Nodal Auxiliary Space Preconditioning
in H(curl) and H(div) spaces

R. Hiptmair and J. Xl

Research Report No. 2006-09
May 2006
Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule
CH-8092 Ziirich
Switzerland

I Department of Mathematics, Pennsylvania State University, State College, PA 16802, USA



Nodal Auxiliary Space Preconditioning
in H(curl) and H(div) spaces

R. Hiptmair and J. Xl
Seminar fiir Angewandte Mathematik
Eidgenossische Technische Hochschule

CH-8092 Ziirich
Switzerland

Research Report No. 2006-09 May 2006

Abstract

In this paper, we develop and analyze a general approach to preconditioning linear sys-
tems of equations arising from conforming finite element discretizations of H(curl,Q)- and
H(div,Q)-elliptic variational problems. The preconditioners exclusively rely on solvers for
discrete Poisson problems. We prove mesh-independent effectivity of the preconditioners by
appealing to the abstract theory of auxiliary space preconditioning. The main tool are dis-
crete analogues of so-called regular decomposition results in the function spaces H(curL,Q)-
and H(div,2). Our preconditioner for H(curl) space is similar to an algorithm proposed in
[R. BECK, Algebraic multigrid by component splitting for edge elements on simplicial trian-
gulations, Techn. Report SC 99-40, ZIB, Berlin, Germany, 1999.].

IDepartment of Mathematics, Pennsylvania State University, State College, PA 16802, USA



1. Introduction. On a polyhedron 2, scaled such that diam(2) = 1, we con-
sider the variational problems

u € H(curl) : (curlu,curlv), +7(u,v), = (f,v), VveH(curl,Q), (1.1)
ue H(div) : (divu,divv)y+7(u,v), = (f,v), VveH(div,Q), (1.2)

where f is a vector field in (L2(2))% and 7 > 0. We admit both homogeneous natural
and essential boundary conditions, that is, H(div, ) and H(curl, Q) can stand for
either H(curl, Q)/H(div, Q) or Hq(curl, Q)/Ho(div, ), respectively. The parameter
7 controls the relative weight of the second and zero order terms in the bilinear forms.

More generally, the bilinear forms of (IIl) and (C2) could feature spatially varying
coefficients. So far, our theoretical analysis can only take into account variations in
the coeflicients very crudely. Thus, for the sake of simplicity, we have decided to
focus on the constant coefficient case. Variable coeflicients will be covered in some
numerical experiments.

Variational problems of the form (Il) and (CZ) arise in different applications,
for instance,

e (CT) as variational formulation of the eddy current model in computational
electromagnetics [9],

e (L2 in the context of equivalent operator preconditioning for mixed finite
element and FOSLS schemes for 2nd-order elliptic problems [3].

Meanwhile, geometric multigrid approaches to discrete linear problems arising
from the Galerkin finite element discretization of (1) and (&) are well known
@ 2, 19, 22]. They supply mesh independent iterative solvers and precondition-
ers, provided a hierarchy of uniformly shape regular meshes is available. Algebraic
multigrid (AMG) methods that dispense with this requirement have been proposed
in [29, [7], but they noticably deteriorate on fine meshes, let alone permit a com-
prehensive theoretical analysis. The auxiliary space approach [34] allows to harness
powerful and asymptotically optimal AMG methods developed for discrete second or-
der elliptic boundary value problems in order to get fast iterative solvers for discretized
H(curl, Q)- and H(div, Q)-elliptic problems. As these auxiliary discrete second order
elliptic boundary value problems arise from the use of Lagrangian finite elements,
which are known as nodal finite elements in computational electromagnetism [10], we
have tagged this special auxiliary space technique as nodal.

There is a close relationship between the variational problems (1) and (LCZ),
cf. [20), Sect. 2], which allows a fairly parallel treatment of both. Thus we opt for a
unified presentation, starting from an abstract variational problem

ue H(D,Q): a(u,v):=(Du,Dv),+7(u,v), = f(v) Vu,ve#H(D,Q), (1.3)

where f is a continuous linear functional on the Hilbert space #(D, Q). Relating (L3)
to (L)) and (C2) discloses the meanining of D, f and H(D, ), see also Tab. Bl The
bilinear form a(-,-) induces the energy norm

VI :=a(v,v), veH(D,Q), (1.4)

which is merely a semi-norm, if 7 = 0. The energy norm is closely related to the
Hilbert space norm on #(D, )

V1B 0.0 = IDVIEaoy + IVI2ay v € H(D,9). (1.5)
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The principal challenge confronted in the development of preconditioners for dis-
cretized versions of (1)) and (L) is the presence of a large kernel of D: in contrast
to the case D = grad, these kernels have infinite dimension for D = curl (compris-
ing, e.g., all gradients) and D = div (comprising, e.g., all rotations). This entails a
separate treatment of these kernels by the preconditioner, which can exploit the fact
that in suitable curl- and div-conforming finite element spaces the kernels possess a
convenient, representation through potentials. On the complement of the kernel the
variational problem should display strong ellipticity and be amenable to standard
elliptic preconditioning techniques, cf. the reasoning in [T9, Sect. 3] and [5], Sect. 5].

Roughly speaking, on the complement of the kernels, the differential operators
underlying (1) and (CZ) can be expected to be spectrally equivalent to a second-
order differential operator applied to the components of the vectorfields. However,
using a discrete second-order differential operator as preconditioner is not possible
immediately, because it does not fit the curl- and div-conforming finite element space.
This is why we need the auxiliary space preconditioning technology [34] to link the
finite element spaces on which ([[3J) is discretized and the vectorial H!(f2)-conforming
finite elements that underlie the preconditioning operator.

The main rationale for pursuing this method in [5] was that the evaluation of
preconditioner boils down to inverting discrete scalar second-order elliptic operators
approximately. Fast algebraic multigrid methods for this purpose abound, see [32,
Appendix A]. Thus, algebraic multigrid codes can be harnessed for H(curl, 2)- and
H(div, Q)-elliptic problems.

2. Auxiliary space preconditioning: abstract theory. In this section, we
give a self-contained description of preconditioning techniques based on fictitious or
auxiliary spaces as developed in [27, [I8, 34].

Let V stand for a real Hilbert space with inner product a(-,-) and (energy) norm
||/l 4- The fictitious space method targets linear variational problems

ueV: a(u,v)=fv) YweV. (2.1)

Its main building blocks are
1. a fictitious space V, that is, another real Hilbert space equipped with the
inner product @(-,-), which induces the norm ||-||z,
2. a continuous and surjective linear transfer operator IL : V ~ V.
We tag dual spaces by ’, adjoint operators by *, and use angle brackets for duality
pairings. Then, writing A : V + V' and A : V — V' for the isomorphisms associated
with a(-,-) and a(-,-), respectively, the fictitious space preconditioner is given by

B=IoA loll*: V'V, (2.2)

Obviously, the operator B is associated with a symmetric bilinear form on the dual
space V'. The next lemma confirms that this form is actually positive definite, which
renders B a valid preconditioner.
LEMMA 2.1. IfI1 : V = V is surjective, then the operator B is an isomorphism.
Proof. II being surjective means that it is an open mapping and IT* is injective.
As @ is positive definite, we infer

(£,Bo)yr iy = (I, A %), o >0 Ve V' \{0}.

From this we conclude the assertion of the theorem. O
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The next theorem is known as the fictitious space lemma [27], for which we provide
the elementary proof for the sake of completeness.
THEOREM 2.2 (Fictitious space lemma). Assume that I is surjective and

Jeoo>0: WYweV: FweV: v=I A |pllz<clll,, (2.3)
e, >0: |0, <ealolly VoeV. (2.4)

Then
o2 |lvl% < a(BAv,v) < ||y, YweV. (2.5)

Proof. The proof only makes use of the Cauchy-Schwarz inequality:

a(BAv,v) < a(BAv, BAv)'/?a(v,v)"/?
= q(TTA~T* Av, TA M T* Aw) /2 [|o| ,
< ¢ a(ATHT* Aw, A7HIT* Aw) /2 ||o|

— ¢ (IT*Aw, AT AGY L (ol = 1 a(BAw, )72 [[ol 4 -

Next, we rely on the assumption Z3) and get

a(v,v) = (Av,TI)y,, , y = (TI*Av, D) 5 = (A" TI*Av, D)
< GATIT*Av, AT TT* Av) 72 ||0]|5 < co a(BAw, )7 ||v]| 4 -

O
From Z3) we immediately get an estimate for the spectral condition number of
the preconditioned operator A:

Amax (BA)

k(BA) := 7)\min(BA)

< (cocr)” . (2.6)

COROLLARY 2.3. Under the assumptions of the previous theorem, we have the
following estimate for the spectral condition number

K((HBH*)A) < /~e(I§A)(cocl)2 ,

where B : V' — V is supposed to be a preconditioner for A.
Proof. This result is a consequence of the obvious inequality

k((TIBIT*)A) < k(BA)k(BA) .

O
The auxiliary space method as pioneered in [34] can be viewed as a fictitious space
approach relying on the special choice

V=VxW x---xWy, (2.7)

where W1,..., Wy, J € N, are Hilbert spaces endowed with inner products @;(-,-),
j=1,...,J. They provide the so-called auxiliary spaces.

A distinctive feature of the auxiliary space method is the presence of V' in (Z7),
but as a component of V' the space V will be equipped with an inner product s(-,-)
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different from a(-,-). The operator S : V — V' induced by s(-,-) on V is usually called
the smoother. In other words, the auxiliary space method adopts the fictitious space
approach with the inner product

/‘7:(1)0:“1;"'7/0.])6‘/7
v €V, ’U)J'EWJ'.

a(v,9) := s(vo, vo) +Z_1 (wj,w;) , (2.8)

Furthermore, for each W; we need a linear transfer operator II; : W; — V, from
which we build the surjective operator

Oi=IdxIj x---xI;:Ve=V. (2.9)

Now, all components of the auxiliary space preconditioner are in place and the formula

&2) becomes
J _
B=S"1+ ijl I o A7 oI} . (2.10)

The verification of the assumptions of Thm. for the preconditioner boils down
to three steps:
1. find bounds ¢; > 0 for norms of the transfer operators II;:

||HjU]j||A < cjﬁ(wj,wj)l/2 , Wj € Wj , (2.11)
2. investigate continuity of S=1:
Jes >0: ol < ess(v,0)7? YoeV, (2.12)

3. establish that for every v € V there are vop € V and w; € Wj such that
v =1+ Z_.j]:1 ij]' and

J
Za wj,wy) < cglloly (2.13)

where ¢y > 0 should be small and independent of v.
Then, the assertion of Thm. translates to

K(BA) < cg(c2+ci+ -+ +cF) . (2.14)

It goes without saying that in the spirit of Cor. 23, the bilinear forms @; on the
auxiliary spaces W; can be replaced with spectrally equivalent bilinear forms b], ie.,
we may use precondltloners B for the operators A The impact of this approxnnatlon

can be gauged as in Cor.

In the applications we have in mind all the spaces will be finite element spaces and
will feature bases comprised of locally supported functions. Plugging basis functions
into the bilinear forms a(-,-) and @;(-, ), we obtain the Galerkin matrices A € RV:V,
N :=dimV, A; € RY:"Ni| N; := dimW;. The smoother is provided by local relax-
ation procedures: for instance, if Jacobi smoothing is used, an algebraic representation
of the associated operator S is given by the diagonal part D 4 of the matrix A. Hence,
the algebraic version of the preconditioner from (1) reads

J
B=D;'+Y P/A; PT, (2.15)
j=1
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where P; € RV:Mi is the matrix representation of IT;. When using symmetric Gauss-
Seidel smoothing D" has to be replaced with L' + L7 — L' AL,”, where L4
stands for the lower triangular part of (the symmetric matrix) A.

Remark 1. Naturally, we can also try to apply the successive subspace correction
idea [33] to the the multiple auxiliary spaces to obtain the following iterative method
for the operator equation Au = f, f € V":

u+u+SHf—Au) u(—u+HjEjH;f(f—Au), 1<j<J. (2.16)

It is easy to see that a sufficient condition for the convergence of this successive
auxiliary space method is

w

Amax(BjA;) < 1<j<J. (2.17)

Cj ’
for some 0 < w < 2. Under the above conditions, the convergece rate of the iteration
(T18) depends only on cg, ¢5, ¢; (1 < j < J),w and J.

3. Regular decompositions. The abstract theory of the previous section has
identified uniform stability of decompositions, ¢f. [ZI3), as key prerequisite of success-
ful auxiliary space preconditioning. This connects well with the pivotal role of certain
stable decomposition in the analysis of variational problems linked with H(curl, Q)
and H(div, Q) [6, 14, 12]. In the subsequent discussion, to avoid topological obstruc-
tions, we restrict ourselves to “simple” domains:

ASsuMPTION 3.1. We assume that Q2 is homotopy equivalent to a ball.

This makes it possible to use potential representations for the kernels of the dif-
ferential operators:

LeEmMMA 3.1 (Exact sequence property).

H(curl0,Q) := {v € H(curl,Q) : curlv =0} = grad H'(Q?) ,
Hy(curl0,Q) := {v € Hy(curl,) : curlv =0} = grad H}(Q?) ,
H(div0,Q) := {v € H(div, Q) : divv =0} = curlH(curl, Q) ,
Ho(div 0,9Q) := {v € Ho(div, Q) : divv = 0} = curl Hy(curl, Q) .

Ass. [T =

In the unifying framework, this Lemma can be recast into
Ass. BN = H(D0,Q):={veH([D,Q): Dv=0}=D"H(D,Q), (3.2)

where D~ is the differential operator characterizing the potential space H(D™,{2), see
the “translation table” Tab. Bl

Remark 2. If Ass. Blfails to hold, De Rham cohomology theory teaches that the
potential representations will only be available up to contributions from cohomology
spaces of a small and finite dimension. They will not matter much for the overall
performance of a preconditioner and so we decided to forgo a discussion of general
topologies.

The starting point for the development of the auxiliary space preconditioners
presented in this paper are theoretical results that, roughly speaking, state that the
gap between (H'(2))? and H(D, ) can be bridged by contributions from the kernel
of D. A rigorous statement is made by the following so-called regular decomposition
results. In light of the unified treatment that we aim at, operators with similar
function will be denoted alike, though they are different in curl- and div-context,
respectively.



D H(D, Q) D~ #(D™,Q) D+ H!

H(Q) {const} H(Q)

grad ) Td {0} ol H©
H(curl, Q) HY(Q) . (H'())?
curl Hy(curl, Q) grad HL(Q) div (Hy())?
div H(div, Q) curl H(curl, Q) 0 (HY(Q))?
Hy(div, Q) TABIE}? (?)c;lrl, Q) (H(Q))?

Translation table for unifying notational framework, generic case

LeMMA 3.2 (Existence of regular vector potentials, Lemma 2.5 in [21]). There
is a continuous mapping L : {v € H(div,R?),divv = 0} — (HY(R®))® such that
curllv = v and divLv = 0.

LEMMA 3.3 (Regular decomposition of H(curl, ), Lemma 2.4 of [21]). There
are continuous maps R : H(curl, Q) — (H'(Q))?, Z : H(curl, Q) — H'(Q) such that
R+ grad oZ =Id on H(curl,Q) and Ru = 0 & curlu =0.

LEMMA 3.4 (Regular decomposition of Hy(curl, §2), see Sect. 2 of [28]). There are
continuous linear operators R : Hy(curl, Q) — (H}(Q))3, Z : Hy(curl, Q) = H(Q)
such that R+ grad oZ = Id on Hy(curl, Q) and Ru =0 < curlu = 0.

COROLLARY 3.5. Both operators R introduced in Lemma [Z3 and Lemma
satisfy

LeEMMA 3.6 (Existence of regular velocity fields, Cor. 2.4 in [I7]). There is a
continuous linear operator K : L§(Q) := {v € L*(Q), [, vdz = 0} — (H}(Q))® such
that divoK = Id on L3().

LEMMA 3.7 (Regular decomposition of H(div,Q)). There are continuous linear
operators R : H(div,Q) — (H(Q))3, Z : H(div,Q) — (HY(Q))® such that R +
curloZ = Id on H(div,Q) and Ru =0< divu = 0.

Proof. For u € H(div,Q) perform a trivial extension by zero of divu to an
element of L?(R?). By elementary Fourier transform techniques, see [I7, Sect. 3.3],
we establish the existence of w € H(div, R?) such that divw = divu on Q. Lemma Bl
finishes the proof. O

LemMMA 3.8 (Regular decomposition of Hg(div,)). There are continuous linear
operators R : Ho(div,Q) — (H3(Q))3, Z : Ho(div,Q) — (HE(Q))? such that R +
curloZ = Id on Hy(div,2) and Ru=0< divu = 0.

Proof. Oberserve that div Ho(div, ) C LZ(9) and use Lemma B8 plus Lemma Bl
d

COROLLARY 3.9. Both operators R introduced in Lemma [3.7 and Lemma [Z3
satisfy

3C=C(Q) >0:  [Rvligq) < Clldivvllag Vv € H(div) .

Using the operator symbols from TableBl we can summarize the above assertions
in the following lemma.



LeEMMA 3.10 (Stable regular decomposition).

IR € L(H(D,Q),H"), R+D oZ=Id on#(D,Q),
3Z € L(H(D, ) H(D™,Q)), : IRV 10y S ClIDV]12q) Vv € H(D,Q),
IC=c@) > 1Zpllyo- o) < ClIPllnp,e VYpeH(D,Q).

In light of the fictitious space lemma Thm. Z2 the assertion of Lemma B0
attains a new twist: writing (Id — A) : H' — (H')' for the (second-order elliptic)
operator associated with the inner product of ', the regular decomposition confirms
that

B:=lo(ld—A)'ol*+D o(ld+(D7)*D7) ' o (D7)* (3.3)

will supply a “preconditioner” for the operator A : H(D,Q) — H(D, Q)" induced by
the bilinear form of (). Here, | designates the trival injection | : H' — H(D, Q)
arising from the continuous embedding H' C #H(D,Q). Applying Thm. and
(£8) and recalling that [|¥||;;p o) < |®[l 1), ¥ € H(D7,Q), and [ID7 ¢l p o) <
lollayo-0)> ¥ € H(D™, ), we readily conclude for 7 =1

r(BA) < |IRI* + 1Z||* . (3-4)

The main objective of this paper is to get a discrete version of the above result.

The regular decompositions outlined above have been widely used in functional
analysis and numerical analysis connected with (D, ). In the study of function
spaces and traces, some of them first appeared in [6] and were later used in [T5], T2].
They have found their way into the theoretical analysis of multilevel methods [22],
domain decomposition methods [28], and boundary element methods [23].

A major shortcoming of the regular decompositions summarized in Lemma BI0 s
their lack of L?(f2)-stability. This is obviously guaranteed in the case of the classical
L?(2)-orthogonal Helmhotz decomposition

H(D, Q) = H(D0,Q) ® H(DO,Q)* . (3.5)

However, the L?()-orthogonal complement generaly fails to belong to H'() or
(H'(Q))3?, respectively. According to [I7, Sect. 3.4] this can only be taken for granted,
if —A with suitable homogeneous Dirichlet or Neumann boundary conditions is 2-
regular on Q (see [I] for details). We will refer to this situation as “the 2-regular
case”. Conversely, the Table Bl gives the meaning of the symbols in the generic
case.

However, use of the Helmholtz decomposition ([BH) entails relaxing the boundary
conditions in H (D™, ), when boundary conditions are imposed on H(D,2). More
precisely, in the 2-regular case the following slightly modified meanings of the nota-
tions from Table Bl will be assumed:

D H(D, Q) D~ H(D,Q) Dt H

curl Hy(curl,Q) grad H(Q) div. H}(Q) (3.6)
div. Ho(div,2) curl Hp(curl,) 0 HL(Q)
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where
H%(Q) = (H1 (Q))3 NHy(curl, ) Hi(ﬂ) = (Hl(Q))3 NHy(div,Q) .

With (B3) in mind, in the 2-regular case, the operators Z and R from Lemma (BI0)
can be chosen to satisfy

_ 2
ID”Zv (o) + IRVIIZ2) = IVlI72q) Vv € H(D,Q). (3.7)

In particular, Z and D~ o Z turn out to be the L?(f2)-orthogonal projections parallel
to H(DO, ) and onto H(DO, (), respectively. The estimates of Cors. and BH
[1, Sect. 2] remain valid. Thus, in the 2-regular case, Lemma B0 still holds with
operators Z and R satisfying (3.

Remark 3. All the above regular decompositions are global in the sense that the
estimates of Cors. B9 and B do not hold on subsets of .

Remark 4. Convexity of Q2 will ensure the 2-regular case. Moreover, for a convex
Q, formulas (2.8) and (2.3) in [I6] involve the estimate

|RV|H1(Q) < ||DV||L2(Q) ) (3.8)

where |1 (q) designates the componentwise H 1(Q)-seminorm of a vectorfield.
Remark 5. If Q is a polyhedron (i.e., has flat faces), then we learn from Thm. 2.3
in [16] that

leurlullxq) + divull}a) = lgradulfag Yue HI@QUHLD).  (9)

Whenever the defintion of R is based on the Helmholtz decomposition it will map into
either H} (Q) or H. () in the 2-regular case. Thus, we conclude that on a polyhedron
in the 2-regular case

IRV[| 1oy < Vllpgy YW EHD.Q) = [RI=1. (3.10)

4. Finite element spaces. Essentially, the analysis of this paper applies to
all the finite element subspaces of H(curl, 2) and H(div, ) that can be viewed as
discrete differential forms. This includes the so-called first and second families of edge
elements |25, 26] and Raviart-Thomas elements and the BDM elements [I1, Ch. 4].
To keep the presentation focused, we only discuss the lowest order cases.

Examples for the lowest order #(D,(2)-conforming finite element spaces on a
tetrahedral mesh Ty, of Q are listed in Table LTl They can be defined by

1
Vi(grad) := {vy, € glggg s opg(X) =a+b-x,a€R,be R VK € T},
0

. H(curl,Q) _ 3
Vip(curl) := {v, € Ho(curl, 0) Vik(X) =a+xxb,a,beR’, VK € T},
. L H(le,Q) A _ 3
Vi (div) := {vp, € Ho(div, Q) vik(x)=a+px,acR’,B€R VK € Tp} .
L2(Q
Vh(O) = {vh € LZ(Q) : ’Uh\K(x) =a,ac€ R: VK € 777,} .
()



D H(D, ) Vi(D) C H(D, Q) FE space reference
H'(Q)

grad HI(Q) Vi (grad) linear Lagrangian FE 3]
curl }Iilo (((; 111:;.11’,{3) Vi (curl) edge elements 23]
div II-iIO ((ddl:";’%)) Vi (div) face elements [25]
0 ﬁggg; V1(0) p-w. constants
TABLE 4.1

Finite element spaces of Whitney forms

For a thorough discussion the reader is referred to [21, Ch. 3] and [25]. Resorting to
a unified notation, we use the symbol V(D) for these spaces. Its concrete meaning
in different contexts is specified in Table Bl

A fundamental property of these families of finite element spaces is that they
permit a discrete counterpart of ([B2):

Ass.BEl =  Vi(DO) := {v, € V4(D): Dv, =0} =D~ V,(D"). (4.1)

These discrete potentials can even be chosen in a stable manner: with constants
only depending on 2, D and the shape regularity of 7,

Vv € Vi(DO):  3pn € Va(D7): v =D7"pr and |lpnllre) < IVallrzy -
(4.2)

For face elements this is a consequence of discrete Poincaré-type inequalities for
Vi (curl), see 21, Thm. 4.7]. For D = curl and D~ = grad, [32) is just standard
Poincaré-Friedrichs inequalities in H'(Q)/R and H}(Q2), respectively.

All the finite element spaces V3 (D) are equipped with bases B(D) comprising
locally supported functions, see [Z1, Sect 3.2]. These bases are L?-stable in the sense
that

vi= »_ vb,vbespan{b}, Y [vbllizq) ® IVallia) Vv € Va(D),
beB(D) beB(D)
(4.3)

with constantd] only depending on the shape-regularity of T, see [24] Sect. 2].

The spaces Vi, (D) also feature idempotent nodal interpolation operators 1'[5 whose
range is V(D). In the case D = grad this is plain linear interpolation. For D = curl
the interpolation is based on path integrals along edges

mlv=>" [v-di-b,, (4.4)

ecly €

1By the symbols ~, <, and 2> we designate two- or one-sided inequalities, respectively, that hold
up to multiplication of one side with a positive constant. In inequalities involving norms on function
spaces this constant must not depend on the choice of functions. It may not depend on other problem
and discretization parameters and this will always be made clear.
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e

Fi1c. 4.1. Symbolic notation for local degrees of freedom for Vi (grad), Vj(curl), Vj(div) and
Vi (0) (left to right)

where &}, is the set of (interior) edges of T, and b, is the edge element basis function
associated with the edge e. For D = div, the interpolation relies on face fluxes:

mivy = Z ‘/fv-dS-bf, (4.5)

FEFn

with F, designating the set of (interior) faces of 7. Finally, the “interpolation” onto
V1 (0) agrees with L2(Q)-projection. All these operators are well defined for continuous
functions/vector fields, unbounded on H(D, ) (except for V}4(0)), and they possess
the exceptional commuting diagram property

DoIl? =1 oD on domain of IT, , I} := H,[l)+ . (4.6)
A concise way of writing (1) and (H) is through combined exact sequencies and

commuting diagrams:

0 —— =) =24, (c>@Q)? ==L (c>Q)? Ly coQ) — 0

lnﬁrad Jrnzurl Jvniiv lng

0 —— Vi(grad) =24 Vi(curl) —5 Vi(div) —2% 14000 —— 0.
We write h € L>(Q) for the piecewise constant meshwidth function, which as-
sumes value h g := diam(K) in each cell K of ;. Using this function, we can state
the following interpolation error estimate, see [21], Sect. 3.6] and |21, Lemma 4.6]:
LeEMMA 4.1. The interpolation operators H,? are bounded on {v € H' Dv €
Vu(DH)} € H' and, with constants merely depending on D and the shape regularity
of Ty, they satisfy

[A~1(Td ~TR)®| 1y S ¥y Y €H', Dv € Vi(DF). (4.7)

Simple affine equivalence techniques also yield the inverse estimate
||Dvh||L2(Q) 5 ||h'_lvh||L2(Q) Vv € Vh(D) ’ (48)

with a constant only depending on D and the shape regularity of the mesh.

The role of the discrete auxiliary space will be played by the finite element space
S, C HM' of continuous functions or vectorfields, whose Cartesian components are
piecewise linear. We point out that

DS, c DV,(D), D € {grad,curl,div}. (4.9)
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Thanks to the commuting diagram property, we immediately conclude
DR ¥, =II/D¥, =D¥, V¥, €S,. (4.10)

Moreover, straightforward scaling arguments bear out that, with constants only de-
pending on the shape regularity of 7,

||DHI?‘I”1||L2(Q) 5 |‘I’h|H1(Q)> ||HE\I’h“L2(Q) 5 ”\IthLZ(Q) V¥, € Sh . (411)

Finally, we recall the surjective and idempotent quasi-interpolation operators for
Lagrangian finite element spaces introduced in [30]. We may apply them to the
components of vector fields separately. In the generic case, see Table Bl this gives
rise to the projectors Qp : H! — Sp, which inherit the continuity

|

respect possible boundary values in the sense that Q,(HZ())® C (HL())3, and
satisfy the local projection error estimate

Hh*l(éh _ Id)qf)

S| VeH'. 4.1
T (413
In the two regular case, see (8), we will replace Q; with the L2(Q)-orthogonal

projections Qp, : (L2(£2))® — Si. From interpolation arguments we readily infer the
estimate

“hil(Qh - Id)‘I’HL2(Q) 5 ”‘IIHHl(Q) NANC Hl ) (414)

but this time, in contrast to {I3)), the constants will also depend on the quasi-
uniformity of the mesh. So, h in {I4)) should be read as the global meshwidth of 7j.
The approximation property also involves the continuity

1Pl 10y S 1By VT EH' (4.15)

again, with quasi-uniformity of the mesh also entering the constants.
Summing up, whenever we can take quasi-uniformity of the meshes for granted,
Qp, can replace Qp, with the extra benefit of L?(Q)-continuity.

5. Discrete regular decompositions. Now, let us derive a discrete version of
the above regular decomposition results of Sect. First, we focus on the generic
case, see Table Bl We fix a v, € V},(D) and use the stable regular decomposition of
Lemma B0 to split it according to

vi=%+Dp, ¥:=RvyeH', p:=ZvyeH(D,Q). (5.1)
We already known that the functions ¥ and p satisfy

||‘I’||H1(Q) S ||DVh||L2(Q) ) ||p||L2(Q) S ||Vh||H(D,Q) ) (5.2)

with constants only depending on 2.

So far, (BJ)) is useless in the context of practical fictitious space preconditioning,
because both ¥ and p fail to be finite element functions. The challenge is to convert
(B) into a purely discrete decomposition without squandering the stability expressed

11



by (B2). This can only be achieved by incorporating another “high-frequency” con-
tribution. Eventually, that forces us to incorporate a smoothing procedure into the
algorithm.

LEMMA 5.1. For any vy, there is ¥y € Sp, pp € Vo(D7), and vy € Vi(D) such
that

vy =Vp + Hg‘I’h +D 7 py, (5.3)
and
Z1~ 12
||h 1vh“L2(Q) + ||‘I’h||ip(9) ~ ||DVh||i2(Q) ) ||ph||’H(D,Q) S ||Vh||H(D,Q) - (54)

The constants are allowed to depend on 2 and the shape regularity of the mesh.
Proof. First, note that in (&) D¥ = Dvj, € V,(D%), and, owing to Lemma ET}
HQ\II is well defined. Further, the commuting diagram property implies

DOP¥ =T;D¥ =D¥ = D(Id-T})¥=0. (5.5)
This confirms that the third term in the splitting
T =T2(¥ — Q,¥) + IPQ, ¥ + (Id — 1Y) ¥ (5.6)

actually belongs to the kernel of D. By (@Il), we conclude

JgeH(D™,Q): (Id-T)¥ =D"g¢, (5.7)
and (1) together with (B2) yields
||h*1D*q||L2(Q) =||ptId - HE)\I'HLQ(Q) S Il SIDVRll2 ) - (5-8)

Thus, we can define the terms in the decomposition (B3) as

Vp = T2(¥ — Q,¥) € V(D) (5.9)
v, = éh‘l‘ €Sy, R (5.10)
D7 pr:=D"(p+q) prneVu(D7). (5.11)

Indeed, D~ (p + q) € V(D) such that we can add a contribution from H(D~,Q) to
p+ ¢ and obtain a discrete function. Thanks to (Z) we can guarantee ||ph||L2(Q) S
1D~ prll12(q) this will not affect the decomposition. The stability of the decomposition
E3) can be established as follows: first, make use of Lemma F.1l and @I3) to obtain

|Bn oy < [P TR (@ = Qu®)|| |+ B (1 - Qn)¥|

L2(Q) L*(Q)

S H(Id—éh)‘I’HH + ¥l g1 ()

)
< ||'I’||H1(Q) < ||DVh||L2(Q) :

Due to the definition (BI0), the next estimate is a simple consequence of ([EIZ) and
Lemma B10

1%Ly S %1510y S 1DV 2y - (5.12)
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Finally, the estimates established so far plus the triangle inequality yield
1D 1|2y S VIl + IDVAlgagey - (5.13)

O

LEMMA 5.2. In the 2-regular case (see Sect. [3, BH)) the splitting &) from
Lemma [l can be chosen such that, beside the estimates asserted in Lemma [, we
have

10708 20y S Walliaiey -+ 1%l < IValliaqey -

with constants additionally depending on the quasi-uniformity of the mesh Ty, .
Proof. We rely on the L%(f2)-orthogonal Helmholtz decomposition (B3) to define
p and ¥ in (BJ). Consequently, we can expect

||‘I’||L2(Q) < ||Vh||L2(Q) ] ||D7PHL2(Q) < ||Vh||L2(Q) . (5.14)

Then follow the proof of Lemma BJl and replace the quasi-interpolation (~Qh with
the L?(Q)-orthogonal projection Q. Taking into account that h designates a global
meshwidth when the constants are allowed to depend on quasi-uniformity, a glance
at @Id) and @I3) confirms that all estimates of Lemma Bl remain true.

The replacement of (~Qh is necessary, because (NQh fails to be continuous w.r.t. the
L?(Q)-norm. When using Q, instead, we arrive at the trivial estimate

=¥ S Wl < Ml < Wil - (5:15)

In addition, use the interpolation estimate ([B8) and the inverse inequality (3]
10742y < A IDVAlz (@) S IVall ey - (5.16)

Again, h denotes the (global) meshwidth of 7,. Owing to (&II) and (BI4), this

finishes the proof. O

6. Stable splittings. We first discuss the case 0 < 7 < 1, that is, the second
order term in the bilinear form is dominant. The notations refer to the generic case
of Table Bl

THEOREM 6.1. Assume 0 < 7 < 1. For any vy, € V(D) there is pp € Vi(D7),
W, € Sy, such that, when vy € span{b}, b € B(D) a locally supported basis function,

S Vb +TRE, +D7pp =i, (6.1)
beB(D)
> Vel + 115 o) + 1Dpalls S Ivally (6.2)

beB(D)

with a constant only depending on Q, D, and the shape regularity of Tn, but indepen-
dent of T and quasi-uniformity.

Proof. The contributions ¥, and pj are chosen as in Lemma 1l Hence, reusing
the notations of &3),

Z Vp = Gh . (63)

beB(D)
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By the inverse estimate (), @3) and the bound for ||h_1Vh|| L2(9) from Lemma b1

Yo vl = Y (IPvbliaq) + 7 Vel

beB(D) beB(D)
N Z ”hilvb”iZ(Q) +7 Z ||Vb||i2(9) (6.4)
beB(D) beB(D)

i 2 ~ 2 2 <2
Sl L2 ) + 7 I9RIIZ20) S IDVRNL2 (@) + 7 [¥hlZ2q) -

The remaining bounds are immediate from Lemma Bl because ||D~ phIIi =T1||D"pp ||2L2(Q).
All the constants merely depend on 2 and the shape-regularity of 7. O

The case D = div deserves special attention, because the discrete potential belongs
to Vp(curl). This is not entirely desirable, because it entails solving a H(curl, )-
elliptic problem in V},(curl) when evaluating the preconditioner. Yet, we can apply
the decomposition of Thm. recursively and replace p, € Vi (curl) by a ®;, € S,
and some “high frequency” edge element function.

Thus, for D = div and v, € V}(div), we examine the decomposition

vy, = Z vp + Hﬂi"\llh + curl py

beB(div)
= Z vp + M8V, + Z curlpg + curl @, . (6.5)
beB(div) q€B(curl)

where ¥, ® € S;, and
v € span{b}, b€ B(div) , pq€span{q}, q € B(curl).

From Thm. 1] we conclude that for 0 < 7 <1

S el A 1l +7 D> lleurlpylla i) + 7 1®nl5 ) < lIvally -
beB(div) beB(curl)
(6.6)

From now on we permit dependence of the constants on the variation of h. In
other words, the estimates below hinge on the assumption of quasi-uniformity of the
mesh 7, which permits us to assume a global meshwidth A > 0. Then, we can
establish stability uniformly for all 7 > 0.

THEOREM 6.2. Assume the 2-regular case. Then, for all vi € V;(D), we can
find pp, € Vo(D™), ¥y € Sy, such that, when vy, € span{b}, b € B(D),

Z v +IP®, + D p = Vi, (6.7)
beB(D)
— 2
Z lIvell + ||‘I’h||§{1(9) + T||‘I’h||2L2(Q) + D7 puy S lvally (6.8)

beB(D)

with a constant only depending on Q, D, and the shape regularity and quasi-uniformity
of Tn, but independent of T > 0.
Proof. We rely on the decomposition established in Lemma

Vp =V + HE‘I’h + D pp, (6.9)
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and find, using @), (E3), and B1)
Yool S Y B lveliae +7 Y Ivbllia

beB(D) beB(D) beB(D)

_ ~ _ 6.10
S (02 +7) [9nllza o) S (% + A2 [DVallzaq) (610

2 2
S IDVhllL2) + 7 lIvallLzqy -

Bounds for the other terms are straightforward from the estimates of Lemmas and
Lemma Bl O
As regards D = div, in the 2-regular case we also get a 7-uniform estimate for the

splitting (E3):

2 2 2
> lvelly + 1 %alli ) + 7 1%al720
beB(div)

2 2 2
+7 Y leurlpyll2iq) + 71 ®nlling) Slvally - (6.11)
beB(curl)

7. Auxiliary space preconditioners. We start from the stable decompositions
of V3, (D) introduced in Theorems 6.1l B2 and (63) and apply the abstract theory of
Section @ for V = V3(D) and the energy bilinear form a(-,-) from ([3).

Throughout, let Ap denote the Galerkin matrix arising from ([[3) with respect
to the standard basis B(D) of V3 (D). We write L for the matrix related to the bilinear
form

(T, ®) — (grad ¥,grad ®), , &, T ecH',

on Sy, which is endowed with the usual nodal basis of hat functions (for the compo-
nents of vectorfields). The positive definite mass matrix on Sy, that is, the Galerkin
matrix for the L2(2)-inner product, will be designated by M. Further, we adopt the
notation Pp for the matrix describing the mapping I : H' — V,(D) with respect
to the “hat function basis” of H' and the basis B(D) of V} (D).

We restrict ourselves to Jacobi-smoothing, that is, the smoothing operator is
characterized by the inner product

s(Vi,Vp) = Z a(Vb, Vb) , Z Vb =Vh, Vp€span{b}, (7.1)
beB(D) beB(D)

and its matrix representation coincides with the diagonal D4 of Ap. More gen-

erally, one could use any s(-,-) that features the spectral equivalence s(vp,vp) =
-1 2 2

||h vh”Lz(Q) +7 ||vh||L2(Q)'

Since the square of the energy norm can be computed by summing local contri-
butions from the cells K of the mesh 7}, we find
o 2

2 — ,
Ivella = HZbEB(D) apb L~ ZKGT}L ijl ak;bxk,; )

<MY D el =M Y Janl bl = Ms(v,v),

K beB(D) beB(D)

2

(7.2)
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if Vi = X pep(p) @b € Vi (D). Here, M bounds the (small) number of basis functions
whose support overlaps with a single element K. This implies that ¢, in ([ZI2) can
be chosen as a small universal constant.

For the sake of simplicity, we continue the discussion for the cases D = curl (edge
elements) and D = div (face elements) separately.

7.1. A preconditioner for H(curl, Q)-elliptic problems. We rely on the
splitting (@1) to define the preconditioner. This means that, in terms of the concepts
developed in Section [ we have two auxiliary spaces:

1. the space Wy := S}, with inner product @, (¥, ¥y) := ||\Ilh||§{1(9)+7' ||\Ilh||2Lg(Q),
which is suggested by (E2) and ). The corresponding transfer operator
is II; := M§*! and, thanks to (@II), @II) holds with constant ¢; only
depending on the shape-regularity of the mesh.

2. the discrete potential space Wa := V(D ™) equipped with inner product
a2 (pn,pn) = T|ph|§{1(9) and transfer operator Il := grad : V,(D7) —
Vi (D), whose norm is uniformly bounded by 1.

We write G for the matrix related to grad : V,(D~) — V(D) and A for the
discrete Laplacian (matrix) on linear Lagrangian finite element space V(grad). Then
the matrix of the resulting auxiliary space preconditioner for the H(curl, Q)-elliptic
problem ([CTI) reads

Beur1 := D' + Peyn(L + ™M) 'PL L +771G(-A)IGT . (7.3)

THEOREM 7.1. For 0 < 7 <1 the spectral condition number k(BeurlAcurl) only
depends on Q and the shape-regularity of the mesh.

In the 2-regular case k(BeurlAcur1) is bounded independently of T, but the quasi-
uniformity of the mesh may affect the bound.

Proof. Thm.BETland Thm. B2 provide the bound for ¢y from [ZT3). The constants
¢s and ¢, ¢y have been discussed before. Thus, [ZI4) leads to the assertion of the
theorem. [

The impact of switching to spectrally equivalent bilinear forms on Wy, W5 can
be gauged as in Cor.

We point out that the transfers can be realized by purely local operations, see [B,
Sect. 3] and [B, Sect. 5]. In detail, assuming the standard bases, gradient-matrix G
will agree with the edge-vertex incidence matrix of the mesh. The matrix Pcy, con-
nected with the interpolation II§"! describes a local distribution of vectorial degrees
of freedom attached to the nodes of the mesh to adjacent edges: the edge connecting
vertices with values w; and wy receives the value

%(Wl + W2) ‘e, (74)

where e is the direction vector of the edge.

7.2. A preconditioner for H(div, )-elliptic problems. In this case the de-
composition ([BH) provides the starting point. It suggests that we choose the auxiliary
spaces

1. W1 = Sh with inner product a (‘I’h, \I’h) = ||‘Ilh||2Hl(Q) +7 ”‘Ilh”iﬁ(g)a which
is suggested by (E0) and (EI1). The corresponding transfer operator is II; :=
I8V and, thanks to @II), @II) holds with constant ¢; only depending
on the shape-regularity of the mesh. The related interpolation matrix Pg;,
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assigns to each face of the mesh with unit normal n and area |F'| the number
LF| (w1 + w2 +w3) -, (7.5)

where w; is the vectorial nodal value at vertex i of the face.
2. Wy := Vj(curl) endowed with the localized inner product

wp, € Vi (curl) ,

o (Wp, Wp) =7 Z ||curlwq||i2(9) ) Z Wq = W . (7.6)

q€B(curl) aEB(curl)

Evidently, the Galerkin discretization of @, leads to a diagonal matrix denoted
by Decurl- A closer inspection of B(curl) verifies that Deyur can never be
singular.

The transfer operator associated with W5 is curl : Vj,(curl) — Vj,(div) and
co = 1 is obvious. It matrix representation C coincides with the incidence
matrix of (interior) edges and faces of the mesh, see [21), Sect. 3.1].

3. W3 := Sy with norm /7 ||| 1(q), ¢f €B) and (EI1), and transfer operator
curl : S, — V(D). Again, we immediately get ¢ = 1 for the constant from
(Z11). Owing to the commuting diagram property 8] and @3), the matrix
associated with this transfer is given by CPcyrl-

Summing up, the matrix representation of the auxiliary space preconditioner for
the variational problem ([CZ) discretized on V}(div) is given by

Baiv := D' + Py (L +7M) 'PL_ +CD_! ,CT+ (7.7)
T_ICPcurl(L + TM)_IPZurlCT -

All transfer operators are purely local.

THEOREM 7.2. For 0 < 7 < 1 the spectral condition number k(BaiyAdiv) only
depends on Q) and the shape-regularity of the mesh.

In the 2-regular case k(BaivAdiv) is bounded independently of T, but the quasi-
uniformity of the mesh may affect the bound.

Proof. We merely need to appeal to (B8), (E11]), and ZI4), beause good bounds
for ¢y, ¢a, c3, and ¢, follow from the above arguments. O

Remark. If boundary conditions are imposed on #H(D,(2), the auxiliary space
Sy, should be chosen differently in the 2-regular case: it should comprise piecewise
linear continuous vectorfields, for which merely the tangential or normal components,
respectively, vanish on 9. Of course, this choice can be recommended in general,
because enlarging the auxiliary space will not affect the estimates adversely, unless
the continuity of II is destroyed. On the other hand, tangential boundary conditions
are awkward in terms of implementation, cf. the discussion in [B], Sect. 5].

7.3. Applications to problems with variable coefficients. So far we skirted
the case of variable coefficient, that is, when we encounter the bilinear form

a(u,v) := (aDu,Dv), + (fu,v), , u,v € Hy(curl,Q), (7.8)

with coefficient functions «, 3 € L*(2), because the current theory fails to give any
useful information about how strong variations of o and f affect the quality of the
nodal auxiliary space preconditioners.

We can only give a heuristic recipe, how the algorithms may be adapted to the
general bilinear form from (ZX). The idea is that the coefficient a will be used to define
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the matrix L in ([Z3)). This means that L agrees with the Galerkin matrix of the bilin-
ear form (u,v) — (agradu,gradv), on H!. The coefficient 3 enters the matrices M
and A, that is they represent (u,v) — (fu,v), and (p,) — (8 grad ¢,grad ), on
H' and Vj(grad), respectively. Note that 7 is now incorporated into the coefficient

8.

8. Numerical experiments. The theory makes a statement about the asymp-
totic behavior of the nodal auxiliary, but information about concrete condition num-
bers remains hidden in several elusive constants. In this section we wish to demon-
strate that the preconditioner actually achieves reasonably small condition numbers
for relevant model problems. Moreover, we monitor the impact of the relative scaling
of both parts of the bilinear form a(-,-) from ([3J). Reaching beyond the scope of
the theory, we will also examine the impact of strongly varying coefficients in ([CH).
Throughout, nodal auxiliary spaces with zero boundary values for all vector compo-
nents will be used (“generic case”).

For the first series of experiments we consider the two dimensional analogue of
both variational problems (1)) and (LZ), which involves the bilinear form

a(u,v) := (curlu,curlv), + 7 (u,v), , u,ve Hy(curl,Q), (8.1)
where curl is the scalar valued two-dimensional rotation curlu = g—;; - g—gf.

In two dimensions we can study the asymptotics with manageable computational
effort. We emphasize that all the considerations underlying the nodal auxiliary sub-
space approach in 3D carry over to ([BI): Galerkin discretization can be based on
edge elements on triangular meshes, for which curl-free functions can represented as
gradients of piecewise linear Lagrangian finite element functions.

In most experiments we used the preconditoner given by the two-dimensional
counterpart of [Z3J). A direct solver was employed to realize the multiplications with
the inverse matrices. Extremal eigenvalues were computed by means of a Lanczos
procedure up to an accuracy of at least two digits.

Experiment I. A sequence of meshes of two convex polygonal domains was cre-
ated by the regular refinement of the coarse meshes depicted in Fig. BIl One domain
is convex, that is, it satisfies the assumptions of the 2-regular case, the other fails
to do so. Spectral condition numbers of By Acurl, Acurl the edge element Galerkin
matrix related to (B1)), were computed for different choices of 7, see Tables and
A variant of the preconditioner relying on two steps of Gauss-Seidel smoothing
(see Sect. @) was tested in the same setting. The measured condition numbers are
listed in Tables and

We also keep track of the number of PCG-iterations required to solve the discrete
variational problems with bilinear form a(:,-) from (I and constant vectorfield
f= (i) as right hand side. A relative reduction of the Euklidean norm of the residual
vector by a factor of 10% was used as termination criterion. The results are recorded
in Tabs. and

The condition numbers do hardly deteriorate on successively finer meshes. The
slight dependence on the refinement level is a commonly obeserved pre-asymptotic
phenomenon, ¢f. Remark 2 in [§]. A similar statement applies to the number of CG
iterations. Robustness in 7 is evident though not covered by theory when using a nodal
auxiliary space with zero boundary conditions (“generic setting”, Tab. B]). Using a
Gauss-Seidel smoother instead of Jacobi improves the performance at increased costs
for a single application of the preconditioner.
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Fi1G. 8.1. Coarsest meshes used in Ezperiment I

08 06 -04 02

0 02

04 06 08

1

p=
[Tevel [ #cells [ 107 [10° 10210 "] 1] 10] 10° | 10° | 10"
0 171 204 | 204 | 203 | 20.1 | 182 | 11.7 5.0 2.6 3.7
1 684 | 25.0 | 25.0 | 25.0 | 24.7 | 230|165 | 83| 36| 3.3
2 2736 | 284 | 284 | 284 | 28.2 | 26.6 | 20.8 | 12,5 | 6.2 | 29
3 10944 | 31.2 | 31.2 | 31.2 | 31.0 | 29.7 | 248 | 17.5 9.3 | 4.6
4 43776 | 33.5 | 33.5 | 335 | 333|322 | 283 (221|142 | 7.1
5 175104 | 35.2 | 35.2 | 35.2 | 35.1 | 34.2 | 31.1 | 26.1 | 19.1 | 11.0
TABLE 8.1
Condition numbers for Ezperiment I: convez polygon
T

| level | #fcells | 107* [ 107° | 10> [ 107" [ 1 [ 10 [ 10* | 10° | 10°

0 171 29 29 29 28 27124 | 15 9 11

1 684 | 33 33 33 33 3228 | 20 | 11 | 11

2 2736 | 36 36 36 36 [ 35|31 25 | 16 | 10

3 10944 | 38 38 39 38 (38 (34| 29 | 20 | 13

4 43776 41 41 41 41 40 | 37| 32 | 25 17

5 175104 42 42 43 42 42 139 | 34 | 28 | 21

TABLE 8.2
Required PCG iterations for Ezperiment I: conver polygon
T

| level | #cells [ 107" [107° [ 1072 10" | 1] 10] 10°] 10° | 10
0 205 | 63.0| 629 | 62.6 | 599 | 425 | 149 | 49| 26| 4.2
1 820 | 69.5 | 694 | 69.1 | 66.2 | 47.7 | 184 | 87| 3.2 | 34
2 3280 | 716 | 716 | 71.3 | 68.4 | 49.5| 199 | 12.2 5.9 2.4
3 13120 | 723 | 72.3 | 72.0| 69.0 | 50.1 | 21.2 | 15.6 9.2 4.0
4 52480 | 725 | 725 | 722 | 69.2 | 50.3 | 23.4 | 18.9 | 13.0 7.0
5 209920 | 72.6 | 726 | 723 | 69.3 | 50.4 | 25.2 | 21.7 | 16.7 | 10.3

TABLE 8.3

Condition numbers for Ezperiment I: L-shaped domain

19




=
| level [ #cells [ 107" [107® [ 1072 [10°" [ 1 [ 10 [ 10* | 10° | 10*
0 171 35 35 35 34 33 25| 15 9 12
1 684 40 40 40 40 37130 | 21 11 11
2 2736 43 43 43 43 40 | 33 | 25 16 9
3 10944 46 46 46 46 44 | 36 | 28 | 20 12
4 43776 | 49 49 49 48 47 | 38| 31 | 25 17
) 175104 51 51 51 51 49 41| 34 | 28 | 20
TABLE 8.4
Required PCG iterations for Ezperiment I: L-shaped domain
T
[level | #cells [100*]10° 10210 ] 1] 10[ 10% ] 10° ] 10
0 171 6.5 6.5 6.5 6.4 5.6 3.1 1.9 2.0 2.0
1 684 9.4 9.4 94 9.3 8.4 5.3 24 20| 2.0
2 2736 | 11.8 | 11.8 | 11.8 | 11.7 | 10.8 7.6 3.7 23] 20
3 10944 | 13.7 | 13.7 | 13.7 | 13.6 | 12.7 9.7 5.7 29| 2.2
4 43776 | 15.2 | 15.2 | 15.2 | 15.1 | 144 | 11.8 8.0 | 42| 2.7
5 175104 | 164 | 164 | 164 | 163 | 15.7 | 13.6 | 104 | 6.4 | 3.2

TABLE 8.5
FEzperiment I, condition numbers on convez polygon with symmetric GS smoothing

pm
[level | #cells [10°*[10° 10210 ] 1] 10]10% | 10° | 10"
0 171 ] 196 ] 196 | 195 187[13.0] 41 [ 18] 20 20

684 | 28.8 | 28.8 | 287 | 275 [19.6 | 6.9 | 23| 2.0 2.0
2736 | 335 | 335 | 334 320231 | 8839|2220
10944 | 353 | 353 | 351 | 33.7[244 | 97|57 27] 21
43776 | 359 | 359 | 35.7| 343249103 [ 73|41 25

175104 | 36.1 | 36.1 | 36.0 | 34.5| 25.1 | 114 | 9.0 | 6.0 | 3.1
TABLE 8.6
Ezperiment I, condition numbers on L-shaped domain with symmetric GS smoothing

G x| W N+~

Experiment I1. Starting from a coarse mesh on the “L-shaped domain” (Fig. Rl
right) we generate a sequence of meshes by strictly local refinement, see Fig. As
in the previous experiment we recorded spectral condition numbers &(BeynAcur), see
Fig. This time, we monitor their dependence on the smallest size h,, of mesh
cells.

The conclusions drawn in Experiment I carry over verbatim.

Experiment III. To study the response of the preconditioner to non-constant
coeflicients, we apply it to the bilinear form

a(u,v) := (acurlu,curlv), + 7 (Bu,v), , , u,vHp(curl,Q), (8.2)

with a, 8 € L>(Q). This is the 2D analogue of [Z&). The implementation of the
preconditioner By, follows the policy outlined in SectIZ3
We consider Q =] —1,1[? with a triangular subdomain € that is resolved by the
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Locally refined mesh level 5: b =0.0125 Locally refined mesh lovel 10:h, =0.00291813

Locally refined mesh lovel 20:,, =9.119150-05
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F1c. 8.2. Sequence of locally refined meshes
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Fi1G. 8.3. Behavior of auziliary space preconditioner on locally refined meshes

mesh, see Fig. B4l The coefficient functions behave like

a(X) — aq ,leEQl, , I@(X) — ﬂl ,1fx€Ql,

(8.3)
1  elsewhere 1 elsewhere.

We recorded the condition numbers of the preconditioned stiffness matrices on
sequences of meshes arising from successive regular refinement of the mesh depicted
in Fig. B4l see Tabs. B and In addition, Tabs. and give the number
of CG iteration required for a relative reduction of the Euklidean residual norm by a
factor of 10%. As before, zero was used as initial guess and we chose the source field
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Fic. 8.4. Subdomains with piecewise constant coefficients and associated coarsest triangular mesh

f=(1)

o
| level | #cells | 0.001 ] 0.01 [0.1] 2] 5[10[20]50] 100 | 200 [ 1000
0 332 19] 18] 16[18[21[24[28[31] 33| 34| 35

1328 23 21 20121 |24 |27 |31|36 | 38| 39 40
5312 28 271 2212312529 |33 |37 40| 41 42
21248 35 32| 24 |25 |26 |30 |34 |38 | 40| 42 43
84992 41 36 | 26 |26 |27 | 30|34 |38 | 41| 42 43
339968 46 39 | 27|27 |28 31|34 |39 41| 42 43

TABLE 8.7
Condition numbers (two digits) recorded in experiment III: discontinuous coefficient o, 1 =1

U W N~

By and large, we observe that the condition number of the preconditioned system
is not much affected by steep jumps in the coefficients a or 8. A slight deterioration
is caused by large values of 3 inside 2;. The same holds for the convergence of the
preconditioned CG-iterations. It seems that the behavior of the method surpasses the
predictions of the theory.

Experiment IV. In this experiment we study the auxiliary space preconditioner
for genuine three-dimensional boundary value problems of the form ([[CI)). Zero Dirich-
let boundary conditions are used, throughout, that is, H(curl, ) = Hy(curl, 2).
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aj
[Tevel [ #cells | 0.001 [ 0.00 [0.1] 2 | 5 [ 10 | 20 | 50 | 100 | 200 | 1000
0 332 33 | 32 | 28 [ 303133 34[36] 36 | 35 | 37

1328 | 37 | 35 | 34 | 33|36 |37 | 38| 30 | 41 | 42 | 42

5312 | 43 | 42 | 37 | 37 | 38 | 41 | 42 | 44| 44 | 45 | 46
21248 | 49 | 48 | 30 | 39 | 41 | 43 | 45 | 47 | 48 | 48 | 50
84902 | 54 | 52 | 41 |41 |42 |45 48 [ 50| 51 | 52 | 53
330068 | 58 | 56 | 44 | 43 | 45 | 48 | 50 | 52 | 53 | 54 | 55

TABLE 8.8
No. of CG-iterations for experiment III: discontinuous coefficient o, 81 = 1

U W N~

B
| level | #cells | 0.001 ] 0.01 [0.1] 2] 5[10]20] 50| 100 | 200 [ 1000
0 332 17 17] 18718182024 [32] 39| 48 64
1328 21 21| 212121222635 44| 53 73
5312 23] 23| 232323242736 46| 56 78
21248 24 25] 2525252528 (37| 46| 57 80
84992 26| 26| 26 2626|2728 |37 ] 46| 57 80
339968 27 27 2727272829 (37| 46| 57 81

TABLE 8.9
Condition numbers (two digits) measured in experiment III: discontinuous coefficient 3, a1 = 1

U W N~

B

| level | #cells | 0.001 [ 0.01 [0.1] 2 | 5 [10] 20| 50 | 100 | 200 [ 1000
0 332 30 30 | 30 | 30|30 (31|33 35| 38 | 39 41
1 1328 35 350 | 34 | 34|34 |34 |38 |40 | 42 | 43 46
2 5312 38 38 | 37 | 37 |37 | 36|40 | 43 | 45 | 47 48
3 21248 39 39 | 38 |38 39|38 |40 |45 | 47 | 50 53
4 84992 41 41 | 40 | 40 | 40 | 41 | 42 | 47 | 49 | 51 55
5 339968 43 43 | 42 | 42 | 42 | 43| 44 | 49| 52 | 54 56

TABLE 8.10
No. of CG-iterations for experiment III: discontinuous coefficient 8, a1 =1

We consider two different domains, one is the unit cube: @ = Qg := (0,1)3,

and the other is the unit ball Q = Q, := {z = (z1,72,73) € R® : 2} + 23 + 22 < 1}.
Lowest order edge elements, cf. Sect.H are applied to discretize (L)) on quasi-uniform
simplicial triangulations of both domains. We apply the preconditioner Beyp given
in ([Z3) to the discretized systems with
1. D;ll replaced with the approximate inverse corresponding to three iterations
of the symmetric point Gauss-Seidel method for A ¢y,
2. (L+7M) ! replaced with one V-cycle of an algebraic multigrid method [31]
for L + 7M, and
3. (—A) ! replaced with one V-cycle algebraic multigrid method for matrix —A
of the discrete vector Laplacian.
The matrices L and M correspond to the generic case, see Tab. Bl
We study the condition number of BeuriAcurl On sequences of uniformly and
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regularly refined triangulations of both domains. On the unit cube the coarsest mesh is
obtained by splitting each cell of a uniform tensor product grid into six tetrahedra. For
the sphere, a mesh generator is employed to get a sequence of increasingly finer meshes,
whose tetrahedra have all about the same size and little distortion. Condition number
estimates are computed by means of the Lanczos method and listed in Tables BTl
for different values of the scaling parameter 7.

p-
| level | #cells [ 1077 ] 1] 10°
1 6 x 8 | 4.645 [ 4.580 | 2.943
2 | 6x16° | 4.689 | 4.644 | 2.952
3 | 6x32%5]4.842 | 4.817 | 2.983
4

6 x 48% | 4.954 | 4.771 | 2.969
TABLE 8.11
Unit cube: spectral condition numbers of Beur1Acurl

pm
[ level | #cells | 1077 | 1] 10f
1 2197 | 2.893 | 2.911 | 3.021

4462 | 3.334 | 3.372 | 3.317

8865 | 3.280 | 3.288 | 3.430
17260 | 3.499 | 3.494 | 3.329
66402 | 3.955 | 3.932 | 3.431
95593 | 4.132 | 4.102 | 5.022
148554 | 4.497 | 4.246 | 3.513

242588 | 4.340 | 4.552 | 3.391
TABLE 8.12
Unit ball: spectral condition numbers of BeurlAcurl

QO[O U x| W N

As before, we also record the the number of iterations required for the precondi-
tioned conjugate gradient method with the above preconditioner to reduce the Beuri-
norm of the residual by a factor of 10°. The iteration counts for different values of
T are given in Tables and In both case a zero intial guess was used and
the right hand side was such the corresponding exact solutions of the boundary value
problems are

sy(z — 1)y - 1)(z - 1)
u(z,y,2) = sin(7wz) sin(7y) sin(wz) on Qg ,
1-e)l-e"HA-e)(1-er (1 -e*)(1—e*1)

u(z,y,2) =(> +y* +2> - 1)1, on Q.

—_~T

The observations perfectly match those made in two dimensions: the condition
numbers and iterations counts are essentiall independent of the meshwidth and 7.
The number of PCG iterations decreases slightly when 7 gets larger.

To illustrate the importance of the extra smoothings DATl in our preconditioner
[C3), we recorded the number of iterations of the corresponding PCG method with the
term D' removed from the preconditioner (ZZ3). The results are given in Table EI5
As we can see that the number of iterations doubles as the meshwidth gets halved.
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p-
[level | #cells [ 107" [1073 [1072 [ 107" | 1] 10 10% | 10° | 10*
1 6 x 8° 14] 14] 14] 14[14]13] 10] 10] 10
2 [ 6x16° 4] 14| 14| 14|14]13] 11 10| 9
3 [6x32° 14 14 14 141413 ] 12] 10] 9
4

6 x 483 14 14 14 14|14 | 13 12 10 9
TABLE 8.13
Number of PCG iterations on unit cube

pm
[ level | #cells [1002[10% 10210 [ 1]10]10% ] 10° | 10
1 2197 9] 10] 10] 10[11J11] 11] 11] 12

4462 10| 10| 11| 1|11 f12] 11 11| 12

8865 | 10| 10| 11| 11111 11| 11| 11
17260 | 10| 11| 11| 1112|112 11| 10[ 11
66402 | 11| 12| 13| 13|13]12] 11] 10| 11
95593 | 11| 12| 13| 13|13 |12 ] 12| 11 [ 12
148554 | 12| 12| 13| 13[13[13]| 12] 12] 10

242588 12 13 13 14 114 | 13 12 11 10
TABLE 8.14
Number of PCG-iterations on unstructured grids in the unit ball

Q|| U x| W N

p-
[level | #cells [107* ] 1] 107
1 6 x 8° 28 28 | 138
2 6 x 16° 52 53 | 384
3 6 x 323 106 | 107 | 770
4

6 x 483 155 | 156
TABLE 8.15
Number of PCG-iterations on the cube without smoothing

Concluding remarks. Nodal auxiliary space preconditioning for disrcete H(curl, 2)-
and H(div, Q)-elliptic variational problems has a solid theoretical foundation and
proves satisfactory in numerical tests. It can pave the way for applying standard al-
gebraic multigrid methods to boundary value problems discretized by means of edge
or face finite elements. Numerous improvements of the method are conceivable, which
can make use of better smoothers and refined auxiliary spaces.

Acknowledgement. The authors wish to thank Wang Mengyu, Hangzhou Uni-
verisity, and Patrick Meury, ETH Ziirich, for writing parts of the MATLAB code for
the 2D experiments and also to thank Tan Lin and Shu Shi, Xiangtan University, for
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