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I. Current sources and boundary conditions 
 
A. Current source term 
The toroidal current density in M3D is given by 
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The parallel version of M3D evolves C directly (rather than ψ); hyperbolic terms are 
treated explicitly, while the parabolic resistive term is implemented by the implicit 
solution of the equation 
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That is, discretizing in time, we solve 
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However, if there is a current source term (as in the CDX runs), we define CB to be the 
value of CA at time zero, and then apply the resistivity only to deviations from this 
source, solving 
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instead at each subsequent time step. This method will drive the same current profile CB 
for any resistivity profile η. η may in general evolve in time, though in the CDX case it 
does not. 
    For the CDX study, η(x) is set up by first computing a Spitzer profile based on the 
initial temperature distribution: 
 3/ 2 lnTη −= Λ  (1.5) 
where the coulomb logarithm is defined as 
 ( )1/ 2 3/ 2ln 23 ln n T −Λ ≡ −  (1.6) 
with n in cm-3 and T in eV. The resulting profile is then renormalized so that its smallest 
value, at the peak of the temperature profile is 1.0.  Next, a cutoff is applied, restricting 
the maximum resistivity to 100 times the minimum value to avoid numerical problems 
caused by sharp gradients at the edge; this is applied smoothly by making the substitution 
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Finally, this profile is multiplied by an overall normalization of 5.15×10-5 (equivalent to 
S=1.94×104 in the center). 



 B. Loop Voltage 
An alternate (or complementary) way to drive a toroidal current in M3D is by applying 
an emf (loop voltage).  This voltage will appear as a boundary condition, and will be 
chosen to be just that amount required to maintain the current density distribution at its 
initial (presumed equilibrium) value. Because C is the quantity evolved in the parallel 
version, this reduces to the simple Dirichlet condition that the toroidal current density on 
the boundary be equal to its initial value. 
 
By convention, if the loop voltage condition is being used in M3D, then the resistivity 
profile is initialized as 
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for any user-specified scalar resistivity η0. This ensures that, in the absence of flows, the 
initial electric field is curl-free, as required for a stationary state.  When resistivity is set 
up this way, the correct boundary condition is 
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II. Toroidal Field 
The part of the poloidal current density that is not contained in the flux function ψ is 
instead contained in the toroidal field variable, defined in M3D as 
 0 ,I RB Rϕ≡ −%  (1.8) 
where the cylindrical coordinate R and plasma major radius R0 have been normalized to 
the minor radius, and Bϕ has been normalized to its on-axis value. The implicitly 
advanced diffusive component of the time evolution of I%  is given by 
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which is handled in the usual way, i.e., inversion of the linear equation 
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where SI%  is a source term that will in some cases be set to the initial value 0I% , but is in 
the CDX case simply set to zero, as it is not needed so long as the toroidal current and the 
pressure are supported by source terms. 
 
III. Temperature/Pressure Sources 
If idench.ge.1 in the input file, indicating that the density is evolving, as it is in the 
CDX cases, then the energy equation solved by M3D is for the temperature; otherwise 
the pressure equation is solved.  In either case, the diffusive term in the equation is 
handled implicitly by routine pkkks(), which applies the diffusion to the deviation from 
a source term: p0 for the pressure equation or p0/ρ0 for the temperature: 
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In the CDX study, I am using pkkk κ⊥≡ =9.09e-4, which was determined to 
correspond to a dimensional value of ~200 m2/s. There is no ohmic (or viscous) heating 
in this study, so this is the only term tending to restore the temperature peak after a 
sawtooth crash. 
 
IV. Density Source 
In the presence of a nonzero density diffusion coefficient (as in the CDX cases), diffusion 
is applied only to the departure of the density from its initial value. This diffusion, of 
course, does not appear in the fluid equations but is added to improve numerical stability. 
Alternately, it could be considered to arise from sub-gridscale turbulence that is not 
handled directly by the code. 
 
After explicitly advecting and compressing the density via the continuity equation, M3D 
implicitly applies the diffusion operator: 
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In the CDX study, I have D = pdissf=1.0e-3. 
 
V. Other Parameters 
As in the original plan, I am using a constant, uniform scalar viscosity in the momentum 
equation, equal to ten times the minimum resistivity in dimensionless form, i.e., µ = 
5.15×10-4 everywhere. 
 
My toroidal resolution is 24 planes for the original, low-res study, allowing me to resolve 
modes 0 ≤ n ≤ 10; and 48 planes for the high-res follow-up, resolving modes 0 ≤ n ≤ 22. 
Both use 79 zones in the radial direction with a poloidal symmetry of three, giving them 
9244 vertices and 18,252 triangles per plane. Linear elements are used throughout. 
 
The initial condition for the nonlinear study, as mutually agreed during an early 
discussion between the M3D and NIMROD teams, was to begin with the equilibrium 
plus a perturbation corresponding to the linear n=1 eigenmode at an amplitude such that 
the ratio of the maximum Bp in the n =1 to the maximum BT in the n =0 piece was 10-4. 
 
VI. NIMROD Parameters 
NIMROD is following modes 0 ≤ n ≤ 41, evidently with 30 by 30 rectangular elements of 
higher than first order. These runs have S = 2.06×104, slightly higher than mine.  The 



NIMROD run, unlike the M3D run, included both ohmic heating and time-evolving 
resistivity. The Prandtl number (10) appears to be the same, though it is unclear whether 
viscosity is evolving in NIMROD as well. κ⊥  is also the same, with ||κ  presumed 
“equivalent” (108 for NIMROD; VTe = 6 VA for M3D).  
 
The NIMROD run was stabilized with a density diffusion coefficient of 1000 m2/s, with a 
note in Dalton’s presentation saying that 50 m2/s produced the same results.  The 
effective value in M3D is approximately 220 m2/s, so this seems unlikely to be a source 
of disagreement in the results. 
 
According to Carl’s note on Ohmic current drive in NIMROD, the resistive part of the 
magnetic field equation is 
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which is identical to the current source formulation in M3D except for the evolving η 
profile. 
 
Dalton also claims a value of q0 = 0.98 versus q0 = 0.92 for my case, which if true 
indicates that we’re no longer starting from the same equilibrium (CDX run06, time11).  
His run also does not appear to be using the same convention for the initial perturbation, 
but begins with all mode energies in the 10-13 range. 
 


