
Overview of the M3D Code
(History, Architecture, and Usage)

Josh Breslau, PPPL
with a lot of help from the M3D code group

Presented to ORNL FED Theory Group
November 30, 2004

Capsule History of M3D
• Original MH3D (W.P., early 1980s) was a serial Fortran code in a single source file solving

resistive MHD using finite differences on a radial mesh with spectral treatment of θ and φ.

• Over more than a decade, gradual refinements and enhancements of the physical model (hybrid
[W.P.] and two-fluid [L.S.] models) and numerical scheme (finite elements [H.S.]) were accreted
onto this program, forming the Multilevel 3D Code (M3D).

• Around 1999, Xianzhu Tang joined the group and set out to parallelize the code. Rather than work
with the existing legacy file, he did a complete rewrite, creating a C code distributed over many
files within two layers of directories, using linear triangular finite elements on a domain
decomposed both poloidally and toroidally to solve MHD only, using the PETSc software library
to handle communications and linear solves. This was ParM3D.

• ParM3D did not work out as well as was hoped. Hank Strauss therefore undertook to merge the
two codes, using ParM3D for mesh generation, I/O, and linear solvers with the original Fortran
“m1.F” as the physics driver. Data would be passed between the C and Fortran parts of the new
code using interfaces defined in m3d/code/mpar1.F (Fortran) and several source files in directory
m3d/interface (C). Much of the now-unused part of ParM3D was left in the distribution in vestigial
form. This is M3DP (still referred to as M3D).

• I (J. Breslau) joined the group in 2001, about the time the CVS repository was started. Changes
made since then are archived in mhd/driver/README (and mirrored at /p/m3d/README on the
PPPL Unix cluster). Highlights include two-fluid options refined by L. Sugiyama and hot particles
improved and parallelized by G.Y. Fu. J. Chen has recently added higher-order elements, which
are still being debugged.

Equations
Equations (Fluid)

Equations (Hybrid)

M3D Scalar Variables

()0
1B F R I
R

ψ φ φ⊥= ∇ ×∇ + ∇ + + ∇
! "

2 1 IF
R φ⊥
∂∇ = −
∂

"

2

1 1' 'J I F C
R R

φ ψ φ⊥ ⊥
 = ∇ − ∇ ×∇ + ∇ − ∇ 
 

! "

1 FC RJ
R zφ ψ∗ ∂≡ − = ∆ +
∂

2

0

ˆRV U V
R φφ χ φ⊥= ∇ × ∇ + ∇ +

!

Field Variables Velocity Variables
Write

where

so that

where primes denote derivatives with respect
to φand

Write

2 2
2

2 2

1 1
R R R R R z
ψ ψ ψ ψψ ψ∗

⊥
∂ ∂ ∂ ∂∆ ≡ ∇ − = − +
∂ ∂ ∂ ∂

2 2
† 2

2 2

1 1
R R R R R z
ψ ψ ψ ψψ ψ⊥
∂ ∂ ∂ ∂∆ ≡ ∇ + = + +
∂ ∂ ∂ ∂

Note that

and

M3D Form of the Resistive MHD Equations

Continuity:

() [] ()†

0 0

2 1 , ,
V VU RV U

t R z R R R
φ φρ ρρ ρ χ ρ ρ χ
φ φ
∂ ∂ ∂ ∂= −∇ ⋅ = − ∆ + + − − − ∂ ∂ ∂ ∂ 

! (1)

[] ˆ, A B A BA B A B
R z z R

φ⊥ ⊥
∂ ∂ ∂ ∂≡ ∇ ×∇ ⋅ = −
∂ ∂ ∂ ∂Define Poisson Bracket

(), A B A BA B A B
R R z z⊥ ⊥
∂ ∂ ∂ ∂≡ ∇ ⋅ ∇ = +
∂ ∂ ∂ ∂and

Operate on the momentum equation with to get an equation for the
evolution of (called “w” in the code):

0
ˆR φ− ⋅∇×

† 2 1 UU U
R R⊥
∂∆ ≡ ∇ +
∂

()† † † † † †

0 0

0 0
0 0 2 2 2

2

02

2, , ,

1 / 22 ,

1 ,

V VR U UU U U U U U
t R R z R R

V V VR I RC pR R B J
R z R R R R R R z

VR p R
R

φ φ

φ φ φ

χ χ
φ φ

χ
φ ρ ρ ρ

µφ
ρ ρ

   ∂ ∂ ∂ ∂ ∆ = ∆ − ∆ −∆ ∆ + − ∆ −    ∂ ∂ ∂ ∂  
      +∂ ∂ ∂ + + + ⋅∇ + ⋅ ∇ +    ∂ ∂ ∂      

   ∇+ − ∇ ⋅ ∇×   
   

"! !

!

(2a)

Evolution of the Compressible Velocity
From the definition of the velocity, it is clear that

0

ˆ R UR V
R R z
χ∂ ∂= ⋅ −
∂ ∂

!

(2b)

0

ˆ R Uz V
z R R
χ∂ ∂= ⋅ +
∂ ∂

!
and

so that, again using the momentum equation,

()

2

0 0 0

2
02 2

1

1 1 ˆ

V V VR U R U U pV
t R R z t R R z R z R R R R

F I C FR I R V
R R R z R R z R

φ φ φχ χ χ
ρ

ψ ψ µ
ρ ρ ρ

⊥ ⊥

  ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = − − ⋅∇ + − − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
′ ′ ∂ ∂ ∂ ∂ ∂   + + + − + − + ⋅∇    ∂ ∂ ∂ ∂ ∂    

!

" !"

and

()
0 0 0

2
02 2

1

1 1 ˆ

V VR U R U U pV
t z R R t z R R R R R z z

F I C FR I z V
R R z R z R R z

φ φχ χ χ
ρ

ψ ψ µ
ρ ρ ρ

⊥ ⊥

  ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = − ⋅∇ − + − −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
′ ′ ∂ ∂ ∂ ∂ ∂   + + − − − + + ⋅∇    ∂ ∂ ∂ ∂ ∂    

!

" !"
(2c)

Evolution of the Toroidal Velocity

Dot the momentum equation with to find

(2d)

φ̂

()

() [] ()
0 0

2 2
2 2 3 3

2
2 2

0

1, ,

1 1 1 1, , ,
2

2

V V VR U pU V V V
t R R R R z R

I I F F F
R R R R

V R UV
R R R z R

φ φ φ
φ φ φ

φ
φ

χχ
ρ φ

ψ ψ ψ
ρ ρ ρ φ ρ φ

µ χ
ρ φ

⊥ ⊥

∂ ∂ ∂ ∂ ′ = − − + − −  ∂ ∂ ∂ ∂ 
∂ ∂ + + + − ∇ + ∇  ∂ ∂

  ∂ ∂ ∂+ ∇ − + +  ∂ ∂ ∂  

" "

Evolution of the Magnetic Field
If

(3)

B A= ∇×
!! B E

t
∂ = −∇×
∂

! !
and then A E

t
∂ = − + ∇Φ
∂

! !
where, if we choose the gauge

0,A⊥∇ ⋅ =
! 2 .E⊥ ⊥∇ Φ = ∇ ⋅

!
we find

For the resistive MHD Ohm’s law, that means

() ()

[] ()

2 2 0
2

0 0

2 2 2

1 1, 1 , , ,

1 1 1 1, , ,

V VRI II U U F V
R R R R z R R R

F I C I F
R R z R z R R R

φ φ
φ

χψ χ ψ

η ψ η η η ψ
φ

∗
⊥ ⊥

     ∂∇ Φ = + + ∇ − ∆ + + − −     ∂    
′ ′ ∂ ∂ ∂ ∂  ′ ′ + − − + + − +    ∂ ∂ ∂ ∂  

" ""

" "

ˆ ,AR
t

φ ∂⋅
∂

!
The time derivative of ψ (called “a” in the code) is simply

but the quantity we choose to evolve is instead .aC ψ∗≡ ∆

[] () () []
0 0

, , , ,R RU U F F C
t R R
ψ ψ χ ψ χ η

φ
∂ ∂Φ= + − + + +
∂ ∂ (4)

Evolution of the Toroidal Field
The magnetic field is completely specified by two scalar functions; the auxiliary
variable F is related to the non-vacuum toroidal field Ĩ/R by the elliptic equation
given earlier. The evolution of Ĩ can be found from the toroidal component of the
field equation:

() ()

[] () ()

0
0

2
2

, , , ,

1 2 1 1, , ,

V V VI R IU I I R R F R I
t R R R R

FI F I F
R R z R R R

φ φ φχ ψ χ
φ

ψη η ψ η η

∗

∗
⊥

   ∂ ∂ = − + + − + ∆ −   ∂ ∂   
′ ′ ∂ ∂  ′ ′ ′+ ∆ − ∇ + + − + −  ∂ ∂  

" "" " "

" "
(5)

The Energy Equation
The energy equation in the resistive MHD version M3D is normally solved in terms
of the plasma pressure; simple substitution of the code variables into the pressure
equation gives

[] () †

0 0

2 1, ,
V Vp R p U pU p p p

t R R R z R
φ φχ γ χ ρ κ
φ φ ρ

∂     ∂ ∂ ∂= − − − + ∆ + + ∇ ⋅ ∇    ∂ ∂ ∂ ∂     
(6)

M3D Numerics
• Uses linear basis functions on triangular finite

elements in-plane (Galerkin method).
• Uses either finite differences or pseudo-spectral

derivatives between planes.
• Time step is partially implicit, stepping over

compressional Alfvén wave and dissipative time
scales but limited by the shear Alfvén wave CFL
condition.

• Nonlinear operation: all components of all
quantities evolve nonlinearly.

• Linear operation: full nonlinear + filtering, active
equilibrium maintenance. (Each time step, do
ordinary nonlinear solve, then add [e.g.] just the
n=1 component of the advanced time values to the
n=0 component of the original values to get the
new values for the next step).

2D Mesh Topology
Each poloidal wedge has j vertices at radial
position j. Wedge 0 also has a vertex at radial
position 0 (not shown). Ghost vertices are on the
high θ edge of the wedge.

0

1

2

Triangulation is done wedge by wedge.
All elements containing at least one local
vertex are considered local.

0

M3D Usage (Interactive)

poe ./m3dp.x -nodes 1 -tasks_per_node 16 \
-vmecfile vmec4.dat -configFile config.dat16 \
-checkpoint checkpoint.r16 -iwriteCheckPoint 1000 \
-pc_type asm -pc_asm_overlap 1 -sub_pc_type ilu -sub_pc_ilu_levels 3 \
-ksp_type gmres -ksp_gmres_restart 1000

Sample 16-processor script on Seaborg (IBM SP)

mpirun -np 16 ./m3dp.x \
-vmecfile vmec4.dat -configFile config.dat16 \
-checkpoint checkpoint.r16 -iwriteCheckPoint 1000 \
-pc_type asm -pc_asm_overlap 1 -sub_pc_type ilu -sub_pc_ilu_levels 3 \
-ksp_type gmres -ksp_gmres_restart 1000

Same sample script on mhd (SGI Altix)

VMEC equilibrium file configuration file checkpoint frequency
optional restart file (Existence of wxy file

is assumed)

Input File wxy: namelist WDAT
&WDAT
imsy=0 ifull=1 rmajor=05.00 ncyl=0 nexpl=0 idbug=0
linhe=0 mhep=1 nhep=1 linto=0
pmag=1.00e-6 nkhcy=99991 noscil=099 ikhin=1
iconf=00 delmo=0.11 imapcon=0 bndel=0.05821 bnkay=1.33441
ld=20 ml=1 mu= 9 mp= 20 nu=07 nm=1
dtf=+7.5e-5 nstp=1 npr=1 npu=90000 nparha= 07 nckpa=-2
nread=-00 nprnt =1 idrop=0 xgam=1.6667 ncont=-12 inistpl=0
eta=1.0e-5 etaout=0.e-5 etaout2=0.0e-5 icheta= 3 petaval=5.e-9
pkkk=9.09e-4 lin= 0
rmu=2.0e-3 rmuout=0.e-3 rmuout2=0.e-4 ichrmu= 3 ibounde= 0 rdtdp= 0.5
vmu=1.e-3 vmuout=1.e-3 vmuout2=1.e-3 ichvmu= 1 idropv= 1 iqpsi=0
gammo=0.00 qn=1. iaponly=0 vdropm=2.e-90 vdropmi=2.e-90
impa=1 iergod= 0 iharcha=0 resfssm=1.e-99

iheliac=0 ilb3=0 ilb4=0 icyl=0 istea=0 partc=1.0
heliacg=5. nspla=10 ntk=400 npk=400 rlim=.9

ipe= 1 ifwe=1 grax=0.050 chpower=1. rstn=.0 pmult=1.0 umult=1.0
iartp=-1 napmax=0010 wkinmax=1.e+1 wkivmax=1.e00 iadjtss= 0

ivaex= 0 icainc= 0 iripeq= 0 igridch=0
intfrex= 0 tempc1=.0 inipur= 0 ichecb= 0
itfbv= 0 ichop=0 chopr=2e1 isetmk= 0 ncombgr=0

nchehar=900000 ainfato=.2e-03 nautoha=0900 iplott=4

ianp=0 igkrd=0 ncygk = 005
gfb = 1. gfe =01.0 gfp =07.00e19 gfj=80.e1
rgk1 =0.00 rgk2 = 0.001 rgk3 = 0.0 rgk4 =0.e+00 rgk5 = 0000.
itearing = 4
/

nhep: toroidal mode number for linear solver
linto: 0=nonlinear; 1=linear
pmag: relative amplitude of initial perturbation, if

any
dtf: time step. dtf>0: dt as fraction of CFL step size;

recommend 0.08 or less for nonlinear cases.
dtf<0: -dt as a fraction of the Alfven time (non-
adaptive; recommend 0.01 or less.

nstp: number of time steps to advance
npr: frequency for generating output files for

plotting
nprnt: frequency for generating screen output
eta: normalized plasma resistivity
pkkk: normalized isotropic heat conduction κ⊥
rmu: normalized plasma viscosity
rdtdp: effective artifical sound wave speed
istea: 0 for nonlinear; 1 for linear
pmult: multiplicative factor for pressure on restart
umult: multiplicative factor for velocity on restart
iartp: parallel heat conduction. –1=off; +1=on.
napmax: frequency for artifical sound wave step
inipur: add initial perturbation? 0=no; 1=yes
ichop: change size of linear perturbation? 0=no;

1=yes
chopr: Relative new size of linear perturbation

when ichop=1
ianp: 1=turn on gyrokinetic hot ions
igkrd: read particle data?
ncygk: number of particle steps per fluid step

Input File wxy: namelist CHPAR
&CHPAR

ich2d=0 ichcinv=-2 icincin=1 ipcinvk=1 ioldinp=0
artpn=-1.10 simpf=1.
pampl=1.00e-00 pbase=1.0e-02 pdissf=1.0e-3

rtrans1 = .45 rtrans2 = 0.80 rtransw = .10
iequadr = 0 ldold= 31 facnog=.8
rcg= .57 deltg= .10 facnisg= 2.5

isoft=0 rotperi=10.0 nsofdet=30 sodista=2.81 soangma=.1167
iece=0 ecedis=.900 ecedet=25
qcon21=1.3 qcon12=.15 qcon22 =.540 qcon13=.400 qcon23=0.32

qcondw=2.4
qcon14=-.550 qcon24=-9.70 qcon15=0.000 qcon25=1.00 qcon26=0.00
i2d=0 mlowest=1 nlowest=0 amldval=.000 pres1=-3.18

qnought=.80 apmulf=-1.5 ipchan=000 hhtb=10. hhtbl=10.

ibeaneq=0 rfrank=0. resc3=+0.01807 resc4=0.e-01 iresc5=10 resc6=0.001
iresc7=0500 resc8=1.0e+0 resc9=1.0 resc10=1.0 resc11=0.e-9
resc20=2.1 resc21=0.0 resc22=-.00 resc23=0.3 resc24=0.5
resc25=000.1 resc26=0.000 resc27=9.e-3 resc28=0.8 resc29=2.

ichaald=0 ichacbr=0 ichapre=0 ratioq=1.0
/

ichcinv: current drive. –2 to initialize a drive term
that will try to maintain initial profile. 0 to
maintain same term from previous run.

pdissf: Optional dissipation coefficient for density
equation.

Input File wxy: namelists HALL and HYBN
&HALL
igv=0 ivi=0
ihall=0 ihallt=0 ielecp=1 iden=1 idengd=1
pefac=0.5 xmie0=.01e-0 hallf=-1.0 inewp=0 prot=-1000.0
ietal=0 idench=1
/
&HYBN

im=32 jm=32 km=08 r0=200. l9z=0. a9=050. twod=0
dt9=005. nm9=0001 nsm=1 sx=0. sy9=0. sz=0. load=2

width=.50 xshift=.0
modem=0 contu=8 pskip=0040 wmax=0.05
nsrc=00000 mmm=000000 iavg=0 ismth=0 ipj=1 iters=4

err9=.0010
bt0=1. q0=1. c1=1. c2=1. c3=1. c4=0.
rkk1=050. irkk2=10 rkk3=0. rkk4=0001. rkk5=0.

/

igv: turn on ion gyroviscous term (basic 2-fluid).
idengd: 1=assume there is a density gradient when

solving; 0=assume uniform density.
xmie0: Normalized ion skin depth (only used when

2-fluid terms are turned on).
idench: 1=evolve the density in time.; 0=do not.

*For a thorough explanation of the proper usage of variables in the HALL
namelist, contact Linda Sugiyama (sugiyama@psfc.mit.edu). For an explanation
of the HYBN (hybrid) namelist, contact Guo Yong Fu (fu@pppl.gov).

M3D Walkthrough: Initialization
Routine:
main

Located in:
mhd/driver/test.c

Defines global variables:
Configuration dev........Describes mesh dimensions and domain decomposition.
Comm phone........................Global, toroidal, and in-plane MPI communicators and ranks.
NodeDomain cell............Geometric bounds of local mesh domain.
IndexMapping map..........Contains counts and index-mappings for vertices and

elements (defined as vertex triplets).
Mesh grid..........................Normalized (R,z) coordinates of vertices.
LocalFE lfe
FiniteElementMatrix gfe

MHD_DATA userData.......Storage for data fields in the form of many local and
distributed PETSc vectors and double arrays.

MHD_Solver userSolver...Contains PETSc linear solver contexts for most operators.
MDoF userMdof.................Contains PETSc linear solver context for (2N)2 operators.

Four sets of matrix elements arising from Galerkin
integration of operators on linear basis functions.

}

Initializes MPI, PETSc, domain-decomposed mesh, profiles, and
finite element operators. Calls physics driver.

M3D Walkthrough: Initialization
Routine:
main
PetscInitialize

Located in:
PETSc Library

Starts up message passing interface (MPI).
Initializes PETSc, passing references to command-line arguments.

M3D Walkthrough: Initialization
Routine:
main
PetscInitialize
initProfileVmec

Located in:
mhd/init/initProfileVmec.c

• Sets up mesh topology and domain decomposition based on
configuration input file or command-line arguments.

• Reads and sets up mesh geometry based on VMEC equilibrium
input file. Normalizes VMEC data.

• Builds finite element operators based on linear triangular elements.
Creates PETSc solver contexts for operators.

• Interpolates VMEC equilibrium profile onto M3D mesh.

M3D Walkthrough: Initialization
Routine:
main
PetscInitialize
initProfileVmec
vmecread

Located in:
mesh/vmec/vmecread.c

• Root process opens file, reads header info, broadcasts to all.
• Temporary storage is allocated for VMEC data.
• Root process reads data, broadcasts to all, closes file.

Note: there are currently four different options for
reading in equilibrium files here:
-vmecfile: ASCII VMEC output. The most general.
-vmecInput: ASCII VMEC “light” file. 2D equilibrium

generated by i2mex by translation from some
other format.

-vmecChease: Obsolete format. Never used.
-i2mexFile: ASCII file from i2mex using realspace (not

Fourier) coordinates. Very rarely used.

M3D Walkthrough: Initialization
Routine:
main
PetscInitialize
initProfileVmec
vmecread

Located in:
mhd/init/initProfileVmec.c

Six integers (one to a line) in the file determine sizes as follows:

A: Total number of planes (constant φcross-sections).
B: Number of CPUs toroidally. A must be divisible by B.
C: Number of (minor) radial grids globally. Usually odd. For linear elements, C=31 would

be small; C=61 is medium; C=91 fairly large; C=121 very large.
D: Number of radial CPUs. Should generally be one; use caution when exceeding.
E: Poloidal symmetry of mesh, a rough measure of θ resolution. At least 3. Could go as high

as 5 or more for highly shaped stellarator cross-sections.
F: Number of θ CPUs. Can vary from 1 to about 6-8 depending on C & D.

After reading in the equilibrium, the mesh size and
domain decomposition are set up, based on the
specified configuration file, normally “config.datn”,
where n is the number of processors it fits.

()
, 1

total CPUs
1 1 , 1

BF D
B F D D

=
=  − + >  

(1)total vertices 1
2

EC CN A − = +  

(will fail otherwise!)

Also check header file m3d/code/param1:
must have / ,

/ , 1

, 1
(1) 1

A B
N F D

N D
F D

≥ =
=

≥  > − +

kz ku

lz

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
vmecread
vmecscaling

Located in:
mesh/vmec/vmecscaling.c

Rescales the data now in the VMEC equilibrium data structure.

The norm for the magnetic field is Bφ on axis.
The norm for length scales is minor radius a:

Tokamak case: a = one-half the width of the cross-section at
the midplane.

Stellarator case: a = average minor radius over all θ, φ.

Norms for coordinates, field, current, and pressure are based on
these two values.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
vmecread
vmecscaling
ConstructComm

(“phone”)

Located in:
mesh/cpu/constructComm.c

Uses MPI ranks in the global communicator to set up two additional
sets of communicators. Each “poloidal” communicator consists of
all processors at a given toroidal angle or range of angles. Each
“toroidal” communicator consists of all processors in a given subset
of the plane.

Assigns each processor a unique rank within one toroidal and one
poloidal communicator.

sample poloidal
communicator

sample toroidal
communicator

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
ConstructComm
MapCPUtoPartition

(“cell”)

Located in:
mesh/cpu/mapCPUtoPartition.c

Computes upper and lower bounds in r, θ, and φ of the chunk of the
mesh that is resident on the local processor.

θ and φare divided evenly; r bounds are determined by load
balancing considerations.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
MapCPUtoPartition
indexMapping

(“map”)

Located in:
mesh/index/indexMapping.c

Sets up the “map” global variable, containing mesh topology.
Creates and connects sets of vertices based on input from
configuration file.

Note: there is a lot of legacy code in this file in between these brackets:
if (ioldmesh==PETSC_TRUE) {...}

Ignore it. It was re-inserted recently for testing purposes, but
should not be used routinely.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
indexMapping
createGlobalMesh

Located in:
mesh/index/createGlobalMesh.c

• Creates a list of all (global) vertices in a plane using logical (r, θ)
coordinates.

• Creates a list of all triangular elements (ordered triplets of vertices).

• Flags boundary vertices for special handling later.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
indexMapping
createGlobalMesh
findLocalVertices

Located in:
mesh/index/findLocalVertices.c

Uses the known boundaries of the local chunk to pick out those vertices from the
global set just generated that are local. Creates a mapping between local, global
application, and global PETSc orderings.

0 1 2

3

0

1

2

0

1 2

sample local orderings

0 1 4

5

2

6

7

3

8 9

equivalent application ordering

0 1 2

3

4

5

6

7

8 9

equivalent PETSc ordering

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
indexMapping
createGlobalMesh
findLocalVertices
findLocalElements

Located in:
mesh/index/findLocalElements.c

• Picks out those triangular elements from the global set that are
local, using the rule that a local element is one that contains at least
one local vertex.

• Tags nonlocal vertices that are members of local elements as
ghosts. Creates mappings involving ghosts to facilitate
communication later on.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
indexMapping
createGlobalMesh
findLocalVertices
findLocalElements
findElementOverlap

Located in:
mesh/index/findElementOverlap.c

Finds and tags elements that appear on more than one processor so
that only one copy of each will eventually be written to the HDF5
output file 3d.001.h5.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
indexMapping
vmecmesh

Located in:
mesh/vmec/vmecmesh.c

• Determines radial mesh packing, if any. Default of no packing is
strongly recommended.

• Creates a new data structure of the same type as the one containing
the VMEC file data, but with a number of radial grids equal to that
in the M3D grid, laid out in r rather than s.

• Interpolates the coordinates and equilibrium onto this new mesh.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
indexMapping
vmecmesh
vmecfit (called multiple times)

Located in:
mesh/vmec/vmecfit.c

Interpolates all modes of a single VMEC variable between radial
meshes of two different sizes. Numerical Recipes routine polfit
is used near the origin and edge for higher-order interpolation,
allowing greater accuracy.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
vmecmesh
constructGrid

Located in:
mesh/grid/constructGrid.c

• Allocates and initializes parallel PETSc vectors to contain real-
space cylindrical vertex coordinates (R, z) for each plane.

• Allocates and initializes vectors containing the 1st and 2nd

derivatives of each of these coordinates with respect to φ. (Show up
in toroidal derivatives in stellarators).

• Computes length increments along outer boundary for use in line
integrals.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
vmecmesh
constructGrid
vmecpoint2 (Called many times)

Located in:
mesh/vmec/vmecpoint2.c

Determines the R and z coordinates of a mesh point and their φ
derivatives by summing over modes in the VMEC data.

For radial locations with few θ points, a cutoff is imposed in
poloidal mode number to avoid aliasing errors that tend to warp the
grid.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
constructGrid
ConstructLocalFEMatrix

Located in:
mesh/felement/constructLocalFEMatrix.c

Builds rows of the finite element matrix operators corresponding to local vertices.
All basis functions associated with a particular vertex go in the same row.

(,) (,)j j
j

f R z f R zλ=∑
2 2

,Mass matrix: (,)i j i j i j j
j j

f R z d x f d x M fλ λ λ= ≡∑ ∑∫∫ ∫∫
() ()2 2 2 2 2

iStiffness matrix: , j i j j i j
j

f R z d x f d x f d xλ λ λ λ λ⊥ ⊥ ⊥∇ = ∇ = ∇ ⋅ ∇∑∫∫ ∫∫ ∫∫{ }2
,i j i j j

j j
d x S fλ λ⊥ ⊥− ∇ ⋅ ∇ ≡∑ ∑∫∫

Galerkin method: integrate equations over each basis function to get “weak form” → linear algebraic equation.

1

2

3
1 2 3Side lengths , etc.dr r r≡ −! ! !

()1 ˆ3 linear basis functions ()
4

() 1; () 0

r r r dr

r r

α β α
β α

α α α β α

λ φ

λ λ
≠

≠

= − × ⋅
∆

= =

∑! ! ! !

! !

1
1 22

ˆArea dr dr φ∆ = × ⋅! !

2 2
,"dRoverR" matrix: (,) ji i

j i j j
j j

f R z d x f d x R f
R R R R

λλ λ ∂∂ = ≡
∂ ∂∑ ∑∫∫ ∫∫

()
2

1 2 3
! ! !Handy identity: 2

2 !
m n m nd x

m n
λ λ λ
∆

= ∆
+ + +∫∫ # #
#

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
constructGrid
ConstructLocalFEMatrix
AccumLocalFE (Called once for each plane)

Located in:
mesh/felement/accumLocalFE.c

The calling function allocates space for PETSc matrices, sets
descriptors, and loops over planes. This routine does the actual
calculations of areas and matrix elements for the local part of each
plane.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
ConstructLocalFEMatrix
ConstructFEMatrix

Located in:
mesh/felement/constructFEMatrix.c

Allocates and initializes global distributed PETSc matrices for the
mass, stiffness, and (1/R)(d/dR) operators in each plane. Adds the
values in from all local matrices to build the global ones.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
ConstructFEMatrix
constructMHDdata

Located in:
mhd/allocation/constructMHDdata.c

The name of this routine is somewhat misleading. It does not construct any data.
It merely allocates space for a large number of structures with the names of
physics variables. In ParM3D, they actually stored these variables; in M3DP they
merely serve as workspaces for the communication of data from Fortran to C
routines (or in some cases may not be used at all).

The structures are of type ParData, consisting of a local PETSc vector, a global
PETSc vector, and an array of doubles for each plane. Useful for storing,
communicating, and operating on parallel data.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
constructMHDdata
setOptions

Located in:
mhd/init/initProfileVmec.c

Attempts to set physics options based on various command-line
arguments. These options have meaning in ParM3D but not in the
present code, and are not recommended.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
setOptions
setupIJPonGrid

Located in:
mhd/init/setupIJPonGrid.c

Copies Bφ, Jφ, and pressure equilibrium data from VMEC into
temporary physics variables on the M3D mesh.

Structure:
1. Read more deprecated command-line arguments.
2. Allocate storage.
3. Create mappings to PETSc ordering.
4. Loop over points, reconstructing real-space VMEC data.
5. Operate to get M3D form of variables.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
setupIJPonGrid
vmecBfield (called once for each vertex)

Located in:
mesh/vmec/vmecBfield.c

Given a point in the plasma, perform Fourier sums on VMEC data to
reconstruct toroidal field and current density at that point. Also
return the pressure value for the flux surface to which the point
belongs, and a mass density value of 1.0 for all points.

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
setupIJPonGrid
constructMHDsolver

Located in:
mhd/allocation/constructMHDsolver.c

• Allocates PETSc matrices for “star” () and
“dagger” () operators.

• Sets up lists of boundary vertices for applying boundary conditions.

• Allocates 13 PETSc “SLES” (Scalable Linear Equation Solver)
contexts (Krylov Subspace + Preconditioner = KSP), most unused.

• Builds solvers, sets their KSP options.

2 1
R R
χχ χ∗

⊥
∂∆ ≡ ∇ −
∂† 2 1 UU U

R R⊥
∂∆ ≡ ∇ +
∂

M3D Walkthrough: Initialization
Routine:
main
initProfileVmec
...
constructMHDsolver
ConstructLmass

Located in:
mhd/allocation/constructLmass.c

Builds a diagonalized approximation to the mass matrix (called the
“lumped mass”) to allow simple assignments without costly matrix
inversions.

11 12 11 12

22 23 22 23

33 33

0 1
0 1
0 0 1

m m m m
m m m m

m m

+     
     = +     
     
     

i

Multiply by vector of ones to add elements in each row:

2J ψ⊥= ∇

1
, ,i j j i j jM J S J M Sψ ψ−= → = ⋅ ⋅

%! %

After Galerkin integration,

becomes

Lumped mass replaces matrix inversion
with much faster pointwise division:

() lumpedJ S Mψ= ⋅ ÷
%! !!

M3D Walkthrough: Initialization
Routine:
main
PetscInitialize
initProfileVmec
initMHD

Located in:
mhd/init/initMHD.c

• Routine appears to do a lot of initialization (did more in ParM3D),
but since preprocessor macro “ORIGC” is undefined, almost none of
it is compiled.

• Zeroes out velocity components by calling zeroFlowField
(mhd/init/zeroFlowField.c).

• If a checkpoint file has been specified for a restart, calls routine
initCheckPoint (mhd/init/initCheckPoint.c) only to get
elapsed time (otherwise sets it to 0.0).

M3D Walkthrough: Initialization
Routine:
main
...
initMHD
constructMDoF

Located in:
mhd/mdof/constructMDoF.c

In order to implement differential operators of higher than 2nd order
on linear basis functions, it is necessary to define auxiliary variables.
It is sometimes convenient to do a higher-order solve for these
variables in one step, requiring larger matrices (e.g., 2N×2N instead
of N×N). This routine sets up the structure for such a matrix.

4

2

2

becomes

which can be solved as

0
0

R

C
R C

M C S
S M R

ψ

ψ

ψ

= ∇

 = ∇
 = ∇

     ⋅
=    −     

! %% !
% i% !

Example:

M3D Walkthrough: Initialization
Routine:
main
...
constructMDoF
mh3d_

Located in:
m3d/code/m1.F
(the main source file;
~25,600 lines at last count)

Skipping the higher-order element initialization, the main routine checks the
system time, then starts up the main physics driver, a legacy Fortran routine.

mh3d reads in the physics parameters from a file (wxy), receives mesh and
physics data from C arrays, optionally reads in restart data from a checkpoint file,
sets up various variables, and contains the main time-stepping loop, which may
periodically involve diagnostic and data output. It also directs the creation of
checkpoint files periodically during the loop and on termination.

The many varied physics levels of M3D come together in this routine; a lot of
conditional branching based on input control variables determines which equations
will be solved and how.

Initialization in mh3d
Routine:
main
mh3d_
...

Located in:
m3d/code/m1.F

All processors read in all namelists from the wxy file.
Additional internal variables are set based on its contents.

Initialization in mh3d
Routine:
main
mh3d_
...
wreadgksend,recv,1

Located in:
m3d/code/m1.F

Optional: if igkrd.eq.1, reads in gyrokinetic particle data from
file wxi0.

Initialization in mh3d
Routine:
main
mh3d_
dmesh
initt2
initt

Located in:
m3d/code/mpar1.F
(handles parallel operations on
Fortran data, interface with C;
~6,097 lines)

Fortran mesh initialization. Sets iuns=1 for unstructured mesh. Retrieves data
with calls to C routines in mhd/interface/p2m.c:

parparms...copies mesh dimensions from C to F; static array dimensions from F to C.
parparm2...copies a few more.
pargrid.....copies vertex coordinates (real & logical) from C to F.
pargrid2...copies φderivatives of vertex coordinates from C to F.
parcoefs...copies ε, rmaj, and t from C to F; dt from F to C.
dzsetc.......sets φcoordinate for each local plane.
norm3c.......gets unit normals to boundary vertices.

Initialization in mh3d
Routine:
main
mh3d_
...
dmesh
rnetc

Located in:
m3d/code/mpar1.F

Computes 3D array of stored values for R, R2, 1/R, and 1/R2.
Appears to be called twice...

Initialization in mh3d
Routine:
main
mh3d_
...
rnetc
varflrw

Located in:
m3d/code/m1.F

Placeholder routine for setting up for resistive wall operation. Does
nothing significant in the last CVS-committed release (3.3.10).

Initialization in mh3d
Routine:
main
mh3d_
...
varflrw
defvar

Located in:
m3d/code/m1.F

• Sets 2D resistivity profile etas to eta times the first plane of 3D
profile cinv.
• Calls sbigi (m1.F, line 4300), which finds the total toroidal field
bigi=eps+si (I=ε+Ĩ).
• Computes rsbs (), bsq
(B2=R2B2/R2), and bsqin (B-2 = (B2)-1).

[]2 22 2 2 2 2 ,R B R I F F ψ ψ⊥ ⊥= + ∇ + + ∇

Initialization in mh3d
Routine:
main
mh3d_
...
defvar
...

Located in:
m3d/code/m1.F

• Sets resistivity profile etas according to icheta and eta
(constant).

• Sets viscosity profile rmus according to ichrmu, rmu, and
rmuout and rmuout2. If the last two are zero, it’s constant.

• Sets profile vmus according to vmu.

Initialization in mh3d
Routine:
main
mh3d_
...
defvar
inicon
initpro2

Located in:
m3d/code/m1.F, mpar1.F

inicon initializes physics variables for first-time run, first setting them all to
zero. Then, since this is the first iteration, it calls initpro2.

If the time elapsed is zero, this is not a restart, so initpro2 copies just the three
VMEC equilibrium fields from the C data via a call to parvars0 in
m3d/interface/p2m.c.

Otherwise, it calls read_mpp in mpar1.F to read checkpointed data...

Initialization in mh3d
Routine:
main
mh3d_
...
inicon
initpro2
read_mpp
parrcheck (called once for each variable)
readCheckVariable (called once for each variable)

Located in:
m3d/code/mpar1.F
m3d/interface/p2m.c
mhd/output/readNewCheckPoint.c

Reads all MHD variables, and, if needed, all two-fluid variables as well one at a
time from the checkpoint file indicated on the command line.

If the mesh used to create the checkpoint file does not match the mesh in the
present run, the data are interpolated onto the new mesh using quadratic fits both
within and between planes. This allows user-controlled “adaptive” mesh
refinement.

Initialization in mh3d
Routine:
main
mh3d_
...
inicon
...

Located in:
m3d/code/m1.F

Rectify boundary pressure if necessary.
Extract auxiliary variables from primary VMEC values.

Initialization in mh3d
Routine:
main
mh3d_
...
inicon
denst

Located in:
m3d/code/m1.F

Called if this is not a restart, or if it is a run that is supposed to have a
uniform, non-evolving density. Sets up an analytic density profile
based on wxy options (most likely uniform).

Initialization in mh3d
Routine:
main
mh3d_
...
denst
rninvers

Located in:
m3d/code/m1.F

If, on the other hand, this is a restart, computes 1/density, which will
appear as a coefficient in many terms during the time advance.

Initialization in mh3d
Routine:
main
mh3d_
...
rninvers
...

Located in:
m3d/code/m1.F

Sets up the resistivity profile, cinv according to wxy options.
So called because in the current drive case (where M3D attempts to
maintain the initial current profile during the course of a nonlinear
run), cinv ∝ 1/C, where C is the equilibrium toroidal current
density.

M3D Walkthrough: Main Loop
Main loop starts at line 1575 of mh3d in m1.F, labeled 100 and referred to in the
code as “the insertion point for the stepping cycle.”

1. Calls dtset (mpar1.F), which calls dtsetc (m3d/interface/dxdrc.c), which
estimates the maximum allowable explicit time step interval dt based on the CFL
condition for shear Alfvén waves at the peak magnetic field. Multiplies by dtf safety
factor if dtf>0; otherwise replaces dt with |dtf|.

2. Optionally adjusts resistivity profile cinv based on temperature tt using Spitzer
formula, with specified overall normalization; turned off (“isoff=-1”) in CVS
version.

3. For the 1st time step in the run only (ncy.eq.0), does the following:
1. If there is to be an initial perturbation, zeroes the poloidal velocity fields.
2. Calls modini (m1.F) to initialize all variables and possibly add initial

perturbations.
3. Writes initial diagnostic info to stdout.
4. Generates a plot of the initial state if requested.

(if...then block continues up to �add and drop harmonics...�, line 1826).

M3D Walkthrough: Main Loop, continued
4. Calls defvar (m1.F, line 4230), which does the following:

• Sets 2D resistivity profile etas to eta times the first plane of 3D profile cinv.
• Calls sbigi (m1.F, line 4300), which finds the total toroidal field bigi=eps+si

(I=ε+Ĩ).
• Computes rsbs (), bsq (B2=R2B2/R2), and bsqin

(B-2 = (B2)-1).
[]2 22 2 2 2 2 ,R B R I F F ψ ψ⊥ ⊥= + ∇ + + ∇

5. Calls hybmain (in m3d/code/hyb.F) to do particle loop if gyrokinetic option is turned
on.

6. Updates the integer counter ncy and the real counter tim.
7. Makes temporary copies of all variables to be time-advanced for later linearization.
8. If the code has been compiled with the STELL (stellarator) flag set, uses predictor-

corrector 2nd-order-accurate time step: halves dt, calls time advance, doubles dt, calls
it again with intermediate values. Otherwise...

9. Calls timeadv (in m1.F, line 2774) to solve the equations.
1. Makes backups of velocity variables w, u, and lap_u and calls weqn (m1.F, line

11,955) to advance equation (2a). Filters result if running linear.
2. Calls chiaiap_3 (m1.F, line 8686) to solve (5) for Ĩ, (2b) and (2c) for ∇ ⊥ χ, and

(6) for the pressure. These are handled implicitly to avoid the CFL condition for the
compressional Alfvén wave.

3. Applies perpendicular heat conduction by calling pkkks.

M3D Walkthrough: Main Loop, continued

10. If running nonlinear, filters out highest modes by calling filthial to prevent
aliasing.

11. Prints some diagnostic information to screen.
12. Calls chekchek (mpar1.F), which determines whether it’s time to write a

checkpoint file and, if it is, calls write_mpp (mpar1.F) which repeatedly calls
parucheck (m3d/interface/p2m.c) which in turn calls addtoCheckPoint
(mhd/output/createCheckPoint.c) to add each variable to the checkpoint file,
concluding with the time stamp.

13. If ncy mod npr.eq.0, writes a frame of data to the output file(s) by calling
outpp in mpar1.F, which calls ucd3dc in p2m.c to call writeUCD3d and/or
writeHDF5_3d in mhd/output to write in the appropriate (UCD and/or HDF5)
formats.

4. If density evolution is turned on (idench.eq.1), makes a copy of the
density variable rn and calls rhoeqn (m1.F, line 5456) to advance equation
(1), with dissipation if pdissf is positive. Filters result if running linear.

5. Calls vphieq to solve Eq. (2d). Filters if necessary.
6. Calls phieqn to solve Eq. (3) for in preparation for solving the C equation.
7. Calls ceqn to solve Eq. (4) (effectively).
8. Calls feqn to solve the elliptic equation for F.
9. Computes C from Ca.

Common Data Operations in M3D

bb→aa**cccrpowerk(aa,ccc,bb,
psubt,ineoc)

cc→ (Poisson bracket)gcro(a,b,isy1,isy2,
cc)

ac→bc + cc (3D)addo(cc,bc,ac)

cc→gradsq(aa,bb,isy1,
isy2,cc)

Same as wconvo if kstt>0; otherwise
multiplies dac by 1st plane of cac only.

wconvon(cac,dac,
isy3,isy4,aac,kstt)

aac→cac*dac (3D pointwise multiply)wconvo(cac,dac,isy3,
isy4,aac)

acb*bc + c*cc (3D weighted sum)add(b,c,bc,cc,ac)

aa→bb(1) (Copy 1st plane to 2D)copy21(bb,aa)

aa→b*bb (mult. 3D by scalar)um02(b,bb,aa)

b→a (3D)copy(a,b)

⊥ ⊥∇ ⋅ ∇aa bb

φ̂⊥ ⊥∇ × ∇ ⋅a b

Additional Data Operations
Scalar b→ volume integral of 3D acplx.cvol(acplx,b)

delsq(aa,bb,isy)

c→a/b (divide 3D data pointwise by plane 1 of
2D data)

ud21(a,b,c)

aa→∂(xx)/∂R (3D)dxdr(isymr,xx,aa)

xx→∂x/∂φ (Either finite difference or pseudo-
spectral φderivative, depending on –DFFT in
Makefile)

dxdphi(x,isym,xx)

Does nothing.fixo(a)

aa→∂(xx)/∂z (3D)dxdz(isymr,xx,aa)

2
⊥→ ∇bb aa

Elliptic Solvers in M3D

lowpois(aa,bb,isym)

(Dirichlet b.c.s)poisvmu[0,3,n](aa,bb,
isu,ibc,dtt,ss)

lowpoisa(aa,bb,ww,
ibc,isym)

lopoismu(aa,bb,ww,
isu,ibc,dtt,ss)

(Dirichlet b.c.s)poisdmd[0,n](aa,bb,
ww,ibc,dtt,ss)

poiss(aa,bb,ww,ibc,
ibc2)

lopoisma(aa,bb,ww,
isu,ibc,dtt,ss)

During the course of time-advancing the seven scalar variables of MHD and their auxiliary
variables by one step, approximately 13 elliptic (Poisson-like) equations are solved
iteratively by passing right-hand-sides and variations of the stiffness matrix to PETSc’s
linear solver. These elliptic solves are the most time-consuming part of a purely fluid run,
and should be the first target for optimization.

()
()

2 1
()

2 1
()

0

1 ()

r

r r

⊥

⊥

 = ∇ − =


= ∇ − =

dtt ss

dtt ss

isu aa bb

isu ss aa bb

&

&
&

() 1
()r⊥ ∇ ⋅ ∇ − = dtt ss aa bb&

()
()

1
()

1
()

0 1/ /

1 1/ () /

R r

R r

R R

R r R

⊥

⊥

  = ∇ ⋅ ∇ − =  


 = ∇ ⋅ ∇ − =  

dtt ss

dtt ss

isu aa bb

isu ss aa bb

&

&
&

()

()

0

1 ()

R
r

R
r

R R

R r R

⊥

⊥

  = ∇ ⋅ ∇ − = ∗  


 = ∇ ⋅ ∇ − = ∗  

dtt ss

dtt ss

isu aa bb

isu ss aa bb

&

&
&

⊥∇ =2aa bb

†∆ =aa bb

∗∆ =aa bb

All “pois” routines are found in
mpar1.F and call C routines in
m3d/interface/poissc.c that call the
PETSc solvers.

On Termination
• After the main time advance loop, mh3d generates a final checkpoint file
(checkpoint.0) and returns.

• The main program then prints the elapsed time and exits.

• The checkpoint file can be used for restarts. The main output file for plotting
and post-processing should be 3d.001.h5 (if there is more than one plane), an
HDF5 file which should be given a new, unique name, and can be read by Scott
Klasky’s AVS network m3d.v. The text output generated during the run is useful
for tracking the kinetic energy history and (in the linear case) the growth rate of
the mode, and should be saved. Additional text output (especially copious in the
most recent release) is found in a file called “wxo”. A number of empty or mostly
empty files are also created.

• I have written several utilities in the mhd/driver directory that can be useful for
various common post-processing tasks. Ask me if interested.

