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Chapter 1

The M3D Form of the
Resistive M HD Equations

1.1 Operators

All equations will be solved in toroidal geometry, so we use cylindrical coordi-
nates (R, z, ¢). Note that this differs from the more common convention (used,
e.g., by the VectorAnalysis package of Mathematica and in most reference
books) of ordering them (r,6,z). It is essential to keep in mind the proper
definitions of the various differential operators in this coordinate system.

For a scalar field f, the gradient is defined as

_0fp 0F  10F.
VI grt T 55 Rag*

We also introduce a “perpendicular gradient” operator,

of o  Of .
VJ_fEéR—{—a—ﬁz.

The divergence of a vector A in cylindrical coordinates is

04 | 104,
dz R dp

The Laplacian of a scalar is therefore

1 0 of 8% f 1 9%f
Eﬁ(Rﬁ)Jraz? YR

Vif=vV.Vf=

The divergence of the perpendicular gradient is the new operator

10 <R6f> o'f  *F 10f 0%

AtF=v. -2 (g 2L 2L 2 .
F=V-il=gor\Rar) T 52 = arr T RoR T 9




1.2. The Scalar Variables 5

A new, divergence-like operator that will come in handy is

A, 9Ar O0A,
Vi RV-—% OR 9z’

where A| = AgrR+ A.%. If we apply this operator to the gradient or perpen-
dicular gradient, we find that
orf  9%*f

orz T 9.t

1
Vif=VL V) f=RV- <ﬁmf> =

Another second-order differential operator that will arise in the course of the
derivations below is

o*f 19f  9*f

1
*f = 2 . N - <
AT=RY (szf) dR?  ROR ' 922

Finally, for completeness, we define the curl:

94, 104, B 1[0Ar 0 Al s 0A;  0Ar\ _
0z R O¢ OR 0z

1.2 The Scalar Variables

1.2.1 The Magnetic Field and Currents

We begin with the magnetic vector potential A, where

B=VxA. (1.1)
Since Faraday’s law tells us that
0B
— =-VxE 1.2
ot e (1.2)
it follows that OA
— =-E+V® 1.3
p” + (1.3)

for any scalar field ®. To specify A it is convenient to choose the gauge
Vi-A =0 (1.4)
When we apply the V| - operator to (1.3), we then find that
Vi® = V. -E. (1.5)

Tt is evident that the gauge (1.4) places no restrictions on the toroidal component
of A, A,; the most general form of A satisfying (1.4) is therefore

A =Vifx¢ + ¢pVp (1.6)



1.2. The Scalar Variables 6

where f and i are general scalar fields. Taking the curl of (1.6), we find that

1 af 2 g
B = — ) - ) 1.
Vi x Vo + RVJ_ (8@) Vife (L.7)
If we define of
F == 1.8
7 (19)
and R R
I = -—=Vif = =B L.
ROVJ—f RO 4 ( 9)
then the magnetic field can be written
1
B = V¢ xVep + EVJ_F + RolIVe. (1.10)

Definition (1.9) is convenient because in the presence of a strong toroidal field
By, = 1 produced by TF coils, I can be written

IT=1+¢l (1.11)

where € is the inverse aspect ratio a/Ry — 1/Rg when lengths are normalized
to a, so that

is the time-evolving component of B, due to poloidal currents in the plasma.
We can now express the current density in terms of these new scalars by
applying Ampere’s law,

J=VxB (1.12)
to (1.10):
1 1 10F ~
J = —A¥% — I —_VF' - —— I 1.1
YV + R2VJ_1/) RV x Vi 792 Ve+ VIx Ve (1.13)

where the primes denote partial derivatives with respect to ¢. If we represent
the toroidal current density in terms of a new quantity

C =—-RJ, :A*w+%8a—f (1.14)

then the current density can be written somewhat more compactly as

.1 1
J = <v1— EVLF’) X Vo + 25 Vi — OV, (1.15)
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1.2.2 The Velocity Components

We expect the strong toroidal field to keep poloidal flows nearly incompressible.
Perfect conservation of toroidal flux across a poloidal plane could be expressed
as

0B,

ot

For € < 1, the toroidal flux is dominated by the unchanging Ry B,,/R compo-
nent; thus to zeroth order in ¢,

+ V.- (Byvyi) =0. (1.16)

v
VL%:O.

In analogy with the derivation of the expression for the vector potential (1.6)

arising from the gauge condition (1.4), we could then write

%:€VLU>< © + v,V

for some scalar functions U and v,; however to allow, more generally for some
compressibility, we add an extra, compressible term to get

v=RYV U x Vo + ViXx + v,¢ (1.17)

1.3 The Scalar Equations

Having expressed the vector quantities in terms of scalars, we now need equa-
tions for the time evolution of magnetic field quantities ¢ and I (F is related
to I by the elliptic equation ViF = —f’/R); velocity quantities U, x, and vy;
and density p and pressure p.

1.3.1 Electromagnetic quantities

We begin with the poloidal flux function, ¢. From (1.6), it is clear that ¢ =
RA,; hence we can dot (1.3) with R¢ to get

% = —RE, + & (1.18)

This, of course, requires an expression for E (we can then invert (1.5) to find
®). We use the resistive MHD Ohm'’s law,

E+vxB=ryJ (1.19)

where the resistivity n(r) is a scalar. Dotting (1.19) with —R¢, we find that

% = ¢R(VU x V), + ¢RVLF - VU — Vi x - Vi

o
+(VJ_X X VLF)LP +nC + % (1.20)
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Because the application of a Laplacian operator on the sort of non-uniform
mesh used by M3DP tends to introduce considerable numerical noise, while the
inversion of such an operator does not, the present version of the code evolves
not ¢ but A%p.

Next, we turn our attention to the fluctuating toroidal flux variable, I. Since
A/t = (1/€)dI/dt, we can find it by dotting (1.2) with R and substituting
in (1.10): 8I/0t = —R(V x E),,, or, using (1.19),

g—f = —eR? (Vfo VLU) -V — <%+I~) A =V, T -Viy
+ R [V (%) x Vuy] V- %g—i + RVLF V1 (2£)

~ 1
+ V17 - <VJ_I— EVJ_F/> — (Vi x V') -V

| 2 (oY  OF
AT — —V2F' + = ) 1.21
+”[ RVL +R2<6z+6R)] (1.21)

(1.20) and (1.21) are the two scalar equations for the time evolution of the
magnetic field. They depend on auxiliary variables F' and ®, the first of which
bears a simple relation to I. The equation for @, found by expanding (1.5) using
(1.19), is

1 Ox

2o — I veig - Zeary o — 92X
VJ_ GVL VLU+ VLU R 1/)+€R262

Vix x Vi (é) _V.F XV, (%)

1 (aF oy ol  aC
R\ 0z OR

1
P Vive -V

+ QD—E

n

R2

3z+%

1

RzVJ_U-VLl/)/. (1.22)

~ 1
+ I:VJ_U X <VJ_I— EVJ_F/)] Ve +

1.3.2 Velocities

The basic MHD momentum equation that will determine the behavior of the
components of the velocity vector is

d
p<a—:+v~Vv) = JxB—Vp+uViv, (1.23)

where p(r) is a scalar viscosity. It will be useful to define a new density variable

d= Rp; (1.24)
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in terms of d, the momentum equation 1s

v R? R? R’_, .
o, TV VY = I x B Vpd Vv (1.25)

The first scalar velocity component to investigate is the stream function U.
We can extract it by operating on v with =V - Vx:

1
——Vp (Vxv)= Al

If we apply this same operator to (1.25), we find that

0
=AU = ..
ot v
RJ, le+I\ 28p R
—B~V<—d)+J~V< P )+aa—z—€d2§0~(VdXVp)
1 R?

The evolution of x will be tracked in terms of its perpendicular gradient.
First, it is clear from (1.17) that

— —wvp —eR—

OR 0z
so, making use of (1.25),

0 (ox\ _ g [oU 5 Ovo
a(%) __€R$<E)+R'E_

o (oU dx ou oU' v, dx' vy R 0p
€R8z<8t) Vi VL(8R+€R6z) Vo, TRORT R doR
1/1 \|1/0F oy ol | C (OF Oy . R,
+d<e”> R<8R+8z>_8R d<az_aR>+R'“dv"

(1.27a)
where oU 8 oU 8
_ ov L 9X ) 5 _p L 9X ),
VL= <€R32 + aR) R+ < Ror ™t az) :
and
- 8%vg 1 dvg wvr 0O%pg 1 0%vp 2 Ov
Wiy = 8 - _ Il
RVY=Srm*ror Bt o2 "Rz ®op
Similarly,

ox  _oU
a—z = ERE—F{LZW
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s0
o (ox\ _ 0 [0oU . Ov
a(a—) = d%(a)“w =
0 [oU 1% ou U w, dx'  R*0p
T (E) TV (a_ *Rﬁ) TSR TR 9:  d 0s
L/1 N\|1/oF o\ o0I| C (dF dy\ . R*_,
+a<z“) E(az _6R)_8_z 7(@*5)“'“7“
(1.27b)
where 52 5 52
s Uty = U2y, = Qv 10vs 07w
SVV =V = S TR Y o
To find out how v, evolves in time, we simply dot (1.25) with ¢:
vy _ ; v Oy OU v, Ox
5 eR(VLU x Viv,) ¢ —Vix -Viv, — R Oy — €y % ~ ROR
+§ (Vfo Vﬂ/)) o+ é (VLf-VLF)
A ) 1 9
= F CAh__ - 2 FZ
+Rd I:agD(VJ_wXVJ— ):| 2Rd3g0 (le_wl +|VJ_ |)
R dp R*[_, vy 2 0 oU  dx .
_dago_{_'ud [v%_R2+R28g@ eRaz—f-aR (1.28)

1.3.3 Other Quantities

Density evolution is governed by the mass conservation (continuity) equation

dp

st . = 1.2
5 TV () =0, (1.29)
or, in terms of d,
od 9 dv
- = _ == 1.:
pn R*V <R2) (1.30)
(1.30) can be expanded to give
ad 1 dv v, 0d
— = —d|[ AN+ 52| —eR*(Vdx V.U) - Ve—Vix Vd——~£ —. (1.31
ot ( X+R3g@) R (Vdx Vil)-Vp=Vix Rop (1A

Finally, in order to close the system of equations, we need an energy-conserving
equation describing the evolution of the pressure in terms of the other variables.
The form used by M3D is

op

E+V~Vp = —'ypV~V—|—,OV~<Z v? (1.32)
p
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where 4 is the ratio of specific heats = 5/3 for an adiabatic system, and

o oemu 1
K=K

avy

is the thermal conductivity tensor. Expanding (1.32) in terms of the scalar
components of v results in

Jp R v, Op
B R(VLU X Vip) ¢ —Viy-Vip— 2282
5 = (VLU x Vip)- ¢ —Vix-Vip R 9

L oU 1 ov d o R2p .



Chapter 2

Walkthrough

2.1 Running the Example

Let’s walk through the execution of the first example on the T3E. For easier
browsing, “level shifts” between functions are indicated in the margins.

/.../m3dp/mhd/driver’, cp wout.test2 vmec4.dat
/.../m3dp/mhd/driver’, cp wxylin wxy

The first of these shell commands creates a duplicate of the 455 kB ASCII
Vmec output file to be used as input to m3dp. The second prepares an 87-line
ASCIT m3d input file that specifies some run parameters. Input parameters
for parm3d will be read from the local configuration file config.dat12, which
consists of the following;:

8

4

30

1
4.712385

We next type
/.../m3dp/mhd/driver’, ./run.12

to execute the following local script:

mpprun -n 12 \

./parm3d.x -vmecfile vmec4.dat \

-configFile config.dat12 \

-ksp_rtol 1.E-9 -ksp_type bcgs \

-pc_type asm -pc_asm_blocks 3 -pc_asmoverlap 3 -sub_pc_type ilu \
-sub_pc_ilu levels 5 -betaFraction 1.0 -gamma 1.666667 \
-viscosity 1.E-3 -resistivity 1.E-7 \

-pModePerturbation 1 -sGridPerturbation 0.30 \

12
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-sWidthPerturbation 0.2 -deltalU 1.E-4 \
-its 5500 -samplingT 2000 -NumRestart 500000 -timestep 0.01 \
-iwriteCheckPoint 200 -rescale -EngUpBound 1.E-4

“mpprun -n 12” specifies immediate execution of the remaining script on
12 PEs. parm3d.x is the name of the local executable. The rest of the script
consists of command-line options passed to parm3d.x, which will in turn pass
them to the Petsc initialization routine.

When the script is executed, parm3d.x will start up on 12 processors. Like
all C codes, it begins with the function main(). The main() function is located
in file mhd/driver/test.c in the m3dp distribution; it is the only function in
this file. The first statement in the main block 1is a call to Petsc library function
PetscInitialize(), passing any command-line arguments to that routine.

There are then two calls to PLogStageRegister (), one of the suite of Petsc
library routines used for performance profiling and declared in petsclog.h. A
few calls to Petsc routine OptionsGetInt() (declared in options.h) follow,
setting four local int variables based on command-line input options. The
variables are

name | default value specified value

Iterations 1 5500
Sampling rate 1 2000
NumRestart 100,000 500,000
iwriteCheckPoint 1000 200

2.2 Reading the Data

The next statement is a call to function initProfileVmec(), which resides in
file mhd/init/initProfileVmec.c. This function reads in an initial state from
an ASCII Vmec output file, and distributes it over a mesh divided among all
processes of the local MPI communicator. It also constructs a finite element
matrix and solver. Let us consider these operations one at a time.

initProfileVmec() first assigns default values to four elements of the vari-
able pointed to by its first argument, dev. This variable is a structure of type
Configuration, defined in mesh/cpu/meshcpu.h.

dev Element Assigned value

iNumGridsPhi 1

iNumCPUPhi 1
iNumRadialGrids 30

iNumRadialCPU 1

—main()

JinitProfileVmec()

Next, initProfileVmec () places a call to MPI library routine MPI_Comm_rank ()

to determine the rank of the local processor within the MPI_COMM_WORLD com-
municator. It checks the command line argument list for the presence of a
“-vmectfile” option, and, finding it, reads the value “vmec4.dat” into the string
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variable vmecfile. It then passes this string to function vmecread(), which is
found in file mesh/vmec/vmecread.c.

vmecread () first checks its rank within the communicator once again. If it is
the root process (rank 0), it opens the Vmec data file for reading. It reads in the
first three lines of this ASCII file, prints some of the information to stderr, and
performs basic error checking. Five of the newly read values are then broadcast
to all PEs with MPI calls:

Variable Value

Data.iNumFieldPeriod 1
Data.iNumRadialGrids 99
Data.iMaxPoloidalModeNumber 19
Data.iMaxToroidalModeNumber 0
Data.ilAccumModeNumber 19

These values are all evidently elements of variable Data of type struct
VmecData, defined in mesh/vmec/vmec.h. This variable will store the data
read in from the Vmec file. Each processor uses the function iVectoriD() (de-
fined in utility /utility.c) to allocate space for two zero-indexed one-dimensional
arrays of type int and size Data.ilAccumModeNumber = 19, assigning them to
elements iPoloidalMode and iToroidalMode of its local instance of variable
Data.

Space for Data’s 11 2D arrays of type double is then allocated by analo-
gous calls to utility.c routine dVector2D(). Each of these arrays will have
iNumRadialGrids = 99 rows and Data.iAccumModeNumber = 19 columns. Fi-
nally, four calls to dVectoriD() allocate storage for four 1D radial arrays of
doubles, each of length 99.

The root process then reads all the relevant data from the Vmec file into the
newly allocated space and closes the file. It shares all the data with all other
processes via MPI broadcast calls, and vmecread() returns, with Data as its
return value.

Back at the initProfileVmec() level, the routine checks for and fails to
find the “-originlssue” flag, prompting no action. It then places a call to
vmecscaling(), located in mesh/vmec/vmecscaling.c, passing it a refer-
ence to the newly-read vmec data structure.

vmecscaling() first searches for the Fourier coeflicient for R corresponding
to the 0,0 mode at the zeroth radial grid and assigns this value to data->Rmajor,
the absolute major radius. If more than one 0,0 mode is found, an error is
returned. The routine next determines the average minor radius a by averaging
over many poloidal planes in one toroidal field period. The aspect ratio and
average toroidal field B, at the magnetic axis are calculated based on this
information. Conversion factors to “mars” units are computed, and the Fourier
coefficients and field quantities are renormalized to the minor radius and toroidal
field respectively. The return value is 1.

initProfileVmec () then checks the option list for a configuration file name.
Each processor then opens the file, config.dat12, essentially simultaneously,

Jvmecread()

TinitProfileVmec()

Jvmecscaling()

TinitProfileVmec()
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and reads in the following elements of dev, overwriting the previously assigned
values:

Element Value
iNumGridsPhi 8
iNumCPUPhi 4
iNumRadialGrids 30
iNumRadialCPU 1

dalpha 4.712385

Other dev elements are computed based on known information. The toroidal
machine period dev.iMachinePeriod is set to vmecData.inumFieldPeriod =
1. The number of CPUs per poloidal section, iNumCPUPoloidal, is set to three
times the square of the number of CPUs in the radial direction = 3(1)? = 3.
The total number of grids iTotalGrids is three-halves the product of of the
number of toroidal grids and iNumRadialGrids * (iNumRadialGrids +1), or
(3/2)(8)(30)(31) = 11,160. The total number of CPUs needed, iTotalCPU, is
the product of the numbers in the poloidal and toroidal directions, (3)(4) = 12,
which is, fortunately, the number actually being used.

2.3 Initializing the Mesh

2.3.1 Communicator Initialization

Once all this configuration information has been established, ConstructComm()
is called to build an appropriate communicator to be assigned to global Comm *

pointer phone. The Comm data type is a structure defined in mesh/cpu/comm.h; |ConstructComm()

it consists of pointers to two MPI communicators, and five integers that keep
track of the communicator sizes and the local process’s rank within each of
them.

The function ConstructComm() can be found in mesh/cpu/constructComm.c.

Tt first checks for (and finds) agreement between the total number of CPUs re-
quired and the actual number in the current global communicator. Next, it
makes two calls to utility /utility.c routine MPI_Comm_vector (), which allo-
cates enough memory to hold two one-dimensional arrays of MPI communica-
tors of sufficient size to hold the four poloidal (one for each toroidal section) and
three toroidal (one for each poloidal section) communicators; phone’s pointers
are assigned to the appropriate arrays.

Then, setComm() is called. Located in mesh/cpu/setComm.c, this func-
tion calls MPI library routines to fill in the newly allocated arrays by creat-
ing new MPI intracommunicators based on groups (of processors) consisting of
appropriate subsets of the 12-member MPI group associated with the global
communicator. [For more information on MPI groups and communicators, see
http://www.netlib.org/utk/papers/mpi-book/node120.html in the Netlib reposi-
tory.]

{MPI_Comm_vector()

$setComm()
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Finally, some bookkeeping 1s performed to determine each processor’s rank
within its various communicators, and ConstructComm() returns. The next call 1TinitProfileVmec()
is to function MapCPUtoPartition() in mesh/cpu/mapCPUtoPartition.c.
The first two arguments dereference the pointers to the variables dev and phone
described above; the third is a pointer to global variable cell of type struct
NodeDomain, defined in mesh/cpu/nodedomain.h. A NodeDomain is a set of
six doubles specifying upper and lower limits of toroidal angle ¢, poloidal angle
0, and minor radius r (actually Vmec coordinate s = r?) that defines a local
chunk of the torus. MapCPUtoPartition() simply sets these limits (which will, JMapCPUtoPartition()
in general, be different for each processor) based on the available geometry and
communicator information.

2.3.2 Index Initialization

initProfileVmec() then calls indexMapping(), assigning the return value to
global variable map of type struct IndexMapping. This fairly complicated
structure, defined in mesh/index/indexMapping.h, includes application or-
dering and index set mapping contexts whose types are defined in the Petsc
library.
Function indexMapping(), whose return type is IndexMapping, is located
in file mesh /index/indexMapping.c. In its first statement block, it sets the |indexMapping()
number of ghost toroidal sections on either side of the local cell to two. With a
sequence of calls to short routines of the form findNumXxxxYyyy () also in files
in the mesh /index subdirectory, it sets additional values in map:

map Element Value (process 0)
NumGhostPhiSectionLow 2
NumGhostPhiSectionHigh 2

NumPhiSections 2
NumLocalVertices 465
NumGhostVertices 60
NumLocalElements 958

NumBoundaryVertices 30

Local 1D int arrays petscOrdering, aoOrdering, and local are allocated
with three calls to iVectori1D(). Their sizes are map.NumLocalVertices &~ 465,
map.NumLocalVertices, and map.NumLocalVertices + map.NumGhostVertices
& 52H respectively.

Another call to iVector1D() allocates map.indexBdyVertice, an integer
array that will store the local indices of all map.NumBoundaryVertices & 30
boundary vertices, in counter-clockwise order. Also allocated here are map.local,
which stores the indices of all local vertices in the application ordering; map.ghosts,
which holds the indices of the ghost vertices in the Petsc ordering; and the 2D
integer array map.elements, which will hold triplets of indices corresponding to
the three vertices of each local triangular element.
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S
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Figure 2.1: Schematic drawing of a local partition of a poloidal section of the
torus, showing the order of assignment of ghost vertices.

This brings us to the first Petsc library call [aside from PetscInitialize()
and various utility routines] encountered in the code. VecCreateMPI() is in-
voked here to create a parallel Petsc dummy vector distributed over all (three)
CPUs within the calling process’s poloidal communicator. The length of the
local segment of the vector is map.NumLocalVertices = 465; the length of the

whole thing is left for Petsc to determine. A second Petsc call, VecGetOwnershipRange(),

queries the new vector for its local lower and upper bounds, which are then used
for an error check.

The bounds are then included in a call to findOrdering(), located in
mesh /index/findOrdering.c. The purpose of this function is to initialize
the petscOrdering, aoOrdering, and map.ghosts arrays in order to establish
a correspondence between the application ordering of local and ghost vertices
(the ordering corresponding to the grid topology) and the Petsc ordering (cor-
responding to the MPI topology), each of which assigns a unique index to each
vertex across all processors. This added layer of complication has the enormous
benefit of enabling Petsc to handle the mapping of ghost vertices to vertices re-
siding on other processors automatically, making the parallelization transparent
from the perspective of the author(s) of the routines that perform arithmetic
operations on mesh variables.

The first indices set in £indOrdering() are those of the ghost grids bordering
the cell at » = rp,ipn (Fig. 2.1), unless rpin = 0, in which case there are no ghost
grids at this boundary. The ghosts are numbered using the application ordering;:
they start at

3(i = 1)(i—2)  Oin
2 Ap

(where i is the radial index, starting at 1 for the innermost radial grid; ., is

JfindOrdering()
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Application ordering Petsc ordering

Figure 2.2: Application vs Petsc orderings of vertex indices in a poloidal plane
for a sample run with three radial grids. Unfilled circles represent ghost vertices.

the low-8 boundary of the local cell; and A§ = 27/3i is the size in radians of
the gap between successive 6 grids at radius r;) and proceed in increments of
one with increasing 6. The result of this ordering is shown in Fig. 2.2a: vertices
are numbered counter-clockwise around the poloidal plane and across processor
boundaries, spiraling outward from the center.

The routine next enters a loop over radial grid locations z, from low to high.
An inner loop over all # within the mesh at r; assigns indices of each vertex
in the application ordering to successive elements of array aoOrdering, while
assigning a separate set of indices (beginning with the lower bound of the local
dummy vector and simply increasing by one with each assignment) to corre-
sponding elements of petscOrdering. This ordering is thus characterized by a
single continuous range of indices listing all vertices held by any one processor
(Fig. 2.2b). Within the radial loop but outside the 6 loop, additional ghost grid
indices in the application ordering are added to ghosts from along the low and
high # boundaries of the cell.

Finally, back outside the radial loop, indices for ghost cells at the upper
radial boundary are added to ghosts, and findOrdering() returns.

indexMapping() next initializes map.indexBdyVertice. It has a —1th ele-
ment of two less than the sum of the number of local and ghost vertices, 465 +
60 — 2 = 523. Elements zero through NumBoundaryVertices —1 = 29 are num-
bered consecutively starting at NumLocalVertices — NumBoundaryVertices

~ 465 — 30 = 435. Element 30 1s initialized to 465 4+ 60 — 1 = 524.

The next step is to copy the entire application-ordering index array aoOrdering

into both map.local and the first NumLocalVertices & 465 elements of local.

tindexMapping()
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The rest of local is filled in with the ghost indices map.ghosts.

Another Petsc call is now placed. ISLocaltoGlobalMappingCreate(), as
the name suggests, creates a context that will allow Petsc to map indices in
local vectors and arrays (which generally include ghost values) to indices in
the corresponding global distributed vectors and arrays using index sets. An
index set (IS), as defined in the Petsc manual, is “a generalization of a set of
integer indices, [which] is used to define scatters, gathers, and similar operations
on vectors and matrices.” The first invocation of the local-to-global mapping
creation routine informs Petsc of the contents (local and ghost vertices) of Local,
and creates local index set mapping LocaltoAO. The routine is immediately
invoked again, this time to pass the elements of aoOrdering to map structure
element map.ctx.

Next, Petsc routine AOCreateBasic() is called to create a mapping between

the elements of aoOrdering (the application ordering) and those of petscOrdering.
The mapping is stored inmap.ao. It is then used in a call to AOApplicationtoPetsc(),

which has the effect of converting the indices stored in local from the ap-
plication ordering to the Petsc ordering. The first 465 elements of local
are simply mapped into their indices; i.e. localli]l—low + i for i€{o,...,
NumLocalVertices—1}. This is a consequence of that fact that, as was seen
above in the discussion of findOrdering(), the interior vertices are numbered
sequentially in the Petsc ordering. The rest of local’s indices refer to ghost ver-
tices; their mapped Petsc ordering values refer to vertices that reside on other

processors within the poloidal communicator. A final call to ISLocaltoGlobalMappingCreate()

then stores this new local+ghost—Petsc mapping in map.LGtoPetsc.

As they are no longer needed, the dummy vector and integer index ar-
rays are destroyed to free up memory. dummy is destroyed with Petsc routine
VecDestroy(), while petscOrdering, aoOrdering, and local are destroyed
with utility /utility.c routine free_iVector1D().

With the vertex labels in place, the code next turns its attention to the tri-
angular elements. A call is placed to the function findElementOrdering() in
mesh /index/findElementOrdering.c, in order to set up the indices of the
elements in the application ordering, analogous to £findOrdering()’s construc-
tion of the vertex indices.

After determining the number of radial grids (30 in the present case), the
routine checks to see whether its bottom-most radial grid is at 7, . The present
case has iNumRadialCPU= 1 as we’ve seen, so all the poloidal sections are wedge-
shaped, and the r = 7,,;,, condition is satisfied on all 12 processors. Accordingly,
the first action taken is to assign vertices 0, 1, and 2, which encircle the origin
in minor radius, to element 0 (Fig. 2.3, center). findElementOrdering() then
loops through the remaining radial grids r;, using findThetaIndexRange() in
the mesh /index source file of the same name to determine the range of 6 indices
at each radius. The first block of statements within the radial loop works out
the three elements associated with 6, . In figure 2.3, these are elements 1-3
and 6-8. The pattern of each of these sets of three would be repeated for any
further radial grids. Next, there is a loop over the remaining # indices at radius
r;, assigning vertices to elements over the bulk of the partition; in the figure,

JfindElementOrdering()
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Figure 2.3: Element ordering for partition 0 for a sample case with three radial
grids.

these are elements 4-5 and 9-12. Again, the pattern evident in these two sets
is repeated for all further radii.

Unlike the vertex orderings, the element ordering assigned in this routine is
purely local. That is, each processor will have its own definition of elements
0-12, etc., so that, with the exception of 0, a given element index will refer to
different elements on different processors within a poloidal communicator. Thus
the element numberings for partitions 1 and 2 are identical to that shown for
partition 0 in Figure 2.3, but rotated by 120° and 240° respectively.

The rest of the radial loop in findElementOrdering() is devoted to cor-
recting an error in vertex assignments that is made by the 6 loop at the last
two elements of the third partition. There is then a block that sets up ghost
elements at the upper radial boundary of the partition if it does not coincide
with the outer boundary of the poloidal section; since iNumRadialCPU = 1 in
this case, it is skipped and the function returns.

indexMapping() now loops over the newly created elements, calling Petsc
routine ISGlobalToLocalMappinghpply() with the LocaltoAD mapping cre-
ated earlier to convert the vertex indices from their global (application order-
ing) values to the corresponding values in the local ordering. The routine is
called with the IS_GTOLM DROP mapping type, which will not map vertices that
fall outside the range of the local array; this is used for error-checking, as all
assigned vertices should be in range.

The next statement block is intended to map the number of symmetry-
breaking vertices to their local indices, but since the macro SWEEP is undefined
in this example, the preprocessor does not compile this block, and it is not
executed. The local to global mapping index set LocaltoAO is destroyed to free

tindexMapping()
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up memory, and the function returns the IndexMapping map it has created.

2.3.3 Geometry Initialization

Control reverts momentarily to initProfileVmec(), which checks the com-
mand line parameter list for the “~vmecChease” option and, failing to find it,
calls vmecmesh() to scale down the 99-radial-grid Vmec data structure read in
by vmecread() to the 30-radial-grid size that will be used in this run.

Located in mesh/vmec/vmecmesh.c, vmecmesh() begins by creating a
new VmecData structure, mesh, into which it then copies the basic size and
field parameters from the old V¥mecData structure (which it calls vmec) that was
read in from the Vmec data file vimec4.dat. The only value not copied from
vmec 1s iNumRadialGrids, which is instead set to the value specified in the
config.dat12 file for this particular run, 30.

A series of utility.c routine calls is made to allocate space for the new
structure’s various arrays. A local 1D array, sgrid, is initialized to hold the
grid’s s coordinates, where s = r2, and, since no mesh packing file was specified
on the command line, sgrid is then copied directly into mesh.sgrid.

There follows a series of four calls to vmecfit () and one to vmecfit0(), both
of which are in file mesh/vmec/vmecfit.c. Given two 2D Vmec meshes of
size iNumRadialGrids by iAccumModeNumber, where the number of radial grids
may be different, but the number of modes must be the same, vmecfit () maps
the former onto the latter using a 5-point polynomial interpolation. It does
this by making repeated calls to polfit(), a modified version of Numerical
Recipes routine polint() residing in mesh/vmec/polfit.c. Once elements
RMNC, ZMNC, bsupvmn, currvmn, and Pressure have been interpolated in this
manner, vmecmesh() frees up the local sgrid variable and returns.

The downsized mesh is then immediately passed (along with pointers to dev,

TinitProfileVmec()
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lvmectit()
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cell, phone, map, and grid) to constructGrid(),located in mesh/grid/constructGrid.c.

This routine will convert the Vmec geometry information into a form that can
be used by M3D.

constructGrid()’s first action is to allocate the sgrid element of grid, a
global variable of type struct Mesh (defined in mesh/grid/grid.h). sgrid is
a 1D array of doubles that will store the s value of each radial grid.

Next, grid.R is allocated. Like most of the data-containing elements of
grid, element R is of type ParData, defined in mesh/index/pardata.h. A
ParData structure is set up to hold parallel distributed data; it consists of two
arrays of Petsc vectors — one global and one ghosted local for each poloidal
plane — that hold vertex indices, and a 2D Scalar array that holds the actual
data:

typedef struct {

JeconstructGrid()

Vec *g; /* global in a poloidal communicator, array in toroidal direction */

Vec *1; /* ghosted local (ghosts accessed ‘past the end’ of the array),
created via VecGhostLocal Representation,
also ghosted in the toroidal direction, so l[] is of higher
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dimension (NumGhostLayer on both ends) than g[] */
Scalar #*array; /* arrayfwhichPhiSection][vertez_indez] */
} ParData;

In order to set up this structure, constructPData() is called.

Located in mesh/index/constructPData.c, this routine is generic in
the sense that it requires only communicator and index mapping information
(and not, for example, information about the nature of the specific variable
it is allocating) to set up a ParData structure. It first makes two calls to
utility /utility.c routine VecArray() to allocate space for the global and local
arrays of Petsc vectors within the structure. Because each processor spans two
poloidal planes in the present instance, and because the (two) ghost planes as
well as the actual planes must be included, the indices of these new arrays each
range from —2 to 3. Space for an equal number, i.e. six, pointers of type
Scalar * for the data array is allocated using malloc().

The first non-ghost Petsc vector in the global vector array is initialized with
a call to Petsc routine VecCreateGhost (); this routine is used to create vectors
whose local representations contain storage for both local and ghost indices. Any
other non-ghost Petsc vectors in the global array (there’s just one in this case)
are initialized by copying their parameters from the first one with Petsc routine
VecDuplicate(). The ghost vectors in the global array are then initialized
in the same way. constructPData() then returns, without having made any
attempt either to initialize the Petsc vectors in the local array or to allocate
space for the actual data in each poloidal plane.

The remaining five non-gradient parallel data structures in grid, namely
z, dR/dy, dz/dp, d*R/dp?, and d?z/dyp?, are each created with a call to
mesh /index/duplicatePData.c routine duplicatePData(), which allocates
new arrays as in constructPData() but copies the array of global Petsc vectors
from the one in grid.R.

If map.NumBoundaryVertices is greater than zero (and it is), space for
grid’s 2D double arrays NormPhi (m - ¢/|ni]||) and d1 (|r;4+1 — r;] on the
boundary) and 3D double array gradsBdy (normalized Vs on the boundary)
is allocated with utility.c calls. Local equivalents to all these grid arrays are
also allocated. Transfer of data can now begin.

The 30 values of s are copied from the Vmec mesh to grid.sgrid. The previ-

JconstructPData()

TconstructGrid()

ously computed mappingmap. ctx is used by Petsc routine ISLocaltoGlobalMappingApply ()

to create an array containing the global index of each local vertex. The bound-
ary vertex indices are similarly mapped, first from the local to the Petsc order-
ing, then from that to the global application ordering. The list of vertices in
the application ordering is duplicated, and the copy is converted to the Petsc
ordering.

constructGrid() then enters a loop over the (two) local poloidal planes.
Within each plane it computes the toroidal angle ¢ and then loops over all local
vertices. The index of each vertex (in the application ordering) is passed to
mapIndexToVmecCoordinates() in the file by that name in the mesh/grid
subdirectory. This function computes and returns r and 6, the Vmec ra-



2.3. Initializing the Mesh 23

dial index and poloidal angle of the given vertex. These coordinates, along
with ¢ and the Vmec data structure are then handed off to vmecpoint2() in
mesh/vmec/vmecpoint2.c, which sums over the 19 available terms in Vmec’s
Fourier series representation to arrive at values for R, z, and their first and sec-
ond derivatives with respect to ¢ at the given location. All these values are
stored in the appropriate Scalar geometry arrays local to constructGrid(),
and the inner loop proceeds to the next vertex.

Once geometry information has been computed for all vertices in the current
poloidal plane, it is copied from the local arrays to the global Petsc vectors in
the corresponding elements of grid via the standard Petsc technique of first
calling VecSetValues() with the array of values and the array of their in-
dices in the Petsc ordering; and then calling VecAssemblyBegin() followed by
VecAssemblyEnd () for the Petsc vector. This counterintuitive sequence of calls
conceals a great deal of complexity; Petsc handles all the MPI communication
that ensures that all values will end up on the appropriate processors. The
beginning and end of the vector assembly process are kept separate in order
to allow additional calculations to be performed while the communication is in
progress, though this feature is not used here.

A similar operation 1s performed for the boundary vertices, but the only
information that is kept after the Fourier sum is NormPhi and gradsBdy. These
and the sum are computed by vmecnorm(), which is also in source file con-
structGrid.c. This concludes the outer loop.

After computing A for the local partition to be approximately 7/4 ra-
dians (or 45°), constructGrid() places two calls to GetArrayInPData() in
mesh/index/get ArrayInPData.c. The purpose of these is to copy R and
z data from the global Petsc vectors of their respective ParData structures to
the local Petsc vectors and Scalar arrays, and to exchange data between the
boundary and ghost cells of neighboring processors. Exchanges within a poloidal
plane are handled by Petsc routines, while those between planes on different pro-
cessors are handled “manually” by calling ToroidalUpDate(), which uses MPI
calls directly and can be found in the same source file.

If, as in the present case, there are boundary vertices, the distances d¢ be-
tween successive pairs are now computed. Storage for all local arrays is freed,
and the function returns.

2.3.4 Finite Element Initialization

Control is next transferred to routine ConstructLocalFEMatrix (), which re-
ceives the newly computed R and z values as arguments, along with references to

Jvmecpoint2()

lvmecnorm()

lGetArrayInPData()
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FEMatrix()

global variables phone, map, and 1fe. Located in mesh /felement /constructLocalFEMatrix.c,

this function has the task of initializing the local finite element matrix. The ma-
trix 1fe is of type struct LocalFE, defined in mesh/felement/felement.h,
and contains two elements. The first is matrixInfo, of type struct MatrixAIJ
(defined in mesh/index/matrixAIJ.h). matrixInfo keeps track of the MPI
communicator associated with the sparse finite element matrix as well as its size
and the numbers of on- and off-diagonal non-zero elements in each row.
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The other element of 1fe is matrix, a pointer of type FEMatrix *, also
defined in felement.h. An FEMatrix, used for temporary storage on a local
partition, consists of a 1D array of doubles to keep track of the area A of each
triangular element, a 2D array of ints to keep track of the connectivity between
them, and the following 2D double arrays:

Name Definition

drdr /(VJ_)\j ~VLAk)Aid2a: = %
mass M;; :/)\i/\jdza?

stiff Sy = —/V)\Z»~V)\jd2x
dRoverR /%%dzr

Explanation For a triangular element with vertices at r,, with « = 1,2, 3,
the side segment vectors are defined as

1
dr, = ) Z €apy (rg —1y) (2.1)
By

l.e., dr; = ry —r3, etc., so the area may quickly be computed as
1 ;
A= §d1'1 x dry -7, (2.2)

where n is the unit normal to the triangle.

The definitions of the mass matrix M;; and stiffness matrix S;; above are
valid for any basis set of finite elements A; (r). For the particular case of piecewise
linear elements, as in the current implementation of this code,

Ao(r) = i%(r— rg) X dry - 7 (2.3)

Each triangle has three basis functions, each of which takes the value unity
at one vertex and decreases linearly to zero at the others. To put (2.3) more
explicitly,

1
Aa(R,2) = 1A [(za41 — 2a42) (2R — Roy1 — Roy2)

—(Rat1 — Rat2)(22 — Zat1 — Za42)] (2.4)
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where a + 1 and a + 2 are the indices of the other two vertices in the same
triangular element as vertex a. Pairs of basis functions residing in different
triangles will not contribute to the mass matrix, while those in the same triangle

Y _ A/6a a=f ‘
Map = { AJ12, a8 (2:5)

Similarly, the stiffness matrix contains only contributions from within triangles:

will contribute

~ dr, - drg
Sap = ———+— 2.6
E A (2.6)
For a more detailed discussion of these matrices, see Strauss and Longcope, J.
Comp. Phys. 147, 318-336 (1998). A particularly useful formula from that

reference 1s
O'm!n!

XATAS Pz = 28—
/A 1Az A3 @ ({+m+n+2)!

(2.7)

which instantly tells us, for example, that

/)\Zd2r = é
A 3

When ConstructLocalFEMatrix() is called, it first sets up the matrixInfo
part of the local finite element matrix with a call to MatrixAIJSetUp() in
mesh/index/matrixAIJSetUp.c. This function sets the MPI communi-
cator of the matrix to the poloidal communicator of the local processor. It

for 7 in A.

sets the linear size (number of rows = number of columns) of the matrix to
map.NumLocalVertices A 465. It then allocates space for the on- and off-
diagonal number-of-non-zero-entries-per-row arrays and initializes them to zero.

The actual numbers of non-zero entries are then tallied. Each such entry
represents an interaction between vertices arising from an overlap of finite ele-
ments A. The relative numbers of diagonal and off-diagonal entries will depend
on whether the vertices of local triangles are themselves local or non-local to
the processor. For each triangular element, the off-diagonal entry count for each
local vertex is incremented by the number of neighboring vertices that are non-
local (a maximum of two per element). The diagonal non-zero entry count for
each local vertex is incremented by by the number of its neighbors that are local.
Thus, the total number of non-zero entries per vertex i1s always incremented by
two for each element it belongs to. This procedure results in an overcount of
interactions since each edge joining a pair of non-boundary vertices is a part of
exactly two triangles. The overcount is corrected by dividing each total by two.
The number of diagonal non-zeroes is then incremented by one for each vertex
to account for self-interactions. The boundary vertices are now undercounted
and must be incremented accordingly. Finally, the new matrix info structure is
returned.

IMatrixAIJSetUp()

TConstructLocal
FEMatrix()
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The matrices themselves are now allocated with a call to AllocLocalFEMatrix(),

located in mesh /felement /allocateLocalFEMatrix.c. This routine allo-
cates an array of map.NumPhiSections = 2 FEMatrix structures, one for each
poloidal plane on the local processor. The area and drdr arrays of each new
FEMatrix are allocated with dVectornd() utility calls. The remaining arrays
are sparse (only non-zero elements are stored, with the number of such elements
potentially varying from row to row) and must be allocated with specialized rou-
tines. The integer connectivity matrix is created and initialized to zero with a
call to iMatrix(), located in mesh /felement /iMatrix.c, while the three re-
maining matrices of doubles are created by the analogous routine fMatrix(),
residing in fMatrix.c in the same directory.

Once the two pieces of the local finite element matrix have been allocated,
their values must be initialized. In order to do this, we must first get access to the
local storage for the values, which will allow access to ghost values from neigh-
boring processors. The function loops over the two local poloidal sections. With
calls to Petsc routines VecGhostUpdateBegin() and VecGhostUpdateEnd(), it
first updates the ghost values in the global vector pieces of the R and z ParData
variables. VecGhostGetLocalForm() is then called for each of these vectors to
determine its local form, which is stored in the local vector piece of the appro-
priate variable. The local vector shares the same array space and numerical
values as the global vector, but allows access to ghost values past the end of the
array. Elements of the local vector are accessed using the local numbering.

Petsc routine VecGetArray() is now invoked to provide temporary direct
access to the values stored in the local R and z vectors. Pointers to the values
are passed to AccumLocalFE() in mesh/felement /accumLocalFE.c. This is
the routine that will actually set the values. It consists primarily of an outer
loop over all local triangular elements.

For each element, the three two-vectors dr; are first computed. These are
used to calculate the area of the element using formula (2.2); the area is then
stored in the appropriate component of 1fe. Next, the six components of the
drdr matrix for the current element are computed using the formula given
in the table on page 24. After this, another loop initializes each of the nine
components of a local instance of the mass matrix for the current element to
either A/6 or A/12 in accordance with equation (2.5). The same loop initializes
a local stiffness matrix according to (2.6) and a local dRoverR matrix to

zodrg [ 1 1
dRoverR,s — Y = + = .
R-roq 75 R- 1y

One more inner loop follows, incorporating the temporary local data just
generated into the appropriate matrices of the permanent, global 1fe structure.
For each vertex in the current triangular element that is local to the processor,
three calls are made to UpdateMassStiff (), located in the same source file as
the calling function. UpdateMassStiff () is a simple three-line function that
increments the element at a specified row and column of the mass, stiffness,
and dRoverR matrices in a specified poloidal section of a specified finite element

JAllocLocalFEMatrix()

TConstructLocal
FEMatrix()

JAccumLocalFE()
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matrix structure. Each is incremented by the value of a specified element of the
corresponding local matrix.

The first call adds up self-interaction terms by specifying the addition of
elements on the main diagonals of the three local matrices to column 0 (the main
diagonal column in the sparse representation) of the row in the corresponding
global matrix corresponding to the current vertex of the current element. The
second call takes care of the interaction between the current vertex and the
next one (local or not) in the current element in counterclockwise order. The
column in the global sparse matrices to which these elements will be added
is determined by a call to findLocalColumnNum(), also in the same source
file. This versatile little function not only searches the connectivity matrix to
determine the appropriate local column, but also constructs the connectivity
matrix in the process. (Each row of this matrix corresponds to a local vertex.
The first column in the row holds [for now] the number of other vertices to
which it is currently connected; the rest of the columns give the indices of those
vertices.) The third call to UpdateMassStiff() in the inner loop handles the
interaction with the remaining vertex. This concludes the outer loop.

AccumLocalFE() now proceeds through a last loop over the local vertices,
checking to make sure that the number each is connected to is one less than
the sum of the number of nonzero diagonal and off-diagonal columns in the
corresponding row of the sparse matrices. If a vertex fails this test, an error is
returned. Otherwise, the vertex is connected to itself by replacing the connection
count in the first column of its row in the connectivity matrix with its own index.

Finally, each process containing boundary vertices (in the present case, that
includes all processes) calls fixBdyLocalFE() in the same source file to fix the
matrices on those vertices. This function in turn works by making repeated calls
to fixTwoNeighbors(), the last routine in accumLocalFE.c. Given the index
of a “center” vertex and those of two of its neighbors, fixTwoNeighbors() de-
termines the sparse matrix columns corresponding to each neighbor, and then
simply returns, its only active statement block (which decrements the stiffness
matrix entry relating the center vertex to the first neighbor by 1/2 and in-
crements the entry for the second neighbor by the same amount) having been
commented out. £ixBdyLocalFE() calls fixTwoNeighbors() once for the first
boundary vertex, once for the last one, and then once for each of the ones in
between, but since this accomplishes nothing, it evidently should not be called
at all, at least not in this version of the code.

Execution now goes up a level once more. Now that the local finite element
matrices have been set up, it is necessary to release the pointers to the R and z
vectors, so that Petsc will again be free to move the data around as it sees fit.
This is accomplished with two calls to Petsc routine VecRestoreArray() and
two to VecGhostRestoreLocalForm(). constructLocalFEMatrix () is now fin-
ished.

initProfileVmec () now immediately calls function ConstructFEMatrix()
in mesh /felement/constructFEMatrix.c. Whereas the previous routine ini-
tialized the local matrix 1fe, this one has the task of setting up global matrix gfe

of type struct FiniteElementMatrix,defined in mesh/felement/felement.h.

lUpdateMassStiff()

$findLocalColumnNum()
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This structure consists of three arrays of distributed Petsc matrices and nothing
else:

typedef struct {
Mat *Mass;
Mat *Stiffness; /* implementation for V3 */
Mat *dRoverR; /* (1/R)J/OR */

} FiniteElementMatrix;

ConstructFEMatrix () first uses malloc() to allocate space for one matrix
per poloidal section for each of the three components of gfe, for a total of six.
It then loops over the two poloidal sections. Petsc routine MatCreateMPIAIJ()
is called for the mass, stiffness, and dRoverR matrices in turn. “MatCreate”
indicates that a Petsc matrix should be created; “MPI” indicates that it should
be distributed over several processors; and “AlJ” indicates that it should be in
the sparse AlJ format already described. The arguments passed to the routine
tell 1t to use the same MPI communicator as the corresponding 1fe variable;
to have the same size locally as the 1fe variable, with Petsc deciding on the
global size; and to copy the number-of-non-zero-elements-per-row information
from 1fe as well.

JConstructFEMatrix()

Three calls to Petsc routine MatSetLocalToGlobalMapping() assign map.LGtoPetsc

as the local-to-global mapping context for each new Petsc matrix. For each
row within the current poloidal plane, three calls are made to Petsc routine
MatSetValuesLocal(), telling Petsc that the values from that row of the 1fe
matrix should be inserted into the same row of the corresponding gfe matrix
at column positions given by the values in that row of the connectivity matrix.
Petsc now knows what to do, but it still must be instructed to do it; three pairs
of calls to Petsc routines MatAssemblyBegin() and MatAssemblyEnd() actually
make the value assignments.

The laboriously constructed local finite element matrices in 1fe have now
served their purpose and can be disposed of to free up memory. This is done by

making three calls to Free fMatrix (), a simple routine in mesh /felement /fMatrix.c

that uses standard library routine free() to deallocate arrays. Assembly of the
finite element matrices is now complete.

2.4 Initializing the Physics

All the routines thus far have been concerned with numerics and geometry. They
have painstakingly constructed a distributed triangular mesh with a shape dic-
tated by the Vmec file, and have set up piecewise linear finite elements on it, but
have had nothing to do with the physics of the problem. The next stage of initial-

TinitProfileVmec()

ization begins with a call to constructMHDdata() in mhd/allocation/construct MHDdata.c,

whose return value, of type struct MHD DATA (defined in mhdData.h in the
same subdirectory), is assigned to global variable userData. The MHD DATA
structure is a colossal amalgam of elements (whose types, MHD xxxx, are all
defined in mhdData.h) that together hold all the information the code has
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about the values of the physical variables, including all the variables that will
be advanced on the mesh. First it must be allocated and initialized.

2.4.1 Mesh Allocation

Only communicator and index information is passed to constructMHDdata();
grid and finite element information are unnecessary for this routine. The decla-
ration section includes the allocation of a local variable of type struct MHD DATA
called “mhd”, which will eventually be used as the return value. The first exe-
cutable statement allocates sub-element mhd.coeff.Rinverse, which is of type
struct RParData (identical in form to ParData, and defined in the same header

JconstructMHDdata()

file), with a call to constructRPData(), located in mesh /index/constructPData.c.

ConstructRPData() is simpler than ConstructPData(). It allocates space
for the arrays of global and local Petsc vectors in the RParData structure with
two calls to VecArray(); allocates space for a number of Scalar * pointers
equal to the number of ¢ sections (2); calls Petsc routine VecCreateGhost () to
set up a distributed local+ghost vector at the first element of the global vector
array; and then uses VecDuplicate() to make copies of this vector at all other
elements of this array.

JConstructRPData()

TconstructMHDdata()

The call to ConstructRPData() is followed by three calls to duplicateRPData()

in mesh /index/duplicatePData.c for each of the three remaining RParData
components of mhd.coeff: dInverse, resistivity, and viscosity. This has
the effect of allocating space for the global and local vector arrays and the
Scalar * array as in the construction call; and then using repeated calls to
VecDuplicate() to make new Petsc vectors for each component of the global
array. Calling ConstructRPData() for these elements instead would have had
the same effect, but doing it this way avoids the communication overhead of the
call to VecCreateGhost ().

The final element of mhd.coeff is vphiDriving, a Petsc vector. One more
call to VecDuplicate() is sufficient to allocate it.

We now enter what the inline comments describe as the “first tier” of alloca-
tion. This statement block will allocate the space needed for the three elements
of array mhd.basic, each of type struct MHD basic. These structures will each
hold one time-slice of the main physics data on the mesh, in the form of the
nine variables I~, Ay, AU, vy, A*x, d (= R?p), p, and artificial pressure and
velocity, each of which is a ParData structure. The first variable initialized 1s
the I component of the first element of mhd.basic. This is done with a call
to constructPData(), whose operation has already been discussed on page 22.
In order to once again avoid needless interprocess communication, the rest of
mhd.basic’s components will be copied from this first one with repeated calls
to duplicatePData(), discussed above on p. 22. First, the I components of the
second and third elements of the basic array are copied. Then a loop copies all
three I frames to the three frames of each of the remaining variables.

The “second tier” of allocation creates the space for mhd.extend, of type
struct MHD_extend, which will hold a single time-slice of auxiliary physics data

in the form of the 13 ParData variables 3I~/3R, 3I~/3z, F,® C=-RJ,, 6C
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(the perturbed current), ¥, di, §1, 8p, x, U, and V2 ®. Each of these is con-
structed by copying it in turn from mhd.basic[0] .I with duplicatePData().

The “third tier” allocates mhd.dphis, a structure of type MHD_ dphis that
holds the partial derivatives of ¢, F, I, U, X, Yy, and d with respect to ¢
in RParData structures. This requires a second call to constructRPData()
followed by six more to duplicateRPData().

The “fourth tier” allocates mhd.dRdZs of type struct MHD_dRdZs, which
stores more auxiliary data: the partial derivatives with respect to R and z of
¥, F, U, and y. duplicateRPData() suffices to construct these variables.

Additional blocks of duplication calls set up mhd.work of type struct MHD work,
three ParData objects that serve as a workspace; and mhd.Rhs, an array of two
structures of type MHD RHS that store right-hand-side values for multi-level ex-
plicit time-stepping in seven RParData variables.

The last component of mhd to be allocated by this routine is also the most
complicated. mhd.canvas, a variable of type struct MHD Scratch, provides
scratch space for mathematical operations on MHD data. It consists of two
ParData structures that will be used for temporary storage of intermediate quan-
tities such as second derivatives with respect to ¢, as well as two right-hand-side
variables of type struct TmpData (defined in mesh/index/tmpData.h to be
nothing more than a distributed Petsc vector and a local 1D array of Scalars)
and a variable “scratch” of type struct WorkSpace (defined in mesh/operator/workSpace.h
to consist of three TmpData structures and two Petsc vectors).

The two TmpData structures (rhs and rhs_algebraic) are first allocated
with calls to constructTmpData(),located in mesh /index/construct TmpData.c,
which simply uses Petsc routine VecCreateMPI() to set up a distributed Petsc
vector in each one. The two ParData structures (pDataR and pDataz) are sim- JconstructTmpData()
ply copied from the first I in mhd.basic with calls to duplicatePData().
Each of the three TmpData structures in scratch is allocated with another
call to constructTmpData(), while its two vectors are created with calls to
VecDuplicate(). The array portions of the two TmpData structures in mhd . canvas
and the three in mhd.canvas.scratch are each copied from their associated
Petsc vectors with calls to VecGetArray(), following which those vectors are
released again with five calls to VecRestoreArray (). The function then returns. finitProfileVmec()

2.4.2 Parameter Initialization

initProfileVmec() now begins to fill in the information in this new blank

structure. First, it calls setOptions() in its own source file, mhd/init/initProfileVmec.c.

This routine sets the parameter flag userData.parameter.Flag by using Petsc |setOptions()
utility routines OptionsGetDouble() and OptionsHasName () to scan the com-

mand line for the following options:
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Option Result Value added to Flag
-resistivity 10-7>0 RESISTIVE MHD= 2!
-viscosity 1073 >0 VISCOUS FLUID= 22
-noFlow not found FLOW_IS_NONE_VANISHING= 23
-2drun not found 0
-AdamMoulton not found 0
-drop not found 0
-rescale found RESCALING= 2'!
-cylinder not found 0
-varyViscosity not found 0
-varyResistivity not found 0
-nonlinear not found 0

As a result, the options flag is set to 2' + 22 + 23 4+ 21 = 2, 062.

On the return of execution to initProfileVmec(), further parameter val-
ues are set. The major radius, aspect ratio, toroidal field, number of field peri-
ods, and number of radial grids are copied into userData.parameter from the
Vmec mesh that was initialized earlier. The “gamma” (ratio of specific heats)
parameter is set to 5/3. The following command line options are read with
OptionsGetDouble(), and their values are assigned to the parameter elements
with the same name:

Option Value
-timestep 1072
-viscosity 1073
-resistivity 1077
-gamma 1.666667

TinitProfileVmec()

parameter.timestep_target is also set to timestep = 0.01, while parameter.timestepl

and parameter.timestep?2 are set to zero.

2.4.3 Field Initialization

The magnetic field and pressure profiles computed by Vmec must now be set
up on the mesh. This is accomplished by calling setupIJPonGrid(), located
in mhd/init/setupIJPonGrid.c. The function begins by reading in more
options from the command line:

Option Value
-vmecChease Absent
-betaFraction 1.0
-sGridCoeff Absent (default = 1.0)

-sWidthCoeff Absent (default = 0.01)

It then allocates two local 1D arrays of integers, in and out, using iVectori1D(),
giving each a size equal to the number of local vertices. Local 1D scalar arrays
bsupvmn, currvmn, pressure, density, and coeff are allocated to the same
size with calls to malloc().

JsetupIJPonGrid()
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The elements of in are initialized to the indices of the vertices in the local
ordering with the simple mapping in; — ¢. The equivalent list in the application
ordering is then found by passing this array to ISLocaltoGlobalMappingApply();
the result is stored in out. It is then copied back into in, which is then converted

from the application to the Petsc ordering with a call to ADApplicationToPetsc().

The three MHD basic pointers in userData — old, new, and base — are set
to point respectively to the first, second, and third elements of its MHD basic
array, basic[].

We now enter the main body of the routine, which consists of a loop over
(two) local ¢ sections. The value of ¢ for the current section is computed.
Then comes a loop over local vertices. The application index out; of the
vertex is passed to mapIndexToVmecCoordinates() so that its Vmec position
(r,f) can be calculated. This information is then fed into vmecBfield() (in
mesh /vmec/vmecBfield.c) along with ¢, the existing Vmec mesh data, and
the addresses of the elements of bsupvmn, currvmn, pressure, and density
corresponding to the vertex. vmecBfield() computes the appropriate values of
bsupvmn and currvmn by summing over the 19 terms in the Vmec Fourier series
expansions for those variables:

B(r7 0, 90) = Z B (7“) COS(m]’H - njgo)

7=0

vmecBfield() then sets the pressure equal to the Vmec structure’s pressure at
the given radius, sets the density to 1.0, and returns. The value of coeff at the
current vertex is computed as

0.01

ffl —>1 )
coe 0 s(m) =12

concluding the loop over vertices.

The values in bsupvmn are now copied into the Petsc vector storing the
values of I in the current poloidal plane for the userData MHD Basic structure
pointed to by userData.old. As usual, this requires calls to VecSetValues(),
VecAssemblyBegin(), and VecAssemblyEnd(). Because the “chease” flag was
not set on the command line, the values in this vector are multiplied by the
squares of their major radial positions with two calls to Petsc arithmetic routine
VecPointwiseMult (). Petsc routine VecShift () is then called to subtract the
aspect ratio (= 1.6) from each of these values.

Petsc vector ' = —RJ,, in userData. extend is now copied from the currvmn
array in the same manner as the previous copy. The absence of the “chease”
flag mandates the multiplication of each value by the local major radius, follow-
ing which Petsc routine VecScale() is called to invert their signs. The pressure
profile is copied into userData.old->p and scaled by betaFraction = 1.0.

The routine now checks whether the VARY_VISCOSITY bit is set in the param-
eter flag. It isn’t, so all elements of the userData.coeff.viscosity vector are
set to the constant userData.parameter.viscosity = 1073, They are then

JvmecBfield()

TsetupIJPonGrid()
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scaled by the square of the inverse aspect ratio, (1/1.6)? = 0.390625. A similar
process is used to set the resistivity; since the flag is not set, it gets the constant
value userData.parameter.resistivity = 1077, It is not rescaled.

The final statement block in the main loop copies the density data from
density to userData.old->d. It multiplies each value by the square of the
local major radius, and then divides them all by the square of the aspect ratio.
After the main loop, setupIJPonGrid() simply frees up its local arrays and
returns.

2.4.4 Solver Initialization

The solver is a global variable called “userSolver” of type struct MHD Solver,
defined in mhd/allocation/mhdSolver.h. The structure consists of a number
of sparse Petsc matrices, index sets, and Scalar and integer arrays as well as
13 pointers of type “SLES”, a linear system solver context defined by Petsc to
provide an interface to its linear algebra package. userSolver is allocated by
setting it equal to the return value of function constructMHDsolver().

Situated in mhd/allocation/constructMHDsolver.c, this routine begins
by calling Petsc routine PetscMalloc () twice, to allocate space for the two Petsc
matrix array components of the solver, starMatrix and daggerMatrix, each
of which contains as many Petsc matrices as there are poloidal sections in the
local processor, i.e., two. If there are boundary vertices (and there are), this
will require the allocation of special structures within the solver to deal with
them. 1D integer arrays bdyRowIndex and bdyColumns are allocated with calls
to iVector1D(). The former stores the row index of each boundary vertex in
the Petsc ordering, while the latter specifies the number of non-zero columns
in each row, i.e., the number of vertices connected to each boundary vertex.
bdyColumnIndex, an irregular 2D integer array that will hold the column indices
for each boundary row, and bdyMatEntree, an irregular 2D Scalar array that
will store the actual matrix entries for boundary terms, are allocated next with
malloc(). The values of bdyRowIndex are initialized by invoking Petsc routine
ISLocaltoGlobalMappingApply () to convert the local ordering of the boundary
vertices stored in map.indexBdyVertice to the Petsc ordering.

To initialize the boundary vertex matrix entries, the routine now loops over
these vertices. For each one, it reads out the column indices and entries of the
corresponding row in the global finite element mass matrix with a call to the
Petsc read-only function MatGetRow (). (This is one of those functions that also
has the effect of temporarily “locking” the matrix data from tampering by Petsc;
it must be “unlocked” afterward if further Petsc operations are to be performed
on the matrix.) The number of entries in the row is now known and can be used
to allocate space in the current rows of bdyColumnIndex and bdyMatEntree; the
just-read values are then copied into these rows. The Petsc matrix is “unlocked”
with a call to MatRestoreRow(), and the loop continues. The completion of the
vertex loop marks the end of the special case for boundary vertices.

We now proceed to the main solver initialization. The first process in
each poloidal communicator contains a special structure in the solver, a sin-

TinitProfileVmec()

JconstructMHDsolver ()
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Table 2.1: The MHD solver’s SLES arrays

Name Purpose
massInverter Invert the mass matrix
FInverter Invert V4 F to find F
psilnverter  Invert A*y to find ¢
PhiInverter Invert V2 & to find ®
Ulnverter Invert ATU to find U
chilnverter  Invert A*y to find x
tIStepper Step T

psiStepper Step o

UStepper Step U

vphiStepper  Step v,

chiStepper Step x

dStepper Step d = R%p
pStepper Step pressure

gle “reference” row of matrix entries. Its indices are stored in 1D integer array
refColumnIndex, and its values are stored in 1D Scalar array refMatEntree.
The process calls MatGetRow () again to read out the first row in the mass ma-
trix; this is then used to allocate and initialize the reference row. The process
then restores the row with MatRestoreRow().

All processes now allocate space for their 13 SLES arrays (see Table 2.1) with
calls to PetscMalloc(). Petsc routine MatDuplicate() is invoked to set up the
solver’s Petsc matrix 1hsMatrix by copying the structure, but not the values,
of the finite element mass matrix. A loop over local poloidal sections begins, to
initialize the new solver contexts.

The first solver pieces initialized in each iteration of the loop are starMatrix
and daggerMatrix. Each of these is created by setting it equal to the stiffness
matrix for the current poloidal section with Petsc matrix operation MatConvert ().
The dRoverR matrix is then subtracted from the resulting starMatrix and
added to daggerMatrix; this conforms to the definitions

0? 10 0? 10
-4 .. A== 4=
OR?> ROR OR?>  ROR

The procedure for setting up each of the 13 SLESs follows a similar pattern.
Each begins with a call to Petsc command SLESCreate(), which induces Petsc
to allocate space for a SLES structure distributed over a specified MPI com-
municator, in this case, the local poloidal communicator. After some optional
calls to set up the matrices associated with the linear system and the solution
options, construction of each SLES is completed with a call to Petsc routine
SLESSetFromOptions(). For the first SLES in the solver, massInverter, the
first intermediate call sets up the matrices associated with the linear system
by calling Petsc routine SLESSetOperators (), informing Petsc that the global

A* = +....
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finite element mass matrix is to be used both to define the linear system and as
the preconditioner matrix, and further, that the preconditioner matrix will not
change between successive linear solves. Petsc uses a combination of a Krylov
subspace method and a preconditioner to perform iterative linear solves [for
a discussion of such methods, the Petsc manual refers the reader to Freund,
Golub, and Nachtigal, Ilterative Solution of Linear Systems, pp. 57-100, Acta
Numerica, Cambridge University Press, 1992]. In order to customize the Krylov
method for the present (mass inverter) system, the Krylov context for the new
SLES must be extracted by calling SLESGetKSP (). This context is then used to
adjust the tolerances that will be used in the convergence check for the itera-
tive solution. In particular, the routine calls KSPSetTolerances() to instruct
Petsc to consider a solution to have converged if the l3-norm of the residual
ry = b— Axy is less than either 10719 of the l5-norm of the initial residual 7, or
10759 in absolute value, whichever is greater. The criterion for the divergence
test and the maximum allowable number of iterations are not adjusted.

The FInverter initialization makes the same Krylov solver adjustments but
additionally invokes KSPSetInitialGuessNonzero() to keep the solver from
using zero as its initial guess for the solution vector. No call is made to
SLESSetOperators() for FInverter, so it does not yet have an associated ma-
trix. Inverters psilnverter, Philnverter, Ulnverter, and chilnverter re-
ceive identical treatment, as do steppers psiStepper, UStepper, vphiStepper,
and dStepper. The remaining SLESs, tIStepper, chiStepper, and pStepper,
are initialized without any matrices or Krylov option adjustments.

Following the loop over poloidal sections come two calls to Petsc routine

ISCreateGeneral(). The first of these initializes userSolver component isInterior

to be a Petsc index set containing the single index “0”. The second sets up
isBdy as an index set containing the row indices of all boundary vertices. This
concludes the solver construction, and the function returns.

The final act of the profile initialization routine is to construct the lmass
ParData structure in userData.work. The function ConstructLmass(), in
mhd/allocation/constructLmass.c accomplishes this. For each ¢ section,
it sets all elements of the userData.canvas.scratch.tmpData.g Petsc vector
to unity; multiplies this vector from the left by the mass matrix; and stores the
resulting vector — each of whose elements is the sum of the elements in the
corresponding row of the mass matrix — in the appropriate poloidal section of
the global Petsc vector of userData.work.lmass. The data are then shared
with the other parts of lmass using GetArrayInPData().

A comment in the source file notes that some memory should be freed up at
this point. However, in the present version of the code, this is not done. Profile
initialization is complete, and the function returns.

2.5 Preparing to Iterate

The driver that causes the physics routines to advance the mesh by one time
step 1s timeadv (), discussed in detail below. The first half of this routine solves

TinitProfileVmec()

JConstructlmass()

TinitProfileVmec()

Tmain()
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the time-dependent equations, while the second half solves elliptic equations to
invert the flux and stream functions for use in the following time step. Conse-
quently, on each entry to the timeadv() routine, it will expect these functions
to already have been computed for the previous time step. In order to prepare
for the first call to timeadv(), the code must therefore do the flux and stream
function inversions once based on the initial profile. This is done by calling the
routine initMHD().

Located in mhd/init/initMHD.c, initMHD() is similar to the (unused)
second half of timeadv(). It begins by calling Petsc routine VecGetArray()
twice in order to point the 2D Scalar array pointers in userData.canvas.rhs
and userData.canvas.rhs algebraic to the data contained in their respective
global Petsc vectors. It then immediately calls VecRestoreArray() for each of
these vectors, passing it a dummy pointer instead of the one assigned by the
previous call. The intention appears to be to “copy” the contents of the Petsc
vectors to the accessible arrays, while freeing Petsc to rearrange them as neces-
sary afterwards, but this is not the effect, and appears to be a dangerous misuse
of the routines; the space pointed to by the array pointers could conceivably
be deallocated before the pointers are next dereferenced, resulting in a segmen-
tation fault.! A series of calls to GetArrayInPData() follows, using the same
GetArray/RestoreArray trick to transfer array information for R, z, and their
derivatives with respect to ¢. The difference between this and the transfer in
userData.canvas is that here, the ghost cells will also be updated prior to data
“copying”.

The command line is next searched for the —initProfile flag and the spec-
ification of a checkpoint file containing equilibrium data. The flag is not found,
so no file is read.

In preparation for solving the elliptic equations, certain of the velocity values

are zeroed out with a call to zeroFlowField(),in mhd/init/zeroFlowField.c.

This routine loops through the local ¢ sections, using Petsc routine VecSet () to
zero the global Petsc vectors storing velocity-related variables AU, Ve, and A¥y
in userData.old; the vectors storing y and U in userData.extend; and the
auxiliary userData vectors storing the first derivatives of x and U with respect
to R, z, and ¢ and of v, with respect to ¢. It then calls GetArrayInPData()
or GetArrayInRPData() as appropriate to provide direct array access to each
of these newly zeroed vectors.

In yet another loop over poloidal sections, initMHD () now repeatedly invokes
Petsc routine VecCopy () to duplicate the Petsc vectors storing I~, A%, AT, Vg,
A*y, d, and p in userData.old, storing the copies in userData.base. Access
to the copies is then provided with several calls to GetArrayInPData().

1 According to inline comments elsewhere in the code, however, this “trick” was suggested
by Barry Smith, one of the Petsc authors, so it is likely to be compatible, if not with the Petsc
specification, then at least with its current implementation.

JinitMHD()

JzeroFlowField()

+initMHD()
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2.5.1 Toroidal Derivatives

At this point, the code performs its first real operation on the physical data:
it calls dXdphi(), located in mhd/operator/dXdphi.c, to compute dd/dep.
Because there is the potential for the mesh received from Vmec to “twist” with
changing ¢ in order to follow the field lines, the actual quantity that must be
computed is

dd 3d8R+3d3z +3d
dp  OROp  0z0¢ Oy
The last term in this expression might be computed by ordinary finite differ-

(2.8)

encing, but the use of finite elements makes the evaluation of the first two
more complicated. The code solves the problem by moving the explicit par-
tial derivative in (2.8) to the left-hand-side and applying the Galerkin method:
it multiplies both sides by each basis function, and then integrates over the
poloidal plane:

dp Oy OR ¢ 0z 0y
The left-hand-side of (2.9) is by definition the vector product M;;d;, where M
is the mass matrix and ¢ is the vector of values of the quantity in parentheses
at each vertex. Once the right-hand-side vector has been evaluated explicitly,
the equation can be inverted to find 4§, to which dd/d¢ will then be added to
get the desired quantity.

The function dXdphi() encloses its statements in the now-familiar loop over
@ sections. Within the loop, its first act for each section is to zero the right-
hand-side vectors in the scratch space provided to it by the calling routine.
These right-hand-sides are now passed, along with the vector being differenced,
to function dPhi(), located in mesh/operator/dPhi.c. Its job will be to
calculate the right-hand-side vector of (2.9) and the “algebraic” right-hand side
ad/de.

dPhi() is set up to calculate its finite differences only for 3D runs; in the
2D special case, the right-hand side is, of course, identically zero. It determines
whether or not the current run is 3D by checking the extent of the local mesh in
toroidal angle. If the extent is less than 27, the run is 3D and the differencing is
performed. The present run is 3D, with a ¢ span of 7/4 per toroidal segment,
so the function proceeds.

To compute the first term on the right-hand side, it calls xDR(), located in
file mesh /operator/dR.c, passing it the dRdPhi and z values for each vertex
in the local mesh, along with the ParData variable to be differenced and space to
store the result. (dRdPhi is the vector of dR/d¢ values that were precomputed
by function vmecpoint2() back on page 23.) xDR() is merely a wrapper; it
extracts the appropriate ¢ section from each of the three vertex arrays it is
given, and passes them on to xDRO() in the same source file.

It is down at the xDRO() level that actual floating-point operations are finally
performed on the data. The quantity to be computed is

ldXdphi ()

JdPhi()

JxDR()

JxDRO()
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od OR .

Since

d(x) =Y dj};(x),
J
this can be rewritten as

CfONOR, 1 dj(zj+1—zj+2)/3R 2
Zj:d] o ag@)\ldm = 22]:[ n %Aldx

where A is the area of the triangle containing basis function j and the subscripts
on z are understood to be modulo three, so that they always refer to the vertices
one increment clockwise.and one increment counterclockwise from the one re-
ferred to by the subscript on d within the same triangular element. The integral
can be evaluated by assuming that Z—R varies linearly between vertices so that
the known values at the vertices may be taken as coefficients in an expansion
over linear basis functions. In this case,

/R’)\Z»d% = ER;/Ak)\idzx
k

The value of this integral, according to (2.7), is simply

112, k=i
I;; =2A< 1/24, k # i,but in same triangle (2.10)
0, otherwise

so that the ¢th component of the vector we are interested in is
R " -
(3 2
(T + T+ o) S e — 500
J

This is what the routine computes.
For efficiency, it loops over local triangular elements. For each triangle, it

begins by computing the sum over the three vertices of the quantity

dj(zj41 — zj42)

where d; are the values taken on by the density variable being differenced at
each vertex. A second loop over the same vertices is then begun. For each
one that is local to the processor, the ith value of the right-hand-side array is
incremented by the product

(T Fip l‘z’+2)
”(12+ 94 T o4

where o 1s the sum computed in the first vertex loop and the x; are the values of
the dRdPhi array at each vertex.? After the triangle loop comes a call to Petsc
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profiling utility macro PLogFlops(), instructing it to increment the count of
floating point operations executed by 33 times the number of local elements.

An analogous set of operations is now performed to compute the second term
on the right-hand side of (2.9) and add it to the first. This term,

ad 0z 54 Zigs
/éw?ﬁm:<ﬁ+£kk£)Z%Wm—&m
i

will be computed by a call to xDZ(), located in mesh/operator/dZ.c. Once
again the routine is just a wrapper. It passes the arrays to xDZ0(), which tidily
computes its sums in the familiar manner, logs the number of floating point
operations, and returns.

Now that dPhi() has computed the chain-rule derivatives on the right-hand-
side, 1t must actually find % to use on the left. It hands this task off to the

function dfdphi(), located in mesh/operator/dPhi.c.

Unlike the chain-rule routines, which worked directly on Scalar data, dfdphi()

will perform its finite differencing on Petsc vectors. It contains several distinct
blocks of code that perform finite differencing to different orders; only one of
these will be compiled. The flag set at the beginning of the source file specifies
that, in this case, fourth-order differencing will be performed. Accordingly, a se-
ries of basic Petsc vector operations are invoked with the net effect of computing
the approximation

8_51 ~ dw—Z - de—l + 8C‘I¢+1 — dw+2
de 12A¢

at all local vertices and storing the result in a scratch vector. Since, in this run,
only two poloidal planes physically reside on a given processor, this is one of
those routines in which Petsc’s implicit handling of ghost values really pays off.

The only remaining task for dPhi() is to copy the new scratch vector into
the “algebraic” right-hand-side vector. This is done with a call to Petsc routine
VecAXPY(), which also flips the signs of the values for good measure.

Back in dXdphi(), a call is placed to SLESSolve(), Petsc’s linear equation
solver, which will effectively invert the mass matrix to solve equation (2.9) for
dd/dy — 0d/dp. VecAXPY() is used to add the just-computed dd/0¢ to this
Petsc vector, leaving it with the correct values. A final call is then made to
GetArrayInRPData() to make this new vector available in array form, and the
function returns.

In preparation for the next round of initializations, initMHD() now creates
useful pre-multipliers by inverting duplicate copies of the R and d vectors for each
poloidal plane using Petsc routines VecCopy() and VecReciprocal(). Four
calls to GetArrayInRPData() follow, making these new inverses, as well as the
resistivity and viscosity vectors, available as arrays.

2The reason for the minus sign is most likely a difference in cylindrical coordinate ordering
conventions between Vmec and M3D.
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The next step is to compute VI. First we compute the R component, g—é,
with a call to dXdR_PData(), located in mhd/operator/dXdR.c. In particu-
lar, we are looking for the coefficients in the linear basis function expansion of

this partial derivative, so we must solve

ory _ [Ol, » _ Ii(zi41 — zjt2)
7 J J1m
triangle ¢

This must be done once for each poloidal plane. The first step is to com-
pute the right-hand side, which is done by passing I, z, and the right-hand-
side scratch space [zeroed with a call to VecSet ()] to routine dR(), located in
mesh /operator/dR.c.

Like xDR(), dR() is a wrapper, simply repackaging its arguments and passing
them on to dRO(), in the same source file. It is dRO() that actually loops over
vertices within each local triangle, adding the quantity

Liv1ziqo — Liyozin
6

to the right-hand-side element for vertex :. Why add only two of the six terms
implied above? Because for any vertex that is not on the boundary, all the
other terms will cancel when the sum is conducted over all triangles of which
the vertex is a part. Not adding them in the first place saves effort.

Of course, for vertices that are on the boundary, the sums will come out
wrong. This must be corrected once the element loop is finished. Accordingly,
for the last boundary vertex, the first boundary vertex, and then for all boundary
vertices in between, dRO() calls FixBdyDR(), located in the same source file.
This function adds the four missing terms

%i(Lipa — Lip1) + L (201 — 2ig2)
6

to vertex i. Some cancellations are likely to occur with this correction method,
but this seems unavoidable. dRO() logs 18 flops for each local element with
PLogFlops() and returns.

dR() immediately returns as well, transferring control to dXdR_PData(),
which passes the new right-hand side to SLESSolve() along with the mass

matrix inverter and the storage location for the solution vector of % coef-

ficients, which is promptly computed by the Petsc routine. Following a call
to GetArrayInPData() to make this new solution vector array-accessible, this
routine returns as well. The result is placed in userData.extend.dtIdR.

}dXdR_PData()

JARO)
JdRO()

JFixBdyDR()

dR()
1dXdR_PData()

+$initMHD()

Now the z-component of the gradient, 3I~/3z, is computed by calling dXdZ PData()

in mhd/operator/dXdZ.c. The operation of this function is so closely anal-
ogous to that of dXdR_PData() above, that little further elaboration seems nec-
essary. Replace the “R”s with “z”s and the “z”s with “R”s, and you have a
complete description. The result is stored in userData.extend.dtIdZ.

1dXdZ_PData()
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The final component of the gradient is 1/R 81 /8¢. Just AI/dy is computed,
by calling dXdphi(), which has already been described. The result is stored in
userData.dphis.dtIdphi.

2.5.2 The F Equation

We are now ready to solve the first elliptic equation,
ViF=——_—. (2.11)

For each local poloidal section, a call is placed to feqn() in mhd/feqn/feqn.c.
The function begins by calling Petsc routine PLogEventBegin(). This is a
profiling call that will enable Petsc to track the performance of this particular
routine.

feqn() will solve (2.11) by treating it in the usual way: both sides are
multiplied by A; and integrated over the plane. The right-hand side becomes

1ol , 191
_/E%Ald v Z]:M” (‘3330).’
J

where the subscript j denotes the value of the expression at the jth vertex,
while the left-hand side is

/ViFAid% = ZFj/AiviAjd%,
J

or, applying the chain rule,

LHS = EFj [/ VJ_ . (/\ZVJ_)\])CFI‘ - /VJ_)\Z . VJ_/\jdgl‘]
J

= ?{An VLFdl 4+ > S F; (2.12)
J
where the line integral is taken around the boundary of the poloidal section and
S is the stiffness matrix from page 25. The vector 7 is the unit normal to the
boundary,

for the axisymmetric case, where # is the poloidal angle in Vmec coordinates,
so the integral called for is actually

OF

N
on

de,

$dXdphi()

Jfeqn()
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i.e., the A-weighted line integral over the normal derivative of F'. The nor-
mal derivative will be determined by the boundary conditions. The relevant
conditions are that the boundary is both a flux surface (a surface of constant
poloidal flux ¢) and a perfect conductor. At the surface of a perfect conductor,
the normal component of the magnetic field vanishes. Hence, using (1.10), the
boundary condition for an axisymmetric boundary is

1. 1 0F
B = —(I-Vg+a-V.F) = —22 —
gt Vetn VLF) = g5

>

and the normal derivative of F' vanishes at the boundary as well, zeroing out
the line integral and leaving only the vector product with the stiffness matrix
on the left-hand side.

We now have a simple linear system of equations for F', but we also have
a problem: the specification of the derivative of F' everywhere on the bound-
ary overdetermines the solution. The right-hand side of (2.11) is apparently
arbitrary, yet if we integrate the left-hand side over the plane, we find that

/viFd% = /VL.VLFd% = %WVLFdE = 0.

In order for a meaningful solution to exist, it must therefore be the case that
the surface integral of the right-hand side vanishes as well. Ideally, this would
always be the case; however, round-off errors during numerical integration will
inevitably result in the accumulation of a small residual non-zero value of this
integral, eventually corrupting the solution if steps are not taken to prevent
it. The sensible step is to subtract the residual value from the right-hand side,
guaranteeing that the integral will vanish. To find Fj, the code must therefore
solve the linear equation

191 101 .
Sij Fy = M;; (_E%) —<—E%> (2.13)
J

Jud®x
(u) 3
[ &
is the average value over the poloidal plane.
The first calculation performed is of the area of the (local) plane. This area

/d2m,

which can be found by submitting a constant function that takes the value
unity at all vertices to a general-purpose surface integration routine. To create
such a function, the tmpGhostedVector variable within the scratch element of

where

is, of course,

the userData.canvas data structure is set to unity with VecSet () and shared
among ghost vertices on neighboring processors with VecGhostUpdateBegin()
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and VecGhostUpdateEnd(). Local access to the vector is provided by a call to
VecGhostGetLocalForm(). Array access to the local vector is then obtained by
calling VecGetArray().

A pointer to the array thus obtained is then passed to routine SurfaceIntegral0(),

along with the area array for the local finite element matrix and the index map-
ping, with the result to be stored in local double variable areaNode. Located in
file mesh/operator/surfaceIntegral.c, this function is the general-purpose
routine described above. Given the expansion of a function f(x) in terms of
piecewise linear basis functions, it approximates the surface integral

A
d?r . M d’r = '
/local section fxyd ZJ: J; / i) de zj: % 3’

where A; is the area of the triangle containing vertex j. It does this by simply
summing over local vertices within all local triangles. Given the function f; =1,
it simply sums up the areas. It then logs nine flops per local element and returns.

The unity array has served its purpose and may now be freed by calling
VecRestoreArray(). This then makes it possible to free the local vector with
a call to VecGhostRestoreLocalForm(). The computation of the area of the
poloidal plane is completed by summing the areas of the local sections with MPI
collective communication routine MPI_Allreduce(), which will sum the values
of areaNode over all processors within each poloidal communicator, and store
the result in double variable area on each processor.

Next, feqn() calls Petsc routine VecNorm() with option NORM_2, to compute

the 2-norm of dtIdphi,
s (o
dp

2 7

- 97 1/2
oI
dp

)

This action is questionable since the value returned will never actually be used
by the remainder of the subroutine. It was probably inserted for error-checking
purposes and ought to be removed or commented out for efficiency.

It is now necessary to prepare for inversion by computing the right-hand
side of Equation (2.13). First, Petsc routine VecPointwiseMult() is called,
multiplying each element of dphis.dtIdphi by the corresponding element of
coeff.Rinverse, and placing the result = 1/R 3I~/3go in the appropriate po-
sition of canvas.rhs_algebraic. The signs of all elements are then flipped by
passing the factor —1 to Petsc function VecScale().

Once the individual components on the right-hand-side have been computed,
it is possible to compute the residual

191
- / LT 2y,
R dy
First, a copy of the vector i1s made with a call to VecCopy (). Within the copy,
ghost values are exchanged by making calls to VecGhostUpdateBegin() and

lSurfacelntegral0()

Tfeqn()
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VecGhostUpdateEnd(). The local form, and then array access are obtained
with calls to VecGhostGetLocalForm() and VecGetArray() respectively. The
array is passed to SurfaceIntegralO(), which computes the integral over the JSurfaceIntegral0()
local processor. The array is freed with VecRestoreArray(); the vector is
freed with VecGhostRestoreLocalForm(), and finally the sum of the integrals
is computed with MPI_Allreduce(). At this early stage of the computation,
this sum is, comfortingly, exactly zero to within machine precision.

Before the right-hand side can be multiplied by the mass matrix, one more
correction needs to be made to the residual. This one arises from the possibility
that the outer boundaries may vary in size and shape with toroidal angle ¢.
Because the boundary condition applies to the derivative of F' normal to the
boundaries, any departure of n from the poloidal plane must be accounted for
in its application. Thus, re-examining (1.10) more carefully, we find that in fact

AVLF = ——q- .

o |~

This in turn means that the surface integral of the right-hand side should not
necessarily be precisely zero in the general case but rather

/RHSd% = ?{WVLFdE = —?{L‘r@dﬁ
€

To ensure this condition, we must explicitly compute this last line integral,
divide it by the area, and add it, along with the residual already computed, to
each component of the right-hand-side vector.

The routine performs the line integral by calling LineIntegralF (), located
in the feqn.c source file. This function performs its integration in a fairly |LineIntegralF()
straightforward manner that i1s amenable to parallelization: it computes the val-
ues of its integrand at triplets of successive boundary vertices and adds weighted
sums of them to a running total, which i1s then summed over processors. For
each boundary vertex 2, the routine evaluates 7 = 1+ el at vertices j=1—1,1,
and 7+ 1. It then divides each of these values by the inverse aspect ratio ¢ and
multiplies by

evaluated at vertex j, which is actually the variable NormPhi computed earlier.
Having computed these values of the integrand, it now forms the sum

(integrand;_; 4+ 2 x integrand,)d¢; N (integrand, ,; 4 2 x integrand, )d/; 11
6 6

and subtracts it from the running total. Once this operation has been completed
for all boundary vertices in the local processor, the totals are summed up with
a call to MPI_Allreduce(). The sum is then returned by the function.
The surface integral computed in the previous integration is now combined 1feqn()
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with the line integral to form

) line integral — surface integral
residual =

area

and added to the rhs_algebraic vector computed initially. This vector is then
multiplied by the mass matrix using Petsc routine MatMult (), with the result
stored in the right-hand-side vector rhs. Direct access to this vector is obtained
by calling VecGetArray (), following which it is passed to ApplyBdyonF () in the
feqn.c source file.

ApplyBdyonF () exists to apply the boundary condition on F', which takes
the form of the line integral in (2.12). We saw that in the axisymmetric case,
this integral vanished. In the general case, it will be equal to

—%%Ailﬁ ~pde.
The basis function A; picks out the piece of this integral centered on vertex
t. ApplyBdyonF() cycles through the same triplets of boundary points as
LineIntegralF (), and computes the same integrand values at each vertex, but
instead of subtracting the weighted sum of these values from a running total, it
adds it to the ¢th component of the right-hand-side vector.

The stiffness matrix gfe.Stiffness for the current ¢ section is passed to

JApplyBdyonF()

Tfeqn()

matZeroInterior (). This function is located in mhd/operator /matZerolnterior.c.

Making use of Petsc’s ability to automatically decide on and carry out the nec-
essary interprocess communication for updating distributed data structures, it
alters the matrix by first setting the values on a single processor within each
poloidal communicator; then having all processors update as required. The
nature of the alteration will be to store a copy of the top row of the stiffness
matrix and then replace that row with the top row of the identity matrix. The
active processor begins by extracting a copy of the zeroth row of the sparse ma-
trix for reading using Petsc routine MatGetRow() It copies the column indices
and values of the nonzero elements of the row to the “reference row” structures
in the MHD solver userSolver for temporary storage and then frees the row
again with MatRestoreRow(). Off-diagonal elements of the row are then set to
zero using MatSetValue(), while the diagonal element is set to one. Finally,
all processors assimilate this change by calling MatAssemblyBegin() followed
immediately by MatAssemblyEnd (), and the function returns.

The next order of business is to set up the system of linear equations for
solution by Petsc’s parallel linear system solver. This is accomplished with
a call to Petsc routine SLESSetOperators(). The arguments passed to this
routine initialize the solver context userSolver.FInverter using the slightly
modified stiffness matrix to define the system. The stiffness matrix 1s also
used to construct the preconditioner, and Petsc is further informed, with the
SAME PRECONDITIONER flag that all linear solves within the FInverter context
from now on will use the same preconditioner (so that it only needs to be
computed the first time).

JmatZeroInterior()

Tfeqn()
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The code is now ready to solve for F'. It calls SLESSolve(), passing it the
FInverter context and the right-hand-side vector. F' is found and stored in the

Petsc vector userData.extend.F.gfor the poloidal plane. Next, matRestoreInterior()

is called. Located in matZerolInterior.c, it simply restores the first row of the
stiffness matrix to the values it had before the call to matZeroInterior. Pro-
filing calls PLogFlops() and PLogEventEnd() are made, and feqn() returns.

initMHD () now takes the gradient of the newly computed F field, first call-
ing dXdZ() in mhd/operator/dXdZ.c to compute dF/Jz. This routine is
identical in function to dXdZ PData(), described earlier, except that it pro-
duces arrays of type RParData rather than ParData. The result is stored in
userData.dRdZs.dFdZ. Next, 0F/0R is computed with a call to dXdR() in
mhd/operator/dXdR.c, with the result stored in userData.dRdZs.dFdR. Fi-
nally, the ¢ partial derivative is computed by dXdphi().

2.5.3 The ¢» Equation

Because, as ascertained earlier, the MHD data in the userData structure has
not been obtained from a checkpoint file, A*) must now be explicitly computed
from the known value of C' (see page 32) using

10F
_ *,
C—Al/)—}——R—az.

ImatRestorelnterior()

+initMHD()

For each plane, the vector A% isset to (1/R)0F/0z using VecPointwiseDivide();

then VecAYPX() is called to flip the sign of the vector and add C to it. The
now correct value of A%, stored in userData.old, is copied to userData.base
with VecCopy(), and array access to both vectors is provided by two calls to
GetArrayInPData().

Now that we know A%, we can invert it to find ¢. psieqn(), found in
mhd/psieqn/psieqn.c, is called once for each poloidal plane for this purpose.
psieqn() is simpler than feqn() because the boundary condition for 1 is sim-
pler: because the boundary is a flux surface, 1 is constant along it. Since 9 is
only defined to within an arbitrary constant, its boundary value is chosen to be
zero. The left-hand side of the elliptic equation to be solved is

//\Z'A*l/) d’z = (starMatrix),; ¥
and the right-hand side is
/)\ZA*’(/) d223 = Ml'j (A*l/))] .
The function begins with a profiling call, PLogEventBegin(). Following this,
userData.canvas.rhs_algebraic is set to zero with a call to VecSet (). The
A% vector computed by the calling function is multiplied from the left by the

mass matrix with a call to MatMult (), with the result stored in canvas.rhs,
the right-hand-side vector.

Ipsieqn()
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The star matrix for the current @ section is now passed to matZeroBdy(),in
mhd/operator/matZeroBdy.c, which will help to apply the condition ¢ = 0
at the boundary. It does so by looping through all local boundary vertices
and extracting from the star matrix the row corresponding to each one using
MatGetRow(). The values from that row are carefully stored in userSolver’s
bdyColumnIndex and bdyMatEntree backup areas, and the row is then freed
again with MatRestoreRow(). Once all boundary rows have been safely backed
up, a second loop reassigns all their values to those of the corresponding rows in
the identity matrix using MatSetValue(). After all loops are completed, calls to
MatAssemblyBegin() and MatAssemblyEnd() reassemble the matrix with the
new values. The practical effect of all this is that, instead of participating in
the elliptic solution, the boundary vertices will simply be assigned to the values
in the corresponding rows of the right-hand-side vector. These rows must, of
course, be set to zero to enforce the desired boundary condition.

The modified star matrix is now used in a call to SLESSetOperators() to
define the system of equations and preconditioner matrix for the psilnverter
solver context. As with FInverter earlier, the SAME_PRECONDITIONER option is
used to prevent unnecessary duplication of effort in preconditioning. The ¢ = 0
boundary condition is now formalized in a loop over boundary vertices that
zeroes all of their corresponding elements in the right-hand-side vector. Calls to
VecAssemblyBegin() and VecAssemblyEnd () distribute the zeroes as needed.

A single call to SLESSolve() now does all the real work. ¢ is found and
stored in userData.extend.Psi. matRestoreBdy(), in the matZeroBdy.c
source file, is called to restore the boundary rows of the star matrix to their
original values. Profiling information is compiled with calls to PLogFlops()
and PLogEventEnd(), and the function returns.

For each poloidal plane on which the i equation is solved, the 1 vector
is copied to userData.extend.deltaPsi. After the loop over poloidal planes,
direct access to the i array is provided by calling GetArrayInPData(). The
Y vector is then passed in turn to dXdZ(), dXdR(), and dXdphi() to compute
0 /0z, OY/OR, and 9/Dp respectively.

2.5.4 Initial Velocity Perturbation

A call to OptionsGetDouble() now scans the command line for the presence of
the “~deltaU” option, which would prescribe an initial perturbation AU to the
equilibrium velocity distribution, which is assumed to be identically zero. The
option is found and the relative amplitude it specifies, 10~%, is read into the
double precision scalar deltaU. This value is then passed, along with the usual
mesh, data, and solver information, to subroutine addPerturbation(), which
can be found in file mhd/init /addPerturbation.c.

The first thing this routine does is to read some additional command line
options:

JmatZeroBdy ()

Tpsieqn()

ImatRestoreBdy()

+$initMHD()

JaddPerturbation()
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Option Description Value
-plModePerturbation poloidal mode number of perturbation 1
-tModePerturbation toroidal mode number of perturbation not found
-sGridPerturbation s location of peak perturbation 0.30
-sWidthPerturbation s extent of perturbation 0.20

The default value of the toroidal mode number is one, so the routine will im-
plement an n = 1, m = 1 perturbation.

After reading the command line options, the routine allocates space for two
integer arrays, in and out, to hold vertex indices. Using malloc(), it also
allocates a Scalar array of the same size to hold the perturbation itself. The
values of in are set to their own indices, the indices of the vertices in the local
ordering. This array is then passed through ISLocaltoGlobalMappingApply(),
with the result — the indices of the same vertices in the global application
ordering — stored in out. This is then copied back into in, which is then
switched in-place to the Petsc ordering with a call to AOApplicationToPetsc().
As aresult, in is in the Petsc ordering and out is in the application ordering.

Now the routine loops through local poloidal sections, keeping track of the
value of ¢ for each one. The perturbation array for each section is computed in
a loop over local vertices. The Vmec coordinates (r, ) for each vertex are found
by passing its application-ordering index to mapIndexToVmecCoordinates().
The size of the perturbation is then determined by the formula

2
perturbation;, = 5?1/2 cos(mb; + ny) exp [— (Sl — 80) ] (2.14)

wo

where m = 1 is the poloidal mode number, n = 1 is the toroidal mode number,
sgp = 0.3 1s the minor radial location where the perturbation has its peak value,
and wo = 0.2 is the characteristic width of the peak in s. Following the vertex
loop, the array of perturbation values for the poloidal section is copied into the
Petsc vector userData.extend.U.g with calls to VecSetValues() (using the
Petsc-ordering indices in in), VecAssemblyBegin(), and VecAssemblyEnd().

If the normalized pressure exceeds 10~° anywhere on the mesh, the pressure
distribution will be used to modulate the amplitude of the perturbation; other-
wise, it will not. Petsc routine VecMax() is called to determine the maximum
value attained by the normalized pressure over the current section, which turns
out to be approximately 2.84 x 10~2. Accordingly, the values in the perturbation
vector U are rescaled to

U — 7% i
peak pressure
before being multiplied by the specified perturbation amplitude of 10~*. Array
access to the rescaled vector is provided with a call to GetArrayInPData().

If no perturbation had been specified, the 0 values currently stored in the
AU and various VU vectors would have been correct. Since there is a pertur-
bation, however, these derivatives must be computed. The components of the
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gradient are computed first, with calls to dXdR(), dXdZ(), and dXdphi(). The
Galerkin method is used to take the Laplacian: we solve

M;; (ATU)J. = daggerMatrix;;U;
for ATU by multiplying the newly computed U vector from the left by the
daggerMatrix to form the right-hand-side; then passing this along with the
massInverter solver context to SLESSolve(). The result is stored in data

structure userData.old.DelDaggerU. The function then returns, unfortunately
neglecting to free the three allocated arrays before doing so.

2.5.5 The ® Equation

The elliptic equation (1.22) defining the variable ® is by far the most complex
of all the elliptic equations in the model. It depends on many of the other
variables describing both velocity and electromagnetic fields, so access to these
must be provided before it can be solved. Seven calls to GetArrayInPData()
are therefore made, providing direct array access to the variables v, I, A",
AU, A%, p, and d now residing in userData.old. With this out of the way,
the solution of the equation can begin.

For each ¢ section, the subroutine phieqn() is called. It can be found in
mhd/phieqn/phieqn.c. As usual, it begins with a Petsc profiling call, to
PLogEventBegin() to keep track of the time taken to solve the ® equation.
The right-hand-side vector will be pieced together one term at a time, so it and
rhs_algebraic are first zeroed with two calls to VecSet ().

Terms involving the fluid velocity [the first two lines of (1.22)] are handled
first. They will be needed only if the user has not specified the -noFlow option
on the command line. The code checks for this condition by inspecting the
parameter flag; since its FLOW_IS_NONE_VANISHING bit is found to be set, the
terms are needed.

The operation represented by the first term, €V -V, U, is common enough
to deserve a special notation. It will be denoted the “inner bracket” of I and
U. The three quantities ¢, I, and U are accordingly passed to the function
innerBracket () along with a pointer to the location canvas.rhs to store the
result. This function is located in mesh/operator/innerBracket.c.

innerBracket () is another wrapper function. Having been passed ParData
and TmpData structures (which contain Petsc vector and scalar array compo-
nents), it extracts the arrays and passes them along with the ¢ factor and the
drdr finite element matrix to innerBracket0() in the same source file to per-
form the actual calculation. This second function encloses its operations in a
loop over triangular elements. To see why it does this, remember that we are
computing

orou olouy\ . , . MmO | OAm OX\ | o
6/(mwm+az&)&dx_eg;“%/<33aR+'w w)&d”
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The sum is over all basis functions m, n, but the integral will vanish except
where A;, Am,, and A, are all nonzero in the same element. There are nine
combinations of m and n for which this occurs; they each contribute one of the
six unique values of the symmetric drdr tensor for the given element to the sum.

Because of this structure, innerBracket0() first passes the current element
index j, the drdr array, and I and U but not ¢ to function accumInnerBracket ()
in the same source file. This function computes

I | D ararljl,,,Un

mEAj TLEAJ‘

and returns this nine-term sum to the calling function. For each vertex of
element j that resides on the local processor, the product of the sum and ¢ 1s
added to the corresponding row of the right-hand-side vector, and the element
loop continues. (This successive addition is, of course, necessary since in general
each vertex is part of several triangular elements.) After the element loop,
the routine PLogFlops() is called to log 26 floating-point operations for each
element (20 for the accumulation of the sums, and 6 to add them to the right-
hand-side vector), and the function returns, as does the wrapper function.
The next term to be added is

ViU,

A vector storing I = 1+4¢1 is first constructed by copying I into tmpVector with
VecCopy (), multiplying tmpVector by € with VecScale(), and then adding one
to it with VecShift(). ViU is not available at this point, but AU (which is
equal to it in the straight-cylinder limit) is. VecPointwiseMult() is called to
multiply each element of I with the corresponding element of ATU, storing the
resulting vector in tmpData. Before correcting for toroidal geometry, the code
adds this intermediate quantity to rhs_algebraic with a call to VecAXPY().

The code now checks the parameter flag for the CYLINDER option, which
would indicate that the present case is in straight-cylinder geometry and that
the IV3U term is therefore complete. The flag is not found, because toroidal
geometry is being used. A correction must therefore be made. tmpData, which
now contains TATU, is overwritten with 7 dU/dR, which is computed with an-
other call to VecPointwiseMult(). This function is called again to multiply
the new vector in place by Rinverse; VecScale() would probably have been
a better choice. Finally, this new quantity, I/ROU/JR, is subtracted from
rhs_algebraic, leaving it equal to IV%_U, the correct term.

Having taken care of the terms in (1.22) involving U, we proceed to those
involving x. The first of these that will be added is

I\ oxo (I ox o (I
\Y Vil=]eo==—1=]-=1[=1].
e L(R) ¥~ 9RO: (R) 9z OR (R)
This frequently-arising combination will be referred to as the “Poisson bracket”

of x and I/R, and compactly denoted [x,I/R]. It will be computed by pass-
ing Rinverse, x, and [ to function xPoissonBracketRPP(), located in file

JaccumInnerBracket ()

TinnerBracket0()

TinnerBracket ()

Tphieqn()
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mesh /operator/poissonBracket.c. This wrapper function strips out the |xPoissonBracketRPP()
array portions from these parallel data structures and hands them off to routine
xPoissonBracket0() in the same source file.

When computing the residual of a Poisson bracket, a tremendous simplifi- |xPoissonBracket0()
cation is generally possible. From

/[a,b])\i d’z =

(3 o) (5 e ) = (5 omten) 35 o)

the application of a series of identities condenses this 18-term result to the simple
6-term expression

1
12A;

1
6 E am(bm+1 - bm+2)
mEA;

independent of the area or geometry of the element. The right-hand-side vector
for vertex ¢ must be incremented by this quantity for each basis function that is
non-vanishing at ¢. The expression becomes even simpler when we realize that
the terms contributed by an edge shared by by two elements containing vertex
1 will cancel each other. This means that, except for boundary vertices, only
the two terms corresponding to the edge opposite the vertex will survive, and
we need only add

1
6 (@it1bip2 — aiy2biy1)

to vertex ¢ for each triangular element it appears in. There is a routine in the
source file, PoissonBracket0(), that performs this operation.

For the present case, however, in which one of the quantities in the bracket
is divided by R, computing the residual properly requires a bit more work. In
general, the ith residual of the Poisson bracket [a, zb] = z[a, b] + b[a, z] is

ﬁ{ (Z adem) (Z bmdzm> - ( > amdzm) (Z bdem)] /Am 42z

(Z adem) (Z :bmdzm) —~ (Z amdzm) (Z xdemﬂ /Ab)\i d%}

meA; meEA; mEA; MmEA;

_|_

For the special case ¢ = 1, of course, the first integral is just A;/3, while the
quantity in the second set of square brackets vanishes, so the entire expression
reduces to the one above. In general, though, the top integral is equal to

A; Tigp1 + Tigo
> agay = 8 (s Trt e

JEA;
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and the full expression becomes

1 Tip1 + Tigo
E [(xz + f) Z am(bm+1 - bm+2)

meEA;

Z am(£m+1 - Im+2)

mEA;

+ (bi 4 Divr Fbis frbi“)
2

At this point, the code only concerns itself with the first of these sums. After

making all possible cancellations, the contribution from the residue of z[a, b] to

the right-hand-side vector element for non-boundary vertex ¢ from points local

to element j 1s

2 <Il Titl T Ei42 —; - +2) (@ip1biys — aiyabiyr) + —21;2 (@ibiy1 — aiy1b;)
Tip1 )
+ T(ai+2bi — a;biyn). (2.15)

This is what xPoissonBracket0() will evaluate.

This routine first loops over local triangular elements j. Within each element,
it loops over local vertices i. For each vertex, it computes the quantity (2.15),
multiplies it by a supplied factor (one in this case), and adds it to the appropriate
slot in the right-hand-side vector. This leaves all but the boundary vertices set
correctly.

Correcting the values at boundary vertices is the next task. For each such
vertex, starting from the first and last and then proceeding in order through
the rest, the routine passes the vertex index and the indices of its two neighbors
along the boundary to subroutine FixBdyXPoisson(), immediately following it
in the source file. The missing factors for boundary vertex ¢ just consist of the
difference between the non-boundary vertex expression (2.15) and the top line
of the full expression above that. If 7z + 1 is the index of the neighbor in the
counter-clockwise direction and z — 1 is the index of the clockwise neighbor, the
quantity to be added to vertex i is

1 x; Ti_—
D (@i41b; — aibitq) (IZ + ;1) + (aibi—1 — a;—1b;) (:EZ + 71)} .
After adding it, the function returns.

This concludes the Poisson bracket operation. 69 flops per element are logged
with a call to PLogFlops (), and control reverts to the wrapper, which immedi-
ately returns as well.

One more term involving x remains, namely
1 Ox
€R? 0z~
Since this term occurs only in toroidal geometry, the code checks again to make
sure the present case is in this geometry before adding it. The term will be

JFixBdyXPoisson()

TxPoissonBracket0()
TxPoissonBracketRPP()
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added to rhs_algebraic rather than rhs, so it does not yet need to be inte-
grated over basis functions. The 1/¢ factor is computed, Rinverse is squared
by VecPointwiseMult () and stored in tmpData, and this in turn is multiplied
in place by the contents of tmpVector with another VecPointwiseMult () call.
The result is multiplied by the dx/dz vector and then by 1/¢ and added to
rhs_algebraic using VecAXPY().

The first two terms in the expression for the velocity have now been ex-
hausted, and the code now turns its attention to v,. The first term in the Vi@
equation involving this variable that will be added is

1
—z Vv - Vi

The minus sign, the 1/R factor, the v, array, and the ¢ array are all passed to
routine xInnerBracketRPP() in mesh /operator/innerBracket.c to compute
the residual of this term.

xInnerBracketRPP() is quite similar to innerBracket (), discussed above.
For one thing, it i1s yet another wrapper routine. It repackages its four array
arguments (three in, one out) and the drdr matrix and passes them along to
xInnerBracket0() along with its scalar argument. Like the Poisson bracket
routine discussed above, xInnerBracket0() will ignore derivatives of z = 1/R.
It will only compute

/x(VA -VB)\; d*z.

Because the basis functions are linear, their first derivatives are constants over
the elements on which they are defined. This means that both in the original
inner bracket and the present one, they can be taken outside the integral. In
the former case, that simply left f)\idza:, while it now leaves fl‘/\idQCE. We
can therefore use the same nine-term inner product involving A, B, and drdr
as before, computed for each element by accumInnerBracket (). However, the
sums must now be corrected by the factor

fl‘/\id2x _ ZjEAlMij'rj _ 1 :L"—I—Ii+1+mi+2
[ Nid*x Ai/3 2\ 2 '

xInnerBracket0() differs from innerBracket0() only in that it computes
this factor and multiplies it by each sum along with the minus sign multi-
plier before adding it to the right-hand-side vector. When it completes its loop
over elements, 1t logs 44 floating point operations for each local vertex with
PLogFlops() and returns. The wrapper function has nothing left to do and
returns as well.

The other term involving v,

—%"’A*w,

will be added to the algebraic right-hand side. First v,/R is computed using
VecPointwiseMult() and stored in tmpData. VecPointwiseMult() is called

JxInnerBracketRPP()
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again to multiply this quantity in place by A*). VecAXPY() is then called to
subtract the result from the algebraic right-hand side.

This would ordinarily be the last of the terms involving the velocity. In
certain cases, however, there are more, notably the

_VLF XV, (%’) "

term. The code checks to see whether the STELLERATOR or NONLINEAR bits are
set in the parameter flag to determine whether this is one of those cases. It is not;
the flags are not set. The statement block adding the extra terms is therefore
skipped, and the code reaches the closing bracket of the FLOW_IS_NONE_VANISHING
condition.

The next collection of “optional” terms are those involving the resistivity,
7, i.e., the last two lines of equation (1.22). They will be needed only if 5 > 0.
It is, and the RESISTIVE MHD bit of the parameter flag has therefore been set.
The code checks for this, and, finding it, proceeds to add the resistive terms. It
begins with line three of (1.22) — the constant-n terms.

To compute the third line, the code must evaluate the quantity in square
brackets,

oF" aq//) oI | 8C

5. oR) 9: T op

To be more precise, it will evaluate —R?V, - J and then subtract it from the
right-hand side. It begins with the expression in parentheses, in particular,
with 9v¢'/OR. ' = 0¢ /0y is already known, so the code simply takes its first
derivative with respect to R by calling dXdRO() with it as an argument.

Located in mhd/operator/dXdR.c, this routine is similar to dXdR (), dis-
cussed above, but performs its operations only within a single poloidal plane
specified by the calling routine. After extracting the values in this plane from
the data structures for the variable “z” to be differentiated and for the spatial
coordinate z, dXdRO() zeroes its temporary right-hand-side workspace and then
initializes it with a call to dRO() (described on page 40). Tt solves for dz/OR
using SLESSolve() and then returns.

OF’'/dz is computed next. Again, F’ is already available, so the code simply
calls dXdzo() to take the z-derivative. Located in mhd/operator/dXdZ.c,
this routine bears the same relation to dXdZ() that dXdRO() has to dXdR().
Tt takes the derivative and returns. OF’'/dz is subtracted from dv'/OR with
VecAXPY() and the result is multiplied by 1/R using VecPointwiseMult().
3[7(32, which has already been computed, is added to this result with another
call to VecAXPY().

The one remaining term (and the only one that would have survived in the
case of straight cylinder geometry) is now computed by passing C' to dXdphi0()
in mhd/operator/dXdphi.c. Like dXdphi(), it zeroes two vectors, rhs and
rhs_algebraic, sets them up by calling dPhi(), and solves the equation for rhs
with SLESSolve(), adding rhs_algebraic to the result. The only apparent
difference between the routines is that this one only treats a single poloidal

1
RV, -J = E(

1dXdRo()

$drO()
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plane. The result, 9C/0y, is subtracted from the sum under construction with
VecAXPY().

The new sum is now multiplied in place twice by 1/ R using VecPointwiseMult ()

to form —V, - J, the quantity multiplied by —# in the elliptic equation. If 5
is constant, the fourth line of (1.22) will vanish, and the resistive term will
already be complete. The code checks for this condition by looking for the
VARY RESISTIVITY bit in the parameter flag. The bit is not set, so the resistiv-
ity is considered constant, and the code multiplies —V, - J by n and subtracts
it from rhs_algebraic.

Having finally added in all the terms in the equation for @, the code is ready
to solve it. Specifically, it will use the Galerkin residual method to solve

Z M;; (Vi — rhs_algebraic)j = rhs; (2.16)
J

where the just computed right-hand-side vectors are

1 dx v
. _ 2 )
rhs_algebraic = IViU + TR, EA*#} +nV,-J
and
2 7 I .1
rhs; = dxX; |eVL T -V U+ Vix x VL E ~QD—EVJ_ULP-V1/)

The routine solves (2.16) for the quantity in parentheses by calling SLESSolve(),
storing the result in userData.extend.LapPhi. To find V2®, it then adds
rhs_algebraic to this vector with VecAXPY().

It still must solve for @ itself. To do this, it first multiplies LapPhi by the
mass matrix, storing the result in the rhs vector. It sets the boundary condition
on @, &, = 0 by passing the stiffness matrix (which is the finite element expres-
sion of the V2 operator) to matZeroBdy(). As discussed above, this subroutine
modifies its matrix argument by temporarily replacing the rows corresponding
to boundary vertices with rows from the identity matrix. The modified stiff-
ness matrix is then stored in the Philnverter solver context with a call to
SLESSetOperators(). The SAME PRECONDITIONER flag is passed to this routine
so that the preconditioner will only be computed once. The actual boundary
values are then set to zero by calling VecSetValue() in a loop over boundary
vertices, followed by VecAssemblyBegin() and VecAssemblyEnd(). Solution
is accomplished by passing the inverter and right-hand side to SLESSolve(),
with the result stored in userData.extend.Phi. The stiffness matrix is re-
stored to its original condition by calling matRestoreBdy(), profiling calls are
made to PLogFlops () and PLogEventEnd (), and the function returns. Calls to
GetArrayInPData() then provide array access to the two new variables V2®
and .

ImatZeroBdy ()

ImatRestoreBdy()
+initMHD()
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2.5.6 Deviations from Equilibrium

All the heavy pre-computations are now out of the way, but some bookkeeping
remains to be done. The userData.new instances of I~, A*y, and p are zeroed
in each plane with calls to VecSet (), following which GetArrayInPData() is
invoked as usual. MHD RHS * pointer userData.rhs01d is pointed at the zeroth
element of userData.Rhs, while userData.rhsAncient is pointed at its first
element.

If the run 1s directed to start from a checkpoint file, certain statistical in-
formation about the variables will be available, but other initializations must
be performed. A call to OptionsGetString() quickly determines that in the
present case no checkpoint file has been specified on the command line. A sim-
ilar check for the “-~checkUCD” option also turns up empty. Accordingly, the
code will not attempt to read from a checkpoint file, but will instead compute
the deviations of A%, 1, I~, and p from their equilibrium values.

For each poloidal section, the routine first zeroes the userData.old instance
of A*x with a call to VecSet (). Three calls to VecWAXPY() follow, subtracting
the base instances of A%, I, and p from their respective old instances, and
storing the results in deltaC, deltatI, and deltaP respectively. Then a call to
VecAYPX() subtracts deltaPsi from Psi, storing the result in deltaPsi.

After the poloidal loop come five more GetArrayInPData() calls, this time
for A*, dC, 8I, 6p, and &t. Preliminary preparations are complete, and
initMHD() returns.

2.5.7 The Multiple-degree-of-freedom Matrix

Having prepared all relevant variables for iteration, the code now calls func-
tion constructMDoF() to set up its multiple-degree-of-freedom matrix struc-
ture userMdof, of type MDoF, defined in mhd/mdof/MDoF.h. Located in
mhd/mdof/constructMDoF.c, this routine begins by setting the number of
degrees of freedom ndof to three. These three degrees of freedom correspond
to the toroidal magnetic field, vorticity, and pressure.

The actual matrix will be in sparse AlJ format, so a special descriptor,
matrixInfo, of type MatrixAIJ must be initialized first. It inherits its com-
municator from the local finite element matrix. It will have ndof= 3 times as
many rows and columns as this matrix. Space is allocated for the two integer
arrays that will keep track of the number of nonzero elements on and off the
diagonal in each row. An index array is also allocated.

The number-of-nonzeros vectors are initialized as follows: each row corre-
sponding to a toroidal field or pressure has twice as many on- and off-diagonal
non-zero entries as the corresponding row in the local finite element matrix.
Each row corresponding to a vorticity has three times as many of each type of
entry. Once this matrixInfo structure has been set up, Petsc is asked to create
the Matrix with a call to MatCreateMPIAIJ().

Petsc routine VecCreateMPI() is then invoked to create a distributed Petsc
vector with one element for each row in the matrix; this will be the MdofRHS

Tmain()
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vector. PetscMalloc() is then called to allocate space for an array of solver
contexts. The number of contexts will be the same as the number of poloidal
sections. Each context is then initialized with a call to SLESCreate(), following
which i1ts Krylov solver is initialized by calling SLESGetKSP(). A call is made
to the self-explanatory KSPSetInitialGuessNonzero(), and the convergence
tolerances are set to the same values used for the other Krylov solvers in the
code (a residual lz-norm of 10~10 of that of the initial residual or 107°% in
absolute value) with KSPSetTolerances(). These adjustments are finalized
with a call to SLESSetFromOptions(), and the function returns.

2.6 Iterating

All the C language initializations are now complete. After a few last formalities
— the code reads the command-line option value for ~EngUpBound, replacing
the default value of its unused variable EngUpBdy with 10™%; sets the scaling
factor for linearization in the userData structure to 1.0; and resets the iteration
counter i to 0 — we are ready to plunge into the Fortran legacy code. The
wallclock time taken to execute this main code block will be monitored by read-
ing the system clock time before and after its invocation with PetscGetTime().
Once the “before” value is obtained, the Fortran routine mh3d() is called and
the main loop can begin.

Subroutine mh3d () can be found at the very beginning of the ~ 15, 000-line
fixed-form Fortran source file m3d/code/m1.F, which comprises virtually all
the pure-physics Fortran routines in the code. The “.F” suffix is used instead of
the more common “.f” in order to allow the file to be passed through a C-style
preprocessor before compilation. The code takes advantage of this situation by
employing preprocessor directives such as #include, #ifdef and #define.

The subroutine mh3d () is itself 1,818 lines long at the time of this writing.
It begins by #include-ing five local files, most of which define various common
blocks: paraml, clil, cli2, clim, and grfblk. param1, as the name implies,
defines a number of parameter variables for the code as well as setting the
default precision of undeclared floating-point variables to double if the ALLREAL
and ALLDOUBLE compiler flags have been set. clil, the longest of the included
files, defines 27 common blocks related to just about all of the code’s activities.
cli2 defines 16 more. clim adds another brief seven, while grfblk adds five.

2.6.1 Reading the Parameter File

There are then three namelists. The first is wdat, which consists of the code’s
original parameter variables describing the numerical and physical parameters
of the run. The second is chpar. It comprises a number of parameters altering
the flow of execution that can be set by the user at runtime, including some,
e.g. the gcon variables, whose meaning is not yet defined by the code but which
are included for the convenience of later developers. The third and smallest is

Tmain()
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hall, evidently a late addition, with 11 variables specifically related to two-fluid
corrections to the MHD equations.

The first block of statements in mh3d () perform file operations. The required
formatted ascii file wxy is opened for reading and assigned unit number 12. The
contents of this file (in the mhd/driver subdirectory) for the example under
discussion are presented in Appendix A. The code then opens file wxi in its
current working directory for reading. Comments in the code indicate that this
file was originally associated with the restart function, but it is currently not
used. Requiring its presence must therefore be considered a mistake, one that
will most likely have been expunged from the latest version of the code by the
time this is read. Files wxi2, wxo, wxfi, wxf, wxfc, eqfrank, wxfm, wxd,
wx3d, and eqd are all opened with a status of “unknown”, which means that
if they do not already exist (as is generally the case, since they are output files),
they will be created. The only one of these that will ever actually be written
to, however, is currently wxo.

Local integer variable ifil is initialized to zero to facilitate later output.
Then ncarcgm() is called. Located in m3d/code/mparl.F, the Fortran file
that handles mesh-specific operations, this tiny routine was originally used to
start up the NCAR graphics library for plotting purposes but currently does
nothing at all. The next executable statement is a call to wnllong(), also in
mparl.F, which likewise does nothing; inline comments indicate that it was
originally used to set the output record length to 80.

This flurry of useless activity is followed by the reading-in of the contents of
the wdat namelist from the wxy file, where they occupy lines 2-32. The values
are then immediately written out again to wxo. A goto statement is then used
to skip over five lines that are in any case commented out, following which the
chpar namelist is read from wxy (lines 36-56) and written to wxo. Another
goto skips four more lines of comments, and the hall namelist (lines 59-61) is
read and written. Four more comments are skipped with a goto.

2.6.2 Fortran Initializations

Another round of variable initializations now ensues; the variables, the common
blocks to which they belong (if any), their assigned values, and their purposes
are shown in Table 2.2. Because the wxy file specifies a resistivity n = 1073 # 0,
the variable icainc, from common block nlwdat, is set to one, overriding the
zero value set for it in the wdat namelist. 777 Because ifull is equal to one,
three more variables from the ddat common block are assigned: icyl and i1b3
are set to zero, and ilb4 is set to one, overriding the value in wxy. nequil,
also from the ddat common block, is then set to zero as well, as 1s its, from
the hallsc block.

Three tests are conducted to see whether to call wread(), wreadold(), or
wreadgk(). All three tests fail, so none of the routines are called. The value of
ku, from common block conp, is stored in local variable kuold even though ku

Incarcgm()
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Table 2.2:
Variable Block Value Description

ifull nlwdat 1
impp — 1
oni hybc 0.0
omi ddat 0.0
wsmall — 10-10
mi cplot jz =93
inndg statics 0
timprev statics 0.0
tedv statics 0.0
pgamm statics 0.0

wkin statics 0.0 Kinetic energy?
wkiv statics 0.0
drophol statics 0.0
nvdrop statics 10
ncyp statics 0
neiei statics 0
neqeq statics 0

mlowest cochpar mhep =1
nlowest cochpar nhep =1

has not yet been set. Eventually, this variable will hold the number of poloidal
planes stored on the local processor. Then, in order to determine the mesh,
dmesh() is called.

This routine, which takes no arguments, is located in mparl.F. It includes
the same five parameter files as mh3d (), so it will share all common blocks. It
begins by setting oni and omi to 0.0 again, a redundant operation, at least in
this case. The wsmall and mi initializations from the calling routine are also
repeated.

Because itearing, from the extra common block and wdat namelist, is
equal to four > 2, initt2() rather than initt1() is called. Located in the
same source file, this routine includes all of the Fortran header files except for
clim, as well as the C header files flep.h and vmec.h. Tt begins by placing a
call to initt (), the first subroutine in mparl.F.

initt () includes exactly the same header files as initt2(). It begins with
some Fortran 90-style explicit variable declarations. Two local 100-element 1D
arrays of type DATATYPE2 (i.e. double precision in this case, as set in param1,
since macros ALLREAL and ALLDOUBLE are both defined in the local Makefile) are
allocated, xb and yb. Variables ok and ok2 are declared to be of type logical,
while opt is declared as an integer. The value of nm, ..., is copied to nmesh

Jdmesh

Jinitt2
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following which nm is reset to one. pi is declared as 4 atan(1). Doubles oni and
omi are set to 0.0, while integer iuns is set to one. The stage is now set for the
interface calls that will read the initial data from the C structures created by
ParM3D.

First, parparms () is called. Thisis a C function located in m3d/interface/p2m.c.

(“p2m” is short for “ParM3D to M3D”; the routines in this file provide the in-
terface between the C [ParM3D] and Fortran [M3D] parts of the code.) Tt is a
very simple and brief routine, making five straightforward assignments that ex-
change information regarding the distribution of data among processors between
the old and new portions of the code. The first assignment sets the 1d variable
from the Fortran common block ddat to map.NumLocalVertices which, as the
reader may recall, is 465 for the present case. The second sets 1db, from the
same common block, to map.NumLocalVertices — map.NumBoundaryVertices
= 435, 1.e., the number of non-boundary, or interior vertices. The third sets ku,
mentioned above, to map.NumPhiSections = 2. The last two assignments go
in the opposite direction. The values of Fortran parameters 1z and kz, defined
in param1l to be 5,000 and 12 respectively, are copied to their counterparts in
the userData.parameter data structure. Parameter 1z determines the leading
dimension of the statically-allocated Fortran work arrays that store variable val-
ues at each node; it sets the maximum number of vertices per poloidal plane. kz,
the second dimension of many of these work arrays, sets the maximum number
of poloidal planes per processor. The function now returns.

The next two functions called by initt() are also interface routines from
p2m.c. First comes pargrid(), which, depending on the value of its third
(integer) argument, copies the R and z coordinates of all local vertices either
from the Fortran storage to the C grid.R and grid.Z variables or vice versa.
Here, the third argument is 2, so the latter operation will be performed. The
xH and yH arrays from the gridxy Fortran common block defined in grtblk are
the destinations of the transfer. Each has dimension (1z, kz).

The R coordinates are copied first, from grid.R to xH, by passing the
addresses of both to subroutine par2m3d(), which is specialized for copying
ParData-type variables into Fortran arrays. The routine loops over local poloidal
sections, and, within that loop, over local vertices, assigning the value from the
corresponding element of the ParData structure’s array to its appropriate spot
in the Fortran array. As written, this could prove to be a fairly expensive oper-
ation if repeated often enough — in this relatively small example it must copy
930 eight-byte values one at a time. Given that the data are being copied in or-
der, an optimized memory copying routine such as memcpy () should probably be
tried as a replacement. However, this would require that the destination memory
block be contiguous, which would necessitate dynamic rather than static array
allocation wn the Fortran code. Ideally, of course, the data would only occupy
one block of memory and only a pointer would be passed between code sections.

pargrid() now methodically subtracts the plasma major radius from all
the Fortran z coordinates. It then copies the values of the ParM3D structure
grid.d2ZdPhi2.array at all vertices in the zeroth plane to the Fortran array
pointed to by its final argument, rv. Despite appearances, the values being
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copied are not those of 3%2/8p?, but rather the Vmec “s” coordinates, i.e., the
minor radius of each point within the poloidal mesh normalized from zero to
one, as previously computed on line 99 of mesh/grid/constructGrid.c. The
function then returns.

After copying over the parameters and the vertex positions, the code swaps
some coefficients between data sets with a call to parcoefs(). This function
simply sets the normalized major radius variable rmajor to AspectRatio from
the userData parameter structure; the inverse aspect ratio eps to the reciprocal
of this value; and the userData parameter timestep to the dt value determined
in the Fortran code.

The next executable statement sets nd to ku, the number of planes on the
local processor (=2) and sets nu to one less than this number. This makes it
possible to compute the ¢ spacing dphi = 27/nd = &, which is of course wrong;;
the code should divide by the total number of planes to come up with 7/4.
Fortunately, this variable is never actually used.

In order to determine the ¢ coordinate of each local plane, dzset () is now
called, with no arguments. Located in the same source file, mparl.F, its one
line passes the zH array to the C routine dzsetc() in p2m.c to perform the
actual calculation. The calculation is quite simple; the routine simply loops over
local planes, assigning zH for each one based on the lower and upper ¢ bound
information in cell.

initt () next loops over local vertices i, computing the “minor radius”

ry = \/(Rz - Rmajor)2 + le

for each one and assigning the values to arrays r and rv while setting the
corresponding values in array tv to zero. nmin, from the ddat common block
in cli2, is set to one.

The rest of initt2() simply duplicates the last block of initt(), from the
nmin— 1 assignment onward. It is therefore redundant; the same results would
be achieved if dmesh() had simply called initt() directly.
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The wxy File

Line numbers are provided in the right margin for convenience.

$WDAT

imsy=0 ifull=1 rmajor=05.00 ncyl=0 nexpl=0 idbug=0

linhe=0 mhep=1 nhep=1 linto=0

pmag=0.00e-3 nkhcy=99991 noscil=099 ikhin=1

iconf=00 delmo=0.11 imapcon=0 bndel=.00 bnkay=1.0

1d=20 ml=1 mu= 9 mp= 20 nu=07 nm=1

dtf= 0.10e-0 nstp=100 npr=100 npu=100000 nparha= 07 nckpa=-2

nread=0 nprnt =10 idrop=0 xgam=0.000 ncont=-12 inistpl=0

eta=1.0e-3 etaout=0.e-5 etaout2=0.0e-5 icheta= 3 petaval=5.e-9
pkkk=1.e-4 1lin= 0 10
rmu=1.e-4 rmuout=0.e-4 rmuout2=0.e-4 ichrmu= 3 ibounde= 0 rdtdp= 0.5
vmu=1.e-4 vmuout=1.e-4 vmuout2=1.e-4 ichvmu= 1 idropv= 1 iqpsi=0
gammo=0.00 gn=1. iaponly=0 vdropm=2.e-90 vdropmi=2.e-90

impa=1 iergod= 0 iharcha=0 resfssm=1.e-99

iheliac=0 ilb3=0 ilb4=0 icyl=0 istea=1 partc=1.0
heliacg=5. nspla=10 ntk=400 npk=400 rlim=.9

ipe= 1 ifwe=1 grax=0.050 chpower=1. rstn=.0 pmult=1.00000 umult=1.
iartp=+1 napmax=100 wkinmax=1.e+1 wkivmax=1.e00 iadjtss= 0 20

ivaex= 0 icainc= 0 iripeq= 0 igridch=0
intfrex= 0 tempcl1=.0 inipur= 0 ichecb= 0

itfbv= 0 ichop=00 chopr=1.5e3 isetmk= 0 ncombgr=0

nchehar=900000 ainfato=.2e-03 nautoha=0900 iplott=4

ianp=0 igkrd=0 ncygk = 005

62
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gfb = 1. gfe =01.0 gfp =07.00e19 gfj=80.el 30
rgkl =0.00 rgk2 = 0.001 rgk3 = 0.0 rgk4 =0.e+00 rgk5 = 0000.

itearing = 4

$

$CHPAR

ich2d=0 ichcinv=-0 icincin=3 ipcinvk=1 ioldinp=0
artpn=-1.10 simpf=1.
pampl=1.00e-00 pbase=1.0e-02 pdissf=0.0

rtransi .25 rtrans2 = 0.80 rtransw = .10 40
iequadr = 1 ldold= 31 facnog=.8
rcg= .57 deltg= .10 facnisg= 2.5

isoft=0 rotperi=10.0 nsofdet=30 sodista=2.81 soangma=.1167

iece=0 ecedis=.900 ecedet=25

qcon21=1.5 gqconi12=1.6 qcon22 =2.50 qconl13=.400 qcon23=0.32 gcondw=2.4
qconl4=0.6 qcon24=0.340 qconl15=.80 qcon25=0.410 qcon26=0.50

1i2d=0 mlowest=1 nlowest=0 amldval=.000 pres1=-3.18

qnought=.80 apmulf=-1.5 ipchan=000 hhtb=10. hhtbl=10. 50

ibeaneq=0 rfrank=0. 1resc3=+0.01807 resc4=1.e-09 iresc5=10 resc6=0.001
iresc7=0500 resc8=1.0e+0 resc9=1.0 resc10=1.0 resc11=0.e-9

resc20=2.1 resc21=0.0 resc22=-.00 resc23=0.3 resc24=0.5

resc25=000.1 resc26=0.000 resc27=9.e-3 resc28=0.8 resc29=2.

ichaald=0 ichacbr=0 ichapre=0 ratioq=1.0

$

$HALL

ihall=0 ihallt=0 ielecp=0 iden=0 idengd=1 ivisc=0

pefac=0.5 xmie0=1.0e-2 hallf=1.0 60
ietal=0 idench=0

$

$HYBN

im=32 jm=32 km=08 r0=200. 19z=0. a9=050. twod=0

dt9=005. nm9=0001 nsm=1 sx=0. sy9=0. sz=0. load=2 width=.50 xshift=.0
modem=0 contu=8 pskip=0040 wmax=0.05

nsrc=00000 mmm=000000 iavg=0 ismth=0 ipj=1 iters=4 err9=.0010

bt0=1. q0=1. ci1=1. c2=1. c3=1. c4=0.

rkk1=050. irkk2=10 rkk3=0. rkk4=0001. rkk5=0. 70

$
$HYB2

mm1=500000 tstel=.25e-19 msmil=1.0e-00 qi1=1. 1ri=1
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kappan=0. kappat=0. vpar=0.

$
$HYB3

trtype=1 ntrm=00 tstel=1.

kappan=0. kappat=0.

$
$HYB4
i=1.

$

x0=0.8 y0=0.5 z0=0.

vper=0.0 tpartp=1.

msmil=1. ql=1.

u0

0.

vp20=10.

1ri=1
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A
accumInnerBracket (), 50, 53
AccumLocalFE(), 26
addPerturbation(), 47
ALLDOUBLE macro, 57, 59
AllocLocalFEMatrix(), 26
ALLREAL macro, 57, 59
Ampere’s law, 6
AOApplicationToPetsc(), 32, 48
AOCreateBasic(), 19
application ordering, 17-18
ApplyBdyonF (), 45

area of a triangular element, 24

B

basis functions, piecewise linear, 24
boundary conditions, 42

C

chpar namelist, 57-58

clil file, 57

cli2 file, 57

clim file, 57
config.dat12, 12, 14
Configuration structure, 13
connectivity matrix, 24, 26-27
ConstructComm(), 15
ConstructFEMatrix(), 27
constructGrid(), 21
ConstructLlmass(), 35
ConstructLocalFEMatrix(), 23
constructMDoF (), 56
constructMHDdata(), 28
constructMHDsolver(), 33
constructPData(), 22, 29
constructRPData(), 29-30
constructTmpData(), 30

66

D

dfdphi(), 39

differential operators, definitions, 4
dmesh(), 59

dPhi(), 37, 54

dr(), 40

dRO(), 40, 54
duplicatePData(), 22, 29-30
duplicateRPData(), 29-30
dVectoriD(), 14, 26
dVector2D(), 14, 26
dXdphi(), 37, 41, 46-47, 49
dXdphio (), 54

dXdR(), 46-47, 49
dXdRo (), 54
dXdR_PData(), 40
dXdz (), 46-47, 49
dxdzo(), 54
dXdZ_PData(), 40
dzset(), 61

dzsetc(), 61

E

element ordering, 20

F

F equation, solving, 41
Faraday’s law, b

FEMatrix structure, 24
feqn(), 41
findElementOrdering(), 19
findLocalColumnNum(), 27
findOrdering(), 17
findThetaIndexRange(), 19
FiniteElementMatrix structure, 28
FixBdyDR(), 40
fixBdyLocalFE(), 27
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FixBdyXPoisson(), 52
fixTwoNeighbors(), 27
fMatrix(), 26

Free fMatrix(), 28
free_iVectoriD(), 19
Freund, R., 35

G

Galerkin method, 37

GetArrayInPData(), 23, 35-36, 40,
46-49, 55

GetArrayInRPData(), 36, 39

ghost grids, numbering, 17

Golub, G., 35

griblk file, 57, 60

H

hall namelist, b8

I

iMatrix(), 26

index set, definition, 19
IndexMapping structure, 16
indexMapping(), 16, 18
initMHD(), 36
initProfileVmec(), 13-14
initt(), 59

initt2(), 59
innerBracket (), 49
innerBracket0(), 49
ISCreateGeneral(), 35
ISGlobalToLocalMappingApply (),

20
ISLocaltoGlobalMappingApply (),
22, 32-33, 48
ISLocaltoGlobalMappingCreate(),
19
iVectoriD(), 14, 16, 31, 33
K
KSPSetInitialGuessNonzero(), 35,
57
KSPSetTolerances(), 35, b7
L

Laplacian operator, 4
LineIntegralF(), 44-45

LocalFE structure, 23
Longcope, D., 25

M

main(), 13

MapCPUtoPartition(), 16

mapIndexToVmecCoordinates(), 22
32, 48

mars units, 14

mass matrix, definition, 24

MatAssemblyBegin(), 28, 45, 47

MatAssemblyEnd (), 28, 45, 47

MatConvert(), 34

MatCreateMPIAIJ(), 28, 56

MatDuplicate(), 34

MatGetRow (), 33-34, 45, 47

Mathematica, 4

MatMult (), 45-46

matRestoreBdy(), 47, 55

matRestoreInterior(), 46

MatRestoreRow(), 33-34, 45, 47

MatrixAIJ structure, 23

MatrixAIJSetUp(), 25

MatSetLocalToGlobalMapping(), 28

MatSetValue(), 45, 47

MatSetValuesLocal(), 28

matZeroBdy(), 47, 55

matZeroInterior(), 45

MDoF structure, 56

Mesh structure, 21

mh3d(), 57

MHD basic structure, 29

MHD DATA structure, 28

MHD_dphis structure, 30

MHD_dRdZs structure, 30

MHD _extend structure, 29

MHD RHS structure, 30

MHD Scratch structure, 30

MHD Solver structure, 33

MHD work structure, 30

MPI_Allreduce(), 43-44

MPI Comm_vector(), 15

N
Nachtigal, N., 35
ncarcgm(), 58
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NodeDomain structure, 16
NormPhi variable, 22-23, 44
Numerical Recipes, 21

@)

Ohm’s law, resistive MHD, 7
OptionsGetDouble(), 30-31, 47
OptionsGetInt(), 13
OptionsGetString(), 56
OptionsHasName(), 30

P

par2m3d(), 60

paraml file, 57

parameter flag, 30-32, 49-50, 54-55

parcoefs(), 61

ParData structure, 21

pargrid(), 60

parparms (), 60

Petsc ordering, 17-18

PetscGetTime(), 57

PetscInitialize(), 13

PetscMalloc(), 33-34, 57

phieqn(), 49

phone variable, initialization, 15

PLogEventBegin(), 41, 46, 49

PLogEventEnd(), 46-47, 55

PLogFlops(), 3940, 46-47, 50, 52—
53, 55

PLogStageRegister(), 13

Poisson bracket, definition, 50

PoissonBracket0(), 51

polint(), 21

psieqn(), 46

R

RParData structure, 29
run.12, 12

S

SAME PRECONDITIONER flag, 45, 47
setComm(), 15

setOptions(), 30
setupIJPonGrid(), 31, 33

SLES, 33-34
SLESCreate(), 34, 57

SLESGetKSP(), 35, 57

SLESSetFromOptions(), 34, 57

SLESSetOperators(), 34-35, 45, 47
55

SLESSolve(), 39-40, 46-47, 49, 54—
55

Smith, B., 36

sparse matrix format, 26

stiffness matrix, definition, 24

Strauss, H., 25

SurfaceIntegral0(), 43-44

SWEEP, 20

T

timeadv(), 35
TmpData structure, 30
ToroidalUpDate(), 23

U

unit normal, to a flux surface, 41
UpdateMassStiff(), 26

vV
VecArray(), 22, 29
VecAssemblyBegin(), 23, 32, 47—
48, 55
VecAssemblyEnd (), 23, 32, 47-48,
55
VecAXPY(), 39, 50, 53-54
VecAYPX(), 46, 56
VecCopy (), 36, 39, 43, 46, 50
VecCreateGhost (), 22, 29
VecCreateMPI(), 17, 30, 56
VecDestroy(), 19
VecDuplicate(), 22, 29-30
VecGetArray(), 26, 30, 36, 43-45
VecGetOwnershipRange(), 17
VecGhostGetLocalForm(), 26, 43—
44
VecGhostRestoreLocalForm(), 27
43-44
VecGhostUpdateBegin(), 26, 42-43
VecGhostUpdateEnd (), 26, 43-44
VecMax (), 48
VecNorm(), 43
VecPointwiseDivide(), 46
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VecPointwiseMult(), 32, 43, 50, 53—
54
VecReciprocal(), 39
VecRestoreArray(), 27, 30, 36, 43—
44
VecScale(), 32, 43, 50
VecSet (), 36, 40, 42, 46, 49
VecSetValue(), 55
VecSetValues(), 23, 32, 48
VecShift (), 32, 50
vector potential, 5
VecWAXPY(), 56
vertex orderings, 18
Vmec data file, 12, 14
vmecBfield(), 32
VmecData structure, 14
vmecfit(), 21
vmecfit0(), 21
vmecmesh(), 21
vmecnorm(), 23
vmecpoint2(), 23, 37
vmecread(), 14
vmecscaling(), 14

W

wdat namelist, 57-58
wnllong(), 58
WorkSpace structure, 30
wread(), 58
wreadgk(), 58
wreadold(), 58

wxi file, 58

wxo file, 58

wxy file, 58

X

xDR(), 37

xDRO(), 37

xDZ(), 39

xDZ0(), 39
xInnerBracket0(), 53
xInnerBracketRPP(), 53
xPoissonBracket0(), 51-52
xPoissonBracketRPP(), 50

7
zeroFlowField(), 36



