
Adding a Thin Rectangular Resistive Wall to M3D-C1 
June 12, 2008 

 
 
We want to add a thin resistive wall to the M3D-C1 code.  Phase 1 is to incorporate this 
as a boundary condition on a rectangular boundary.   Phase 2 will extend this to an 
arbitrary shaped boundary. 
 
M3D-C1 uses the following variables to represent both the magnetic field and the vector 
potential (see Appendix): , ,f F ψ .   (The first two are related by the definition: 

, where R0 is a constant related to the vacuum TF).  In the linear 
mode, these are all 2D (R,Z) complex numbers that get multiplied by 

2
0F R R f⊥≡ + ∇ ∇i

ine ϕ . 
 
At each mesh point, each of the scalar variables is represented by 6 quantities 
corresponding to the variable and its first 5 derivatives with respect to R and Z.  Thus, 
forψ , we have at each mesh point the following:  ( , , , , , )R Z RR RZ ZZψ ψ ψ ψ ψ ψ  
 
Boundary values do not need to be supplied for each of these 6 quantities for each 
variable, only for the appropriate number.  For example, for a Dirichlet boundary 
condition on ψ , we would prescribe only the value of ψ  on the boundary nodes.  The 
other 5 quantities associated with this variable at the boundary node, 

, , ,R Z RR ZZ, RZψ ψ ψ ψψ

R

, get determined by the Galerkin method as for the interior points.  
Similarly, for a Neumann boundary condition at vertical boundary (z=const), we would 
specify only ψ  and , , , ,Z RR RZ ZZψ ψ ψ ψ ψ  would get determined by the Galerkin method. 
 
Question:  Can we use Green’s function techniques and the thin wall approximation to 
come up with appropriate relations between the M3D-C1 magnetic variables that can be 
used in a linear time-dependent calculation as a thin resistive wall boundary condition?  
The immediate interior of the wall would be high resistivity plasma, and the exterior 
would be a vacuum region extending to infinity. 



Appendix:  Vacuum equations: 
 
I. Preliminaries: 
Starting from the definition: 2

0
ˆlnR f Rϕ ψ ϕ= ∇ ×∇ + ∇ −A RZ , we can compute 

 
 *f F f Fψ ϕ ϕ ψ ϕ⊥ ′= ∇× = ∇ ×∇ −∇ + ∇ = ∇ ×∇ −∇ + ∇B A ϕ′                     (H-1) 

*
2

1F *

R
ϕ ψ ψ⊥ ′≡ ∇× = ∇ ×∇ + ∇ −Δ ∇J B ϕ                                               (H-2) 

 
Here, we have defined:    2 2 2

0 0, *F R R f F R R f F f⊥ ′′≡ + ∇ ∇ ≡ + ∇ = +i
 
From (H-2), and the condition J = 0, we have the following conditions in Vacuum: 
 

* 0ψΔ =                                                                    (H-3)              
*F ϕ ψ⊥ ⊥ ′∇ = −∇ ×∇                                                        (H-4) 

 
From (H-4), we get the condition 

2 * 0F⊥∇ =                                                                (H-5) 
 

 
II. Solving for the vacuum solution in M3D with prescribed boundary conditions: 
Say we have an axisymmetric interface surface defined by ( , ) 0R Zφ = , with normal 
vector ˆ /n φ φ= ∇ ∇ .   In order to match the normal component of the field at the surface 
requires that we define boundary conditions on the two functions ψ  and f ′  such that: 
 

ˆ ˆ ˆn n n fψ ϕ ⊥ ′= ∇ ×∇ − ∇Bi i i                                        (H-6) 
 

(1) Choose ψ  on boundary such that the solubility constraint associated with (H-6) 
is satisfied. i.e.: 

ˆ ˆn d n dϕ ψ ϕ= ∇ ×∇∫ ∫Bi i ϕ                                      (H-7) 



Note that this only imposes a condition on the axisymmetric (n=0) part of ψ .  
There is a freedom regarding how much of the non-axisymmetric part of to 
represent in the first term on the right in (H-6), and how much to represent in the 
second term. 

n̂ Bi

(2) Solve * 0ψΔ =  using the boundary condition given in (1) 
(3) Solve 2 * 0F⊥  subject to Neumann BC:   ∇ = *ˆ ˆn F n ϕ ψ⊥ ⊥ ′∇ = − ∇ ×∇i i  
(4) Solve 2 2

0( * )f R F R−∇ = −  using Neumann BC: ˆ ˆ ˆn f n n ψ ϕ⊥ ′∇ = − + ∇ ×∇Bi i i  
while enforcing the solubility condition:  

with

2

2

0

( *

* (

dSn f dV R F

dVR F dS

dV

0

2

ˆ ˆ) (

ˆ ˆ

R dS n

n n
R

R

ˆ )

)

n ψ ϕ+ ∇ ×∇i

ψ ϕ
−

− = −

+ − ∇ ×∇

∫ B

B

i i

i i

−

−

∇ =

=

∫ ∫
∫ ∫

∫
 

 
III. On the freedom in (H-6) and relation to the scalar potential: 
 
Note that if the axisymmetric part of (H-6) is zero, we could set ψ  to zero everywhere, 
and use f ′  to satisfy the boundary condition.  Then, both ψ  and are zero everywhere, 
and we need only solve .   This is equivalent to Morrell’s scalar potential 

*F
2 0f∇ = χ  if w

identify f
e 

χ′→ .−  Morrell’s notation, we would then have:   In
 

 χ= ∇B                                                                   (H-8) 
2 0χ∇ =                                                                  (H-9) 
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