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The Triangular Equilibrium Element in
the Solution of Plate Bending Problems

L. S. D. MORLEY
(Royal Aircraft Establishment, Farnborough)

Summary: Further details are given of a recently developed triangular equilib-

rium element which is then applied, in conjunction with the complementary

energy principle, to the finite element analysis of some plate bending problems.

The element is demonstrated to have a straightforward and satisfactory applica-

tion and to possess advantages over the conventional triangular displacement
element.

1. Introduction

A recent paper' provides the main details of a new element of triangular shape
for the finite element analysis of plate bending problems. This element strictly
satisfies all the equilibrium conditions between adjacent elements and is used in
conjunction with the complementary energy principle. Certain details of this element
are taken from the analogous plane stress analysis of Fraeijs de Veubeke® who,
along with Argyris®, considers a displacement triangular element with linearly
varying strain.

The book by Zienkiewicz* provides a useful account of previous work on the
finite element method in the solution of plate bending problems. Briefly, the early
research was directed towards displacement elements of rectangular shape which
are non-conforming, i.e. they satisfy only partially the required kinematic condi-
tions between adjacent elements. Although discussion prevails as to the assuredness
of convergence with the use of such elements, they have nevertheless provided
many useful results in actual applications. More recently, and under the stimulus
of the need to deal with irregularly shaped boundaries, there has been developed
the triangular displacement element, both of the non-conforming and conforming
varieties. The latter element, in conjunction with the potential energy principle,
provides assuredness of convergence. Unfortunately, however, this conforming dis-
placement element is more complicated to use and, as Zienkiewicz* notes, it does
not generally provide such a good approximation as the corresponding non-
conforming element. In contrast, the present element, which strictly satisfies all the

equilibrium conditions, is found here to have a straightforward and satisfactory
application.

The paper commences with a recapitulation of the basic equations and limita-
tion principle and goes on to provide a more detailed account of the finite element
process which includes explicit expressions for the normal bending moment,
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Kirchhoff normal force and twisting moment which act at the boundary of the
plate. In order to apply such statical boundary conditions it is necessary to
impose their relative constraints during the variational procedure and an Appendix
illustrates how these Lagrangian type constraints may be applied without increasing
the order and without necessarily destroying the banded character of the flexibility
matrix. Numerical results are then provided for a number of simple test problems
and comparisons are made with results from displacement elements. While the
present equilibrium element provides a remarkably good accuracy, it should be
borne in mind, when making comparisons with the corresponding displacement
element, where the order of the square K matrix is 3N (with N the number of
nodes), that the order of K is now equal to, or less than, 3N+ 3T (where T is the
number of triangles). ,

There are occasionally over-enthusiastic applications of the finite element
method to problems which are not really suitable for such direct treatment. The
final numerical application which is made here is intended to provide such an
illustration; it concerns the difficult problem of a simply-supported square plate
under uniformly distributed load where there is a concentric square hole with free
rdges. There is singular behaviour in the bending moments at the internal corners
and the finite element solution now displays appreciable discontinuities in the
distribution of bending moments, even away from the internal corner points. It is
clear that such problems merit further attention, although it may be appropriate
to recall that large discontinuities in the bending moment distribution occur in the
application of the triangular displacement element to most problems.

Notation

A area of triangular finite element
¢, ¢, ¢, arbitrary constants, see equation (4)
C contour surrounding the region
flexural rigidity
column matrix, see equation (30)

column matrix, see equation (38)

R e O

concentrated normal force acting at the boundary C, see equa-
tion (10)

H* prescribed value of H
I positive constant, see equation (45)
K square flexibility matrix
L length of side of square plate
M, M,
M. * prescribed value of M,
M, M, M.,

bending and twisting moments acting at the boundary C

bending and twisting moments of the xOy coordinate system
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PLATE BENDING

outward pointing normal from the boundary C
3 x 12 matrix, see equation (21)

3 x 12 matrices, see equation (23)

intensity of concentrated normal load
component of the complementary energy

column matrix of generalised displacements, see equation (21).
Also denotes the intensity of the distributed loading which is
applied normal to the surface of the plate

intensity of uniformly distributed load

" element of the column matrix g, see equations (31) and (32)
™ element of the column matrix g, see equations (39) and (40)
normal shearing force acting at the boundary C

normal shearing forces of the xOy coordinate system

finite region occupied by the plate

distance measured around the boundary C in the clockwise
sense. The meaning of s is changed for the purpose of Section 4

affix to denote that the transpose is to be taken
two functions defined by equations (1)
components of the complementary energy
Kirchhoff normal force acting at the boundary C
prescribed value of V,,

normal deflection

prescribed value of w

weight function, see equation (17)

rectangular Cartesian coordinates

coordinates of a vertex of the triangular finite element
coordinates defined by Fig. 3

angle included by the intersection of the Ox axis with the
normal n

3x 3 matrix defining the flexibility characteristics of the finite
element, see equation (24)

3 x 3 matrices defined by equations (27)
column matrix, see equation (20)
Poisson’s ratio

loading parameters, see equations (2) and (3)

A few additional symbols are used in the Appendix, but these are defined as
they are introduced.
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2. Basic Equations

In the earlier paper® it is noted that the equations of elemental equilibrium are
pape q

satisfied if the moments and normal shearing forces are calculated from the two |

functions U (x,y) and V (x,y) such that

ov oU oU oV
M:— ()_)7 “‘le M,,— 0_x _Qza M-Tll_‘% (d_y— + '5;) (l)
Oim 3 2 (0U V) 0, 4 0 (U oV) i
=T 2oy \oy  ox gx VT 2ox\dy  ox dy *

The two functions Q, (x,y) and Q,(x,¥y) may be chosen in any convenient way
to satisfy the equation
2Q, 0%,

q(x,y)= o2 + ayz s (2)

where g represents the distribution of the loading which is applied normal to the
surface of the plate. There are, however, some algebraic simplifications if it is
stipulated that

0,=0,=0 (say) (3

and this is adopted in the sequel since it involves no loss in generality. It is seen

that any solution for U and ¥V may be compounded with the functions

U=cy+cq, V=—-cx+c, @

where ¢y, ¢; and ¢ are arbitrary constants.

The plate is considered to occupy a region denoted by R and is bounded by }

the contour C. The outward pointing normal is denoted by n; the distance around
C is measured in the clockwise sense by s (see Fig. 1), while the intersection of the
normal n with the Ox axis includes the angle y. On the boundary C it is usually
more convenient to work in terms of the quantities M., M., and Q,, which are
respectively the normal bending moment, twisting moment and shearing force acting
at the boundary.

Figure 1. Notation for flat plate.
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*

It can be shown that

M,= —siny %—Ijﬂ—cosy % -

M,..=% (cos'y %g— —sin'y%ﬂ

0 ou | . ¢
On= _%TE (cos Y5y TSI ;

The Kirchhoff normal force is give

The boundary value problem
of C of one of the following pairs o

w=w* Wit

w=w* wit
ow/on=0w*/dn wil

—sin'y%l;] +cosy %/ =M,* wit

where the star (%) denotes that th
is found convenient to put

M*=M,

At the corner points of C, and w
H*(s) is applied on C, then

,+
where H(s)= f Vads=

8

In the finite element process
principle
8L

where, for an isotropic plate,
1 oU\* ¢
-1 IS i L
Ue szu—vm){(ax) * (a
R
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It can be shown that
. oU oV
M,=-siny s +08Y - -0
oUu . oU . 9V oV
M.,=1} (cosyW—smyW+smy;9? +cosyﬁ) b &)
i) ou . oU . 3V v a0
Qn= —%E (cosyw +siny oo +siny 5o —cosy%) ~ oy
The Kirchhoff normal force is given by
_ oM., 0 au . aV) 00
Va=0x J5 ——-—(.;;{COS’)’W +sin vy g}—-m. 6)

The boundary value problem normally requires the satisfaction on each part
of C of one of the following pairs of conditions

w=w* with ow/on=~awk[dn
. . oU oV
=wk — -_— — =M%
w=w with — sin y 5y TEosY = M,

ow/dn=0w*|on with—%(cosy%+sinyaV) vx [ M

—és—- =
—sin 'y%sg +co‘s'y%/ =M,* with - ?)% (cos'y% +siny%}) =V.*,

where the star (*) denotes that the quantity is completely prescribed and where it
is found convenient to put
M*=M,+Q, V,*=V,+0Q/0n. ®8)

At the corner points of C, and wherever a concentrated normal force of intensity
H*(s) is applied on C, then
H* (s)=H (s), &)

+

a5 (10

) ¥ -+
where H (s)= f Voads= — [cos Y %g +siny 6)V] T

3

In the finite element process recourse is made to the complementary energy
principle
8U:+8U, +8P;=0 an

where, for an isotropic plate,

1 GU\* | (OV\® ., AU oV (1+v) (9U  9V\?
=1 - i —_ — o - _—
Ue Zfl.[l—vz)D{(ﬁx) +((7y) 2 oy Y3 (ay+ax) }d"dy

(12)
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’_ 1 2_ .ﬂ] ﬂ/_
vi=[ [ aosp (2= (52 + 5 ) | sy (13
R
* st
and p,::f{%m_wwn}ds- [w*H(s)] i (19
C ’

where the expression in square brackets is evaluated at each corner point. In
equations (12) to (14), v is the Poisson’s ratio and D is the flexural rigidity, both of
which may be (smooth) functions of the planar coordinates. It is to be noted,
furthermore, that

80 =0 (15)

and that on the boundary C it is necessary for the U, V fields to conform with the
tractions M,, V, and H, wherever they are prescribed, before commencing the varia-
tional process. In virtue of the fact that a complementary energy principle is
employed it is known that the strain energy enjoys the following limitation principle

strain energy << U+ U/, (16)

whenever P,=0, as is the case for homogeneous kinematic boundary conditions.

3. The Finite Element Process

It is now assumed that the region R is subdivided into a number of finite
triangular elements and this implies that a curved boundary C is approximated by
straight line segments. A typical element is shown in Fig. 2, where the vertices of
the triangle, i.e. the nodes, are numbered 1, 2, 3 in the positive sense of s while
the mid-points of the sides are numbered 1°, 2, 3. Both U and V in each triangle

0 —

Figure 2. Notation for triangular
finite element.

¥
are taken to be general quadratic expressions in the rectangular coordinates. Along
an edge of the triangle they both vary according to a parabolic law and are here
completely specified by their values at three points along the edge. Accordingly,
a suitable choice of the generalised coordinates is the twelve values of U and V
at the vertices and at the mid-points of the edges. Thus, in accord with the work of
Fraeijs de Veubeke? for the analogous plane stress problem,

U (x, y)-: U1W1+ U2W2+ U3W3+ Ul'Wy + Uz'Wz' + UQ’W3' } (17)

Vv (.x, y): V1W1+ V2W2+ V3W3+ V1'W1' + szWg' + V3'W3'

154 The Aeronautical Quarterly
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The weight functions W, (x, y), etc
earlier paper’. Moreover, along th

U (s)=U,— iz‘_ss‘l (U, + U, -4

§—85
Sy — &

Vs=V,— @BV,+V,-4

Equations (17) ensure the cor
continuity of the normal bending
across the finite element boundarie
like H (see equation (10)), at the u
row matrix

q"=U,, U, U, Uy
and by €’ the row matrix =

we can write the matrix equation

where the elements of the 3x 12 1
tives of the weight functions W, (x, :

We now introduce the matrix
where R,,; denotes the region occt
of numerical calculation it is conver

24

where the matrices N;, N, and N,
the triangular element is denoted by

i

A= I=ADx

We can now write the matrix K of e

1

K= Z;F.(NOTAoNo‘*' NJAN . +]
+N_ %
where A= f f Adx
R123
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The weight functions W, (x, ), etc. are quadratic in x and y and are given in the
earlier paper’. Moreover, along the edge 1, 3/, 2 of the triangle shown in Fig. 2,

U(s)=U,— i‘s; BU,+ U, —4U;) + 2 (:_S;) (U + Uy, —2Us)
27901 27— 91
18
S—85 s—5\? (18)
V (s):Vl"‘ (3V1+ Vg —4V3/)+ 2 (V1+ Vg _ 2V3').
Sy— 8 Sy — 8y

Equations (17) ensure the continuity of both U and V¥ throughout R and the
continuity of the normal bending moment M, and the Kirchhoff normal force V,
across the finite element boundaries, as well as the vanishing of concentrated forces
like H (see equation (10)), at the unions of nodes inside R. Let us denote by ¢” the
row matrix

CIT:(U1, UZ; U39 Ul" Uz', U3'a ’ 1s l 23 l 3s l 1’s l 2’y l 3') (19)
. aUu v oU 9V
T T__ (- >~ . = —_
and by €” the row matrix €= ( oy oy 0x) ; (20)

we can write the matrix equation €e=Ngq, 21)

where the elements of the 3 x 12 matrix N are calculated from the partial deriva-
tives of the weight functions W, (x, y) after their substitution into equations (17).

We now introduce the matrix K = f f (N*AN) dxdy, (22)
3123

where Ry denotes the region occupied by the triangular element. For the purpose
of numerical calculation it is convenient to expand the N matrix in the form

2A°N=N,+ xN.+ yN,, 23)

where the matrices Ny, N, and N, have constant elements and where the area of
the triangular element is denoted by 4. For an isotropic element the matrix A is

[1 —v 0]
A 1 1 0o ;.

= (l—v")D(x,}’)[ - @9
0

We can now write the matrix K of equation (22) in the form

K= 4%44 (N AN+ NoTAN, +NFAN, + NIA, N, + N, ANy +
+ NzTAme + NzTAzuNy + NuTAru N.+ NuTAmle)’ (25)

Where A= f f Adxdy, A= f f Axdxdy, etc. (26)

Rio R
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L. S. D. MORLEY

The element of constant flexural rigidity is of especial technological importance
and in this case A is a matrix of constants where, after a preliminary shift of the
rectangular co-ordinates to the centre of area of the element, we have
A= AA, A,=A,=0,
Agy =X+ XoYs + x5¥9) AA[12,

Ape= (x> + X2+ x5 AA[12

27
A= O+ yli+y) AA[12.

‘We can now write 8U, of equation (11) in the form

U= g f f (€Aé) dxdy —5q7Kq. (28)

R123

In calculating the variation 8U," (see equations (11) and (13)) we may, in virtue
of equation (15), neglect the term in )2 Thus, in matrix notation

8U, = —g"8q, (29)

where g” is the row matrix

8" =(Qu1, Qua, Qus, Qur» Qus Quss Or1s Qras Orsy Ovirs Qs Q) (30)

. 1 oU
with the Qp calculated from f f D O g% 45y 1)
R

123

on substituting for U from the first of equations (17) and the Q; from

1 24
| Jammo e« )
B

on substituting for ¥ from the second of equations (17). Both equations (31) and
(32) need to be modified when the triangular element is other than isotropic. In the
special case of a uniformly distributed load of unit intensity we may put

Q=0(2+y)/4 (33)
and in the evaluation of equations (31) and (32) it is useful to note, after shifting the

rectangular coordinates to the centre of area of the element, that

A
f f xydxdy= g (FuXells + Xaxey1 + XiX5Ys)

B

f f Xdxdy= % XXX,

R123

A
ff yidxdy= 15 Y1y

R

123

(34)
4
f f xdxdy= Z5 (v + xyys+ X1y,
3123

123

For a concentrated load, however, the expression for () is logarithmic and it is
probably better then to perform the corresponding quadratures numerically.
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The variation 8P, (see equatic
of the triangular element is coincid
2 of the element shown in Fig. 2 «
V. and H(s) from equations (5)
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9

8P;= f _é?w* —sin 98U
c= an Y12 s + COS Yy
1

which, after an integration by parts,

L.}

&P, =f _0W* —sin —68U+
c an ym aS Cos 'ylg

B

The evaluation of this equation is sir

asU 1
W = —m(38U1+5U5
14 1
B = —SZ—_S—I(38V1+ v,

In the numerical examples which a
are evaluated with the aid of Sim
values of dw*/dn and ow*/ds at th
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[
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The variation 8P, (see equations (11) and (14)) is null unless at least one side
of the triangular element is coincident with the boundary C. Let the vertices 1 and
2 of the element shown in Fig. 2 coincide with C so that, on substituting for M,,
V. and H(s) from equations (5), (6) and (10), the variation of equation (14)
becomes

)

owx OSU 14 0 08U ooV
BPC:f{é—n( sin Yo g +c0sy12 o ) +w’\'(9—(cosy12 s +8in yy, —— s )}ds—

— [w* (cos YVie—— (9(;6 Y + sin yy 63‘V) ]
‘+

1
which, after an integration by parts, becomes

3

2
o 1) 06 owx 06U 14
8Pc=f=0aln( sin yyp (9U+cosy,2 BV) ;; ( €08 Y1 5= +8i0 Vi )}ds-(35)

1

The evaluation of this equation is simplified by noting that equation (18) provides

O = - 130U+ 80, — 46U+ T2 50,+ 50, - 2503)
Y 1 4(s—s) _
T~ " 5 GOV V= a0V ) + (s (8V+ BV~ 28V).

In the numerical examples which are treated later, the quadratures of equation (35)
are evaluated with the aid of Simpson’s rule by considering only the prescribed
values of dw*/dn and dw*/ds at the points 1, 3" and 2. (Although this is very con-
venient, it is based upon a quadratic representation of the integrand between s, and
5, whereas a cubic representation is strictly required.) Thus, in matrix notation we
write

8Py = —g'"8q, - €y

where ¢’” is the row matrix

g’1=(QU1,9 QU2,9 QU.’{’, QUI’/, QUZ"; QU3”’ QVl’s QV2’9 QV3/’ QVI"’ QV2',’ QVZ{")’ (38)
with the Q¢ calculated from

)

9 owx \ U
f(sm'ym (;v +COS Y1 (;v )—{—ﬁds (39)

and the @, from

*
ow dw )an. 40)

[\( COS Yo —F— on +Sm Y1 Js
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L. S. D. MORLEY

In terms of the generalised quantities the complementary energy principle of
equation (11) now requires that

8q" (Kg-g—¢)=0 @y

(see equations (28), (29) and (37)). It is remarked that the K matrix, which is
assembled with the contributions from all the triangular elements in R, is usually
banded along the leading diagonal and that the variations of the row matrix 8¢
are subjected to certain constraints. Thus, in view of the arbitrariness of U and vV
as expressed by equations (4), it is always necessary to fix three values of U or
V (at least one of each) as if to restrict the rigid body movements of the same plate
under plane stress. Furthermore, it is necessary for the U,V fields to conform with
the tractions M., V. and H wherever they are prescribed on the boundary C. Thus,
for the triangular element shown in Fig. 2 where the vertices 1 and 2 are taken to
coincide with C, we have, on substituting equation (18) into the appropriate parts
of equations (7),

BU, + U, —4U;) sin yy, — BV1+ V,— 4Vy) €08 Y= (5. — 51) M,* (1)

—(Uy+ 3U,—4Uy) sin v+ (V1 + 3V, — 4Vy) cos y = (52— 51) M* (s) 42)
-4 (U, +U,-2Uy) cos y,—4 (V1+Ve— 2V ) sin yp=(s: — 5" VX (85),

where it is understood that the prescribed distribution of M,* (5) between s; and s,
is approximated by the best linear fit, and the prescribed distribution of V.* (s)

by the best constant fit. Suppose now that a concentrated force H* (s, is applied |
at vertex 1 and assume for the present illustrative purpose that the edge 3, 2, 1}

also coincides with C, then equations (9) and (10) show that

1

5 5 {(U3+ 3U1_4Ug') (€0 1] ')Ial'l' (V3+ 3V1"'4V2') Sin ")/31} +
1793

1
Sy — 8y

+

{(3U1 -+ Ug — 4U3') COS ')/12"‘ (3V1+ Vg - 4V3') Sin 'ylg} :H* (Sl)- (43)

The manner of dealing with these constraints upon the variations of equation (41)
is dealt with in the Appendix, where it is pointed out that their imposition upon
the variational process does not necessarily destroy the banded character of the
calculations nor lead to the inversion of a matrix of higher order than K. There
are occasions, moreover, such as when M,, V,, and H are prescribed around only
one singly connected part of C, when it is possible to solve the constraint equations
explicitly for the boundary values of U and V. Finally, it is to be remembered that

the boundary tractions must never be overprescribed, for it is recalled that the

method of solution proceeds on the implicit basis that the overall equations of
equilibrium are satisfied.

The use of the limitation principle of equation (16) is valuable when inspecting |

the “overall convergence” of the numerical solution on the basis of successive

advances to finer networks of elemental triangles. This principle can be expressed |

in matrix notation (see equations (12), (13), (28) and (29)) as follows.
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strain energy << 1¢"Kq —g%q+ 1 (0%, (44)

where 1(Q9)= f f T3 “ (45)

is an essentially positive constant quantity which remains unchanged during the
advance to finer networks. In virtue of the statement which follows equation (42),
however, it is noted that small errors are liable to occur in the application of the
limitation principle because of the restrictive manner in which the finite element
representation reproduces a prescribed distribution of M, * (s) and V.* (s) on the
boundary C.

4, Calculation of the Deflection

Once the numerical values of the moments M,, M, and M., are calculated by
the finite element process described in the previous section, it is possible to deter-
mine the deflected shape w(x,y) of the bent plate by integrating the moment-
curvature relations which, for an isotropic element, are

w 1 I i
@ TDa-» M M), oayz ~pa=n M ”Mx)aay D=7

M.,
(46)

However, in view of the (usually) approximate character of M,, M, and M., which
is provided by the finite element analysis, it is noted that the straightforward integra-
tion of these equations does not generally provide a unique value of w at a specific
point—because this value is dependent upon the chosen integration path.

Let us consider equations (46) along the straight line joining (Xoc, Yoc) and
(¥c, yc) which passes through the region R, as shown in Fig. 3. For this purpose
it is convenient to change the meaning of s so that it measures the distance along
this straight line from its first intersection at (xo¢, Yoc) With the boundary C; in the
same way vy now denotes the angle which is included by the Ox axis and the normal
to this straight line.

0

Figure 3. Notation for calculating
the deflection.

Y
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Taking note of the directional derivative

ow . Ow ow
-a—sz—sm')/H'l'COS'y-gy—, (47)

it follows, since vy is constant, that

FW _inty T 4 costv & 0 gin v cos v Y

o o Y e T Y gy YOSV Gxay

1 e o
DU—H {M., (sin® y — v cos® y)+ M, (cos® y — v sin* y) +
+2(1+v)M,,sinycos y}, (48)

after substituting from equations (46). A further substitution from equations (1)
and (3) provides

Fw_ 1 _ - 2 2OV
a—s—z-— m{ (1—V)Q+(Sm Y —V COs ’Y)0hy+
oV

+(cosW-vsin“y)%+(1+v}sin'ycosy(‘?—U + —)}

gy © ox “9)

In integrating this expression through the triangle 1, 2, 3, as shown in Fig. 3, it is
useful to note that the intersection point (xy, ¥15), for example, is given by

_ (Xog— xc) (XaXa — X2y1) — (61 = %) (XocYc — XcYoc)
(31— X3} (Yoo —Yc) — (Xoc — Xc) (y1—¥»)

— (Yoc = Ye) (%132 — X291} — (V1 — ¥2) (XocYe — XcYoc)
(1 = x2) Yoc — ) — (Xoc — Xc) (V1 —¥2)

(50)
Yo

and that there is only a linear variation in the quantities dU/dx, oU/dy, oV /dx
and 0V /dy along the straight line joining (x5, Y1) and (X, ¥s). Furthermore, for
the special case of a uniformly distributed load of unit intensity (see equation (33)),
we have, along the straight line joining (xoc, Yoc) and (xc, yo),

4Q ()=Xoc" + Yo' — 25 (xoc 8iN Yy — Yoc €OS y) + & (51

Finally, it is necessary for both w and dw/ds to be continuous along this line.

5. Numerical Examples

A few simple test problems are now computed to illustrate the accuracy and
rate of convergence of our triangular equilibrium element and to obtain comparisons
with corresponding results obtained from displacement elements. The final applica-
tion concerns a simply-supported square plate under uniformly distributed load
where there is a concentric square hole with free edges. The results from this
problem serve to illustrate the consequences of direct application of finite element,
and other similar techniques, to unsuitable problems. In all examples the Poisson’s
ratio is taken as v=0-3.
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Figure 4. Square plate. Elemental divisions.

The book by Zienkiewicz* provides many interesting results of displacement
analyses, especially for square isotropic plates with various boundary conditions.
Although the results for non-conforming displacement elements are generally more
accurate than those provided by Zienkiewicz for conforming elements, these latter
results are quoted here whenever they are available, because they complement our
equilibrium analysis by providing the lower bound to the actual strain energy which
is stored in the plate.

Because of the symmetry of the isotropic square plate and the loading, which
is either uniformly distributed of intensity ¢, per unit area or a central concentrated
load P, it is necessary only to consider the one-eighth portion as shown in Fig. 4
where the various arrangements of triangular element divisions are similar to those
of Zienkiewicz. The rectangular coordinate axes xOy are always taken at the
centre of the plate (see Fig. 4) and run parallel with the sides. For the purpose
of all the uniformly distributed load calculations we take the quantity Q of
equation (3) as

Q=q,(x*+y)/4. (52)

Shortage of time has prevented the preparation of the numerical integration com-
puter routines which are required for the concentrated load case and so these
computations are preceded here by the extraction of the particular solution

P

w=o-p rlogr, (53)

where P=x+).
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TABLE |

SIMPLY-SUPPORTED SQUARE PLATE UNDER UNIFORMLY DISTRIBUTED LOAD

PL

accuracy required. The exact values
and Woinowsky-Krieger®. It is seen

i — K ithi he X
Centre of side Centre of plate rggé‘;z; Strazfl energy —IHQY) to' within five per cent of t se? e ‘
Mesh is less than Kirchhoff normal force, which invo
es v z u |2M, | (see equation (44)) -
twisting moments. The last column
ZXﬁA 031—00-(309 70 8-83%(1) 8-83(3)2 8'823 —0-00011854 to the limitation principle of equa
4% -0 —0 ' - - —0-00012667

4%4 — 0378 00470 00435 0-069 — 000012658 f)verall rate of convergence as the m
éxg —0~‘3“9)% 0-01;; g‘gigg g'gg’; —0-00012717 interesting to note that the irregula

8X —0- 0-0 i 4 —0-00012725 :
irregular | —0345 (~0376) | 00477 00477 0070 —0-00012701 the 4 x 4 pattern. The quantity I (()
exact —0-420 00479  0-0479 0065 — size or pattern; it is numerically equal
Multiplier q,L q,L* q,L? T2 8¢,:LS/ D -
The alternative values, shown in parentheses, occur when the position coincides with the 1(Q)= a’ (
common vertex of two elements. “16(1+v)D 2
—~L/2 ~L[2

Table I lists the peak values of the Kirchhoff normal force, the bending
moments and corner reactions for a simply-supported square plate under uniformly
distributed load. Our values of M, and M, differ at the centre of the plate because
of the asymmetry of the triangular elemental division; this discrepancy is, however,
a reflection on the suitability of the chosen size of mesh in relation to the kind of

for a Poisson’s ratio v=0-3. Figure .
M_ along the centre line as calculs
very closely to the exact curve. The
junctions and it is to be noted tha
element is quadratic in virtue of th

—_

0-06

A

) Dislplacement element 8x 8
. CENTRAL DEFLECTION OF A SIMPLY-

DIST

Mesh Integration path
004 w

2X2 0-00213

_ 4 4 X4A 0-00385

supporte 4x4 0-00380

6X6 0-00404

8X8 0-00401

002 irregular 0-00404

exact 0-00406

2

My / (10‘-) Multiplier q,L4/D

Integration path 1 is taken along a coordi

The arrangement of elements here is not -
which are quoted by Zienkiewicz for cor

CLAMPED SQUARE PLATE L
ooz ’ Mesh Centre of side
¥
2X2 —0-0482
4%x4A — 00395 (—0:0554)
-0-04 4x4 —0-0544
6X6 —0-0529
8% 8 —0-0525
irregular —0-0462 (—0-0581)
v exact —0-0513
i
-0.06 _ I Multiplier L
Figure 5. Distribution of M, along centre line of square plate under uniformly distributed The alternative values, shown in parer
load. common vertex of two elements.
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accuracy required. The exact values are those quoted in the book by Timoshenko

NIFORMLY DISTRIBUTED LOAD and Woinowsky-Krieger’. It is seen that the 8 x 8 mesh provides values which are

Corner | Strain energy —IKQ2) to within five per cent of these exact values and this remains true even for the
’3‘1&“0'1' is less fhan44 Kirchhoff normal force, which involves a higher derivative than the bending and
. | 2May (see equation (44)) twisting moments. The last column in Table I lists the values calculated according
0-063 —0-00011854 to the limitation principle of equation (44); these provide an indication of the
81823 :8:888{%22; overall rate of convergence as the mesh size decreases and, in this connection, it is .
8'827/ —0:00012717 interesting to note that the irregular mesh pattern rates only slightly better than E
" —0-00012725 . . .. ]
0070 000012701 tl}e 4x4 patter.n.. The qu.antlty I1(Q) of equation (45) is independent of the mesh .
0065 — size or pattern; it is numerically equal to N
Tl 8¢2LS| D : I M
when the position coincides with the 1(Q)= f f(xz+ﬁdxdy=0‘00023371 (8q’L°/ D) (54
16 (1 + vyD
—Lj2 —LJ2%
*hhoft normal force, the bending for a Poisson’s ratio »=0-3. Figure 5 shows the distribution of the bending moment
xrted square plate under uniformly M, along the centre line as calculated from the 8 x 8 mesh; it is seen to follow
rat the centre of the pl.ate because very closely to the exact curve. There are only slight discontinuities at the element
ision; this discrepancy is, however, junctions and it is to be noted that the variation of bending moment within an
of mesh in relation to the kind of element is quadratic in virtue of the quadratic variation in Q (x,y) (see equation
int element 8x 8 TABLE i
CENTRAL DEFLECTION OF A SIMPLY-SUPPORTED SQUARE PLATE UNDER UNIFORMLY
DISTRIBUTED LOAD
Integration path 1 Integration path 2 Zienkiewicz*
Mesh w w w
Exget 2x2 000213 000454 000220
oo d 4x4 0-00385 0-0040 0-00356
f' Simply-supporte 4x4 0-00380 0-00404 0-00371
X 6X%6 0-:00404 0-00410 0-00382
8X8 0:00401 0-00406 0-00392
irregular 0-00404 0-00408 —
exact 000406 0-00406 0-00406
Multiplier q.Lt/D q,L*/ D q,L*/D
Integration path 1 is taken along a coordinate axis; integration path 2 is taken along a diagonal.

The arrangement of elements here is not necessarily identical with that used to obtain the results
which are quoted by Zienkiewicz for conforming displacement triangular elements.

TABLE 1l
CLAMPED SQUARE PLATE UNDER UNIFORMLY DISTRIBUTED LOAD
. Strain energy —I(Q%
Mesh Centre of side Centre of plate is less than
v ® ¥ (see equation (44))
2%2 —0-0482 00157  0-0130 —0-00019788
4X4A —0-0395 (—0-0554) 00216 0-0189 —0-00020821
4xd —0:0544 00216  0:0192 —0-00020794
6X6 —0-0529 0-0224 0-0212 — 000020912
8% 8 —0-0525 0-0226 00220 ~—0-00020928
irregular —0-0462 ( 0-0581) 0:0228 0-0228 —0-00020900
exact —0-0513 0-0231 0-0231 —
Multiplier q,L? q,L? q,L? 8q2LS|D
uare plate under uniformly distributed The alternative values, shown in parentheses, occur when the position coincides with the
common vertex of two elements.
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TABLE IV
CENTRAL DEFLECTION OF A CLAMPED SQUARE PLATE UNDER UNIFORMLY
DISTRIBUTED LOAD

Mesh Integration path 1 Integration path 2 Zienkiewicz!
w w w
2%2 —0-00030 0-00107 0-00026
4X4A 0-00096 0-00127 0-00100
4X4 0-00094 0-:00129 0-00120
6X%X6 0-00119 0-:00124 0-00116
8x%8 0-00121 0-00127 0-00121
irreguiar 0-00123 0-00141 —
exact 0-00126 0-00126 0-00126
Multiplier q,L*/D q,L'|D q,L*/D

Integration path 1 is taken along a coordinate axis; integration path 2 is taken along a diagonal.
The arrangement of elements here is not necessarily identical with that used to obtain the results
which are quoted by Zienkiewicz for conforming displacement triangular elements.
TABLE V
CLAMPED SQUARE PLATE UNDER CENTRAL CONCENTRATED LOAD

, Centre of plate
Mesh Centre of side Integration path 1 Integration path 2
M, w w
8X8 —0-1277 000560 000572 (0-0052)
exact —0.1257 0-00560 0-00560
Multiplier P PL?/D PL?/D

The value in parentheses is quoted by Zienkiewicz* for conforming displacement triangular

TABLE VI
CORNER-SUPPORTED SQUARE PLATE UNDER UNIFORMLY DISTRIBUTED LOAD

elements.

, Strain energy —I()
Mesh Centre of side " Centre of plate is less than
z @ v (see equation (44))
2X2 0-139 (0-095) {00263 (0-0176)  0-090 0127 (0-095) 000092180
4X4A 0-146 (0-149) |0-0258 (0-0232) 0106 0-115 (0-108) 000091817
4x4 0-148 (0-149) |0:0259 (0:0232) 0-106 0-115 (0-108) 000091808
6%X6 0-149 (0-150) }0-0256 (0-0244) 0-109 0-113 (0-109) 0-00091774
8x8 0150 0-0256 0-110 0-113 0-00091763
irregular 0-148 0-0255 0111 0112 0-00091730
exact 0-1527 0-0257 0-1109 0-1109 —_
Multiplier q,L? q,L4/D q,L? q,L? 84,2L8/ D

The values in parentheses are those of Zienkiewicz! for non-conforming displacement rectangul 1 }

elements. The integration path for calculating w is taken along a diagonal.

TABLE VIl
DEFLECTIONS OF A SQUARE PLATE WITH CONCENTRIC SQUARE HOLE UNDER
UNIFORMLY DISTRIBUTED LOAD

Integration path . Deflection w .
(see Fig. 8) Point 1 Point 2

8x8 12%x12 8%8 12X 12
AA 000218 0-00223 0-00305 000311
A'A 0-00198 0-00207 0-00285 0-00295

BB 0-00196 000203 — —

cC 0-00232 000231 — —
DD — — 0-00329 0-00324
Dawe® 000222 000226 000314 0-00316
Multiplier q,L*/D q,L*/D q,L*/ D q,L*/ D

The values obtained by Dawe are for non-conforming displacement rectangular elements.
164 . The Aeronautical Quarterly -

PLA

yY
A 8 x8
Figure 6. Square plate with con

fo——

008

0-04

) /ﬂ/ e

002 g8 Result) ,'

-0l 4

o] (o] o2 o3
x/L

Figure 7. Bending moments in square |
distribute
May 1968




o f a

E PLATE UNDER UNIFORMLY

ion path 2 Zienkiewicz*
w w
0107 0-00026
0127 0-00100
10129 0-:00120
0124 0-00116
Y0127 0-00121
0141 —
0126 0-00126
LD q,l}/D

ion path 2 is taken along a diagonal.
al with that used to obtain the results
lent triangular elements.

CONCENTRATED LOAD
Centre of plate

path 1 Integration path 2
w

50 0-00572 (0-0052)

50 0-00560

D PL?/D

conforming displacement triangular

FORMLY DISTRIBUTED LOAD

Strain energy —I(Q?)
M is less than
v (see equation (44))

0127 (0-095) 0-00092180
0-115 (0:108) 0-00091817
0-115 (0-108) 0-00091808
0113 (0-109) 0-00091774

0113 000091763

0112 0-00091730

0-1109 —

g3 8q.2L%/D

-conforming displacement rectangul r
mg a diagonal.

JENTRIC SQUARE HOLE UNDER
LOAD

reflection w
Point 2
8x8 12%X12

3 0-00305 0-00311
7 0-00285 0-00295
3 — —
{ —_ —_

0-00329 0-00324
5 0-00314 000316
) q,l*/D q, LA/ D

lacement rectangular elements.
The Aeronautical Quarterly

PLATE BENDING

L
Lj2
|, —Simply-supported
boundqr\/
™~ free boundary
L ‘-/a 0 x [
\ ‘!« . i
: "o
w
A
3
o} x o x
1
yY yY
. 8 x8 . . 12 x 12
Figure 6. Square plate with concentric square hole. Elemental divisions.
L
Lja
0-08 - 008 :
o y :
Y i
. . (8x8 Result)
Al A
0-04 = EEE 5% 004
. L
008 4 003 \.-Across AA and A'A
Me[(g:L2) / My/(4e%)
/l/ le— Across A A '(g,(g
~~.
002 == o-02 }—T:
(2x8 Result) T hcross AR ~
’ : \‘
1 AN
o-ol A X ool Across BB\
/ A - \ \
AR
I"ﬁ—Across an .
7 | \
o1 oax/L o3 o4 oS 025 o030 x/L°4° 050

Figure 7. Bending moments in square plate with concentric square hole under uniformly
distributed load (12%x12).
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(52)). The corresponding distribution of M, from the non-conforming displacement
triangular element displays excessive discontinuities at the element junctions and
Zienkiewicz* suggests, in practical problems using this element, that attention
should be focused at the bending moments at centroids of elements. Values of M,
for conforming elements are not available. Table II lists values of the central
deflection w (0, 0) obtained by the straightforward integration of equation (49) and
making use of the fact that w=0 on the boundary and dw/ds=0 at the centre of the
plate. The value calculated for w is dependent upon the path chosen for integration
because, in our equilibrium analysis, we satisfy only approximately the conditions
of compatibility. The values listed in the last column of Table II are extracted
from Zienkiewicz* for conforming displacement triangular elements.

Tables II and IV provide the associated results for the clamped square plate
under uniformly distributed load. The distribution of the bending moment M.
along the centre line, as calculated from the 8 x § mesh, is also shown in Fig. 5 and
again follows the exact curve very closely. The corresponding distribution from
the displacement triangular element is not available. Table V lists comparative
values for the case of a central concentrated load using the 8 x 8 mesh.

Zienkiewicz* suggests that the finite element analysis of a corner-supported
square plate might be expected to cause difficulties because of the concentrations
which occur at the corner points. Table VI shows values of the bending moments
and deflections along with the comparative results of Zienkiewicz for non-conform-
ing displacement rectangular elements. Reasonable agreement is obtained with the
exact values taken from the book by Timoshenko and Woinowsky-Krieger® (these
values differ slightly from those quoted by Zienkiewicz* and attributed to Marcus).

The final problem to be considered here concerns a simply-supported square
plate under uniformly distributed load where there is a concentric square hole with
free edges, as shown in Fig. 6. It is known that singular behaviour of the bending
moments occurs at the internal corner points and its effect upon our finite element

[
L/2
o 8
X
] ¢ 1
PO N [ __elo N7 |y
A A
o 8 C
y

Figure 8. Square plate with concentric square hole. Paths of integration to calculate
the deflections.
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. Paths of integration to calculate
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solution is illustrated by the differences in the distribution of the bending moment
M, through the cross-sections AA and A°A’, as shown in Fig. 7. Our solution
provides, of course, a finite value everywhere for M, and this leads to appreciable
discontinuities and slow convergence in the finite element values for M., even away
from the singularity. The deflection w at the points 1 and 2 (see Fig. 8) is calculated
by integrating equation (49) along five different paths and the results are listed in
Table VII. There is appreciable variation in the values and. this again is a conse-
quence of the effects emanating from the singularity. The comparative values for w
which are given in Table VII are due to Dawe’, using a version of his non-conform-
ing displacement rectangular element. The limitation principle of equation (44)
when applied to this problem provides

strain energy << —0-00017376 + I (Q?)

for the 8 x 8 mesh, and

strain energy << —0-00017396 + I (Q%

for the 12 x 12 mesh, where the common multiplier is 8g2L*/D.
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Appendix

ON MINIMISING A BANDED QUADRATIC FUNCTION WITH BANDED LINEAR
CONSTRAINTS

The solution to our plate bending probiem is obtained through the variational
equation (41)

3q* (Kq—g—g)=0, (A1)

where the variations §g are not arbitrary but generally have to suffer linear constraint
conditions of the type

Tiod—Ye=0 (A2

(see, for example, equations (42) and (43). One way of applying such constraints is
to make use of the Lagrangian multiplier technique, but this has the disadvantage of
requiring the eventual inversion of a matrix which is of higher order than K. There are
alternative ways of dealing with linear constraints and one is described by Benthem’
which does not, however, take into account the very important banded properties. It is
the present purpose to describe how these properties can often be preserved without
increasing the order of the matrices.

Let us suppose that the constraint equations (A2) are of the banded form

T : 7] B ql ] B ql 7]
1 | 9, q,
1 l qs3 ]
T T ' : q, 4.
: Cs:CssCis : g G
| CeCuCs | gs Cs
! 1 @ |_| @
o T 1— ~~~~~ Il q8 qs
: 1 : ‘ s 2
| 1 | G0 du
!________l! an dn
TT _____ s 2
| Cis,1:C13.1:C13 14 di Cig
i | i Led Lad
(A3)

where, in practice, the square matrix I'j, contains a much larger proportion of unitary
lone diagonal coefficients. We require the additional notation, I'y;, where all the
unitary lone diagonal coefficients of I'y, are replaced with zeros, I',, where the C;
coefficients of T, are replaced with zeros, vy, where the g; coefficients of v, are
replaced with zeros, and v,, where the c, coefficients of v, are replaced with zeros.
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The inverse [';,~! is assumed to h
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e
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The inverse "' is assumed to have a bandwidth denoted here by n. From equation
(A2) we may write

a=T1c"Yee (A9)
and, considering an arbitrary variation of the coefficients g,
8q=T1c""0yem (A5)
since 8¢;=0. Now, there is the relationship

Yao=T19, (A6)
so that equation (A5) becomes
8q=I"1¢c"Tbq (A7)
and, on substituting into equation (A1), we have
8Ty " (Kg—g—g)=0, (A8)

where the variations of §q may now be considered as arbitrary.

At this stage, let us note the Theorem which states that the multiplication of a
square matrix of bandwidth m by another square matrix of bandwidth n yields a square
matrix of bandwidth m+n—1. Thus, in equation (A8) the square matrix I, is of
unitary bandwidth, I",;™'" has bandwidth r and, if K has bandwidth m, then the product
[e™® K has bandwidth m-+nr—1. From the arbitrary variations of equation (AS8)
we may set up the simultaneous equations

Tl ™Kg=T e (g + 2", (A9)

where the square matrix I',,[",c7'7K is singular because of the rows of zeros awaiting the
imposition of the constraint equations (A2). Thus, we finally determine the coefficients
g; from

Tyl ™K + o) g =Tyl ™" (e+8)+ Y (A10)

It is particularly worth noting that it is only those element numbers on a boundary
where a traction is prescribed which have other than unitary lone diagonal coefficients
in [';. For the purpose of obtaining the inverse I',~! it is therefore easy to derive a
reduced size matrix which involves only these boundary numbers. Moreover, the product
"I 'T can be carried out on the reduced size matrix.
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