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A NEW Z-TYPE NONCONFORMING ELEMENT IN ANY
DIMENSIONS ∗
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Abstract. In this paper, some Z-type finite elements for the discretization of fourth order
elliptic partial differential operator are viewed. A new Z-type nonconforming finite element,
in n spatial dimensions with n ≥ 2, is proposed. The new finite element is proved to be
convergent for the biharmonic equation.
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Introduction

In this paper, we will propose a new Z-type nonconforming simplex finite element for n-dimensional
fourth order partial differential equations with n ≥ 2. This element uses the values of function and
first order derivatives at vertices as degrees of freedom, that is, it uses the same degrees of freedom
with the Zienkiewicz element [2 or 6]. But its shape function space is different from the one of the
Zienkiewicz element.

As a nonconforming element for fourth order partial differential equations, the Zienkiewicz element
is attractive. The first thing is its convergent property. In two dimensional case, the Zienkiewicz
element is only convergent under the parallel line condition, and is divergent in general grids. The
numerical experiments were given in [7] and the mathematical proof can be found in [10]. In three
dimensional case, the Zienkiewicz element was proved to be divergent on a special grid [19]. Another
attractive thing is the degrees of freedom of the Zienkiewicz element. It is convenient for numerical
computations to take values of function and derivatives at vertices as degrees of freedom. Although
on each single element the number of degrees of freedom of the Zienkiewicz element is not the least,
the global number is.

Keywords and phrases: Nonconforming finite element, forth order elliptic equation, biharmonic

∗ This work was supported in part by NSF DMS-0209497 and NSF DMS-0215392 and the Changjiang Professorship
through Peking University
1 LMAM, School of Mathematical Sciences, Peking University, mwang@math.pku.edu.cn
2 Institute of Computational Mathematics, CAS, shi@lsec.cc.ac.cn
3 The School of Mathematical Sciences, Peking University, and Department of Mathematics, Pennsylvania State
University, xu@math.psu.edu, http://www.math.psu.edu/xu/

c© EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

There are some modified triangular elements, with the same degrees of freedom of the Zienkiewicz
element, proposed by different ways, such as, the quasi-conforming method [18,5], the generalized
conforming method [9], the free formula method [1,4] and the energy orthogonal method [3]. We call
these elements are of Z-type. The convergence analysis of these elements were given in [20,13,11,14]
respectively. It is a little surprise that there were no convergent Z-type element proposed directly
from the nonconforming element method in two dimensions.

In three dimensional case, two convergent Z-type elements were proposed in [19]. One is a noncon-
forming element and is not C0 element, another is a quasi-conforming element.

The new Z-type element proposed in this paper is a nonconforming C0 element, and it is constructed
in a canonical fashion for two and higher dimensions.

The rest of the paper is organized as follows. Section 1 recalls the nonconforming element method.
Section 2 reviews some Z-type finite elements. Section 3 gives a detailed descriptions of a new Z-type
nonconforming element. Section 4 shows the convergence of the new element.

1. Preliminaries

Let Ω be a bounded polyhedroid domain in Rn (n ≥ 2) with boundary ∂Ω. For a nonnegative
integer s, Let Hs(Ω), Hs

0(Ω), ‖ · ‖s,Ω and | · |s,Ω denote the usual Sobolev spaces, norm and semi-norm
respectively. Let (·, ·) denote the inner product of L2(Ω).

For f ∈ L2(Ω), we consider the following fourth order boundary value problem:




∆2u = f, in Ω,

u|∂Ω =
∂u

∂ν

∣∣∣
∂Ω

= 0
(1)

where ν = (ν1, ν2, · · · , νn)> is the unit outer normal to ∂Ω and ∆ is the standard Laplacian operator.
Set

∇ =
( ∂

∂x1
,

∂

∂x2
, · · · ,

∂

∂xn

)>
.

Define

a(v, w) =
∫

Ω

n∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
, ∀v, w ∈ H2(Ω). (2)

The weak form of problem (1) is: find u ∈ H2
0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ H2
0 (Ω). (3)

For a subset B ⊂ Rn and a nonnegative integer r, let Pr(B) be the space of all polynomials with
degree not greater than r.

Let (T, PT , ΦT ) be a finite element where T is the geometric shape, PT the shape function space and
ΦT the vector of degrees of freedom, and let ΦT be PT -unisolvent (see [6]). Let Th be a triangulation
of Ω with mesh size h. For each element T ∈ Th, let hT be the diameter of the smallest ball containing
T and ρT be the diameter of the largest ball contained in T .

Let {Th} be a family of triangulations with h → 0. Throughout the paper, we assume that {Th} is
quasi-uniform, namely it satisfied that hT ≤ h ≤ ηρT , ∀T ∈ Th for a positive constant η independent
of h.

For each Th, let Vh and Vh0 be the corresponding finite element spaces associated with (T, PT , ΦT )
for the discretization of H2(Ω) and H2

0 (Ω) respectively. In the case of nonconforming element, Vh 6⊂
H2(Ω) and Vh0 6⊂ H2

0 (Ω).
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For v, w ∈ L2(Ω) that v|T , w|T ∈ H2(T ), ∀T ∈ Th, we define

ah(v, w) =
∑

T∈Th

∫

T

n∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
. (4)

The finite element method for problem (3) corresponding to the element (T, PT , ΦT ) is: find uh ∈ Vh0

such that
ah(uh, vh) = (f, vh), ∀vh ∈ Vh0. (5)

For any v ∈ L2(Ω) that v|T ∈ Hm(Ω), ∀T ∈ Th, we define the following mesh-dependent norm
‖ · ‖m,h and semi-norm | · |m,h:

‖v‖m,h =
( ∑

T∈Th

‖v‖2m,T

)1/2

, |v|m,h =
( ∑

T∈Th

|v|2m,T

)1/2

.

For nonconforming elements, the basic mathematical theory has been established (see [6,8,15-17]).
We will use them to discuss the convergence of the new element.

2. Some Z-Type Finite Elements

In this section, we review some Z-type finite elements. We begin with the general n-dimensional
Zienkiewicz element.

Given an n-simplex T with vertices ai = (x1i, x2i, · · · , xni)>, 1 ≤ i ≤ n + 1, denote by Fi (1 ≤ i ≤
n + 1) the (n− 1)-dimensional subsimplex of T without ai as its vertex, and by λ1, λ2, · · · , λn+1 the
barycentric coordinates of T . Denote by |T | and |Fi| the measures of T and Fi respectively.

For 1 ≤ i < j ≤ n + 1, let aij = (ai + aj)/2. For 1 ≤ i < j < k ≤ n + 1, let aijk = (ai + aj + ak)/3,
and define

ψijk(v) = 6v(aijk)− 2
∑

l=i,j,k

v(al) +
∑

l=i,j,k

(al − aijk)>∇v(al), ∀v ∈ C1(T ).

By ψijk we may define a polynomial space

P ′3(T ) = { p ∈ P3(T ) |ψijk(p) = 0, 1 ≤ i < j < k ≤ n + 1 }.

It can be verified that P ′3(T ) = P2(T ) + span {λ2
i λj − λiλ

2
j | 1 ≤ i < j ≤ n + 1}.

•

•
• •

a1 a2

a3

a4

n = 3

•

• •
a1 a2

a3

n = 2
Fig. 1
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The Zienkiewicz element

For the n-dimensional Zienkiewicz element, (T, PT , ΦT ) is defined by (see Fig. 1)
1) T is an n-simplex.
2) PT = P ′3(T ).
3) The components of ΦT are:

v(aj), 1 ≤ j ≤ n + 1, (aj − ai)>∇v(ai), 1 ≤ i 6= j ≤ n + 1, ∀v ∈ C1(T ).

For the Zienkiewicz element, we can define the corresponding finite element spaces V z
h and V z

h0 as
follows: V z

h = {v ∈ L2(Ω) | v|T ∈ P ′3(T ), ∀T ∈ Th, v and ∇v are continuous at all vertices of elements
in Th }. V z

h0 = {v ∈ V z
h | v and ∇v vanish at all vertices belonging to ∂Ω}.

From now to the end of this section, let n = 2. We will review some convergent Z-type finite
elements in two dimensions.

TQC9 element

Given a triangle T , let Π1
T denote the linear interpolation operator with values of function at three

vertices. For p ∈ P ′3(T ), define ∂ij
T p ∈ P1(T ), i, j ∈ {1, 2}, such that ∂12

T p = ∂21
T p and for any q ∈ P1(T )





∫

T

q∂11
T p =

∫

∂T

qΠ1
T

∂p

∂x1
ν1 −

∫

T

∂q

∂x1

∂p

∂x1
,

∫

T

q∂22
T p =

∫

∂T

qΠ1
T

∂p

∂x2
ν2 −

∫

T

∂q

∂x2

∂p

∂x2
,

2
∫

T

q∂12
T p =

∫

∂T

q
(
Π1

T

∂p

∂x2
ν1 + Π1

T

∂p

∂x1
ν2

)−
∫

T

( ∂q

∂x2

∂p

∂x1
+

∂q

∂x1

∂p

∂x2

)
.

(6)

For vh ∈ V z
h and i, j ∈ {1, 2}, define ∂ij

h vh by, ∂ij
h vh|T = ∂ij

T (vh|T ), ∀T ∈ Th. Define

āh(v, w) =
2∑

i,j=1

∫

Ω

∂ij
h v ∂ij

h w, ∀v, w ∈ V z
h . (7)

The finite element method for problem (1) with TQC9 element is: find uh ∈ V z
h0 such that

āh(uh, vh) = (f, vh), ∀vh ∈ V z
h0. (8)

A three dimensional analogue of TQC9 element can be found in [19].

The generalized conforming element

Define

PT = (λ1, λ2, λ3, λ1λ2, λ2λ3, λ3λ1, λ
2
1λ2 − λ1λ

2
2, λ

2
2λ3 − λ2λ

2
3, λ

2
3λ1 − λ3λ

2
1)
>.

For any p ∈ P ′3(T ), it can be written by
p = Ψ>PT (9)
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with Ψ = (ψ1, ψ2, · · · , ψ9)>.
For p ∈ P ′3(T ), define d(p) = (d1(p), d2(p), · · · , d9(p))> with





d1(p) =
∫

F3

∂p

∂τ
, d2(p) =

∫

F1

∂p

∂τ
,

d3(p) = 60
( 1
|F3|

∫

F3

(λ2 − 1
2
)p +

1
|F1|

∫

F1

(λ3 − 1
2
)p +

1
|F2|

∫

F2

(λ1 − 1
2
)p

)
,

d4(p) =
1
|F3|

∫

F3

p, d5(p) =
1
|F1|

∫

F1

p, d6(p) =
1
|F2|

∫

F2

p,

d7(p) =
∫

F3

∂p

∂ν
, d8(p) =

∫

F1

∂p

∂ν
, d9(p) =

∫

F2

∂p

∂ν
.

(10)

We have that

d(p) = CT Ψ, (11)

with CT a nonsingular matrix.
On the other hand, we want to describe d(p) by the nodal parameter vector of the Zienkiewicz

element, that is, by

ΦT (p) =
(
p(a1),∇p(a1)>, p(a2),∇p(a2)>, p(a3),∇p(a3)>

)>
.

Integrating d1(p) and d2(p) directly, d3(p) to d6(p) by the Hermitian integral formula and d7(p) to
d9(p) by the numerical trapezoidal integral formula, we obtain that

d(p) = GT ΦT (p) + ε(p)E, (12)

with

E = (0, 0, 0, 0, 0, 0, 1, 1, 1)>, ε(p) = O(h3
T |p|3,∞,T )

and GT a nonsingular matrix.
Combining (9), (11) and (12), we have

p = (ΦT (p))>(C−1
T GT )>PT + ε(p)(C−1

T E)>PT , ∀p ∈ P ′3(T ). (13)

Omitting the error terms caused by numerical integral, we obtain an approximate polynomial Πg
T p

for p, and

Πg
T p = (ΦT (p))>(C−1

T GT )>PT , ∀p ∈ P ′3(T ). (14)

Define an approximate function Πg
hvh for vh ∈ V z

h by Πg
hvh|T = Πg

T (vh|T ), ∀T ∈ T h. The finite
element method for problem (1), by the 9-parameter generalized conforming element, is to find uh ∈
V z

h0 such that

ah(Πg
huh,Πg

hvh) = (f, vh), ∀vh ∈ V z
h0. (15)

Define V g
h = Πg

hV z
h0. One can also solve the problem: to find ũh ∈ V g

h such that

ah(ũh, vh) = (f, vh), ∀vh ∈ V g
h . (16)
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TRUNC element

Given a triangle T , let Πz
T be the interpolation operator corresponding to the Zienkiewicz element.

For v ∈ C1(T ), Πz
T v can be written as

Πz
T v = a1λ1 + a2λ2 + a3λ3 + a4λ1λ2 + a5λ2λ3 + a6λ3λ1

+ a7(λ2
1λ2 − λ1λ

2
2) + a8(λ2

2λ3 − λ2λ
2
3) + a9(λ2

3λ1 − λ3λ
2
1).

Now we split Πz
T v into two parts: Πc

T v and Πz
T v −Πc

T v by

Πc
T v = a1λ1 + a2λ2 + a3λ3 + a4λ1λ2 + a5λ2λ3 + a6λ3λ1 (17)

that is, Πc
T v represents a full quadratic polynomial on T .

For vh ∈ V z
h , it can be split into two parts,

vh = v̄h + v′h, (18)

where for any T ∈ Th,
v̄h|T = Πc

T (vh|T ), v′h|T = vh|T −Πc
T (vh|T ). (19)

Define a new discrete bilinear form,

at
h(vh, wh) = ah(v̄h, w̄h) + ah(v′h, w′h), ∀vh, wh ∈ V z

h . (20)

The TRUNC element for problem (1) is to find uh ∈ V z
h0 such that

at
h(uh, vh) = (f, vh), ∀vh ∈ V z

h0. (21)

The Bergan element

Now we define an element (T, PT , ΦT ) by
1) T is a triangle.
2) PT = span { λ1, λ2, λ3, λ1λ2, λ2λ3, λ3λ1, (λ1 − λ2)3, (λ2 − λ3)3, (λ3 − λ1)3}.
3) The components of ΦT are:

v(aj), 1 ≤ j ≤ n + 1, (aj − ai)>∇v(ai), 1 ≤ i 6= j ≤ n + 1, ∀v ∈ C1(T ).

We can define the corresponding finite element spaces V b
h and V b

h0 as follows: V b
h = {v ∈ L2(Ω) | v|T ∈

PT , ∀T ∈ Th, v and ∇v are continuous at all vertices of elements in Th }. V b
h0 = {v ∈ V b

h | v and ∇v
vanish at all vertices belonging to ∂Ω}.

For any vh ∈ V b
h , it can be written as

vh = v̄h + v′h (22)

where for any T ∈ Th,

v̄h|T = b1λ1 + b2λ2 + b3λ3 + b4λ1λ2 + b5λ2λ3 + b6λ3λ1 (23)

representing a full quadratic polynomial on T , and

v′h|T = b7(λ1 − λ2)3 + b8(λ2 − λ3)3 + b9(λ3 − λ1)3 (24)
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being a cubic polynomial. Define ṽh by

ṽh|T = Πc
T (vh|T ), ∀T ∈ Th, (25)

where Πc
T given by (17). Define a discrete bilinear form,

ab
h(vh, wh) = a(ṽh, w̃h) + ah(v′h, w′h), ∀vh, wh ∈ V b

h . (26)

The Bergan element for problem (1) is to find uh ∈ V b
h0 such that

ab
h(uh, vh) = (f, vh), ∀vh ∈ V b

h0. (27)

3. A New Z-Type Nonconforming Element

In this section, we give a detailed description of our new Z-type nonconforming element in n-
dimensions (n ≥ 2).

Given an n-simplex T , let q0 be the bubble function defined by

q0 = λ1λ2 · · ·λn+1.

For 1 ≤ i < j ≤ n + 1, we define

qij = λ2
i λj − λiλ

2
j +

(2n− 1)!
n!

( (n− 1)n
n + 1

(λi − λj) +
∑

1≤k≤n+1
k 6=i,k 6=j

(∇λi −∇λj)>∇λk

‖∇λk‖2 (nλk − 1)
)
q0. (28)

A new Z-type nonconforming element, NZT element for short, is defined by (T, PT , ΦT ) with
1) T is an n-simplex.
2) PT = P2(T ) + span{ qij | 1 ≤ i < j ≤ n + 1}.
3) The components of ΦT are:

v(aj), 1 ≤ j ≤ n + 1, (aj − ai)>∇v(ai), 1 ≤ i 6= j ≤ n + 1, ∀v ∈ C1(T ).

Let ν(i) denote the unit out normal of (n − 1)-subsimplex Fi of T (1 ≤ i ≤ n + 1). By certain
computation, we can obtain that

1
|Fi|

∫

Fi

∂p

∂ν(i)
=

1
n

∑
1≤k≤n+1

k 6=i

∂p

∂ν(i)
(ak), 1 ≤ i ≤ n + 1, ∀p ∈ PT . (29)

Lemma 3.1. For NZT element, ΦT is PT -unisolvent.

Proof. Let p ∈ PT and

p(aj) = 0, 1 ≤ j ≤ n + 1; (aj − ai)>∇p(ai) = 0, 1 ≤ i 6= j ≤ n + 1.

We only need to show that p ≡ 0. Let q1, · · · , ql be a basis of P2(T ). Then p can be wriiten as

p =
l∑

i=1

ciqi +
∑

1≤i<j≤n+1

cijqij
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where ci and cij are constants. Set q̃ij = λ2
i λj − λiλ

2
j and

p̃ =
l∑

i=1

ciqi +
∑

1≤i<j≤n+1

cij q̃ij .

Then
p = p̃ +

∑

1≤i<j≤n+1

cij(qij − q̃ij).

It can be verified that

(qij − q̃ij)(ak) = 0, 1 ≤ k ≤ n + 1; (am − ak)>∇(qij − q̃ij)(ak) = 0, 1 ≤ k 6= m ≤ n + 1.

Thus, p̃ satisfies

p̃(aj) = 0, 1 ≤ j ≤ n + 1; (aj − ai)>∇p̃(ai) = 0, 1 ≤ i 6= j ≤ n + 1.

On the other hand, p̃ ∈ P ′3(T ). Thus p̃ ≡ 0, that is,

ci = 0, 1 ≤ i ≤ l; cij = 0, 1 ≤ i < j ≤ n + 1.

It follows that p ≡ 0.

For 1 ≤ i 6= j ≤ n + 1, we define





pij =
1
2
λiλj(1 + λi − λj),

+
(2n− 1)!

2n!

( (n− 1)n
n + 1

(λi − λj) +
∑

1≤k≤n+1
k 6=i,k 6=j

(∇λi −∇λj)>∇λk

‖∇λk‖2 (nλk − 1)
)
q0

pi = λ2
i + 2

∑
1≤j≤n+1

j 6=i

pij .

(30)

Let δij be the Kronecker delta. It can be verified that for 1 ≤ i 6= j ≤ n + 1 and 1 ≤ k 6= l ≤ n + 1,

{
pi(ak) = δik, (al − ak)>∇pi(ak) = 0,

pij(ak) = 0, (al − ak)>∇pij(ak) = δikδjl.
(31)

That is, qi and pij are the nodal basis functions respect to the degrees of freedom. The corresponding
interpolation operator ΠT can be written by,

ΠT v =
∑

1≤i≤n+1

piv(ai) +
∑

1≤i6=j≤n+1

pij(aj − ai)>∇v(ai), ∀v ∈ C1(T ). (32)

For NZT element, we can define the corresponding finite element spaces Vh and Vh0 as follows:
Vh = {v ∈ L2(Ω) | v|T ∈ PT ,∀T ∈ Th, v and ∇v are continuous at all vertices of elements in Th}.
Vh0 = {v ∈ Vh | v and ∇v vanish at all vertices belonging to ∂Ω}.
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We claim that Vh ⊂ H1(Ω) and Vh0 ⊂ H1
0 (Ω). Let vh ∈ Vh, and let F be a common (n − 1)-

dimensional subsimplex of T, T ′ ∈ Th. By definition, the restrictions of vh|T and vh|T ′ on F are all
in P ′3(F ), and they and their first order derivatives are equal at all vertices of F respectively. Thus
vh|T = vh|T ′ on F , that is, vh ∈ C0(Ω̄), and this leads to that vh ∈ H1(Ω). Using similar argument,
we can show vh ∈ H1

0 (Ω) when vh ∈ Vh0.
Given any (n− 1)-dimensional subsimplex F and vh ∈ Vh, let us define the jump of ∇vh across F

as follows:
[∇vh] = ∇vh|T −∇vh|T ′

if F = T ∩ T ′ for some T, T ′ ∈ Th and
[∇vh] = ∇vh|T

if F = T ∩ ∂Ω.
The following lemma is a direct consequence of equality (29) and the definitions of Vh and Vh0.

Lemma 3.2. Let Vh and Vh0 be the finite element spaces corresponding to NZT element. If F is a
common (n− 1)-dimensional subsimplex of T, T ′ ∈ Th, then

∫

F

[∇vh] = 0, ∀vh ∈ Vh. (33)

If an (n− 1)-dimensional subsimplex F of T ∈ Th is on ∂Ω then
∫

F

[∇vh] = 0, ∀vh ∈ Vh0. (34)

4. Convergence Analysis

In this section, we discuss the convergence property of NZT element. Let Vh and Vh0 be the finite
element spaces corresponding to NZT element. First, we consider the error estimates for finite element
spaces.

Theorem 4.1. Let Vh0 be the finite element space corresponding to NZT element. Then there exists
a constant C independent of h such that

inf
vh∈Vh0

3∑
m=0

hm|v − vh|m,h ≤ Ch3|v|3,Ω, ∀v ∈ H3(Ω) ∩H2
0 (Ω), (35)

inf
vh∈Vh

3∑
m=0

hm|v − vh|m,h ≤ Ch3|v|3,Ω, ∀v ∈ H3(Ω). (36)

Proof. For v ∈ H3(Ω) ∩H2
0 (Ω), let wh ∈ L2(Ω) such that ∀T ∈ Th, wh|T ∈ P2(T ) and

∫

T

qwhdx =
∫

T

qvdx, ∀q ∈ P2(T ).

By the interpolation theory, we have

|v − wh|m,h ≤ Ch3−m|v|3,Ω, 0 ≤ m ≤ 3. (37)

Given a set B ⊂ Rn, let Th(B) = {T ∈ Th |B ∩ T 6= ∅ } and Nh(B) be the number of the elements
in Th(B).
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Now we define vh ∈ Vh0 as follows: for any T ∈ Th, if vertex ai of T is in Ω then

vh(ai) =
1

Nh(ai)

∑

T ′∈Th(ai)

(wh|T ′)(ai), ∇vh(ai) =
1

Nh(ai)

∑

T ′∈Th(ai)

∇(wh|T ′)(ai).

Obviously, vh is well-defined. We will show that

|v − vh|m,h ≤ Ch3−m|v|3,Ω, 0 ≤ m ≤ 3. (38)

Let T ∈ Th, by a standard scaling argument, we have

|p|2m,T ≤ Chn−2m
n+1∑

i=1

(
|p(ai)|2 + h2‖∇p(ai)‖2

)
, 0 ≤ m ≤ 3, ∀p ∈ PT . (39)

Set φh = wh − vh. Obviously, φh|T ∈ PT .
If vertex ai of T is in Ω, the definition of vh leads to that

(φh|T )(ai) =
1

Nh(ai)

∑

T ′∈Th(ai)

(
(wh|T )(ai)− (wh|T ′)(ai)

)
.

For T ′ ∈ Th(ai) there exist T1, · · · , TJ ∈ Th(ai) such that T1 = T , TJ = T ′ and F̃j = Tj ∩ Tj+1 is
a common (n − 1)-dimensional subsimplex of Tj and Tj+1 and ai ∈ F̃j , 1 ≤ j < J . By the inverse
inequality, we have

∣∣∣(wh|T )(ai)− (wh|T ′)(ai)
∣∣∣
2

=
∣∣∣

J−1∑

j=1

(
(wh|Tj )(ai)− (wh|Tj+1)(ai)

)∣∣∣
2

≤ C

J−1∑

j=1

∣∣∣(wh|Tj )(ai)− (wh|Tj+1)(ai)
∣∣∣
2

≤ Ch1−n
J−1∑

j=1

∣∣∣wh|Tj − wh|Tj+1

∣∣∣
2

0,F̃j

≤ Ch1−n
J−1∑

j=1

( ∣∣∣v − wh|Tj

∣∣∣
2

0,F̃j

+
∣∣∣v − wh|Tj+1

∣∣∣
2

0,F̃j

)

By the interpolation theory, we obtain

∣∣∣(wh|T )(ai)− (wh|T ′)(ai)
∣∣∣
2

≤ Ch6−n
J∑

j=1

|v|23,Tj

Since Nh(T ) is bounded, we have

|(φh|T )(ai)|2 ≤ Ch6−n
∑

T ′∈Th(T )

|v|23,T ′ (40)
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If vertex ai of T is on ∂Ω then there exists T ′ ∈ Th(ai) with an (n− 1)-dimensional subsimplex F
of T ′ on ∂Ω and ai ∈ F . By the definitions of wh and vh, we have

|(φh|T )(ai)| = |(wh|T )(ai)− (wh|T ′)(ai) + (wh|T ′)(ai)| ≤ |(wh|T )(ai)− (wh|T ′)(ai)|+ |(wh|T ′)(ai)|.

By the inverse inequality and the interpolation theory

|(wh|T ′)(ai)|2 ≤ Ch1−n|wh|T ′ |20,F = Ch1−n|v − wh|T ′ |20,F ≤ Ch6−n|v|23,T ′ .

By a similar analysis for |(wh|T )(ai)− (wh|T ′)(ai)|, we conclude that (40) is also true in this case.
Similarly, we can show that

n+1∑

i=1

‖∇(φh|T )(ai)‖2 ≤ Ch4−n
∑

T ′∈Th(T )

|v|23,T ′ . (41)

Combining (39), (40) and (41), we have

h2m|φh|2m,T ≤ Ch6
∑

T ′∈Th(T )

|v|23,T ′ .

Summing the above inequality over all T ∈ Th, we obtain that

h2m|φh|2m,h ≤ Ch6
∑

T∈Th

∑

T ′∈Th(T )

|v|23,T ′ .

Consequently
h2m|φh|2m,h ≤ Ch6|v|23,Ω. (42)

Inequality (38) follows from (42) and (37).
Using similar argument, we can show (36).

Lemma 4.2. Let Vh0 be the finite element space corresponding to NZT element. Then there exists a
constant C independent of h such that for v ∈ H3(Ω)

|ah(v, vh)− (∆2v, vh)| ≤ Ch|v|3,Ω|vh|2,h, ∀vh ∈ Vh0. (43)

Proof. Let vh ∈ Vh0 and φ ∈ H1(Ω). Given T ∈ Th and an (n − 1)-dimensional subsimplex F of T ,
let P 0

F : L2(F ) → P0(F ) be the L2-orthogonal projection.
Let i, j ∈ {1, 2, · · · , n}. By Lemma 3.2 and Green’s formula we have

∑

T∈Th

∫

T

(
φ

∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)
=

∑

T∈Th

∫

∂T

φ
∂vh

∂xj
νi =

∑

T∈Th

∑

F⊂∂T

∫

F

φ
∂vh

∂xj
νi

=
∑

T∈Th

∑

F⊂∂T

∫

F

φ
(∂vh

∂xj
− P 0

F

∂vh

∂xj

)
νi

=
∑

T∈Th

∑

F⊂∂T

∫

F

(φ− P 0
F φ)

(∂vh

∂xj
− P 0

F

∂vh

∂xj

)
νi
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Using the Schwarz inequality and the interpolation theory we obtain that

∣∣∣
∑

T∈Th

∑

F⊂∂T

∫

F

(φ− P 0
F φ)

(∂vh

∂xj
− P 0

F

∂vh

∂xj

)
νi

∣∣∣

≤
∑

T∈Th

∑

F⊂∂T

‖φ− P 0
F φ‖0,F

∥∥∥∂vh

∂xj
− P 0

F

∂vh

∂xj

∥∥∥
0,F

≤ C
∑

T∈Th

h|φ|1,T |vh|2,T ≤ Ch|φ|1,Ω|vh|2,h.

Consequently, for i, j ∈ {1, 2, · · · , n},
∣∣∣

∑

T∈Th

∫

T

(
φ

∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)∣∣∣ ≤ Ch|φ|1,Ω|vh|2,h, ∀φ ∈ H1(Ω), ∀vh ∈ Vh0. (44)

Using (44) and the following equality,

ah(v, vh)− (∆2v, vh) =
n∑

i=1

∑

T∈Th

∫

T

(
∆v

∂2vh

∂x2
i

+
∂∆v

∂xi

∂vh

∂xi

)

+
∑

1≤i 6=j≤n

∑

T∈Th

∫

T

( ∂2v

∂xi∂xj

∂2vh

∂xi∂xj
+

∂3v

∂x2
i ∂xj

∂vh

∂xj

)

−
∑

1≤i 6=j≤n

∑

T∈Th

∫

T

(∂2v

∂x2
i

∂2vh

∂x2
j

+
∂3v

∂x2
i ∂xj

∂vh

∂xj

)
,

(45)

we obtain the conclusion of the lemma.

Theorem 4.3. Let Vh0 be the finite element space corresponding to NZT element, and let u and uh

be the solutions of problems (3) and (5) respectively. Then

lim
h→0

‖u− uh‖2,h = 0, (46)

and there exists a constant C independent of h such that

‖u− uh‖2,h ≤ Ch|u|3,Ω (47)

when u ∈ H3(Ω).

Proof. From Lemma 3.2 we see that NZT element passes the F-E-M-Test in [12]. Hence NZT element
passes the generalized patch test. By Lemma 3.2 and the fact that H2

0 (Ω) is the closure of C∞0 (Ω) in
norm ‖ · ‖2,Ω, we obtain

lim
h→0

inf
vh∈Vh0

‖v − vh‖2,h = 0, ∀v ∈ H2
0 (Ω).

Thus (46) is true by the result in [16].
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By the generalized Poincare-Friedrichs inequality [17] and the Strang Lemma (see [6] or [15]), we
have

‖u− uh‖2,h ≤ C

(
inf

wh∈Vh0
‖u− wh‖2,h + sup

wh∈Vh0 wh 6=0

| ah(u,wh)− (f, wh)|
‖wh‖2,h

)
.

Then (47) follows from (35) and (43).
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