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We want to add a thin resistive wall to the M3D-C1 code. Phase 1 is to incorporate this
as a boundary condition on a rectangular boundary. Phase 2 will extend this to an
arbitrary shaped boundary.

M3D-C* uses the following variables to represent both the magnetic field and the vector
potential (see Appendix): f,F,w. (The first two are related by the definition:

F =R, +R?V.V, f, where Ry is a constant related to the vacuum TF). In the linear
mode, these are all 2D (R,Z) complex numbers that get multiplied by €™ .

At each mesh point, each of the scalar variables is represented by 6 quantities
corresponding to the variable and its first 5 derivatives with respect to R and Z. Thus,
fory , we have at each mesh point the following: (v, ws, ¥, \Wrr Wz V2zr)

Boundary values do not need to be supplied for each of these 6 quantities for each
variable, only for the appropriate number. For example, for a Dirichlet boundary
condition on y , we would prescribe only the value of y on the boundary nodes. The
other 5 quantities associated with this variable at the boundary node,

Ve W WersWes W4 » Oet determined by the Galerkin method as for the interior points.

Similarly, for a Neumann boundary condition at vertical boundary (z=const), we would
specify only w, and v, v, , W e, Wry ¥, Would get determined by the Galerkin method.

Question: Can we use Green’s function techniques and the thin wall approximation to
come up with appropriate relations between the M3D-C' magnetic variables that can be
used in a linear time-dependent calculation as a thin resistive wall boundary condition?
The immediate interior of the wall would be high resistivity plasma, and the exterior
would be a vacuum region extending to infinity.



Appendix: Vacuum equations:

I. Preliminaries:
Starting from the definition: A=R*VoxVf +yVp—R,InRZ , we can compute
B=VxA=VyxVp-V f'+FVp=VyxVp-Vf'+F Vg (H-1)
JEVXBIVF*XV¢+%VLW'—A*I/IV(D (H-2)
Here, we have defined: F =R, +R*V.V f, F*=R +R*V*f=F+f”
From (H-2), and the condition J = 0, we have the following conditions in Vacuum:
Awy=0 (H-3)
VJ_F* = _Vq)xvﬂ//, (H-4)
From (H-4), we get the condition
(H-5)

ViF =0

— 1B

Ny

I1. Solving for the vacuum solution in M3D with prescribed boundary conditions:
Say we have an axisymmetric interface surface defined by ¢(R,Z) =0, with normal

vector N = V¢/|V¢|. In order to match the normal component of the field at the surface
requires that we define boundary conditions on the two functions  and f’ such that:

NeB =NV xVp—-nV f' (H-6)

(1) Choose w on boundary such that the solubility constraint associated with (H-6)

is satisfied. i.e.:
q-)ﬁ-Bd(p=§>ﬁ-Vl//xV(pd(p (H-7)



Note that this only imposes a condition on the axisymmetric (n=0) part of y .

There is a freedom regarding how much of the non-axisymmetric part of A+B to
represent in the first term on the right in (H-6), and how much to represent in the

second term.
(2) Solve A"y =0 using the boundary condition given in (1)
(3) Solve V2F" =0 subject to Neumann BC: eV F =-A:VpxV y’
(4) Solve V*f =R?*(F*-R,) using Neumann BC: fieV  f'=-A:B+ AV x Vg
while enforcing the solubility condition:
[dsAevf = [dVR?(F *-R;) = [dS(~fiB+A-Vy x V)

with o jdVR‘ZF *+jd8(ﬁoB—ﬁ-Vt//><V¢)
o jdVR’z

I11. On the freedom in (H-6) and relation to the scalar potential:

Note that if the axisymmetric part of (H-6) is zero, we could set y to zero everywhere,
and use f’ to satisfy the boundary condition. Then, both w and Fare zero everywhere,
and we need only solve V2 f =0. This is equivalent to Morrell’s scalar potential y if we
identify —f'— ». In Morrell’s notation, we would then have:

B=Vy (H-8)
Viy=0 (H-9)
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