MINIMAL FINITE ELEMENT SPACES FOR 2m-TH ORDER
PARTIAL DIFFERENTIAL EQUATIONS IN R"
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ABSTRACT. This paper is devoted to a canonical construction of a family of piece-
wise polynomials with the minimal degree that provide a consistent approximation
of Sobolev spaces H™ in R™ (with n > m > 1) and also a convergent (noncon-
forming) finite element space for 2m-th order elliptic boundary value problems in
R™. This class of spaces, denoted by M}, are given by piecewise polynomials with
degree not greater than m, namely the space P,,. Degrees of freedom for M;" in
each element are given in terms of integral averages of normal derivatives of order
m — k on all subsimplexes of dimension n —k for 1 < k < m. The total number of
these degrees of freedom in each element amounts to C},, which is precisely the
dimension of P,,. One remarkable property of these sequence of spaces M;" is that
O;M" C M]"~" and, furthermore, span(di M}, 2 M, ..., 0n My") = M.

The finite element spaces M} constructed in this paper is the only class of finite
element spaces that are known and proved to be convergent for approximation of
any 2m-th order elliptic problems in any R™ such that n > m > 1. It recovers
the non-conforming linear elements for the Poisson equations (m = 1) and the
well-known Morley element for biharmonic equations (m = 2).

In order to analyze the convergence of the new class of finite element method,
a general convergence theory based on a simple weak continuity assumption is
also developed in this paper for nonconforming finite element methods. This new
theory can be applied directly to all the simplicial and tensor-product noncon-
forming finite elements that are known to the authors, including the new finite
element spaces proposed in this paper.

For both theoretical and practical considerations, a procedure of constructing
nodal basis functions of the new finite element spaces is also presented in the

paper.

1. INTRODUCTION

In the study of qualitative and numerical analysis of partial differential equations
and, in general, of approximation theory, we are often interested in the approxima-
tion of functions in Sobolev spaces by piecewise polynomials (such as finite element
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spaces) defined on a partition of the domain by, say, a number of simplexes (as
shown in Figure 1 in a two dimensional domain).

A

FIGURE 1. Partition 73

/

Conforming subspaces. One of the commonly studied Sobolev space is H' that
consists of square integral functions whose first order derivatives are also square in-
tegrable. For this space, it is easy to construct approximation subspaces consisting
of piecewise polynomial subspaces of any degree (that are defined on simplicial par-
titions of underlying domain). Such type of subspaces can be used as conforming
finite element discretization for second order elliptic boundary value problems (see
Ciarlet [10]). Here, by “conforming”, we mean that the approximate spaces are
proper subspaces of H'.

The next commonly studied Sobolev space is H? that consists of square integral
functions whose first and second order derivatives are all square integrable. It turns
out that it is much more difficult to construct conforming finite element spaces,
namely piecewise polynomial subspaces, of H2. The difficulty increases as the spatial
dimension, denoted by n, increases. The minimal degree of conforming elements is 5
for n = 2 (the well-known Argyris elements, see [10]) and 9 for n = 3 (see [45]). We
do not know any results for n > 4. Such subspaces can be used for finite element
discretization for 4-th order elliptic and parabolic partial differential equations, such
as the Kirchhoff plate model for n = 2 (see [10]) and Cahn-Hillard equations for
n =3 (see [8, 7, 12, 15, 35]).

For a general Sobolev space H™ that consists of square integrable function whose
all up to m-th order derivatives are square integral, construction of piecewise polyno-
mial subspaces become increasingly more difficult as the differential order m and/or
spatial dimension n increase. In fact, we do not know any such piecewise polynomial
subspaces on a general partition of simplexes when m > 3 and n > 2 (or m > 2 and
n > 4).

Nonconforming spaces: consistent approximation. Although for H?, 5-th or-
der subspaces (for n = 2) and 9-th order subspaces (for n = 3) can be constructed,
piecewise polynomials of such a high order are difficult to apply in practice. As
an alternative, the so-called nonconforming finite element spaces, namely piece-
wise polynomial spaces that are not necessarily subspaces of H?, have been con-
structed and used in practice. Obviously not all piecewise polynomial spaces will be
convergent finite element spaces and certain “continuity” or consistency conditions
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need to be imposed. Such conditions have been widely studied in the literature, cf.
(10, 11, 13, 14], [17] - [19], [22], [24] — [34], [37, 47]. An example of these condition
is the “consistent approximation” condition which we shall now briefly describe.

Let {V},} denote piecewise polynomial spaces defined on a sequence of partition,
denoted by 73, of simplexes {T'}, whose diameters are all bounded by h. For an n
dimensional multi-index « = (o, -+ , @), define

n ||

|O{| = E g, 0% = ala an *
N 8.’,51 .. '8xnn
=1

For v, € Vj, we denote Ojv, the partial derivatives of vy taken piecewise with
respect to the partition 7;,. We say that {V},} is a consistent approximation to the
Sobolev space H™ if it satisfies the following two properties:

1. Approximation property: for any v € H™,

fim inf > (10" — O vl = 0;
la]<m
2. Consistent property: for any infinite sequence {vy, } with vy, € V},, and
hy — 0 as kK — oo such that {Bﬁkvhk} is weakly convergent, in L2, to
v® for each multi-index « satisfying |o| < m, it is always true that v* =
0%° for all |a| < m.
Consistent approximation spaces provide approximation to functions in H™ by func-
tions outside of the space H™, therefore consistent approximation is a kind of “outer”
approximation space. Furthermore, all the (weak) limiting functions from the con-
sistent approximation spaces V}, belong to H™. This can be viewed as a “closedness”
property. In fact, the consistent approzimation property was originally called weakly
compact when it was first introduced by Stummel [32]. The most important property
of consistent approximation space is as follows:

Theorem (Stummel [32]). {V,,} is a convergent family of finite el-
ement spaces for a general 2m-th order elliptic boundary value prob-
lems if and only if {V},} is a consistent approximation of H™.

Therefore, consistent approximation spaces for Sobolev spaces H™ are of both the-
oretical and practical interests.

Let us now review what are the known consistent approximation spaces for Sobolev
spaces. Obviously all conforming finite element subspaces of H™ are consistent ap-
proximation spaces. When m > 2 and n > 2, as mentioned before, conforming
finite element spaces are rare for H™ and the purpose of this paper is to construct
nonconforming but consistent approximation spaces in these cases.

Minimal degree. From both theoretical and practical view points, we are partic-
ularly interested in consistent approximation spaces for H™ consisting of piecewise
polynomials with the smallest possible degree, denoted by dmin(m,n), in R™.

It is easy to see that

dmin(m,n) >m, Ym>1,n>1.
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Since it is well-known that convergent linear simplicial finite elements can be easily
constructed for second order elliptic boundary value problems in any dimension, we
have

dmin(l,n) =1, Vn>1.

In fact we have two families of finite element spaces that have minimal degree for
m = 1 and n > 2, namely the conforming linear and the nonconforming linear.
The answer for m = 2 is less obvious, but it is also known for n > 2:

dmin(2,m) =2, Vn > 2.

The best-known example of this family is the classic Morley element [21] for bihar-
monic equations for n = 2. This unusual finite element space has also been extended
to higher dimensions, see Ruas [23] and Wang and Xu [38]. The two extended Mor-
ley families of nonconforming quadratic elements in R™ in [23] and [38] coincide for
n = 3 but differ considerably for n > 4. Thus for n = 2,3, we only know one family
of finite element spaces that have minimal degree, but for n > 4, we know two such
families.

With the new class of consistent approximation space to be constructed in this
paper, we can conclude in general that.

dmin(m,n) =m, VYm >1,n>m.

New consistent approximation spaces for general H™. A universal construc-
tion will be given in this paper for consistent approximation spaces for H™ in R"
(with n > m) consisting of piecewise polynomials of degree m. This space can be
used as finite element spaces for the discretization of 2m-th order elliptic boundary
value problems.

This class of spaces, denoted by M;", are given by piecewise polynomials with
degree not greater than m, namely the space P,. Degrees of freedom for M;" in
each element are given in terms of integral averages of normal derivatives of order
m — k on all subsimplexes of dimension n — k for 1 < k < m. The total number of
these degrees of freedom in each element amounts to

m
—k+1 —k

ZCQHJF Cpy = ;Ln-l-m

k=1
which is precisely the dimension of P,,. One remarkable property of these sequence
of spaces M;" is that 0; M;" C M,T_l and, furthermore,

span (O M]", oM™, ... 0 M") = M 1.

The degrees of freedom are just the ones of the nonconforming linear element when

m = 1, while they are the ones of the Morley element [38] when m = 2. That is, we
recover these two nonconforming elements in a canonical fashion.
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Applications. While the construction in this paper is mainly motivated by theoret-
ical considerations, the new element can also be applied to practical problems. The
modelling for plates in linear elasticity is a classic area that 4-th order partial differ-
ential equations find their applications in two spatial dimensions. In recent years, the
modelling in material science makes use of 4-th order equations (see [8, 7, 12, 15, 35])
and also 6-th order equations ([4, 42, 43]) in three dimensions. Elliptic or parabolic
equations of 8-th or higher order are rare for practical applications, but in theory of
differential geometry (see [9]), elliptic equations of order m = n/2 in any dimension
n has been used.

While encountering a high order partial differential equations, one often tries to
transform them into a system of lower order equations. Such a practice is attributed
to the fact that higher order partial differential equations are often thought to be too
difficult to be efficiently discretized by finite element or finite difference methods.
One strong message this paper sends is that a direct discretization of high order
partial differential equations is also practical. For example, a 6-th order partial
differential equations in 3 dimensions can be discretized by only piecewise cubic
polynomials, which has 20 degrees of freedom on each element and is not very
difficult to carry out in practice. For practical as well as theoretical considerations,
nodal basis functions for our new elements will be explicitly constructed in this paper
(see Section 4).

We would like to point out that there is an important reason that one probably
should use our new elements for directly discretizing high order partial differential
equations rather than transforming it into a system of lower order equations. One
classic folklore in the finite element community is the example of the simply sup-
ported plate model on a polygonal domain € that can be reduced to the following
boundary problem for the biharmonic equation

(1.1) A%y = f in Q, u=Au =0 on 0f.

One naturally attempts to introduce an intermediate variable v = —Awu and to
transform the above problem into two decoupled systems of second order equations
as follows

(1.2) —Av=f inQ, v=0 onJdY
and
(1.3) —Au=v in, u=0 on Jf.

But it is easy to see that (1.1) is not always equivalent to (1.2) and (1.3). For
example, when  is a concave polygon, for most f, the solution u of (1.1) (for which
Au ¢ HY(Q), see [6]) will be different from the solution u from (1.2) and (1.3).
Nodal basis functions. It is both theoretically and (apparently) practically inter-
esting to see if a set of nodal basis functions can be explicitly constructed for our
new finite element spaces. As shown in Section 4, we are indeed able to do so. In
particular, we have given all the details for m = 1,2 and 3.
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Philosophic comments. It is theoretically pleasing that the degrees of freedom
in our construction just fit so perfectly well in the general case n > m. When
n < m, the situation all a sudden becomes more complicated and it is not clear
how a general construction is possible. One might wonder if such an extraordinary
“fitting” is related to some deeper or more general mathematical structure.

The fact that nonconforming finite element methods can be constructed for any
order of partial differential equations in such a generality and elegancy may also
lead one to argue that nonconforming finite elements may be, at least sometimes,
more “natural” than conforming finite element methods when they are used for dis-
cretization partial differential equations. Indeed, conforming finite element spaces,
as mentioned earlier, can not be constructed easily in general cases. The “natural”
property such as 0, M;" C M,’;’“l that holds for our new nonconforming elements
can not be expected for conforming elements. Another interesting property is that
the degrees of freedom that define our new finite element spaces for H™ (and also
the corresponding interpolation operators) are all well defined for all functions in
H™ but this is not the case for any conforming elements in multiple dimensions. In
fact, except for one spatial dimension, for all the known conforming element spaces
of H™ (m > 1), the degrees of freedom that define these spaces (and the corre-
sponding interpolation operators) are not well-defined for functions in H™ (extra
smoothness is required).

Discontinuous Galerkin methods. In addition to conforming and nonconform-
ing finite element methods, discontinuous Galerkin methods (see [3]), which have
received considerable research interests in recent years, represents another type of
discretization methods for 2m-th order partial differential equations. The discon-
tinuous Galerkin method uses discontinuous piecewise polynomial spaces and it im-
poses the consistency of these spaces by introducing certain penalty terms on the
element interfaces in the discrete variational forms. Thus the study of this type
methods focus exclusively on the construction and the analysis of appropriate dis-
crete variational forms. While there have been a lot of studies of these methods for
both 2nd order and 4th order partial differential equations, a general and canonical
construction for any 2m-th order equations is lacking.

Outline of the paper. The rest of the paper is organized as follows. Section 2
gives a detailed description of our family of minimal degree finite element spaces.
Section 3 discusses a general convergence theory for nonconforming finite element
methods of 2m-th order elliptic partial differential operator, applies it to our new
nonconforming elements. Section 4 considers the construction of the nodal basis
functions of our finite elements. The last section contains some brief concluding
remarks.

2. NONCONFORMING FINITE ELEMENT SPACES OF MINIMAL DEGREE

In this section, we will construct a minimal piecewise polynomial approximations
to H™(Q) for @ C R" with n > m > 1.
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We first introduce some basic notation. Given a nonnegative integer k and a
bounded domain G C R"™ with boundary 0G, let H*(G), HE(Q), (-, )ka |- lka
and | - |5, denote the usual Sobolev spaces, inner product, norm and semi-norm
respectively.

For k > 1, let Ay be the set consisting of all £ dimensional multi-indexes. We will
use a, ' to denote the multi-indexes in A, ,v',+" the multi-indexes in A, and
B, 8" the others. Let e; denote the corresponding dimensional multi-indexes with the
i-th component 1 and the others 0. Define

Ck ={0=(01,00,---,01) : 1<01<0y<--- <o <n+1}

Following the description in [10], a finite element can be represented by a triple
(T, Pr, Dr), with T' the geometric shape of the element, Pr the shape function space
and Dr the set of the degrees of freedom, such that Dp is Pp-unisolvent.

Let © be a bounded polyhedron domain of R". Assume that {h} is a sequence of
positive number and h — 0. For each h, let T3 be a partition of € corresponding to
a finite element (7, Pr, D), and let h be the mesh size, i.e., the maximal diameter
of the elements in 7j,.

For any element T € Ty, let hr be the diameter of the smallest ball containing T
and pr be the diameter of the largest ball contained in T. Throughout the paper,
we assume that {73} is quasi-uniform, namely it satisfies that

(2.1) hr <h <mnpr, VT € Th,

with 7 being a positive constant independent of h.

For a subset B C R™ and a nonnegative integer r, let P.(B) be the space of all
polynomials defined on B with degree not greater than r, and Q,(B) the space of
all polynomials with degree in each variable not greater than r. Define

(2.2) Py ={veL*Q) : vlr € P(T), VT € Th}-

We will give the description of (T, Pr, Dr) for our new finite element first. Then
we will show Pr-unisolvent property and give the construction and the error estimate
of the corresponding interpolation operator. Moreover, we will define the global finite
element spaces and show their basic properties, such as the approximation property
and the inclusion property.

2.1. The local degrees of freedom. For our new element (T, Pr,Dr), T is a
simplex and Pr = P,,(T). The set of degrees of freedom, denoted by D7, will be
given in the following.

Given an n-simplex T with vertices a;, 1 <7 <mn+1, let A;, Ao, -+, Apt1 be the
barycentric coordinates of T. For 1 < k < n and o € Cy, let F; be the (n — k)-
dimensional subsimplex of T" without a4, , a4, as its vertexes. For any (n — k)-

dimensional subsimplex F' of T', let |F'| denote its measure, and let vp 1, -+ ,vp ) be
its unit outer normals which are linearly independent.
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For 1 < k < m, any (n — k)-dimensional subsimplex F' of T and 8 € A; with
|B| = m — k, we define

1 9lBly

T e o

(2.3) dT’F,ﬁ(U) Yv € Hm(T)

By the Sobolev embedding theorems [1], dr g is a continuous linear functional on
H™(T). Then the set of the degrees of freedom is given by

(2.4) Dy} = { dr.r, 3 : B € A with |,3| =m-—£k cd€C 1<k< m}

That is, the degrees of freedom are the integral averages of normal derivatives of
order m — k on all subsimplexes of dimension n — k for 1 < k < m.

For each 1 < k < m, T has Cg_;f“ subsimplexes of (n — k)-dimension. For each
(n — k)-dimensional subsomplex F', the number of all (m — k)-th order direction
derivatives, with respect to vg 1, -+ ,vpy, is Cﬁ:f . Therefore, by the well-known
Vandermonde combinatorial identity, the number of the total degrees of freedom is

given by

Z Cg;{cﬂcgif = Cilym
k=1
which is precisely the dimension of P, (T).
Let J =C™ We also number all the degrees of freedom by

n+m:-
dT,l(v)a dT,2 (U), B dT,J(?)).

Then DIWJ‘ = {dT,l(v), dT’Q (1)), e ,dT,J(/l))}.
For 1 < k < m and an (n — k)-dimensional subsimplex F, say F = F, with

o € Cy, different choices (for k£ > 1) of vp1,- -+ ,vpy will lead to equivalent degrees

of freedom. The particular and convenient choice of normal directions are as follows
Vg, .

2.5 Vp; = — = 1< <k,

(2 TV

see Section 4 for related discussions.

Some special cases: 1 < m < 3. We now give some brief discussions for all the
corresponding spaces for three lowest indices 1 < m < 3. The degrees of freedom
in these cases are depicted in Table 1 for m < n < 3. For m = 1 and n = 1,
we obtain the well-known conforming linear elements. This is the only conforming
element in this family of elements. For m = 1 and n > 2, we obtain the well-known
nonconforming linear elements. For m = 2, we recover the well-known Morley
element for n = 2 and its generalization to n > 2 (see Wang and Xu [38]). For
m = 3 and n = 3, we obtain a new cubic element on a simplex that has 20 degrees
of freedom.

2.2. Unisolvent property and canonical nodal interpolation. We need to
show the Pr-unisolvent property of our new finite element. First, we show a crucial

property.



MINIMAL FINITE ELEMENT SPACES FOR 2m-TH ORDER PDES IN R™ 9

m\n 1 2 3
1 o——+o
-
2 ; f
=&
! f
3

TABLE 1. Degrees of Freedom

Lemma 2.1. Let 1 < k < m and F be an (n — k)-dimensional subsimplezx of T.
Then for any v € H™(T), the integrals of its all (m — k)-th order derivatives on F

/ 0%, |a|=m —k,
F

are uniquely determined by all dr g g(v) given in (2.3) with k <r <m, F' (n—r)-
dimensional subsimplex of F, f € A, and |B] =m —r.

Proof. Let v e H™(T). We prove the lemma by induction. When k& = m,

= dr,po(v
e
The lemma, is obviously true.
Assume that the lemma is true for all kK € {i +1,--- ,m} with 1 <i <m. We

consider the case that k = ¢.
Denote all (n — k — 1)-dimensional subsimplexes of the (n — k)-simplex F' by

51,52, ,Sp—k+1, and the unit out normal of S; by n9), viewed as the boundary
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of an (n — k)-simplex in (n — k)-dimensional space. Choose orthogonal unit vectors
TFk+1," " »TFn that are tangent to F'. Then
Vpi,  sVEk,TFk+1," " »TFn
form a basis of R".
Now let || =m — k. If a1 =+ = ap, = 0, then

om k
= = dr,Fp(v)
|F| /F OVl - vph O - OTRY, ’
with 3 € Ay and B = «aj, 1 < j < k. Otherwise, without loss of generality, let
a1 > 0. Green’s formula gives

/ om k
ar | ap o Okt1 an
F aVF,1 ka Fk+1" 8TF,n
n—k+1 —k—
om k 11)

_ ()
= n . TF,k-i—l 1 .
ai | L P Qpt2 g _ap

j=1 S; OVpy - VEOTRyy OTpyle - OTR),

By the assumption of induction, the right hand of the above identity can be expressed
in terms of all dp g g(v) with k <7 <m, F’ (n — r)-dimensional subsimplex of F,
B € A, and || = m — r. Consequently, the lemma is true for k = i. 0

Lemma 2.2. For 1 <i < J, there exists a unique polynomial p; € Pp,(T) such that
(2.6) drj(pi) = dij, 1<j <,
where 6;; is the Kronecker delta.

Proof. As the dimension of P, (T') is also J, it is sufficient to show that if p € P, (T')
and

(2.7) drr,pp) =0, pe A, with|B|=m -k, c€C, 1<k<m,

then p = 0.
By Lemma 2.1 and its proof, we deduce that

(2.8) / =0, |laj=m—k, cd€C, 1<k<m.
Fy
By Green’s formula and (2.8) we have for all 1 < k; <k, <--- <k, <n
9™p _ 1 9™p
Oxg, -+~ Oz,  |T| Jp Oxg, -+~ Oy,
m—1
p
—_— =0.
T U%C: Fs 39% - Oy, e

where |T| is the measure of T. That is, p € Pp,—1(T).
When 1 < k <m and p € P, ;(T), by (2.8), all (m — k)-th order derivatives of
p are zero and p is in P, ,_1(T). Thus p is a constant. By (2.8) we obtain that

pEO. O
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Lemma 2.2 shows the Pr-unisolvent property of our new elements, namely a poly-
nomial p € P,,,(T) is uniquely determined by dr j(p), 1 < j < J. The polynomials
pi given by (2.6) is called the basis function corresponding to degree of freedom dr;.
We will give the construction of the basis functions in Section 4. Based on Lemma,
2.2, we can define the interpolation operator Iy : H™(T) — P,,(T) by

J
(2.9) v =Y pidri(v), VYveH™(T).

i=1
We would like emphasis here that operator IIy is well-defined for all functions in
H™(T).

By the interpolation theory [10], we obtain the following error estimate of the
interpolation operator.

Lemma 2.3. For s =0,1,

(2.10)  |v—goler < CORFT  olmisr, 0 <k <m+s, Vo € H™(T)

for all n-simplex T with hy < npp. Here C(n) is a constant that only depends on 1.
2.3. Global finite element spaces. We define our piecewise polynomial spaces
M;"™ and M} as follows.

(1) M} consists of all functions vy, in P, such that for any &k € {1,--- ,m},
any (n — k)-dimensional subsimplex F' of any T' € T;, and any 3 € Ay with
|B| = m — k, dr pg(vs) is continuous through F.

(2) M7 consists of all functions vy, in M;" such that for any k& € {1,--- ,m},
any (n — k)-dimensional subsimplex F' of any T' € T;, and any 3 € Ay with
|B] =m —k, if F C 02 then dr g g(vy) = 0.

Define an operator II;, on H™(2) as follows:
(2.11) (IIpw)|7 = (vlr), VT € Th, Yo € H™().

By the definition, IT,v € M;" for any v € H™ () and [I,v € M}} for any v € Hi*(Q).
For convenience, following [44], the symbols <, 2 and T will be used in the
rest of this paper. That X; <Y and X5 2 Y5, mean that X1 < ¢1Y; and e Xo > Y5
for some positive constants c¢; and cy that are independent of mesh size h. That
X3 Z Y3 means that X3 < Y3 and X3 2 V3.
We define, for w € L?(Q) with w|p € H™(T), VT € Ty,

el = Y Mwllnrs Ty =Y [wlir
TET TET
Now we consider the approximate property of M;* and M}}.
Theorem 2.1. For any v € H™1(Q),
(2.12) v = Tpvllmn S Blvlnt1,0,
and for any v € H™(Q),
(2.13) lim ||v — Hpv||m,n = 0.
h—0
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Proof. First, let v € H™1(Q). By Lemma 2.3, we obtain (2.12) directly.
Now let w € H™(2). Since H™T1(Q) is dense in H™(f), for any £ > 0 there
exists ¢ € H™T1(Q) such that

o = dllme < =
By (2.12), there exists h > 0 such that
1o = Tppllmn < e
when & < h. Therefore by (2.10)
lw = Tpwlfm,n < lw = @llmn + ITn(w = G)llmp + ¢ = Tadllmn < €
when & < h. This leads to (2.13). 0

When n > 1, M;" is not a subspace of H™(2) and, as shown at the end of
Section 4, M™ is not even a subspace of C°(Q). Although functions in M® are
not continuous on whole €2 in general, they have certain weak continuity. By the
definitions of M]" and Mjj;, Lemma 2.1 and its proof, the following lemma can be
obtained directly.

Lemma 2.4. Let k € {1,--- ,m} and F be an (n — k)-dimensional subsimplex of
T € Th. Then for any vy, € M and any T' € Tp, with F C T",

(2.14) / 0 (onlg) = / P (onlr), o] = m — k.
F F
If F C 09, then for any vy, € M},
(2.15) / P (onlr) =0, |a| = m — k.
F

An equivalent definition. By Lemma 2.4, we can give an equivalent definition
of Mj* and MJji: MJ" consists of all functions vy in P, j, such that for any k €

{1,---,m}, any (n — k)-dimensional subsimplex F' of any T" € 7; and any « with
|a| = m — k, the integral of 0fvy, over F' is continuous through F; M} consists of
all functions vy, in M;" such that for any k& € {1,--- ,m}, any (n — k)-dimensional

subsimplex F of any T' € T;, and any « with |a] = m—k, if F C 02 then the integral
of dpvy, over F vanishes.

Lemma 2.5. Let || < m and F be an (n — 1)-dimensional subsimplex of T' € T,
Then for any vy, € M;", Opvy, is continuous at a point on F' at least. If F C 052 and
vy, € MJ} then Ojfvy, vanishes at a point on F at least.

Proof. Let vy, € M]" and T" € Tj, with F' C T'. By Lemma 2.4, there is an (n —m +
|a|)-dimensional subsimplex F' of F' such that

3a(vh|T/):/ 0% (vp|T)-
F F

Then 0f'vy, is continuous at a point on F' at least.
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If F C 0Q and v, € M then there is an (n —m + |«|)-dimensional subsimplex
F' of F by Lemma 2.4, such that

0 (Uh|T) = 0.
FI

Thus d§'v), vanishes at a point on F' at least. 0

2.4. Inclusion properties. We now discuss two simple inclusion properties of our
finite element spaces. First, we have the following observation.

Lemma 2.6. Given any n > m > 1 and a simplex T, the set of subsimplexes of
T that are used to define for D7’ is a subset of that for D;’f“. More precisely,
the degrees of freedom for DTT?H can be obtained by taking the integral of one order
higher normal derivatives of functions on the same subsimplexes used for DY, plus
the integral average of function over all the additional (n —m — 1)-subsimplezes.

To obtain a more interesting inclusion property, we define
OM;" = span{0“* M;", 0> M}",--- , 0" M}
and
OM;y = span{0° M}y, 02 M}y, - -+, 0" M} }.
Theorem 2.2. Let n > m > 1, then
(2.16) oM =M™, oMy = My
Proof. By the equivalent definition of M;" and M;}'j, we obtain directly that
oM c M™t, oMy C M

For any k € {1,2,--- ,m—1}, any T € T, any (n — k)-dimensional subsimplex F’
of T and any 8 € Ay with |5| = m—1—k, let w be the global basis function of M,:”*I
corresponding to degree of freedom dr g, and let v be the global basis function of

i corresponding to degree of freedom dr g with ' = g+ (1,0,---,0). By the
definitions, w = V;:’IVU. Then the theorem follows. 0

A note on the case m = 0. In the above construction, we made the assumption
that m > 1. But we may slightly enlarge this construction to include the trivial
case m = 0, namely L?(2) space. Technically, we can just replace the constraint
1 <k < m by min(1,m) < k < m. In this case, the shape function space is again
P, (T) = Py(T), namely the constant, and the corresponding degree of freedom is
just the volume integral on each simplex (see Figure 2). This trivial case of finite
element space, denoted by M,?, may be viewed as a close relative to M} (m > 1),
but not a direct family member in view of the properties stated in Lemma 2.6.
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n=1 n=2 n=3

FIGURE 2. m =0

3. A GENERAL CONVERGENCE ANALYSIS FOR NONCONFORMING ELEMENTS WITH
APPLICATION TO NEW ELEMENT

In this section, we will present a general convergence theory for nonconforming
finite element methods based on some easily verifiable sufficient conditions. This
new theory applies to all the nonconforming elements defined on simplexes and
cubes that are known to us, including, in particular, the new class of finite element
method introduced in this paper.

Let b, be nonnegative constants and b, > 0 when |a| = m. Define

(3.1) a(v, w) :/Q( 3 badv 8°‘w>, Vo, w € H™(9).

la|l<m

Let W be HJ*(Q2) or H™(R), and let f,, € L?(), |a| < m. We consider the following
variational problem: find v € W such that

(3.2) a(u,v) = Y (far0), Vv EW.

laj<m

We assume that problem (3.2) has unique solution for any f, € L?(Q) with |a| < m.
The above variational problem corresponds to the following 2m-th order partial
differential equation:

(3.3) > (=) (bao ) = Y (-1)0%f,, in Q.
|| <m |a|<m

When W = Hy"(Q2), the variational problem (3.2) corresponds to the homogeneous
Dirichlet boundary problem of partial equation (3.3) with boundary conditions:

ok
3.4 — =0, 0<k<m-1
(3:4) klog — 0 T =EETTD
where v = (v1,v9,-++ ,1,) " is the unit outer normal to 9.

When W = H™(Q), problem (3.2) corresponds to the boundary problem of (3.3)
with some natural boundary conditions.
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For v,w € L%(Q) that v|p, w|r € H™(T), VT € T, we define

(3.5) ap(v,w) = Z /T( Z b 0% 8“11)).

7e7i’T " Jaj<m

Let Vj, be a nonconforming finite element space to approximate H™ () corre-
sponding to 7, and Vj be the corresponding subspace of V}, to approximate H{"(2).
When W = H™(Q) let W}, be V}, otherwise let W}, = V}¢. The nonconforming finite
element method for problem (3.2) corresponding to W}, is: to find u, € W}, such
that

(3.6) an(tn,vn) = Y (far Ofvn), Vop € Wi

la|<m

We will discuss the convergent property of solution u;, of problem (3.6).

3.1. Consistent approximation. As mentioned in the introduction, the first con-
dition guaranteeing the convergent property is the approximation condition. We say
that {W},, W} satisfies the approximation condition if

(3.7) ilzl—% vhlgiVh lv = vp|lmp =0, YveW.

By means of the interpolation theory (see [10]), the approximation condition is easy
to be handled.

By the approximation theory { P, 5, H™(f2)} satisfies the approximation condition
when 7 > m, while {P,,,_1 5, H™ ()} fails. Then among the piecewise polynomial
approximations to H™((2), the m-th degree is the least.

We say that {Wj,, W} satisfies the consistent condition if for any infinite sequence
{vp, } with vy, € Wy, and hy, — 0 as k — oo such that {8,‘2‘kvhk} is weakly conver-
gent, in L?(2), to v® for each multi-index « satisfying || < m, it is always true
that v € W and v® = 9% for all |a| < m.

We say that {W},} is a consistent approximation of W if {W},, W} satisfies both
the approximation condition and the consistent condition.

The bilinear form ay(+, ) is called to be uniformly Wp-elliptic if

(3.8) onll2n < an(vn,vn),  Yop € W,
The following theorem was shown in [32].

Theorem 3.1. Assume that ay(-,-) is uniformly Wy-elliptic. Then for any fo €
L%(Q) with || < m, the solution uy, of problem (3.6) converges to the solution u of
problem (3.2):

li — =0
tin [ wnl

if and only if {W}y} is a consistent approzimation of W.
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Proof. Let us first prove the “if” part of the result. By (3.8) and definition of wy, it
is easy to see that {uy} is bounded in the sense:

lunllmp < Ilfa

laj<m

o,

Thus, by the consistent assumption, there is a subsequence {uj,} together with
u' € W such that {0} up, } is weakly convergent to 0%u’ in L?(Q) for all |a| < m.

Given any v € W, there is a sequence vj, € W), such that ||v — v||m,n — 0. Thus,
we have

|a’hk (uhk’vhk) - a(ulav)| < |ahk (uhk’vhk - v)| + |ahk (uhk - ulﬂv)|
S N wng b |08y, — Vllmong + lany, (wh, — v, v)] > 0as hy —0

and

Z (faaal?kvhk) — Z (fa,aa?)).

la|<m la|<m
Consequently
a(u',v) = Z (fa, 0%v).
la|<m

Thus «' is the solution of problem (3.2). Since the solution is unique, v’ = u and
any subsequent of {0f‘uy,} with |a| < m will have a subsequence that converges to
the same 0%u weakly. Thus the whole sequence {0j‘uy, } will have to converge to 0%u
weakly. To prove strong convergence, by the approximation condition, we can take
a sequence uj, € Wy, such that ||u — u}||mp — 0. Then

= un i S llw — vl + an (g, — wp, ug, — up)
S lu— U;L“%z,h + a(u,u) — 2ap(u, up) + ap(up, up)

= llu =yl + alu,u) = 2ap,(u,un) + D (fa, Ofun)

la|<m
= a(u,u) — 2a(u,u) + Z (fa,0%u) =0 as h — 0.
| <m

Now we consider the “only if” part. Given w € W, let f, = ba0%w, |a| < m.
Then v = w and
lim inf ||w—w <lim ||lu—u = 0.
h—0 wj, EW, | nllmn < h—0 | llm
Thus, {W},, W} satisfies the approximation condition.

If {W},, W} is not consistent, then there exists an infinite sequence {wy, } with
wy, € Wy, and hy — 0 as k — oo, such that {8,2‘kwhk} weakly converges to w®
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in L2(Q) for all |a] < m, but there exist o’ and function ¢ with 0 < |o/| < m,
¢ € CP(R™) when Wy, = Vj,p and ¢ € C§°(Q2) when W), =V}, such that

/ (8% pu® + (—1)1¢ g 3£ 0.
Q
Let f, be given by

0~ ¢, a=0
fa=9{ (=1)"MHg, a=d
0, otherwise.

Then for f, given above we have

Z (fa,0%) =0, YveW.

la|l<m

Consequently, the corresponding solution u of problem (3.2) is zero and

0= lim ap, (un,, wn,) = klggo/g (0% dwn, + (—1) 1 pof wy, ) # 0.
This is impossible. 0

3.2. Weak Continuity. To check the consistent condition, one can use the gener-
alized patch test proposed in [32]. Other easier and sufficient conditions can also be
used, such as the patch test (see [5, 16, 36, 37]), the weak patch test [37], F-E-M
test [29] and IPT test [46]. Here we give a sufficient condition based on the so called
“weak continuity”.

We say that V}, has the weak continuity (or the weak discontinuity) if for any vy,
in Vj,, any (n—1)-dimensional face F' of T' € T;, and any |a| < m, 0j'vy, is continuous
at a point on F' at least. Correspondingly, we say that Vo satisfies the weak zero-
boundary condition if for any vy, in V39, any (n — 1)-dimensional face F of T' € T},
with F' C 0Q and any |a| < m, O vy, vanishes at a point on F at least.

By Lemma 2.5, we know that M;" has the weak continuity and M/} satisfies the
weak zero-boundary condition.

With the weak continuity, we obtain that v, is a single polynomial of degree less
than m on whole Q if v, € V}, and |vp|;m,, = 0. Moreover, v, = 0 when v, € Vjg
and the weak zero-boundary condition is satisfied, that is, | - |, 5 is a norm of Vjy.
In this sense, the weak continuity and the weak zero-boundary condition are viewed
as necessary conditions.

We assume in the rest of the section that there exists a nonnegative integer ¢
such that Vj, C P, for all h, and that 7y, is a partition consisting of n-simplexes or
consisting of n-cubes with their sides parallel to some coordinate axes respectively.
Following the way used in [37], we have the following lemma.

Lemma 3.1. Let V}, have the weak continuity and Vi satisfy the weak zero-boundary
condition. Then for any vy, € Vj, and any |a| < m there ezists a piecewise polynomial
va € H(Q) such that

(3.9) |08 0n — valin S BT o lp, 0 <5 <m—|al,
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and v, can be chosen in H}(Q) when vy, € Vip.

Proof. For set B C R", let T,(B) = {T € T, : BNT # 0} and N,(B) be the
number of the elements in 75 (B).

Let v, € V3, |a] < m. For T € Ty, denote by v,:f the continuous extension of vy,
from the interior of T to T'. Given any (n — 1)-dimensional face F' of T', let us define
the jump of d%vy, across F as follows: [0fv,]p = %] |p — %] |p if F = TNT'
for some other T € 73, and [0%vp]F = 0%] |p if F =T N 0.

First, we show that if F' ¢ 9Q or vy, € Vo then

(3.10) [Ofvnlp £ RPN N o2
T €T, FCT'

By the weak continuity and the weak zero-boundary condition there exists © € F
such that [0fvy|F vanishes at z, this leads to

2

Y)

8 !
[0%v,]% < h? r;lea;( [Eaﬁ‘vh}i(y) < h? Z max [8}‘;‘ vh]F(

cF
lo|=lal+1 ¥

where 7 is a unit tangent of F'. Repeating the same argument, we have

;12
onli £ W10 S ma o] )
la!|=m
By the inverse inequality, we obtain (3.10).

Let l =m—|a and 0 < j <[. If T is an n-simplex then we take S; = P;(T) and
II; 7 the interpolating operator corresponding to the element of n-simplex of type
(1), otherwise take S; 7 = Q;(T) and II; 7 the interpolating operator corresponding
to the element of n-cube of type (I) (see [10], p. 48,57). Let =; 1 be the set of nodal
points of II; 7.

Now we define v, € H*(Q) as follows: for all T' € Tp, va|r € Sir and for each
xz € . if 2 € 0 and vy, € Vi then v, (z) = 0 otherwise

(3.11) vo(z) = Nhl(x) T,le:(x) %] ().

Then v, is well-defined, and v, € H¢(Q2) when vj, € Vi.
By the interpolating theory,

(3.12) |05 v, — Ty dfonlir <A™ g .

Using the affine argument, we can show the following inequality

(3.13) e BN p(«)®, Vb € Sy
z€Z,T

Since I, 7 Of vy, — va|T € SiT,

(3.14) 000w, — valir £ B"7% > [Wp0®vf (2) — va(@)]*.

z€Z,T
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If € ;7 NQ or vy, Vi, then by (3.11) we have

1 y
I, 70%0T () — v (z)|2 = ‘ 3 (a%{(x) — 9% (g;))
Nip(z)
T'eTh(z)
For 7' € Tp(x) and T' # T, there exist Ti,---,T;, € Tp(x) such that Ty = T,
Tr, =T and Fj = Tj N Tj41 is common (n — 1)-dimensional face of T; and T}y,
1 <j < L. By (3.10) and the fact that Nj(x) is bounded, we obtain

‘ 2

0%l (z) — OO‘UT, ‘ Zmax ahvh]F (y) < pAm—le)—n Z |Uh|zn,T'-
T'ET; (x)

If x € 5,7 N0 and vy, € th, then we have by definition of v,
700 () = va(@) > = 0% ()] £ B2 ID=7 N " o2 .
T eTh(z)
From (3.14) we derive that
(3.15) L0 vn — valf £ B2 N o2 g
T'eT,(T)
By (3.12), (3.15) and the triangle inequality, we get
(3.16) |08 vn — valF, S BETED NN o2
TeT, T €T (T)
Then (3.9) follows. 0
We can generalize the sufficient conditions of the consistent property for the sec-
ond and forth order problems in [30, 46] to the 2m-th order problem. For example,
we have
Condition SPT. There exist a nonnegative integer s and linear operator IIf :
0*Vj, — Py, for any |a| = m — 1, such that, for any v, € V},

(1) for any (n — 1)-dimensional face F' of T' € Ty, the integral value of IIf 07 vy,
over F'is continuous and vanishes when F' C 092 and v, € Vj,p;
(2) for any T € Ty,

(3.17) Opopv = / 5oy opv,
oT aT
and
(3.18) (IR0 vnli,r < |vnlm,rs
where v is the unit outer normal of 97T

Theorem 3.2. Let V}, have the weak continuity, Vig satisfy the weak zero-boundary
condition and Condition SPT be satisfied. Then {Vi, H™(Q)} and {Vho, H* ()}

are all consistent.
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Proof. Let ¢ € C§°(2) (or Cg°(R™)) and {vp, } be an infinite sequence with vy, € V},
(or Vhio) and hy — 0 as k — oo such that {Jf, vp, } is weakly convergent, in L?(9),
to v® for each multi-index « satisfying || < m.

Now let 1 < i < m and |a] < m. By Lemma 3.1 we have that for each k, there

exists a piecewise polynomial v, € H(Q) (or H}(2)) such that
(3.19) 105 vm, = vaklin < 0T om0 <G <m—al.

We obtain from (3.19), Green’s formula and the Schwarz inequality that

| [ o son, + 5 2g,om,)

- ‘/Q (‘Paﬁ(@ﬁ‘kvhk — Vak) + 0% (), vn, — “0"“))‘

S T e

and this leads to that
(3.20) /(vao”rei + 0% pv®) =0,
Q

when |a| <m — 1.
Given T € Tj, and an (n — 1)-dimensional face F of T, let Py, : L?(0T) — Py(0T)
and PR : L?(F) — Py(F) be the orthogonal projections. When |a| = m — 1, set

|1,Q Uhk- |m,hk7

a a Qo [o% _ (o [e%
Uhy = Wy O Ohys Ve = Oy Ohy — Iy, Oy, Ony-

By the assumption and Green’s formula, we have

/Q(Lpa,?:'eivhk + 0% 0p, vn,)

= Z Z /F<pv,‘fkl/i+ Z /BTQOU;C;,CBW

TeTh, FCOT TeTh,
= 3 % [ o= PR, - PRof
TeT;, Fcor”

+ 3 / (0 — PYrp) (s, — Pt Jui.
TeT;,, 0T
k

By the Schwarz inequality, the interpolation theory in [10] and (3.18), we obtain
that

‘/Q(wa,?:eivhk + 0% ), vn,,)

< > Y e - PRollo,rlivg, — PRvg,llor
TET;, FCOT
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+ Z ||(70 - PgT(pHOyaTHU}C;ke - PgvaolékeuoyaT
TETh,

She Yl

TETh,

1,7 |0h Imr < hilelialvn, lmohy, -

Thus (3.20) is also true when |a| =m — 1.
Consequently, v* = %0 for all |o| < m and v° € H™(Q) (or HJ*(2)). 0

By Lemma 2.4, Lemma 2.5 and Theorem 3.2, we obtain the following corollary
directly.

Corollary 3.1. Both of {M;", H™(Q)} and {M]}, Hy*(Q)} are consistent.

By Corollary 3.1 and Theorem 2.1 we know that M;" is a consistent approximation
of H™(Q) and M}7 is a consistent approximation of Hy"(£2).

To applying Theorem 3.1, we need the uniform Wjy-elliptic property. For this
purpose the following theorem will be useful.

Theorem 3.3. Let V), have the weak continuity and Vi satisfy the weak zero-
boundary condition, then the generalized inequality of Poincare-Friedrichs

(3.21) lvnllm,p S [Olmp,  Yon € Vo,
and the generalized Poincare inequality

2
(3.22) lonlias o+ 32 ([ ofon)” v € VA,

laj<m

are true.

Proof. The following inequalities are true,

(3.23) lvlle £ vl Vo€ Hy(Q).

2
(3.24) lollZ o < oo + (/Qv> . Woe H'(Q).

For vy, € Vi, || < m, let v, € HL(Q) be as in (3.9). Then from (3.23) and (3.9),

||31?Uh

5.0 S 108 vn = vallg o + lvallf g

S |Uh|3n,h +|valio < |Uh|72n,h + |Uh|\2a|+1,h-

Consequently,
(3.25) [Vnlkn < [ORlmp + [Ublk41,h, 0 < K <m.

This leads to the (3.21).
By (3.24) and same argument we obtain (3.22). 0

By Lemma 2.5 and Theorem 3.3, we have
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Corollary 3.2. The following inequalities are true:

(3.26) |vnllm.n & 1olmps  Yon € My,
2
(3.27) ol < tonPo+ 32 ([ dfon)"s von € g
|aj<m Q

The proof of Theorem 3.1 was given in [32] and the proof of Lemma 3.1 is very
similar to the one used in [37]. We write them here for self-completeness.

Theorem 3.2 gives a sufficient condition for the consistent property. A lot of
nonconforming finite elements satisfy the condition, such as, the Crouzeix-Raviart
element [11] and the Wilson element (see [41, 10]) for the second order problem,
the Morley element [21, 23, 38] and the rectangle Morley element (see [47, 40]), the
Veubake elements [36], the Adini element [2, 20, 40], the three or higher dimensional
Bogner-Fox-Schmit element [40], the 12 and 15-parameter plate bending elements
(see [47]), the cubic element and incomplete cubic element given in [39], for the
forth order problem, our new element for 2m-th order problem given in this paper.
Among the elements mentioned above, the corresponding operators II are identity
operator for all simplical elements and the rectangle Morley element. There are
some (and rare) cases for which IIf are not identity operator. For example, in the
situation of the two dimensional Adini element, II;" ( i = 1,2) is the interpolation
operator of the conforming bilinear element for the second order problem.

3.3. Error estimate. Now we discuss the error estimate of the nonconforming finite
element solution of problem (3.6) when W = HJ"*(Q2) and W), = Vj. Let u be the
solution of problems (3.2) and u; be the one of problem (3.6).

Lemma 3.2. Assume that Vi, has the weak continuity, Vi satisfies the weak zero-
boundary condition and Condition SPT is satisfied. Let ry,, = max{l,m—1}, r, =1,
ri = max{0,i — 1} and r, =0, 0 < i <m, and r =m +ry. Ifu € H(Q) and
fa € H"=(Q) for all |a] < m, then

sup an(u,vn) = Y (fas Ofvn)
VR EVh0,/[UR [Im =1 la|<m
r—m Tlal
< hk|’U,|m+k,Q+ Z Z hmi‘a|+k|bau||a\+k,9
k=1 |a\<mk:r|’a‘
(3.28)
Tl
DD D e v A
|a|<m k=r]

lex]

< h(lluleo+ Y Mfallr0)-

laj<m
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Proof. Let vy, € Vyg. For |a] < m, let v, € H}(Q) be the piecewise polynomial as in
(3.9). Define for all |a| < m,

(3.29) E, = / (aau vy — (—1)|M9%y vo),
Q

(3.30) %:Axh%m—pnmmmm)

It can be verified that

(3.31) an(u,0p) = Y (far Ofvn) = Y (baEa — Ea).
laj<m laj<m

. . . . la|
Given |a| < m, it can be written as @ =), e;;. Set

k k
oy =D e Oy ==Y e 0<k<|al
i=1 i=1

Define for |a| = m,

o o o (1) o al(l)
E, 0%u O vp, + 0*M 0 0, vy ),
Q

al
"no__ « « (1)
E, = Aa ®o U,(Uo/(l) _8]1 Vh),

(k+1)

m—1
w:ZpM/MM%W-w%%,y
P Q (k)
Then
E,=E,+E)+ E/.
We write ) ) ) ) )
wp = Hz(l)a,?“)vh, Whe = 8,?(1)1),1 — H:“)a,?“)vh.

Then by the assumption and Green’s formula, we have

El = Z /(’)T O%u(wp, + whe) V),

TET;,
=3 % [ (0 - poru) (wn - Phun )
TeT, Fcor’ ¥
+ Z / <3au — PgTaau> (whe — PgTwhe> Vj, .
Tem, ” O
h

Using the Schwarz inequality, the interpolation theory and (3.9) we obtain

B <> Y 10 — Ppo*ullo,rllwn — Ppwplo,r
TeT;, FCoT
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+ > 0% — Pyr0®ullo grllwhe — Pyrwhello.or
TEThH

< Z hlulms1,7|08mr S Blulms1,0|08]m b
TET,
On the other hand, we have by the Schwarz inequality, the triangle inequality and
(3.9),

m—1

B2+ B2 S (Blulmar + 3 W ulmeio) onlma
k=2

Consequently,
m—1

(3.32) |Eq| £ <h|u|m+1,Q +) hk|u|m+k,ﬂ)|7)h|m,ha laf =m.
k=2

By same argument, we obtain
m—1

(3.33) |Ey| £ (h|fa|1,Q + Z hk|fa|k:,ﬂ)|“h|m,ha la| =m.
k=2

When |a| < m, we can write E, as

o

E_'a = /Qfa(af?vh - Ua) + Z(_l)‘akk /Q 8a’(k) fa(va(k) — 9% Uo‘(kfl))'
k=1

Then by the Schwarz inequality and (3.9) we obtain

|of—1
(3.34) |Eal < (hmf‘a||fa|o,9 + Y hmi‘a|+k|fa|k,9>|vh|m,ha la| <m.
k=1
Similarly,
|a]—1
(335 |Bal S (BNl 0+ 30 BT o o) lonlns o] < m.
k=1

By (3.31), (3.32), (3.33), (3.34) and (3.35), we obtain the desired estimation.

From Theorem 3.3, Lemma 3.2 and the well-known Strang Lemma (see [31] or
[10]), we obtain the following theorem.

Theorem 3.4. Assume that Vi, has the weak continuity, Vig satisfies the weak zero-
boundary condition and Condition SPT is satisfied. Let r, = max{1,m—1},r,, =1,
ri =max{0,i—1} andr, =0, 0 <i <m, and r = m~+rp,. If there exists an integer
s > 1 such that

(3.36) lv = vl S B [Vlmrsg, Yo € H™(Q) N HG (Q),

inf
v EVho



MINIMAL FINITE ELEMENT SPACES FOR 2m-TH ORDER PDES IN R™ 25

then for fo € H'=l(Q), |a| < m,

r—m
lu = wnllmp < hulmis,0 + th|u|m+k,9
k=1
Tl
+ 2 2 W baulapke
\a|<mk:r"a|
(3.37)
Tl
+ Z Z Rl R £ e
\a|§mk:r"a|
< h(lulea+ Y Mfallr0)-
lo]<m

when v € H"(Q) N H™5(Q).
Using Lemma 2.4, Theorem 2.1, Corollary 3.1, Corollary 3.2, Theorem 3.1 and

Theorem 3.4, we obtain

Corollary 3.3. Let u be the solution of problem (3.2) with W = H{*(Q) and uy, be
the one of problem (3.6) with Wy, = M. Then for any fo € L*(Q), |a| < m,

(3.38) lim ||u — wp||m,n = 0.
h—0

Let rpy, = max{l,m — 1}, r;, =1, r; = max{0,i — 1} and v, =0, 0 < i < m, and
r=m+ ry, then for fo € H'=(Q), |a| < m,

r—m Tla
lw = wnllmp < D P ulmira+ D> > R a0 k0
k=1 \a|<mk:r"a|
Tler]
(3.39) + Z Z hm_‘a|+k|fa|k,9

|a|<m k=r]
lex]

< h(lulea+ Y Mfallr0)-

laj<m

when u € H"(2).

4. CONSTRUCTION OF NODAL BASIS FUNCTIONS

In this section, we will describe a procedure to construct a set of nodal basis
for our new finite element spaces. Such a construction is both of theoretical and
especially of practical interests.

More specifically, let m < n and T be an n-simplex. We will now study the
construction of the nodal basis functions of P,,(T) with respect to the degrees of
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freedom described in Section 2.1. For (n 4 1) dimensional multi-index +, define

Y Z\YLYY2 L Yt
AT = A Antt -

Let 1 <k <m. For 0 € C, and 0 <1 <k, define
r, = {’}’EAn+1:’szo,j#al,lglgk},
FU,i = {VEFU : |7|:'La fYUJS]-a]-S]Sk}
For 0 € C, and vy € ', define

k A+

_ i(n—k+1)!
(4.1) Qoy = Z(_l) W Z W

1=0 Y'ely;

Given 0 € C, =V s, —Vg,, -+, =V, are linearly independent and are outer
normal vectors of F,;. Then for 1 < j <k, vp, ; can be written as

k
(4.2) mej = ZC]'[V)\U“
=1

where c¢j; are constants. For 8 € A, and || = m — k, define

k k

(4.3) Qos = (Zcﬂxgl)ﬁj.

j=1 I=1
We write Q, 5 as
(4.4) Qmﬁ = Z Emﬂ,

yEls
[v|=m—k

where cg, are constants, and define

_ 1 _
(4.5) Pop = E Z ! CBvy Yoyy-

yEls
[v|=m—k

For 1 <k <m, o €Cy, 8 € A, and |B| = m — k, define
po’,ﬁa k:]_,

k-1
(4.6) PrB =9 pog—>. > Y. drr,5Pep)per s, k> 1

j=lo'eC; B'eA;
|8/ |=m—j

It is will be shown that p, g is the basis function corresponding to degree of freedom

dT,FG.,ﬁ'
If we choose, for 1 < k < m and o € C;, that
Vs,
(4.7) T 1<j<k,

VE,j = — Hv>\0'j || )
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then for § € Ay with |5| = m — k, function p, g can be written as

k .
) i (=K i) i
(48) p0_7 — (—]_)m k41 )
g o,B ; (n o k)! ’Ygi (70”8 + 7)!
where
k Bi, 1=o0
o B o VR =0y
(4.9) By,p = H ||V>‘ffj 177, (7":5)2 - { 0, otherwise.

j=1
When m = 1, it follows from (4.6) and (4.8) that
(4.10) Po0 = 1-— 77)\[;1, o € (.

Then we recover the basis functions of nonconforming linear element.
When m = 2, by (4.6) and (4.8) we have

( 1

o.e1 — 7>‘0’ >‘0' -2 y ,
Poe; 2||V>\01|| 1(” 1 ) oecC
(4.11) Poo =1—=(n =15 +As,) +n(n —1)A5 Ag,
Ao, (Mg, — 2)
—(n—1)VAl VA, RSl R € Cy.
=DV 2 o 0 7

Then we recover the basis functions given in [38].
We have for m = 3,

1 9 n

(4.12) Do,2e; = WAUI( — §>\01>7 o c Cl,

_ -y n—1 nin—1)

Poer = - Aoy +2X0y) + ——— A0 Aoy )
wiy R A sec

' P, (1—”_1(2>\ A )+n(n_1)/\ A ) )
0,62 ||v)\02|| 2 g1 a2 2 g17v02 |

and

Dop =1—(n—2) Z)\Ul—i— (n—1)(n—2) Z )\Ul)\gj
(4.14) 1<i<3 1<i<j<3

—n(n —1)(n — 2)Ag; Aoy Ass o € Cs.

Now we turn to showing that p, g is the basis function.

27

Lemma 4.1. Let 1 <k <m, 0 € Ct, vy €Ty and |y| = m — k. Then for o' € Cy

and |a| =m —k

30‘)\
(415) |F |/ ' Hdo']',o';?

J=1
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and for k <r <m, |a| =m —r and any (n — r)-dimensional subsimplex F of T,
(4.16) / P

F

Proof. Let k < r < m and F be an (n — r)-dimensional subsimplex of 7. For
multi-index v/, define

8;" _ o'l
TN - aNI
Then

k " !

/ 1 ) A+ =y
B oy = —— > (D) n—k+i) Y
’ — | — |
(n —k)! = ier,, (Y EY =)

yHA" >
where v+ > 7' means that 7; +7/ > 7}, 1 <j <n+1. When y++" >+ and
)\7+7”*'Y'|F Z# 0, it can be computed that

/)\fy—l—'y —' — (’I’L-?")'(’Y—i-’)/”—")/’)'
|F| (n—r+ |+ =D

Thus
k
no_
(4.17) |F| / 8/\ Qo = (n— k Y Z Z L, Hl=m-r.
i=0 7”61“(,,1-, T+ >
AT+ =" pzo
From (4.17) we can prove that for |[y/| =m —r
1 , —87A7 F=F,andy =7,
(4.18) W/F‘a; oy = ik

0, otherwise.
Given |a| = m —r, it can written as
(4.19) 0= > gayd)
1y [=m—r

where g, are constants. Then the lemma follows from (4.19) and (4.18).

Now we try to show (4.18).

a) Case of ¥/ ¢ T';. For 0 < ¢ < k there is no v € T'y; with v+ " > 4.
Consequently,

1 ’
(4.20) i /F 0 ¢ory =0

b) Case of r = k and 4/ = . In this case, for all 0 < i < k and 7" € T',; we have
that v ++" > 4. When F = F, and i > 0, it is true that A"~ |z =0, 4" € |

Thus . )
' — 1 — — 97\
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When F # F,, let k' be the number of \;;|r # 0, 1 < j < k. Then

1 _(n—=n)! K ii
(4.21) i /F Runy = o= ;;(—1) Ci, =0,

c) Case of v > +" and v # +'. In this case, for all 0 < i < k and 7" € T',; we
have that v +v" > 4'. Let k' be the number of Ay |r Z0, 1 <j <k. On F, either
A=Y |p = 0, which makes (4.20) true, or &’ > 0, which makes (4.21) true.

d) Caseof v/ € Ty, || =m—rand vy 29 y++" 2 forany 0 <i <k
and any v" € T',; then (4.20) is true. Otherwise, let i; be the least number that
v+ 7" >« for some v’ € I';;,. Obviously, 4; > 0. It is can be shown that i; < .
In contradiction to this, we assume 4; = k. Because v,v' € I';, we have that

7;:7]_’_]—7 j2017027"'70k-

Then we obtain a contradict result that |y/| = m > |y/|. There is only one ¥ in
Ly, with y4+ 4" >4/ For iy <i <k, if v € Ty; and v+ 4" >+ then v" > .
Let ¥ € Ap,+1 be given by

’?j:max{oavj_’)é}a I1<j<n+1.
Let &’ be the number of )y, |r # 0 and 73_1] =0,1<j <k OnF,either \|p =0,

which makes (4.20) true, or ¥’ > 0, which makes (4.21) true.
Summing the above discussion, we obtain (4.18). n

Lemma 4.2. Let 1 <k <m, 0 € Cx, B € Ag and |B| = m — k. Then for o' € Cy,
p'e Ay and || =m —k

. |1, p=pand o =o,
(422) dT,FGI,ﬁI (Pa,ﬁ) - { 0’ otherwsie,
and for k <r <m, |a| =m —r and any (n — r)-dimensional subsimplex F of T,
(4.23) / oy = 0.
F
Proof. Form Lemma 4.1 and (4.5), we only need to show that
(4.24) dT7FG75([7075) = 1.

There exist constants égq, |a| = m — k, such that

— = Z 500

Bi ..
g, 1 Ve g lo|=m—k

8m—k

By (4.5), (4.4), (4.15) and (2.3), we obtain that

1 amkag B
dr,r,.5(Po,s) = o .
PR T o,
Then (4.24) follows from (4.2) and (4.3). 0

From Lemma 4.1, Lemma 4.2 and (4.6) we obtain the following result.
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Theorem 4.1. Let 1 <k <m, 0 € Cy, p € Ay and |B| = m — k. Then p,p is the
basis function corresponding to degree of freedom dr F, 3.

By the basis functions given above, we have the following corollary.

Corollary 4.1. Let n > 2. M™ is not a subspace of C°(Q) if there exist two
simplezxes in Tp, with common (n — 1)-dimensional subsimplez.

Proof. Let T,T' € T;, with common (n — 1)-dimensional subsimplex F, and denote
by an4+1 the vertex of T opposite to F'. Let 0 = (1) € C1, f = (m — 1) € A;. Let
vy, € M;™ be the function such that for (n — 1)-dimensional subsimplex F, of T,
dr i, g(vy) = 1, and the other degrees of freedom of vy, on all elements in 7 are

zero. Then U}T;I|F =0 and by (4.8) and (4.6),

(_1)m—1 m—1 L
AL — = :
m— D[V 17t ( m 1) 70

This completes the proof. O

T
vh|F:(

5. CONCLUDING REMARKS

The construction of the consistent approximation of Sobolev spaces with minimal
degree piecewise polynomials is motivated by the theoretical consideration and the
interest in application to practical problems. In this paper, a new consistent ap-
proximation to m-th order Sobolev of n-dimensions with n > m > 1 is proposed in
a canonical fashion, and the convergence and the error estimate for application of
2m-th order elliptic problems in R™ are shown by a general convergent theory. The
new class of nonconforming elements has several attractive properties, such as

e consistent approximation with minimal degree piecewise polynomials;

e the degrees of freedom fit perfectly well;

e recovers the well-known nonconforming linear elements for m = 1 and Morley
element for m = 2 in a canonical fashion;

e the inclusion property.

The work in this paper is hoped to shed some new insight to the finite element theory.
In addition to its theoretical interest, the new type of finite element is potentially
useful in practice.
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