. Some
of the highlights of the FY2008 year are the following:

Isolver Free Boundary Equilibrium Solution in TRANSP/PTRANSP

The Isolver free-boundary MHD equilibrium code, originally written in IDL by Jon
Menard, has been ported to Fortran-90 and integrated into the TRANSP/PTRANSP
experimental analysis and predictive codes. In addition to calculating a self consistent
magnetic field both inside and outside the plasma boundary needed for PTRANSP
simulations, Isolver provides a framework for adding new physics to
TRANSP/PTRANSP which requires tight coupling to the equilibrium code. The first
enhancement to Isolver has been the addition of the effects of plasma rotation on the
plasma pressure and on the equilibrium flux surfaces. This is required to support NSTX
and other tokamaks which can have large rotations, primarily due to neutral beam
injection. The centrifugal pressure can become a significant fraction of the total pressure
causing a distortion of the flux surface representation. While TRANSP has traditionally
contained a scalar pressure term due to rotation, including the rotation directly in the
equilibrium solver accounts for particle densities no longer being flux surface functions.
Future enhancements to Isolver are expected to include comparison and use of measured
coil currents for use in TRANSP simulations and coupling of poloidal field diffusion to
the equilibrium solution for PTRANSP predictive simulations. Figure CPPG-1a shows a
typical free-boundary equilibrium solution that is constrained to have the boundary pass
through a number of boundary points that were inferred from the experimental data. In
part (b) of that figure we overlay the plasma flux surfaces with and without the effect of
plasma rotation included.

Figure CPPG-1: (a) a free boundary Isolver solution for NSTX; (b) comparison of core solutions
showing effects of plasma rotation.

A Level-set Approach for Shaped Plasma:

There are a variety of computational approaches to deal with shaped poloidal cross-
sections ranging from unstructured finite elements (as used in the M3D and M3D-C1

codes) to structured grids with generalized curvilinear meshes. Under the auspices of the
APDEC SciDAC center, we have developed the AMR-MHD code for solving the
resistive MHD equations. Using the Chombo library developed at Lawrence Berkeley
National Laboratory, the AMR-MHD code utilizes block structured adaptive mesh
refinement to dynamically adapt meshes to resolve small-scale or high-gradient
phenomena. In the past, shaped plasma cross-sections were handled with mapped
curvilinear meshes. This had the advantage that the initial grid may be aligned with
magnetic flux surfaces. On the other hand, due to the explicit time-stepping nature of the
algorithm for the ideal-MHD portion of the equations, this method resulted in very small
time steps because of small cells in the mapped grids. To overcome this, and to generally
enhance the AMR-MHD code, we developed a level-set approach to handle the shaped
poloidal cross-section.

The level-set approach, developed originally by mathematicians Osher and Sethian at
UCLA in 1988, has had a rich history in many science and engineering applications

(consult, for example, the book entitled “Level-set Method and Fast Marching Methods”
by Sethian). In this approach, the boundary between plasma and vacuum is represented
implicitly. The approach is most useful for moving interfaces but can also be used for
irregularly shaped boundaries. The interior of the domain is meshed using uniform cells
with coordinate aligned faces. This is advantageous over curvilinear meshes in terms of
simplicity, accuracy and ease of grid generation. Unlike the mapped grid approach, there
are no coordinate singularities, or large variations in metric terms corrupting solution
accuracy. Furthermore, elliptic solvers are easier to implement with this approach. The
disadvantages of the method are that implementation of boundary conditions is more
complicated because of the implicit nature of the boundary representation; the mesh is
not flux surface aligned, and mass and energy conservation are not ensured to machine
precision. Finally, mathematical theories for accuracy, and stability are not very well
developed for this approach.

It is not uncommon to use ghost cells to impose boundary conditions in finite volume
methods. The boundary conditions imposition in the level-set approach is essentially a
generalization of that approach. We start by defining a “real” fluid region and a “ghost”
fluid region. This distinction is made via the use of a signed distance function, whose
zero crossing defines the boundary. In order to impose perfectly conducting boundary
conditions with no normal flow, we extrapolate all variables using a pseudo-time
advection equation from the real to the ghost fluid region. The normal velocity and the
magnetic field components are reflected to satisfy the perfectly conducting wall boundary
conditions. Further details of this approach will be presented in a publication. It is
important to realize that the boundary is not represented in a “stair-stepped” fashion and
is in fact smooth even though visualizations belie this fact.

Examples of this approach applied to problems relevant to tokamak refueling are shown
in Figures CPPG-2 and CPPG-3. In Fig CPPG-2, we see the rapid motion on Alfvén time
scales of a high-density fully ablated pellet cloud in axisymmetry. In Fig CPPG-3 we
show a early snapshot of the 3D pellet injection case in which the electrons heat and
ablate the pellet resulting in a localized high pressure region.

Figure CPPG-2: Outward radial motion of a high-beta region, i.e., a high density and pressure
region initialized to mimic a fully ablated pellet and heated cloud during pellet injection in a
tokamak.

Figure CPPG-3: A fully 3D MHD adaptive mesh simulation of pellet injection with a kinetic electron
heat flux model. The high-density pellet cloud (peak density ~ 106 times the ambient density) is heated
at the fringes, which can be seen more easily in the increased pressure at the edges of the pellet cloud.

Improved Scalable Solver for Production M3D Runs:

The M3D code is being used extensively as a production 3D MHD simulation code. The
code has used several million processor hours in FY2008 performing a variety of physics
studies including the simulation of sawteeth, edge localized modes, plasma disruptions,
and the effects of error fields on the magnetic surfaces and their topology. The main
computational task in the M3D code is solving a series of sparse matrix equations each
time step. This year, an advanced Algegraic Multigrid / Congujate Gradient solver called
CG/Hypre has become available thru the PETSc interface. We have now installed the
CG/Hypre in the production version of M3D and this has eliminated a scaling bottleneck
that had previously prevented M3D from routinely using thousands of processors. With
this new solver package, the production M3D code now scales well up to thousands of
processors. Figure CPPG-4 shows a comparison of the scaling characteristics of M3D
with the old and new solver. Starting in May 2008, the new solver package enabled M3D
to perform production runs on 2,416+ processors. Compared to original solver, the code
is over 7 times faster on the largest problems on the NERSC Franklin computer. Because
of these improvements, the M3D group qualified for the NERSC 2008 "Large Scale
Reimbursement Program”.

Figure CPPG-4: Comparison of the problem time for a weak scaling study with the old and new
M3D solver. In weak scaling, the number of mesh points is increased as the number of processors is
increased, so that a horizontal line indicates perfect scaling.

Incorporation of Curved Boundary Conditions in M3D-C1 Stability Calculations

The M3D-C1 code is under development as a high-order implicit replacement for the
existing M3D code. The M3D-C1 effort has passed another major developmental
milestone in that it is now able to utilize an arbitrary shaped computational domain.
Because of the nature of the high-order C1 finite elements, one needs to specify not only
the value of the function (for example, the poloidal flux), but also the values of the first
and second tangential derivatives at the domain boundary. Through a number of
cancelations, it turns out that this is easily done for rectangular boundaries. However, for
non-rectangular boundaries, these conditions need to be rotated into the local coordinates
of the element, taking into account the boundary curvature and the new surface terms
which appear in the equations from the integrations by parts associated with the Galerkin
procedure. Now that these are handled properly, all the spurious oscillations previously
seen at the boundary of curved domains have vanished. This new capability allows
M3D-C1 to begin a series of "fixed boundary" benchmark problems, including
benchmarking with M3D and NIMROD. Figure CPPG-5 shows contours of the
perturbed plasma current in one of these benchmark studies where the plasma is unstable
to a pressure driven n=3 mode. We have also taken steps to enable M3D-C1 to transfer
equilibrium from a Plasma State file, re-compute it using its own high-order basis and
adaptively refine the mesh to be able to adequately resolve steep gradients and behavior
near rational surfaces. This allows us to seamlessly examine these equilibrium state files
with respect to ideal, resistive, and two-fluid stability, including the effect of flow. This
achievement was done as part of the CEMM and SWIM work-scopes in collaboration
with N. Ferraro (General Atomics) and with X. Luo and the SCOREC group (Renssalaer
Polytechnic Institute).

Figure CPPG-5: Eigenmode of the perturbed toroidal plasma current for an n=3 pressure driven
instability in a circular cross section domain as calculated by the M3D-C1 code using its new curved
boundary capability.

Performance and scalability improvements of PPPL’s Gyrokinetic PIC codes

CPPG continues to be a major contributor in the development and improvement of the
global gyrokinetic PIC codes GTS and GTC. The implementation of a particle
distribution scheme in the general geometry Gyrokinetic Tokamak Simulation code
(GTS) allowed it to meet and even surpass its OMB Joule milestones of scalability and
performance in FY08. Since this achievement, more improvements in the physics and
algorithms have been implemented in GTS. A new, fully parallel Poisson solver
implemented with the PETSc library now replaces the original solver to take advantage
of the extra MPI processes used for the particle distribution algorithm. In the old solver,
all the processes in the same toroidal section would redundantly solve the local Poisson
equation. The amount of work for that step is small as long as the number of particles per
grid point per MPI process remains high. However, new simulations of large device sizes,
such as ITER, and of turbulence at electron resolution require a very large number of grid
points. Memory limitation on current systems along with the availability of a high
number of processor cores naturally lead us to carry out simulations with a small number
of particles per process to speed up the calculation. In such cases, redundant grid work
can start limiting the performance and a fully parallel solver is required. Figure CPPG-6
shows the new scalability of the GTS code as we keep the device size fixed (fixed
number of grid points) while increasing the number of particles. The dashed curve

represents the compute power of the code without taking into account the time spent in
the solver and in input/output, while the solid curve represents the compute power of the
whole code. As the number of processor cores increases, the two curves get closer to each
other, showing how the time spent in the solver gets smaller due to the new parallelism.
Other improvements to GTS included the optimization of the loop-level OpenMP for the
new multi-core chips and optimization of the I/O for the Lustre parallel filesystem on the
Cray XT systems. These code enhancements lead to the largest fusion simulation to date.
We carried out a GTS simulation of Electron-Temperature-Gradient-driven (ETG)
turbulence of an NSTX shot and directly compared the results with the tangential
scattering measurements performed during the actual experiment. This extremely
challenging and successful simulation ran on 31,232 processor-cores for 72 hours on the
Jaguar Cray XT4 at the National Center for Computational Sciences (NCCS) at the Oak
Ridge National Laboratory (ORNL). This run, which used 99.7% of the whole Jaguar
system, generated over 85 Terabytes of data.

Other improvements to the gyrokinetic codes also included the implementation of a fully
two-dimensional domain decomposition in the object-oriented version of the GTC code.
Memory limitations on some current computing systems, such as the Blue Gene/P
supercomputer, greatly constrain the size of the simulations that can be run in terms of
device sizes. To resolve this issue, a domain decomposition in the radial direction was
added to the original toroidal domain decomposition in the GTC code. Loop-level
OpenMP parallelism was also implemented to take advantage of the multi-core
processors found on modern systems. With these new improvements, ITER-size
simulations can easily be run on a very large number of processor cores on the Blue
Gene/P computer with only a modest amount of memory per node.

Figure CPPG-6. Scaling of the GTS code for a fixed-sized grid and a fixed number of particles per
MPI process. The shrinking gab between the curves with and without the I/O and solver
contributions shows the scalability of the new parallel solver in GTS.

