Sources in Ohm’s Law in M3D SCJ 02/16/07

1. Introduction:
Consider the 3 equations that imply steady state on the ideal and resistive timescales
(assuming the pressure equation has a source keeping it constant):
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We introduce the standard axisymmetric flux coordinate system (y, 8, ¢) so that the
magnetic field (in equilibrium) and Jacobian can be written as:
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2. Driven Current:
Note that |ng>|2 =1/R? where R is the standard cylindrical coordinate. Combine (3) and
(2) to rewrite (2) in the form:
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The first term in (2) is the gradient of a single valued scalar potential, and the second
term represents the electric field due to an applied loop voltage (it is necessary in order to

make @ single valued).

Equation (1) gives the perpendicular part of the current density, but it is not divergence
free. Straightforward calculation using (1), (4), and (5) gives:

BxVp) gp' o6 (1
V‘[ 5’ j:T%(?j - )

Here, p' = 6p/dy . Taking the dot product of B with Eq. (2)’ gives:
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If we represent the total current as:
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Then the condition V+J = Oapplied to (8) gives:
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for some f(y). Use Eq. (11) and (8) to eliminate B+J from (7) to obtain:
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Multiply (12) by the Jacocbian J, and integrate from 0 to 2z in the angle ©:
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Here, the brackets denote the flux surface average:
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Substitution of (13) into (11) and using (8) gives the final expression for the current:
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Thus, the steady state current is uniquely determined from the quantities in (15), and does
not depend on J? in (2)’
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3. Steady state velocity:
Now, we can use Equations (2)’ and (15) to solve for the steady state perpendicular

velocity. First, take the Vi x B+ projection of Equation (2)’ and rearrange:
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Solving (17) for the velocity gives:
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Now we need to eliminate the last term. This is done by taking the parallel projection of
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or, using (15)
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Thus, combining (16) and (17) gives
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or, upon rearranging
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4. Ohmic Limit
Equation (18) is the general result. If there were no source terms, we could average over
flux surfaces to get the standard result for an Ohmic tokamak:
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where B? = gz/R2 . The first term in brackets in (19) is the Pfirsch-Schliter diffusion
term, and the second is the classical pinch Note that we can define:
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In the large aspect ratio, circular limit, g* reduces to the safety factor. Then (19)

becomes:
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5. Current Drive Limit

If V=0, then (18) gives:
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rewrite as:
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The first bracket will vanish if the perpendicular current source is defined as:
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and the second bracket will vanish if the parallel current source has the property:
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