Actual source code: ex22.c

  2: /*
  3: Laplacian in 3D. Modeled by the partial differential equation

  5:    - Laplacian u = 1,0 < x,y,z < 1,

  7: with boundary conditions

  9:    u = 1 for x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

 11:    This uses multigrid to solve the linear system

 13: */

 15: static char help[] = "Solves 3D Laplacian using multigrid.\n\n";

 17:  #include petscda.h
 18:  #include petscksp.h
 19:  #include petscdmmg.h


 26: int main(int argc,char **argv)
 27: {
 29:   DMMG           *dmmg;
 30:   PetscReal      norm;
 31:   DA             da;

 33:   PetscInitialize(&argc,&argv,(char *)0,help);

 35:   DMMGCreate(PETSC_COMM_WORLD,3,PETSC_NULL,&dmmg);
 36:   DACreate3d(PETSC_COMM_WORLD,DA_NONPERIODIC,DA_STENCIL_STAR,-3,-3,-3,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE,1,1,0,0,0,&da);
 37:   DMMGSetDM(dmmg,(DM)da);
 38:   DADestroy(da);

 40:   DMMGSetKSP(dmmg,ComputeRHS,ComputeJacobian);

 42:   DMMGSolve(dmmg);

 44:   MatMult(DMMGGetJ(dmmg),DMMGGetx(dmmg),DMMGGetr(dmmg));
 45:   VecAXPY(DMMGGetr(dmmg),-1.0,DMMGGetRHS(dmmg));
 46:   VecNorm(DMMGGetr(dmmg),NORM_2,&norm);
 47:   /* PetscPrintf(PETSC_COMM_WORLD,"Residual norm %G\n",norm); */

 49:   DMMGDestroy(dmmg);
 50:   PetscFinalize();

 52:   return 0;
 53: }

 57: PetscErrorCode ComputeRHS(DMMG dmmg,Vec b)
 58: {
 60:   PetscInt       mx,my,mz;
 61:   PetscScalar    h;

 64:   DAGetInfo((DA)dmmg->dm,0,&mx,&my,&mz,0,0,0,0,0,0,0);
 65:   h    = 1.0/((mx-1)*(my-1)*(mz-1));
 66:   VecSet(b,h);
 67:   return(0);
 68: }
 69: 
 72: PetscErrorCode ComputeJacobian(DMMG dmmg,Mat jac,Mat B)
 73: {
 74:   DA             da = (DA)dmmg->dm;
 76:   PetscInt       i,j,k,mx,my,mz,xm,ym,zm,xs,ys,zs;
 77:   PetscScalar    v[7],Hx,Hy,Hz,HxHydHz,HyHzdHx,HxHzdHy;
 78:   MatStencil     row,col[7];

 80:   DAGetInfo(da,0,&mx,&my,&mz,0,0,0,0,0,0,0);
 81:   Hx = 1.0 / (PetscReal)(mx-1); Hy = 1.0 / (PetscReal)(my-1); Hz = 1.0 / (PetscReal)(mz-1);
 82:   HxHydHz = Hx*Hy/Hz; HxHzdHy = Hx*Hz/Hy; HyHzdHx = Hy*Hz/Hx;
 83:   DAGetCorners(da,&xs,&ys,&zs,&xm,&ym,&zm);
 84: 
 85:   for (k=zs; k<zs+zm; k++){
 86:     for (j=ys; j<ys+ym; j++){
 87:       for(i=xs; i<xs+xm; i++){
 88:         row.i = i; row.j = j; row.k = k;
 89:         if (i==0 || j==0 || k==0 || i==mx-1 || j==my-1 || k==mz-1){
 90:           v[0] = 2.0*(HxHydHz + HxHzdHy + HyHzdHx);
 91:           MatSetValuesStencil(B,1,&row,1,&row,v,INSERT_VALUES);
 92:         } else {
 93:           v[0] = -HxHydHz;col[0].i = i; col[0].j = j; col[0].k = k-1;
 94:           v[1] = -HxHzdHy;col[1].i = i; col[1].j = j-1; col[1].k = k;
 95:           v[2] = -HyHzdHx;col[2].i = i-1; col[2].j = j; col[2].k = k;
 96:           v[3] = 2.0*(HxHydHz + HxHzdHy + HyHzdHx);col[3].i = row.i; col[3].j = row.j; col[3].k = row.k;
 97:           v[4] = -HyHzdHx;col[4].i = i+1; col[4].j = j; col[4].k = k;
 98:           v[5] = -HxHzdHy;col[5].i = i; col[5].j = j+1; col[5].k = k;
 99:           v[6] = -HxHydHz;col[6].i = i; col[6].j = j; col[6].k = k+1;
100:           MatSetValuesStencil(B,1,&row,7,col,v,INSERT_VALUES);
101:         }
102:       }
103:     }
104:   }
105:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
106:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
107:   return 0;
108: }