Overview of the M3D Code
(History, Architecture, and Usage)

Josh Breslau, PPPL
with alot of help from the M3D code group

Presented to ORNL FED Theory Group
November 30, 2004

Capsule History of M3D

Origina MH3D (W.P., early 1980s) was a serial Fortran code in asingle source file solving
resistive MHD using finite differences on a radial mesh with spectral treatment of dand @

Over more than a decade, gradual refinements and enhancements of the physical model (hybrid
[W.P.] and two-fluid [L.S.] models) and numerical scheme (finite elements [H.S.]) were accreted
onto this program, forming the Multilevel 3D Code (M 3D).

Around 1999, Xianzhu Tang joined the group and set out to parallelize the code. Rather than work
with the existing legacy file, he did a complete rewrite, creating a C code distributed over many
files within two layers of directories, using linear triangular finite elements on adomain
decomposed both poloidally and toroidally to solve MHD only, using the PET Sc software library
to handle communications and linear solves. Thiswas ParM3D.

ParM 3D did not work out as well as was hoped. Hank Strauss therefore undertook to merge the
two codes, using ParM3D for mesh generation, 1/0O, and linear solvers with the original Fortran
“ml.F asthe physicsdriver. Data would be passed between the C and Fortran parts of the new
code using interfaces defined in m3d/code/mparl.F (Fortran) and several source filesin directory
ma3d/interface (C). Much of the now-unused part of ParM3D was left in the distribution in vestigial
form. Thisis M3DP (still referred to as M3D).

| (J. Breslau) joined the group in 2001, about the time the CV S repository was started. Changes
made since then are archived in mhd/driver/README (and mirrored at /p/m3d/README on the
PPPL Unix cluster). Highlights include two-fluid options refined by L. Sugiyama and hot particles
improved and parallelized by G.Y. Fu. J. Chen has recently added higher-order elements, which
are still being debugged.

Equations (Fluid)

Two-fluid MH3D-T
MHD model (Sugiyama et al)
» Solves the two fluid equations
* Solves MHD equations. with gyro-viscousity and _
neoclassical parallel viscousity terms in a torus.
y » Equations
pAVIEt + pv-VV = - Vp + J=B + Vv
V=V, - vi= Vo - V2 +J/en,
dBfit = -VxE, E=(-vxB+nd) J=VxB (r a 5
ve =—BxVE, /(lenB), vi=Ve+Jdlen,

apfat + ¥(pv) =0
aplit +vVp = —pVa + pVee V (p/p)

pov/ot + pv-Vv + p(v-Viv,.=-Vp + JxB — b-V I,

o oy

dBfit = -VxE, E=(-vxB +nJ) - Vif="en - bV Ile,
J= V=B,

The fast parallel equilibration of T is modeled

using wave eguations; apfat + V-(pw;) = 0,

dpfat + wVp = —pVv + pV-xValp/p)
—v"Vp + (1/en)J-VPg

dT fat=8 Blp-Vu
— 1PV-V] + 7P.J-V(1/en)

. . .2 s = wave speed/ va
L oufot=s B-VT + vV U

3Pg /Ot + V-V Pg= —y PV v 40 V-V, (Pe/p)
+ (1/en)d VP — vPV-(vg— o, fen)

Equations (Hybrid)

GK Particle lon/ Fluid Electron Hybrid

GK Hot Particle /MHD Hybrid MH3D-K

)) Pressure coupling
= Fluid equations

pav/dt + pv-Vv = -V.Pi — VPe + J«xB

L

povidt + pw-Vv = —Vp (V-Py), + JxB (Pressure coupling) :
=-V-Pi —VIli -VPe+ JxB

ar
" pAV/Bt + VWV = —Vp + (VxB - J;) xB +q,VxB
(Current coupling) V-Pi : from particles following GK egns.
VeIl ; fluid picture as 2 fluid eqns,
aBfot = -VxE, E= wvwB-n(d-Js) J=V=B or from particles:
dpfot + V-[pv) =0
apfat + v-Vp = —ypVwv + pVeV (pip) Tt W

E=-VexB +7J+ V:-Pe/ne

= Gyrokinetic equations for energetic particles

dR/dt = u[b + (WE2)b X (b-¥b) | + (1£)b X (VB - gE/m), = -VexB +nd+ VPe/ne + bb-V:le/ne

dwdt = [b + (Wb X (b-Vb) |- (LVB - gE/m).
Ll i e 3Bt = -VxE, J=VxB

FPe eqgn currently, but P, and P, egns are planned

M3D Scalar Variables

Field Variables

Write

~

B:Dwmfo% # (R, d) ¢

where
(2 F=— 1of
RO
S0 that
j:(Di— 7135 DFk)D +¢@ J]%% —ynC ¢

where primes denote derivatives with respect
to gand

10F
C=-RJ =AY +——
v v R 0z

Velocity Variables
Write

2 ~
V:%DURD Yl &x V,¢
0

Note that

10w 0w 1oy oy
ANY =Dy ——= — ——2+
V=t ROR OR> ROR 077

and

_ 1w 0w 1oy 0%y
ANy=DPyr == 24 —— T4 —©
Y=t ROR OR®> ROR 0922

M3D Form of the Resistive MHD Equations

Define Poisson Bracket [4,8]=0,40,B @ gﬁ ‘315 gj gﬁ
04 aB 04 0B
and (4,8)=0.AD 8 — -+ —=—=
Continuity:
— V = v + 7 RS , | _Vp0p
D(p7F - (X*Ra Ra(ﬂ p()RM (1)

Operate on the momentum equation with ~RIx to get an equation for the
evolution of A1y = e 19U (called “w' in the code):

OR
Vv v,
9 nv =Ry, av]-(y,80) -0 | ay + 202 | Lo 9 xyy | Ze OU
ot R, R, 0z ROg R aqo
V.oV 4 = - [
vor, 229 Loy Rol Do OX | p Vg €) jmp [TELIRY 2 O (29)
R| R 0@ | R°p R°p R poz

Evolution of the Compressible Velocity

From the definition of the velocity, it is clear that

so that, again using the momentum equation,

g(a_)(j:_ze a(an o (X, ROU VooU' Vyox, Ve 10p
ot \ OR R,oz\ 0t) R R,0z) R, 0z ROAR R poR

1 (R ”) 1(6F’ aw'j_al . C (aF aw} Hp e
Rp R 0z) OR| R°p\ 0z OR) p

(2)

and

a(a)(j R a(a j m ox ROU) V,0U" V,0x 1dp
0t\ 0z) R,0R\ ot) " 0z R,0R) R, 0R R 0z poz

L (g, +1) (6F awj_al _C (aF +awj Az (2¢)
R,O 0z OR) 0z| R°p\dR 9z) p

Evolution of the Toroidal Velocity

Dot the momentum equation with ¢ to find

AN (AR FRUA RO R

R\ % OR) R, 0z Rpog
1 r- 1 - 1 0 1 0
"R [I’w]+R2p(I’F)+R3p@[w’F]_2R3pa_so(mmw‘2+ EDF‘Z) (2d)

) oy L(,;Jr 22 0 (ROU, ox
R* R?20¢\ R, 0z OR

Evolution of the Magnetic Field

—

If B=x 4 and %—l:——BE then %—f——E+@D where, if we choose the gauge

004 o, wefind O =00 E.

For the resistive MHD Ohm'’ s law, that means

o= (10} [3 ;}3 y Yh oy RodX {X’% {Fq Ly g)

R, R R? 0z R R| R
+i _(6F' _aw’j_ai +6C +i|: i] _i F'] +i(w’) (3)
R| R\ oz 9rR) oz og| rUTI TRV

The time derivative of ¢ (called “a” in the code) is simply Ré%,

aa‘f IfO[U ¢ +;O(U F)=(x) Hx F] #C +‘3% (4)

but the quantity we choose to evolve isinstead C, = AY.

Evolution of the Toroidal Field

The magnetic field is completely specified by two scalar functions; the auxiliary
variable F isrelated to the non-vacuum toroidal field Z/R by the elliptic equation
given earlier. The evolution of 7 can be found from the toroidal component of the
field equation:

ol R - - 4 V - V,oI
E:E[U,l]—(x,l)m{ﬁ,gy} +R(E¢,Fj (R, +1) & _Eq]ﬁ

(5)

.1, ., 2(ay OF\] 1, ., o1
+/7{ADI = (2 F% RZ(62+ - j} E[/y,zp J+ (/7,])— E(”F)

The Energy Equation

The energy eguation in the resistive MHD version M3D is normally solved in terms
of the plasma pressure; simple substitution of the code variables into the pressure
eguation gives

M3D Numerics

Uses linear basis functions on triangular finite
elements in-plane (Galerkin method).

Uses either finite differences or pseudo-spectral
derivatives between planes.

Time step is partially implicit, stepping over
compressional Alfven wave and dissipative time
scales but limited by the shear Alfvéen wave CFL
condition.

¥

Nonlinear operation: all components of all
guantities evolve nonlinearly.

Linear operation: full nonlinear + filtering, active
equilibrium maintenance. (Each time step, do

ordinary nonlinear solve, then add [e.g.] just the -
n=1 component of the advanced time values to the
n=0 component of the original valuesto get the

new values for the next step).

2D Mesh Topology

Each poloidal wedge hasj vertices at radia Triangulation is done wedge by wedge.
position j. Wedge O also has avertex at radia All elements containing at least one local
position O (not shown). Ghost verticesareonthe vertex are considered local.

high 8 edge of the wedge.

e O
12 -~ Tl
A Q1 0
N
\
.
/ Y
/ \ b .
1 3‘ \\ \1
!) !
! | y :
3 g :
! '
! =
' :
I
1 H
-l 3 G
1) ; '.I
. I i .
147, /
Y / !
\ /
s
;
;
e *.

M3D Usage (Interactive)

Sample 16-processor script on Seaborg (IBM SP)

poe ./m3dp.X -nodes 1 -tasks per node 16 \

-vmecfile vmec4.dat -configFile config.dat16 \

-checkpoint checkpoint.rl6 -iwriteCheckPoint 1000 \

-pc_typeasm -pc_asm overlap 1 -sub pc typeilu-sub pc ilu levels 3\
-ksp_type gmres -ksp _gmres _restart 1000

Same sample script on mhd (SGI Altix)

mpirun -np 16 ./m3dp.x \

-vmecfile vmec4.dat -configFile config.dat16 \

-checkpoint checkpoint.ri6 -iwriteCheckPoint 1000 \

-pc_type -pc_asm\overlap 1 -sub _p¢ typeilu - C ilu_levels 3\
-ksp_type gmres -ksp_gmres_restart 100

VMEC equilibrium file configuration file checkpoint frequency
optional restart file (Existence of wxy file
IS assumed)

Input File wxy: namelist WDAT

&WDAT

i mey=0 ifull=1 rnmgjor=05.00

I i nhe=0 mhep=1 nhep=1 |into=0
pmag=1. 00e-6 nkhcy=99991 nosci | =099 i khi n=1

i conf=00 del mb=0.11 i mapcon=0 bndel =0. 05821 bnkay=1. 33441

d=20 m =1 mu= 9 np= 20 nu=07 nme1

dt f =+7.5e-5 nstp=1 npr=1 npu=90000 npar ha= 07 nckpa=-2

nread=-00 nprnt =1 idrop=0 xgan¥l. 6667 ncont=-12 inistpl=0
eta=1.0e-5 etaout=0.e-5 etaout2=0.0e-5 icheta= 3 petaval =5.e-9
pkkk=9.09e-4 lin= 0

rmu=2. 0e- 3 rnuout =0. e- 3 rruout 2=0.e-4 ichrmu= 3 i bounde= 0 rdtdp= 0.5
vimu=1. e-3 vnuout=1.e-3 vnuout2=1.e-3 ichvnu= 1 idropv= 1 iqpsi=0

ncyl =0 nexpl =0 i dbug=0

ganmmo=0. 00 gn=1. i aponly=0 vdropnme2.e-90 vdropm =2.e-90
i mpa=1 i ergod= 0 i har cha=0 resfssnel. e- 99

i heliac=0 i1b3=0 ilb4=0 icyl=0 i stea=0 partc=1.0

hel i acg=5. nspl a=10 nt k=400 npk=400 rlim=. 9

i pe= 1 i fwe=1 grax=0.050 chpower=1. rstn=.0 pnult=1.0 unmult=1.0
iartp=-1 napmax=0010 wki nmax=1.e+1 wki vhmax=1. e00 iadjtss= 0

i vaex= 0
intfrex= 0
itfbv= 0

icainc= 0 iripeqg= 0 igridch=0
tenmpcl=.0 inipur=0 ichecbh=20
i chop=0 chopr=2el isetnk= 0 nconbgr=0

nchehar =900000 ai nf at o=. 2e- 03 naut ocha=0900 i pl ott=4

ianp=0 igkrd=0 ncygk = 005

gfb = 1. gfe =01.0 gfp =07.00el19 ¢gfj=80.¢el

rgkl =0.00 rgk2 = 0.001 rgk3 = 0.0 rgk4 =0.e+00 rgk5 = 0000.
itearing = 4

/

nhep: toroidal mode number for linear solver
linto: O=nonlinear; 1=linear
pmag: relative amplitude of initial perturbation, if
any
dtf: time step. dtf>0: dt as fraction of CFL step size;
recommend 0.08 or less for nonlinear cases.
dtf<0: -dt as a fraction of the Alfven time (non-
adaptive; recommend 0.01 or less.
nstp: number of time steps to advance
npr: frequency for generating output files for
plotting
nprnt: frequency for generating screen output
eta: normalized plasmaresistivity
pkkk: normalized isotropic heat conduction
rmu: normalized plasma viscosity
rdtdp: effective artifical sound wave speed
istear O for nonlinear; 1 for linear
pmult: multiplicative factor for pressure on restart
umult: multiplicative factor for velocity on restart
iartp: parallel heat conduction. —1=off; +1=on.
napmax: frequency for artifical sound wave step
inipur: add initial perturbation? 0=no; 1=yes
ichop: change size of linear perturbation? 0=no;
1=yes
chopr: Relative new size of linear perturbation
when ichop=1
ianp: 1=turn on gyrokinetic hot ions
igkrd: read particle data?
ncygk: number of particle steps per fluid step

|nput File wxy: namelist CHPAR

&CHPAR

i ch2d=0 i chcinv=-2 icincin=1 ipcinvk=1 iol di np=0
artpn=-1.10 si npf=1.
panpl =1. 00e- 00 pbase=1. 0e-02 pdi ssf=1. 0e-3

rtransl = .45 rtrans2 = 0.80 rtransw = .10
i equadr = 0 | dol d= 31 facnog=. 8
rcg= .57 deltg= .10 facnisg= 2.5

i soft=0 rotperi =10.0 nsofdet=30 sodista=2.81 soangna=. 1167
i ece=0 ecedis=.900 ecedet=25
gcon21=1.3 qconl2=.15 gcon22 =.540 gconl3=.400 gcon23=0. 32

gcondw=2. 4
gconl4=-.550 gcon24=-9.70 gconl5=0. 000 gqcon25=1. 00 gcon26=0. 00
i 2d=0 m owest =1 nl onest =0 am dval =. 000 presl=-3.18

gnought =. 80 apnmul f=-1.5 i pchan=000 hht b=10. hht bl =10.

i beaneg=0 rfrank=0. resc3=+0.01807 resc4=0.e-01 iresc5=10 resc6=0.001
i resc7=0500 resc8=1.0e+0 resc9=1.0 rescl10=1.0 resc11=0.e-9
resc20=2.1 resc21=0.0 resc22=-.00 resc23=0.3 resc24=0.5
resc25=000.1 resc26=0.000 resc27=9.e-3 resc28=0.8 resc29=2.
i chaal d=0 i chacbr=0 ichapre=0 ratiog=1.0
/

ichcinv: current drive. =2 to initialize adrive term
that will try to maintain initial profile. O to
maintain same term from previous run.
pdissf: Optional dissipation coefficient for density
equation.

Input File wxy: namelists HALL and HYBN

&HAL L

I gv=0 ivi=0

ihall=0 ihallt=0 ielecp=1 iden=1 idengd=1

pefac=0.5 xm e0=.01e-0 hallf=-1.0 i newp=0 prot=-1000.0
ietal =0 idench=1

/

&HYBN

i m=32 jmr32 km=08 r0=200. 19z=0. a9=050. twod=0

dt 9=005. nmB=0001 nsmrl sx=0. sy9=0. sz=0. | oad=2
wi dt h=.50 xshift=.0

nmodenm=0 cont u=8 pski p=0040 wrax=0. 05

nsrc=00000 nmm=000000 iavg=0 ismh=0 ipj=1iters=4
err9=. 0010

bt 0=1. g0=1. c1=1. c2=1. c3=1. c4=0.
rkk1=050. irkk2=10 rkk3=0. rkk4=0001. rkk5=0.

/

igv: turn on ion gyroviscous term (basic 2-fluid).

idengd: 1=assume there is adensity gradient when
solving; O=assume uniform density.

xmie0: Normalized ion skin depth (only used when
2-fluid terms are turned on).

idench: 1=evolve the density in time.; 0=do not.

*For athorough explanation of the proper usage of variablesin the HALL
namelist, contact Linda Sugiyama (sugiyama@psfc.mit.edu). For an explanation
of the HY BN (hybrid) namelist, contact Guo Y ong Fu (fu@pppl.gov).

M3D Walkthrough: Initialization

Routine: Located In;
mai n mhd/driver/test.c

Defines global variables:

Configurati on dev...... Describes mesh dimensions and domain decomposition.

Comm phone.......cccecveeennee Global, toroidal, and in-plane MPI communicators and ranks.

NodeDomai n cel | Geometric bounds of local mesh domain.

| ndexMappi ng map.......... Contains counts and index-mappings for vertices and
elements (defined as vertex triplets).

Mesh grid...eenneenn, Normalized (R,z) coordinates of vertices.

Local FE Ife } Four sets of matrix elements arising from Galerkin

FiniteEl enentMatrix gfe

integration of operators on linear basis functions.

MHD DATA user Dat a.......Storage for data fields in the form of many local and
distributed PETSc vectors and doubl e arrays.

IMHD Sol ver user Sol ver ...Contains PETSc linear solver contexts for most operators.

MDoF user Mdof Contains PETSc linear solver context for (2N)? operators.

Initializes MPI, PET Sc, domain-decomposed mesh, profiles, and
finite element operators. Calls physics driver.

M3D Walkthrough: Initialization

Routine: Located In;

mai n PETSc Library
Petsclnitialize

Starts up message passing interface (MPI).
Initializes PET Sc, passing references to command-line arguments.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mhd/init/initProfileVmec.c
Petsclnitiallze

I nitProfil eVnec

 Sets up mesh topology and domain decomposition based on
configuration input file or command-line arguments.

* Reads and sets up mesh geometry based on VMEC equilibrium
input file. Normalizes VMEC data.

 Builds finite element operators based on linear triangular elements.
Creates PET Sc solver contexts for operators.

e Interpolates VMEC equilibrium profile onto M3D mesh.

M3D Walkthrough: Initialization

Routine;

mai n
Petsclnitialize
InitProfil eVnec

Located In;
mesh/vmec/vmecr ead.c

vhecr ead <

Note: there are currently four different options for

reading in equilibrium files here:.

-virecfi | e: ASCIl VMEC output. The most general.

-virecl| nput : ASCII VMEC “light” file. 2D equilibrium
generated by i2mex by translation from some
other format.

-vimec Chease: Obsolete format. Never used.

- 2mexFi | e: ASCII file from i2mex using real space (not
Fourier) coordinates. Very rarely used.

 Root process opensfile, reads header info, broadcasts to all.
* Temporary storage is allocated for VMEC data.
* Root process reads data, broadcasts to all, closesfile.

M3D Walkthrough: Initialization

Routine;

mai n
Petsclnitialize
I nitProfil eVnec
vVhecr ead

Located in:
mhd/init/initProfileVmec.c

After reading in the equilibrium, the mesh size and
domain decomposition are set up, based on the
specified configuration file, normally “config.datn”,
where n is the number of processorsiit fits.

Six integers (oneto aline) in the file determine sizes as follows:

A: Total number of planes (constant @cross-sections).

B: Number of CPUs toroidally. A must be divisible by B.

C: Number of (minor) radial grids globally. Usually odd. For linear elements, C=31 would
be small; C=61 is medium,; C=91 fairly large; C=121 very large.

D: Number of radial CPUs. Should generally be one; use caution when exceeding.

E: Poloidal symmetry of mesh, a rough measure of @resolution. At least 3. Could go as high
as 5 or more for highly shaped stellarator cross-sections.

F: Number of @ CPUs. Can vary from I to about 6-8 depending on C & D.

BF, D=1

total CPUSZ{B[F(D—l)ﬂ], D>1

(will fail otherwise!)

total vertices N = A[1+

Also check header file m3d/code/parami:
must have kz = A4/B=ku,

NIF, D=1
|l z> N

EC(C —1)}
2

, D>1
F(D-1) +1

M3D Walkthrough: Initialization

Routine: L ocated in:
mai n mesh/vmec/vmecscaling.c
I nitProfil eVnec
vhecr ead

vimecscal 1 ng

Rescales the data now in the VMEC equilibrium data structure.

The norm for the magnetic field is B ,on axis.
The norm for length scalesis minor radius a:
Tokamak case: a = one-half the width of the cross-section at

the midplane.
Stellarator case: a = average minor radius over al 6, ¢

Norms for coordinates, field, current, and pressure are based on
these two values.

M3D Walkthrough: Initialization

Routine: Located in:
mai n mesh/cpu/constructComm.c

| nitProfil eVnec
vihecr ead
viecscal I ng —N

Construct Comm sample poloidal sample toroidal

“ " communi cator communi cator
(“phone™)

Uses MPI ranks in the global communicator to set up two additional
sets of communicators. Each “poloidal” communicator consists of
all processors at agiven toroidal angle or range of angles. Each
“toroidal” communicator consists of all processors in a given subset

of the plane.

Assigns each processor a unigue rank within one toroidal and one
poloidal communicator.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/cpu/mapCPUtoPartition.c
InitProfil eVmec

Construct Comm
MapCPUt oPartition

(“cell™)

Computes upper and lower boundsinr, & and @ of the chunk of the
mesh that is resident on the local processor.

Fand gare divided evenly; » bounds are determined by |oad
balancing considerations

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/index/indexM apping.c
InitProfil eVec

MapCPUt oPartition
| ndexMappi ng

(“map”)

Sets up the “nap” global variable, containing mesh topology.
Creates and connects sets of vertices based on input from
configuration file.

Note: thereisalot of legacy code in thisfile in between these brackets:
1 f (i1oldmesh==PETSC TRUE) {...}

Ignoreit. It was re-inserted recently for testing purposes, but

should not be used routinely.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/index/cr eateGlobalM esh.c
| nitProfil eVnec

| ndexMappi ng
cr eat ed obal Mesh

* Createsalist of al (global) verticesin aplane using logical (r, 6
coordinates

» Creates alist of all triangular elements (ordered triplets of vertices).

 Flags boundary vertices for special handling later.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/index/findL ocalVVertices.c
| nitProfil eVnec

| ndexMappi ng
creat ed obal Mesh
fi1 ndLocal Verti ces

Uses the known boundaries of the local chunk to pick out those vertices from the
global set just generated that are local. Creates a mapping between local, global
application, and global PET Sc orderings.

sample local orderings equivalent application ordering equivalent PETSc ordering

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/index/findL ocalElements.c
| nitProfil eVnec

| ndexMappi ng
cr eat ed obal Mesh
fi1 ndLocal Verti ces
f1 ndLocal El enent s

 Picks out those triangular elements from the global set that are
local, using the rule that alocal element is one that contains at |east
one local vertex.

 Tags nonlocal vertices that are members of local elements as
ghosts. Creates mappings involving ghosts to facilitate
communication later on.

M3D Walkthrough: Initialization

Routine; L ocated in:
mai n mesh/index/findElementOverlap.c

| nitProfil eVnec

| ndexMappi ng
cr eat ed obal Mesh
fi1 ndLocal Verti ces
f1 ndLocal El enent s
f1 ndEl enment Overl ap

Finds and tags elements that appear on more than one processor so
that only one copy of each will eventually be written to the HDF5

output file 3d.001.h5.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/vmec/vmecmesh.c
| nitProfil eVnec

| ndexMappi ng
vimecnesh

* Determines radial mesh packing, if any. Default of no packing is
strongly recommended.

 Creates a new data structure of the same type as the one containing
the VMEC file data, but with a number of radial grids equal to that
inthe M3D grid, laid out in » rather than s.

e Interpolates the coordinates and equilibrium onto this new mesh.

M3D Walkthrough: Initialization

Routine: Located In;
mai n mesh/vmec/vmecfit.c

| nitProfil eVnec

| ndexMappi ng
vimrecnesh
vimecf it (called multiple times)

Interpolates all modes of asingle VMEC variable between radial
meshes of two different sizes. Numerical Recipesroutinepol fit

IS used near the origin and edge for higher-order interpolation,
allowing greater accuracy.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/grid/constructGrid.c
InitProfil eVmec

vihmecnesh
constructGid

 Allocates and initializes parallel PET Sc vectors to contain real -
space cylindrical vertex coordinates (R, z) for each plane.

* Allocates and initializes vectors containing the 13 and 2nd
derivatives of each of these coordinates with respect to @ (Show up
In toroidal derivativesin stellarators).

» Computes length increments along outer boundary for usein line
Integrals.

M3D Walkthrough: Initialization

Routine: L ocated in:
mai n mesh/vmec/vmecpoint2.c
I nitProfil eVnec

vihmecnesh
construct@&id
vimecpol nt 2 (Called many times)

Determines the R and z coordinates of a mesh point and their @
derivatives by summing over modes in the VMEC data.

For radial locations with few & points, a cutoff isimposed in
poloidal mode number to avoid aliasing errors that tend to warp the

grid.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/felement/constructL ocalFEM atrix.c
I nitProfil eVnec 3 Side lengths d7. =7, -7, etc.

- 2 Areal=31di xdi, @
construct&id
Construct Local FEMatri X

7~ 3linear basis functions A, (7) =4i/;(? —?ﬂ) xdF, [

A% =1 A, (5,) =0

Builds rows of the finite element matrix operators corresponding to local vertices.
All basis functions associated with a particular vertex go in the same row.

Galerkin method: integrate equations over each basis function to get “weak form” - linear algebraic equation.

f(R,z):ij/‘j(R,z)
Mass matrix: J-J-/]l.f(R,z)dzx = ijJ'J'A/ljd X EZMf'fff

Stiffness matrix: [[AD%f (R,z)d*= Zf”/i;l 2) d= ZL{W—”DDAEDAW% >Sf

"dRoverR" matrix: ”——f(R z)d*x = Zf”R aRJ d*x —ZR "

m!n!
(¢+m+n+2)!

Handy identity: ”AAl”/];”/lgd x =2A

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/felement/accumL ocalFE.c
| nitProfil eVnec

constructGid
Construct Local FEMat ri x
Accunilocal FE (Called once for each plane)

The calling function allocates space for PETSc matrices, sets
descriptors, and loops over planes. This routine does the actual

calculations of areas and matrix elements for the local part of each
plane.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/felement/constructFEM atrix.c
| nitProfil eVnec

Construct Local FEMatri X
Construct FEMatri x

Allocates and initializes global distributed PETSc matrices for the
mass, stiffness, and (1/R)(d/dR) operators in each plane. Adds the
values in from all local matrices to build the global ones.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mhd/allocation/constr uctM HDdata.c
| nitProfil eVnec

Construct FEMatri X
const ruct VMHDdat a

The name of this routine is somewhat misleading. It does not construct any data.
It merely allocates space for alarge number of structures with the names of
physics variables. In ParM3D, they actually stored these variables; in M3DP they
merely serve as workspaces for the communication of data from Fortran to C
routines (or in some cases may not be used at all).

The structures are of type Par Dat a, consisting of alocal PET Sc vector, a global
PET Sc vector, and an array of doubles for each plane. Useful for storing,
communicating, and operating on parallel data.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mhd/init/initProfileVmec.c
| nitProfil eVnec

construct VHDdat a
set Qpt1 ons

Attempts to set physics options based on various command-line
arguments. These options have meaning in ParM3D but not in the
present code, and are not recommended.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mhd/init/setupl JPonGrid.c
I nitProfileVmec

set Opti ons
set upl JPonG i d

Copies B, J,, and pressure equilibrium data from VMEC into
temporary physics variables on the M3D mesh.

Structure:

Read more deprecated command-line arguments.
Allocate storage.

Create mappings to PET Sc ordering.

L oop over points, reconstructing real-space VMEC data.
Operate to get M3D form of variables.

akrwdpE

M3D Walkthrough: Initialization

Routine: Located In;

mai n mesh/vmec/vmecBfield.c
| nitProfil eVnec

set upl JPonG i d
vimecBf 1 el d (called once for each vertex)

Given a point in the plasma, perform Fourier sumson VMEC datato
reconstruct toroidal field and current density at that point. Also
return the pressure value for the flux surface to which the point
belongs, and amass density value of 1.0 for all points.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mhd/allocation/constructM HDsolver .c
| nitProfil eVnec

set upl JPonG i d
const ruct MHDsol ver

* Allocates PETSc matrices for “star” (A" = 02 x- = a)() and

“dagger” (AU = DU+ lgg) operators. R OR

» Sets up lists of boundary vertices for applying boundary conditions.

 Allocates 13 PETSc “SLES’ (Scalable Linear Equation Solver)
contexts (Krylov Subspace + Preconditioner = KSP), most unused.

 Builds solvers, setstheir KSP options.

M3D Walkthrough: Initialization

Routine: Located In;

mai n mhd/allocation/constr uctL mass.c
| nitProfil eVnec

Multiply by vector of onesto add elementsin each row:

1 my, +my,
=| my, Ty,
1 Mgy

o my my, O
const ruct MHDsol ver 0 my,, my
Construct Lnass 0 0 my

Builds a diagonalized approximation to the mass matrix (called the
“lumped mass’) to allow simple assignments without costly matrix
Inversions.

After Galerkin integration, L umped mass replaces matrix inversion
with much faster pointwise division:
J=0y P
becomes J=(SW)+M,,e

—_ T — a7l
M, J =S @, ~J=M"B

M3D Walkthrough: Initialization

Routine: Located In;

mai n mhd/init/initMHD.c
Petsclnitiallze

| nitProfil eVnec
| ni t VHD

 Routine appearsto do alot of initialization (did more in ParM 3D),
but since preprocessor macro “ORIGC” is undefined, almost none of
It is compiled.

» Zeroes out velocity components by calling zer oFl owFi el d
(mhd/init/zer oFlowField.c).

« If acheckpoint file has been specified for arestart, calls routine
| ni t CheckPoi nt (mhd/init/initCheckPoint.c) only to get

elapsed time (otherwise sets it to 0.0).

M3D Walkthrough: Initialization

Routine: Located In;
mai n mhd/mdof/constructM DoF.c

| ni t VHD
construct MDoF

In order to implement differential operators of higher than 2" order
on linear basis functions, it is necessary to define auxiliary variables.
It IS sometimes convenient to do a higher-order solve for these
variables in one step, requiring larger matrices (e.g., 2Nx2N instead
of NxN). Thisroutine sets up the structure for such a matrix.

R=0%
becomes
Cc=0%
{R =[0*C
which can be solved as

% afe ()

Example:

M3D Walkthrough: Initialization

Routine: L ocated in:

mai n m3d/code/m1.F
C (the main sourcefile;
construct MDoF ~25,600 lines at |ast count)
nh3d

Skipping the higher-order element initialization, the main routine checks the
system time, then starts up the main physics driver, alegacy Fortran routine.

mh3d reads in the physics parameters from afile (wxy), receives mesh and
physics datafrom C arrays, optionally reads in restart data from a checkpoint file,
sets up various variables, and contains the main time-stepping loop, which may
periodically involve diagnostic and data output. It also directs the creation of
checkpoint files periodically during the loop and on termination.

The many varied physics levels of M3D come together in this routine; alot of
conditional branching based on input control variables determines which equations
will be solved and how.

Initialization in mh3d

Routine: Located in:
mai n m3d/code/m1.F
mh3d

All processorsread in all namelists from the wxy file.
Additional internal variables are set based on its contents.

Initialization in mh3d

Routine: Located in:
mai n m3d/code/m1.F
mh3d

wr eadgksend, recv, 1

Optional: if | gkrd. eq. 1, readsin gyrokinetic particle data from
file wxiO.

Initialization in mh3d

Routine: L ocated in:
mai n m3d/code/mpar 1.F
m3d (handles parallel operations on
dnesh Fortran data, interface with C;
initt?2 ~6,097 lines)
Initt

Fortran mesh initialization. Setsi uns=1 for unstructured mesh. Retrieves data
with callsto C routines in mhd/interface/p2m.c:

par par ms...copies mesh dimensions from C to F; static array dimensions from F to C.
par par n2...copies a few more.

par gri d.....copies vertex coordinates (real & logical) from C to F.

par gri d2...copies @derivatives of vertex coordinates from C to F.

par coef s...copies & rmaj, and t from C to F; dt from F to C.

dzsetc....... sets @coordinate for each local plane.

nor nB8c....... gets unit normals to boundary vertices.

Initialization in mh3d

Routine: L ocated in:
mai n m3d/code/mpar 1.F
mh3d
dnmesh
rnetc

Computes 3D array of stored valuesfor R, R?, 1/R, and 1/R?.
Appearsto be called twice...

Initialization in mh3d

Routine: Located in:
mai n m3d/code/m1.F
mh3d
rnetc
varflrw

Placeholder routine for setting up for resistive wall operation. Does
nothing significant in the last CV S-committed release (3.3.10).

Initialization in mh3d

Routine: Located in:
mai n m3d/code/m1.F
mh3d
varflrw
def var

o Sets 2D resistivity profile et as to et a timesthefirst plane of 3D
profileci nv.

e Callssbi gi (m1.F, line 4300), which finds the total toroidal field
bi gi =eps+si (I=&t)).

« Computesr sbs (R?B* = R? +|0,F|+ 2[F.yl 1, ¢]), bsq
(B°=R°B?/IR?), and bsqgi n (B2 =(B?1).

Initialization in mh3d

Routine: Located in:
mai n m3d/code/m1.F
mh3d
def var

o Setsresistivity profileet as accordingtoi chet a and et a
(constant).

o Setsviscosity profiler mus accordingtoi chr mu, r mu, and
r muout andr nmuout 2. If thelast two are zero, it’ s constant.

 Sets profile vimus according to vimu.

Initialization in mh3d

Routine: L ocated in:
mai n m3d/code/m1.F, mpar 1.F
mh3d
def var
| Nl con
| ni t pro2

| ni con initializes physics variables for first-time run, first setting them all to
zero. Then, since thisisthefirst iteration, it callsi ni t pr o2.

If the time elapsed is zero, thisisnot arestart, soi ni t pr o2 copiesjust the three
VMEC equilibrium fields from the C dataviaacall to par var s0O in

m3d/interface/p2m.c.

Otherwiseg, it callsr ead__npp in mpar 1.F to read checkpointed data...

Initialization in mh3d

Routine: Located in:
ral n m3d/code/mpar 1.F
m3d_ m3d/interface/p2m.c
s mhd/output/readNewCheckPoint.c
I ni con A
| ni t pro2
read_npp
par r check (called once for each variable)

readCheckVar i abl e (called once for each variable)

Reads all MHD variables, and, if needed, all two-fluid variables aswell one at a
time from the checkpoint file indicated on the command line.

If the mesh used to create the checkpoint file does not match the mesh in the
present run, the data are interpolated onto the new mesh using quadratic fits both
within and between planes. This allows user-controlled “ adaptive” mesh
refinement.

Initialization in mh3d

Routine: Located in:
mai n m3d/code/m1.F
mh3d
| Nl con

Rectify boundary pressure if necessary.
Extract auxiliary variables from primary VMEC values.

Initialization in mh3d

Routine: Located in:
mai n m3d/code/m1.F
mh3d
| Nl con
denst

Called if thisisnot arestart, or if it isarun that is supposed to have a
uniform, non-evolving density. Sets up an analytic density profile
based on wxy options (most likely uniform).

Initialization in mh3d

Routine: Located In;
mai n m3d/code/m1.F
mh3d
denst
rni nvers

If, on the other hand, this is a restart, computes 1/density, which will
appear as a coefficient in many terms during the time advance.

Initialization in mh3d

Routine: Located in:
mai n m3d/code/m1.F
mh3d
rni nvers

Sets up the resistivity profile, ci nv according to wxy options.
So called because in the current drive case (where M3D attempts to
maintain the initial current profile during the course of a nonlinear

run), ci nv [1/C, where C isthe equilibrium toroidal current
density.

M3D Walkthrough: Main Loop

Main loop starts at line 1575 of mh3d in m1.F, labeled 100 and referred to in the
code as “the insertion point for the stepping cycle.”

1.

Cdlsdt set (mparl.F), which callsdt set ¢ (m3d/interface/dxdrc.c), which
estimates the maximum allowable explicit time step interval dt based on the CFL
condition for shear Alfvén waves at the peak magnetic field. Multipliesby dt f safety
factor if dt f >0; otherwise replacesdt with |dt f |.

Optionally adjusts resistivity profile ci nv based on temperaturet t using Spitzer
formula, with specified overall normalization; turned off (“i sof f =-1") InCVS
version.

For the 1% time step in the run only (ncy. eq. 0), does the following:

1. If thereisto beaninitial perturbation, zeroes the poloidal velocity fields.
2. Cdlsnodi ni (m1.F)toinitialize all variables and possibly add initial

perturbations.
3. Writesinitial diagnostic info to stdout.
4. Generatesaplot of theinitia state if requested.

(if...then block continues up to “add and drop harmonics...”, line 1826).

M3D Walkthrough: Main Loop, continued

4. Callsdef var (ml1.F, line 4230), which does the following:
o Sets 2D resistivity profile et as to et a timesthefirst plane of 3D profileci nv.
o Cdlssbi gi (ml.F, line4300), which finds the total toroidal field bi gi =eps+si
(I=&+]).
« Computesr sbs (R?B? = R +|0,F[* 2[F.y} D ¢
(B-== (B

5. Cdlshybmai n (in m3d/code/hyb.F) to do particle loop if gyrokinetic option isturned
on.
6. Updatestheinteger counter ncy and thereal counterti m
Makes temporary copies of all variables to be time-advanced for later linearization.
If the code has been compiled with the STELL (stellarator) flag set, uses predictor-
corrector 2"d-order-accurate time step: halves dt , callstime advance, doubles dt , calls
it again with intermediate values. Otherwise...
9. Cadlsti neadv (inml.F, line 2774) to solve the equations.
1. Makes backups of velocity variablesw, u, and lap_u and callsweqgn (m1.F, line
11,955) to advance equation (2a). Filters result if running linear.
2. Calschi ai ap_3 (mLl.F, line 8686) to solve (5) for 7, (2b) and (2c) for O, and
(6) for the pressure. These are handled implicitly to avoid the CFL condition for the
compressiona Alfvén wave.
3. Applies perpendicular heat conduction by calling pkkks.

"), bsq (B2=R2B2/R2), and bsqi n

© N

10.

11.
12.

13.

M 3D Walkthrough: Main L oop, continued

If density evolution isturned on (i dench. eq. 1), makes acopy of the
density variabler n and callsr hoegn (m1.F, line 5456) to advance equation
(1), with dissipation if pdi ssf ispositive. Filtersresult if running linear.

5. Cdlsvphi eqg to solve Eqg. (2d). Filtersif necessary.

6. Cdlsphi eqgn to solve Eqg. (3) for in preparation for solving the C equation.
7. Cdlsceqn to solve Eqg. (4) (effectively).

8. Callsf eqgn to solve the dliptic equation for F.

9. Computes C from C.,..

If running nonlinear, filters out highest modes by callingfi | t hi al to prevent
aliasing.

Prints some diagnostic information to screen.

Cdlschekchek (mpar1.F), which determines whether it’ stime to write a
checkpoint fileand, if itis, callswi t e_npp (mpar 1.F) which repeatedly calls
par ucheck (m3d/interface/p2m.c) which in turn callsaddt oCheckPoi nt
(mhd/output/createCheck Point.c) to add each variable to the checkpoint file,

concluding with the time stamp.
If ncy nod npr. eq. 0, writesaframe of datato the output file(s) by calling

out pp in mpar 1.F, which callsucd3dc inp2m.ctocal w i t eUCD3d and/or
wri t eHDF5 3d in mhd/output to write in the appropriate (UCD and/or HDF5)

formats.

Common Data Operations in M3D

add(b, c, bc, cc, ac)

acb*bc + c*cc (3D weighted sum)

addo(cc, bc, ac)

ac -bc + cc (3D)

copy(a, b)

b-a (3D)

copy21(bb, aa)

aa-bb(1) (Copy 1% planeto 2D)

gcro(a, b,isyl,isy2,
CC)

cc- Ual DO qAa (Poisson bracket)

gradsg(aa, bb, i syl,
| Sy2, cC)

cc - U aall 5 bb

r power k(aa, ccc, bb,
psubt, 1 neoc)

bb -aa**ccc

unD2(b, bb, aa)

aa - b*bb (mult. 3D by scalar)

wconvo(cac, dac, i sy3,
| Ssy4, aac)

aac —»cac*dac (3D pointwise multiply)

wconvon(cac, dac,
| sy3, 1sy4, aac, kstt)

Sameaswconvo if kst t >0; otherwise
multipliesdac by 1% plane of cac only.

Additional Data Operations

cvol (acpl x, b)

Scalar b - volumeintegra of 3D acpl x.

del sg(aa, bb, i sy)

bb - OZaa

dxdphi (X, 1 sym xx)

XX — 0x/0¢ (Either finite difference or pseudo-
spectral @derivative, depending on -DFFT in
Makefile)

dxdr (i synr, xx, aa)

aa - 0d(xx)/ orR (3D)

dxdz(isynr, xx, aa)

aa - d(xx)/ oz (3D)

fixo(a)

Does nothing.

ud21(a, b, c)

c -al/ b (divide 3D data pointwise by plane 1 of
2D data)

Elliptic Solversin M3D

During the course of time-advancing the seven scalar variables of MHD and their auxiliary
variables by one step, approximately 13 elliptic (Poisson-like) equations are solved
iteratively by passing right-hand-sides and variations of the stiffness matrix to PETSC's
linear solver. These elliptic solves are the most time-consuming part of a purely fluid run,
and should be the first target for optimization.

poi svmu[0,3,n](aa, bb, {i su=0 (O shplas= bb (Dirichlet b.c.s)
i su,ibc,dtt, ss) isu=1 (0% ri)ss(Flaa bb

pOi Sder[O,n](aa, bb1 [D@(sﬂ—) rlm}aa bb (DlrlCh|et b.C.S)
wWw, I bc, dtt, ss)

| opoi snu(aa, bb, ww, {i su=0 [OD(URP griupaa bb/R

i su,ibc,dtt, ss) isu=1 [OO(VRPF grisprss(Faa bb/R

| opoi sma(aa, bb, ww,

{isu:O [O0RF ri5laa R bb
| su, I bc,dtt, ss)

isu=1 [00R &g ss(Faa R bb

poi ss(aa, bb, ww, i bc, Paa= bb
| bc2) All “pois’ routines are found in

| owpoi s(aa, bb,isym raacpn | MPAFLFand call Croutinesin

m3d/interface/poissc.c that call the
PETSc solvers.

| owpoi sa(aa, bb, ww,
| bc, 1sym

Aaa=bb

On Termination

 After the main time advance loop, mh3d generates a final checkpoint file
(checkpoint.0) and returns.

* The mai n program then prints the elapsed time and exits.

» The checkpoint file can be used for restarts. The main output file for plotting
and post-processing should be 3d.001.h5 (if there is more than one plane), an
HDF5 file which should be given a new, unigue name, and can be read by Scott
Klasky’s AV'S network m3d.v. The text output generated during the run is useful
for tracking the kinetic energy history and (in the linear case) the growth rate of
the mode, and should be saved. Additional text output (especially copiousin the
most recent release) isfound in afile called “wxo”. A number of empty or mostly
empty files are also created.

* | have written severdl utilitiesin the mhd/driver directory that can be useful for
various common post-processing tasks. Ask me if interested.

