
PDESOL Application Examples1

ADVECTION EQUATION (11 sec)
First-order convective (hyperbolic) PDE. Shows the propagation of a finite discontinuity (step change) along x.  Advantage of upwind approximations for the convective term is illustrated.
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U_x = dxu(U,v)
U_t = -v*U_x

U@t0 = 0
U@xL = 1

ONE-DIMENSIONAL BURGERS' EQUATION (75 sec)
A standard test problem for PDE numerical methods, with known analytical solutions. The equation is of the hyperbolic-parabolic type.  For small values of µ, the Burgers' equation is strongly hyperbolic, and
the solutions can exhibit steep moving fronts which are difficult to resolve numerically. This example presents solutions for a case of Burgers' equation with front sharpening as time progresses (µ= 0.003).
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u_x = dxu5b(u,1)
u_xx = dxx(u,DD)
u_t = - u*u_x +
       vis*u_xx

u@t0=(0.1*exp(-a0)+0.5*exp(-b0)+exp(-c))/
     (exp(-a0)+exp(-b0)+exp(-c))

u@xL = phi@xL
u@xU = phi@xU

KORTEWEG-DE VRIES EQUATION (264 sec)
Classical nonlinear PDE which balances front sharpening and dispersion to produce solitons, i.e. traveling waves that do no change shape or speed. A special third-order derivative routine is used to evaluate
the dispersion term without the need for boundary conditions, as long as the computed solitons do not closely approach the finite boundaries that are used in place of the infinite boundaries.
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U_x = dx(U)
U_xxx = dxxx7c(U)
U_t =  - 6*U*U_x - U_xxx

U@t0 = 0.5/(cosh(0.5*x))^2

KORTEWEG-DE VRIES EQUATION WITH TWO-PULSE INITIAL CONDITION (386 sec)
Same as above, with two-pulse initial condition of different amplitudes and speeds. As the solution progresses, the faster pulse catches up and merges with the slower pulse. The two original pulses eventually
reappear, and continue to travel in their original shape.
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U_x = dx(U)
U_xxx = dxxx7c(U)
U_t = - 6*U*U_x - U_xxx

U@t0 =
 0.5*2/(cosh(0.5*sqrt(2)*(x+15)))^2 +
 0.5*0.5/(cosh(0.5*sqrt(0.5)*(x-15)))^2

CUBIC SCHRÖDINGER EQUATION (395 sec)
The Cubic Shrödinger Equation (CSE) governs the movement of solitons traveling with constant velocity and amplitude (without changing shape). When separated into real and imaginary parts, the CSE gives
two coupled PDEs. The equations require a fine grid in space in order to resolve the sharp spatial variations of the solitons; 401 points are used in the example (802 equations).
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V_xx = dxx(V,DD)
W_xx = dxx(W,DD)

V_t = -W_xx - (V^2+W^2)*W
W_t =  V_xx + (V^2+W^2)*V

NORM = sqrt(V^2+W^2)

V@t0 = sqrt(2)*cos(0.5*x)/cosh(x)
W@t0 = sqrt(2)*sin(0.5*x)/cosh(x)

V@xL = 0  ;   W@xL = 0
V@xU = 0  ;   W@xU = 0

RIVER POLLUTION MODEL WITH POINT SOURCE (3 sec)
Hyperbolic-parabolic or convective-diffusion equation. The equation models pollutant concentrations in a river and includes a spatial point source p(x,t), turned on during a finite time interval over the course
of the solution. Note the special outflow boundary condition and the use of the step function to specify the point source.
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p(x,t)=0 for 0 ≤ x < l/2
p(l/2,t)=100 for 0 ≤ t ≤ 10
p(l/2,t)=0 for t > 10
p(x,t)=0 for l/2 < x ≤ l

U x

U t

U

t
l t v

U

x
l t

( , )

( , )

( , ) ( , )

0 0

0 0

=

=

= −
∂
∂

∂
∂

Ux = dxu5b(U,1)
Uxx = dxx(U,DD)
U_t = D*Uxx-v*Ux-
      r*U + pp

p = 100*(step(t) -
         step(t-10))
pp = p*(step(x-249.95) -
        step(x-250.05))

U@t0 = 0
U@xL = 0
U_t@xU = -v*Ux@xU

                                                       
1 Note the similarity between mathematical statements and PDESOL statements. Operators for spatial derivatives are explained in the Help file. Numbers in parenthesis are the run-times obtained on a Pentium
90 machine.



FOURIER SECOND LAW IN CYLINDRICAL COORDINATES (28 sec)
Parabolic PDE governing diffusion in cylindrical geometry. The example shows how the "divide by zero" at r = 0 can be avoided in PDESOL by using the operator “>“.
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T_r = dx(T)
T_rr = dx(T_r)
T_t = T_rr + (1/(x>0.001))*T_r
T_t@xL = 2*T_rr@x

T@t0 = 0
T_r@xL = 0
T@xU = 25

ONE-DIMENSIONAL WAVE EQUATION (4 sec)
Second order hyperbolic PDEs, i.e. PDEs which are second-order in time, can be integrated by expressing them as systems of two first-order PDEs. The one-dimensional wave equation is used to illustrate this
procedure.
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U1_x = dx(U1)
U1_xx = dx(U1x)
U1_t = U2
U2_t = U1_xx

U1@t0 = sin(pi*x)
U2@t0 = 0
U1@xL = 0
U1@xU = 0

FOUR-PASS SHELL AND TUBE HEAT EXCHANGER (6 sec)
Mixed PDE/ODE system with stirred tank ODE boundary conditions to simulate mixing in the headers.
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T1_x =  dxu(T1,1)
T1_t = -C1*T1_x + C3*(T5-T1)

T2_x =  dxu(T2,-1)
T2_t = C1*T2_x + C3*(T6-T2)

T3_x =  dxu(T3,1)
T3_t = -C1*T3_x + C3*(T7-T3)

T4_x =  dxu(T4,-1)
T4_t = C1*T4_x + C3*(T8-T4)

T5_t = C4*(T1-T5) + C5*(T9-T5)
T6_t = C4*(T2-T6) + C5*(T9-T6)
T7_t = C4*(T3-T7) + C5*(T9-T7)
T8_t = C4*(T4-T8) + C5*(T9-T8)

T9_x =  dxu(T9,1)
T9_t = -C2*T9_x - 4*C6*T9 +
        C6*(T5+T6+T7+T8)

T0_t = B1*(T4@xL-T0)

T1@t0 = 0.
T2@t0 = 0.
T3@t0 = 0.
T4@t0 = 0.
T5@t0 = 0.
T6@t0 = 0.
T7@t0 = 0.
T8@t0 = 0.
T9@t0 = 0.

T0@t0 = 0.

T9@xL = TSI
T1_t@xL = B1*(TI-T1@xL)
T2_t@xU = B2*(T1@xU-T2@xU)
T3_t@xL = B2*(T2@xL-T3@xL)
T4_t@xU = B2*(T3@xU-T4@xU)

BLACK AND SCHOLES EQUATION (0.2 sec)
The Black and Scholes equation governs the price of any derivative security dependent on a non-dividend-paying stock. This example is for an american put option.
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f_x=dx(f)
f_xx=dxx(f,DD)
f_t = -(r*f - r*f*f_x -
        0.5*sigsq*x^2*f_xx)

f = (50-x) > f
f@t0=(50-x)>0
f@xL=50
f@xU=0



PACKED HUMIDIFICATION COLUMN (1 sec)
PDE system with an ODE equation to simulate a PI controller plus many intermediate variables.
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p7 =  CVVtg + DHVAP
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ei_t = e

y_x = dxu(y,1)
y_t = -p1*y_x+P2*(ys-y)

tl_x = dxu(tl,-1)
tl_t = P4*tl_x-P5*(tl-tg)-
       P6*(ys-y)*p7

ep_x = dxu(ep,1)
ev_t = -p1*ep_x+P3*(tl-tg)+
        P2*(ys-y)*p7

ei@t0 = 0
y@t0 = 0.01
tl@t0 = 43.33
ev@t0 = CVA*tl@t0 +
       y@t0*(CVV*tl@t0+DHVAP)

e = tl@xL - TLSET
xcon = XSS+KC*(e+(1/TI)*ei)
xcon = (xcon > 0.0) < 1.0
v = CVDP*xcon
p1 = v/(G*S)
tg = (ev-y*DHVAP)/(CVA+y*CVV)
ep = CPA*tg+y*(CPV*tg+DHVAP)
p = 10^(7.96681 -
3002.4/(378.4+1.8*tl+32))
ys = p/(760.0-p)
p7 = CVV*tg + DHVAP

y@xL = 0.01
tl@xU = 43.33
tg@xL = 43.33
ep@xL = CPA*tg@xL +
       y@xL*(CPV*tg@xL+DHVAP)

ev_t@xL = 0

PANCREATIC RESPONSE TO AN INFUSION OF GLUCOSE (0.4 sec)
Nonlinear ODE system with conditional RHS. Note the usage of the operator “>“ to specify the conditional RHS member and the operator “step” to specify a finite duration of a condition.
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G_t=(Q+IN-GG*I*G-DD*G-(MU*(G-GK)>0))/CG
I_t=(-AA*I+(BB*(G-G0)>0))/CI

IN = step(0.5-t)*QT
G@t0 = 81.14
I@t0 = 5.671

A VERY STIFF ODE PROBLEM (2 sec)
This example considers a second-order, linear ODE system, with a ratio of eigenvalues of 1000000 (L1 = -1000000, L2 = -1), illustrating the use of an explicit integrator (RKF45) and an implicit  stiff
integrator (LSODES) for the different time scales of the problem.
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y1_t = -a*y1+b*y2
y2_t =  b*y1-a*y2

y1@t0 = 0
y2@t0 = 2


