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1. Introduction. On a polyhedron Ω, scaled such that diam(Ω) = 1, we consider
the variational problem: seek u ∈HΓD

(curl,Ω) such that

(curl u, curl v)L2(Ω) + (u,v)L2(Ω)︸ ︷︷ ︸
=:a(u,v)

= (f ,v)L2(Ω) ∀v ∈HΓD
(curl,Ω) .(1.1)

For the Hilbert space of square integrable vector fields with square integrable curl
and vanishing tangential components on ΓD we use the symbol HΓD

(curl,Ω), see [20,
Ch. 1] for details. The source term f in (1.1) is a vector field in (L2(Ω))3. The left hand
side of (1.1) agrees with the inner product of HΓD

(curl,Ω) and will be abbreviated
by a(u,v) (“energy inner product”).

Further, ΓD denotes the part of the boundary ∂Ω on which homogeneous Dirichlet
boundary conditions in the form of vanishing tangential traces of u are imposed. The
geometry of the Dirichlet boundary part ΓD is supposed to be simple in the following
sense: for each connected component Γi of ΓD we can find an open Lipschitz domain
Ωi ⊂ R3 such that

Ωi ∩ Ω = Γi , Ωi ∩ Ω = ∅ ,(1.2)

and Ωi and Ωj have positive distance for i 6= j. Further, the interior of Ω ∪ Ω1 ∪
Ω2 . . . is expected to be a Lipschitz-domain, too (see Fig. 5.2). This is not a severe
restriction, because variational problems related to (1.1) usually arise in quasi-static
electromagnetic modelling, where simple geometries are common. Of course, ΓD = ∅
is admitted.

Lowest order HΓD
(curl,Ω)-conforming edge elements are widely used for the

finite element Galerkin discretization of variational problems like (1.1). Then, for
sufficiently smooth solution u we can expect the optimal asymptotic convergence rate

‖u− uh‖H(curl,Ω) ≤ CN
−1/3
h ,(1.3)

on families of finite element meshes arising from global refinement. Here, uh is the fi-
nite element solution, and Nh the dimension of the finite element space. However,
often u will fail to possess the required regularity due to singularities arising at
edges/corners of ∂Ω and material interfaces [18,19]. Fortunately, it seems to be possi-
ble to retain (1.3) by the use of adaptive local mesh refinement based on a posteriori
error estimates, see [6, 14] for numerical evidence.

We also need ways to compute the asymptotically optimal finite element solution
with optimal computational effort, that is, with a number of operations proportional
to Nh, cf. [42]. This can only be achieved by means of iterative solvers, whose con-
vergence remains fast regardless of the depth of refinement. Multigrid methods are
the most prominent class of iterative solvers that achieve this goal. By now, multigrid
methods for discrete H(curl,Ω)-elliptic variational problems like (1.1) have become
well established [16, 24, 41, 43]. Their asymptotic theory on sequencies of regularly
refined meshes has also matured [2, 21, 24, 26]. It confirms asymptotic optimality: the
speed of convergence is uniformly fast regardless of the number of refinement levels
involved. In addition, the costs of one step of the iteration scale linearly with the
number of unknowns.

Yet, the latter property is lost when the standard multigrid correction scheme is
applied to meshes generated by pronounced local refinement. Optimal computational
costs can only be maintained, if one adopts the local multigrid policy, which was
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pioneered by W. Mitchell in [32]. Crudely speaking, its gist is to confine relaxations
to “new” degrees of freedom located in zones where refinement has changed the mesh.
Thus an exponential increase of computational costs with the number of refinement
level can be avoided: the total costs of a V-cycle remain proportional to the number
of unknowns. Algorithmically, it is straightforward to apply the local multigrid idea
to lowest-order edge element approximations of (1.1). On the other hand, a proof of
uniform asymptotic convergence has remained elusive so far. It is the objective of this
paper to provide it.

It is an important insight, that (1.1) is one member of a family of variational
problems. Its kin is obtained by replacing curl with grad or div, respectively. All
these differential operators turn out to be incarnations of the fundamental exterior
derivative of differential geometry, cf. [24, Sect. 2]. They are closely connected in the
deRham complex [3] and, thus, it is hardly surprising that results about the related
H1

ΓD
(Ω)-elliptic variational problem, which seeks u ∈ H1

ΓD
(Ω) such that

(gradu, gradv)L2(Ω) + (u, v)L2(Ω) = (f, v)L2(Ω) ∀ v ∈ H1
ΓD

(Ω) ,(1.4)

prove instrumental in the multigrid analysis for discretized versions of (1.1). Here
H1

ΓD
(Ω) is the subspace of H1(Ω) whose functions have vanishing traces on ΓD.
Thus, when tackling (1.1), we take the cue from the local multigrid theory for

(1.4) discretized by means of linear continuous finite elements. This theory has been
developed in various settings, cf. [4, 9, 11, 12, 47]. In [1] local refinement with hanging
nodes is treated. Recently, H. Wu and Z. Chen [14] proved the uniform convergence of
V-cycle multigrid method on adaptively refined meshes. Their mesh refinements are
controlled by a posteriori error estimators and the “newest vertex bisection” strategy
introduced in [5] and [32]. As in the case of global multigrid, the essential new aspect
of local multigrid theory for (1.1) compared to (1.4) is the need to deal with the kernel
of the curl-operator, cf. [24, Sect. 3]. Here, the capability of edge elements to provide
a simple representation of discrete irrotational vector fields becomes pivotal.

Therefore, we devote the entire Sect. 2 to the discussion of edge elements and
their relationship with conventional Lagrangian finite elements. Next, in Sect. 3 we
present details about local mesh refinement, because some parts of the proofs rest on
the subtleties of how elements are split. The following Sect. 4 introduces the local
multigrid method from the abstract perspective of successive subspace correction.

The proof of uniform convergence (Theorem 4.2) is tackled in Sects. 5 and 6, which
form the core of the article. In particular, the investigation of the stability of the local
multilevel splitting requires several steps, the first of which addresses the issue for the
bilinear form from (1.4) and linear finite elements. These results are already available
in the literature, but are re-derived to make the presentation self-contained. This
also applies to the continuous and discrete Helmholtz-type decompositions covered
in Sect. 5.3. Eventually, in Sect. 7, we report two numerical experiments to show
the competitive performance of the local multigrid method and the relevance of the
convergence theory.

2. Finite element spaces. Whenever we refer to a finite element mesh in this
article, we have in mind a tetrahedral triangulation of Ω, see [15, Ch. 3]. In certain
settings, it may feature hanging nodes, that is, the face of one tetrahedron can coincide
with the union of faces of other tetrahedra. Further, the mesh is supposed to resolve
the Dirichlet boundary in the sense that ΓD is the union of faces of tetrahedra. The
symbolM with optional subscripts is reserved for finite element meshes and the sets
of their elements alike.
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We write h ∈ L∞(Ω) for the piecewise constant function, which assumes value
hK := diam(K) in each element K ∈ M. The ratio of diam(K) to the radius of the
largest ball contained in K is called the shape regularity measure ρK [15, Ch. 3, §3.1].
The shape regularity measure ρM ofM is the maximum of all ρK , K ∈M.

Based on a finite element mesh M we introduce the space of lowest order
HΓD

(curl,Ω)-conforming edge finite elements [10, 33], also known as Whitney-1-
forms [44],

U(M) := {vh ∈HΓD
(curl,Ω) : ∀K ∈M : ∃a, b ∈ R

3 :

vh(x) = a + b× x, x ∈ K} .

For a detailed derivation and description please consult [25, Sect. 3]. Notice that
curlU(M) is a space of piecewise constant vector fields. We also remark that appro-
priate global degrees of freedom (d.o.f.) for U(M) are given by

{
U(M) 7→ R

vh 7→
∫

E
vh · d~s

, E ∈ E(M) ,(2.1)

where E(M) is the set of active edges of M, i.e., those not contained in ΓD or in
another longer edge. We write BU(M) for the nodal basis of U(M) dual to the
global d.o.f. (2.1). Basis functions are associated with active edges. Hence, we can
write BU(M) = {bE}E∈E(M). In the absence of hanging nodes the support of the
basis function bE is the union of tetrahedra sharing the edge E. We recall the simple
formula for local shape functions

bE |K = λi gradλj − λj gradλi E = [ai,aj ] ⊂ K(2.2)

for any tetrahedron K ∈M with vertices ai, i = 1, 2, 3, 4, and associated barycentric
coordinate functions λi.

The edge element space U(M) with basis BU(M) is perfectly suited for the finite
element Galerkin discretization of (1.1). The discrete problem based on U(M) reads:
seek uh ∈ U(M) such that

(curl uh, curl vh)L2(Ω) + (uh,vh)L2(Ω) = (f ,vh)L2(Ω) ∀vh ∈ U(M) .(2.3)

The properties of U(M) will be key to constructing and analyzing the local multigrid
method for the resulting large sparse linear system of equations. Next, we collect
important facts.

The basis BU(M) enjoys uniform L2-stability, meaning the existence of a constant
C = C(ρM) > 0 such that for all vh =

∑
E∈E(M)

αEbE ∈ U(M), αE ∈ R,

C−1 ‖vh‖
2
L2(Ω) ≤

∑

E∈E(M)

α2
E ‖bE‖

2
L2(Ω) ≤ C ‖vh‖

2
L2(Ω) .(2.4)

The global d.o.f. induce a nodal edge interpolation operator

Πh :





dom(Πh) ⊂HΓD
(curl,Ω) 7→ U(M)

v 7→
∑

E∈E(M)

(∫
E v · d~s

)
· bE .(2.5)
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Obviously, Πh provides a local projection, but it turns out to be unbounded even
on (H1(Ω))3. Only for vector fields with discrete rotation the following interpolation
error estimate is available, see [25, Lemma 4.6]:

Lemma 2.1. The interpolation operator Πh is bounded on {Ψ ∈
(H1(Ω))3, curl v ∈ curlU(M)}, and for any conforming mesh there is C =
C(ρM) > 0 such that

∥∥h−1(Id−Πh)Ψ
∥∥

L2(Ω)
≤ C|Ψ|H1(Ω) ∀Ψ ∈ (H1(Ω))3, curlΨ ∈ curlU(M) .

If Ω is homeomorphic to a ball, then gradH1(Ω) = H(curl 0,Ω) := {v ∈
H(curl,Ω), curl v = 0}: H1(Ω) provides scalar potentials for H(curl,Ω). To state
a discrete analogue of this relationship we need the Lagrangian finite element space
of piecewise linear continuous functions onM

V (M) := {uh ∈ H
1
ΓD

(Ω) : uh|K ∈ P1(K) ∀K ∈M} ,

where Pp(K) is the space of 3-variate polynomials of degree ≤ p on K. The global
degrees of freedom for V (M) boil down to point evaluations at active vertices (set
N (M)) of M. The dual basis of “tent functions” will be denoted by BV (M) =
{bp}p∈N (M). Its unconditional L2-stability is well known: with a universal constant

C > 0 we have for all uh =
∑

p∈N (M)

αpbp ∈ V (M), αp ∈ R,

C−1 ‖uh‖
2
L2(Ω) ≤

∑

p∈N (M)

α2
p ‖bp‖

2
L2(Ω) ≤ C ‖uh‖

2
L2(Ω) .(2.6)

For the nodal interpolation operator related to BV we write Ih : dom(Ih) ⊂
H1

ΓD
(Ω) 7→ V (M). Recall the standard estimate for linear interpolation on conforming

meshes (i.e., no hanging nodes allowed) that asserts the existence of C = C(k, ρM) > 0
such that

∥∥hk−2(Id− Ih)u
∥∥

Hk(Ω)
≤ C|u|H2(Ω) ∀u ∈ H2(Ω) ∩H1

ΓD
(Ω), k ∈ {0, 1, 2} .(2.7)

Obviously, gradV (M) ⊂ U(M), and immediate from Stokes theorem is the crucial
commuting diagram property

Πh ◦ grad = grad ◦Ih on dom(Ih) .(2.8)

This enables us to give an elementary proof of Lemma 2.1.
Proof. [of Lemma 2.1] Pick one K ∈ M and, without loss of generality, assume

0 ∈ K. Then define the lifting operator, cf. the “Koszul lifting” [3, Sect. 3.2],

w 7→ Lw , Lw(x) := 1
3w(x)× x , x ∈ K .(2.9)

Elementary calculations reveal that for any w ≡ const3

curlLw = w ,(2.10)

‖Lw‖L2(K) ≤ hK ‖w‖L2(K) ,(2.11)

Lw ∈ U(K) .(2.12)

The continuity (2.11) permits us to extend L to (L2(K))3.
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Given Ψ ∈ (H1(K))3 with curlΨ ≡ const3, by (2.12) we know L curlΨ ∈
(P1(K))3. Thus, an inverse inequality leads to

|L curlΨ|H1(K) ≤ Ch
−1
K ‖L curlΨ‖L2(K)

(2.11)

≤ C ‖curlΨ‖L2(K) ,(2.13)

with C = C(ρK) > 0. Next, (2.10) implies

curl(Ψ− L curlΨ) = 0 ⇒ ∃p ∈ H1(K) : Ψ− L curlΨ = gradp .(2.14)

From (2.13) we conclude that p ∈ H2(K) and |p|H2(K) ≤ C|Ψ|H1(K). Moreover,
thanks to the commuting diagram property we have

Ψ−ΠhΨ = L curlΨ−Πh L curlΨ︸ ︷︷ ︸
=0 by (2.12)

+ grad(p− Ihp) ,(2.15)

which means, by standard estimates for linear interpolation on K,

‖Ψ−ΠhΨ‖L2(K) = |p− Ihp|H1(K) ≤ ChK |p|H2(K) ≤ ChK |Ψ|H1(K) .

Summation over all elements finishes the proof.

As theoretical tools we need “higher order” counterparts of the above finite ele-
ment spaces. We recall the quadratic Lagrangian finite element space

V2(M) := {uh ∈ H
1
ΓD

(Ω) : uh|K ∈ P2(K) ∀K ∈ M} ,

and its subspace of quadratic surpluses

Ṽ2(M) := {uh ∈ V2(M) : Ihuh = 0} .

This implies a direct splitting

V2(M) = V (M)⊕ Ṽ2(M) ,(2.16)

which is unconditionally H1-stable: there is a C = C(ρM) > 0 such that

C−1|uh|
2
H1(Ω) ≤ |(Id− Ih)uh|

2
H1(Ω) + |Ihuh|

2
H1(Ω) ≤ C|uh|

2
H1(Ω) ,(2.17)

for all uh ∈ V2(M).
Next, we examine the space (V (M))3 of continuous piecewise linear vector fields

that vanish on ΓD. Standard affine equivalence techniques for edge elements, see [25,
Sect. 3.6], confirm

∃C = C(ρM) > 0 : ‖ΠhΨh‖L2(Ω) ≤ C ‖Ψh‖L2(Ω) ∀Ψh ∈ (V (M))3 .(2.18)

Lemma 2.2. For all Ψh ∈ (V (M))3 we can find ṽh ∈ Ṽ2(M) such that

Ψh = ΠhΨh + grad ṽh ,

and, with C = C(ρM) > 0,

C−1 ‖Ψh‖
2
L2(Ω) ≤ ‖ΠhΨh‖

2
L2(Ω) + ‖grad ṽh‖

2
L2(Ω) ≤ C ‖Ψh‖

2
L2(Ω) .
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For the proof we rely on a very useful insight, which relieves us from all worries
concerning the topology of Ω:

Lemma 2.3. If v ∈HΓD
(curl 0,Ω) and Πhv = 0, then v ∈ gradH1

ΓD
(Ω).

Proof. Since the mesh covers Ω, the relative homology group H1(Ω; ΓD) is gen-
erated by a set of edge paths. By definition (2.1) of the d.o.f. of U(M), the path
integrals of v along all these paths vanish. As an irrotational vector field with van-
ishing circulation along a complete set of ΓD-relative fundamental cycles, v must be
a gradient.

Proof. [of Lemma 2.2] Given Ψh ∈ (V (M))3, we decompose it according to

Ψh = ΠhΨh + (Id−Πh)Ψh︸ ︷︷ ︸
=:grad evh

.(2.19)

Note that curl(Id − Πh)Ψh is piecewise constant with vanishing flux through all
triangular faces ofM. Then Stokes’ theorem teaches that curl(Id−Πh)Ψh = 0.

By the projector property of Πh, (Id − Πh)Ψh satisfies the assumptions of
Lemma 2.3. Taking into account that, moreover, the field is piecewise linear, it is
clear that (Id−Πh)Ψh ∈ gradV2(M). The stability of the splitting is a consequence
of (2.18).

By definition, the spaces U(M) and V (M) accommodate the homogeneous
boundary conditions on ΓD. Later, we will also need finite element spaces oblivi-
ous of boundary conditions, that is, for the case ΓD = ∅. These will be tagged by a
bar on top, e.g., U(M), V (M), etc. The same convention will be employed for notions
and operators associated with finite element spaces: if they refer to the particular case
ΓD = ∅, they will be endowed with an overbar, e.g. Πh, Ih, BU(M), N (M), etc.

Remark 2.4. The presentation is confined to tetrahedral meshes and lowest order
edge elements just for the sake of simplicity. Extension of all results to hexahedral
meshes and higher order edge elements is straightforward.

3. Local mesh refinement. We study the case where the actual finite element
meshMh of Ω has been created by successive local refinement of a relatively uniform
initial meshM0. ConcerningMh andM0 the following asumptions will be made:

1. GivenM0 andMh we can construct a virtual refinement hierarchy of L+ 1
nested tetrahedral meshes, L ∈ N:

M0 ≺ M1 ≺ M2 ≺ · · · ≺ ML =Mh .(3.1)

Please note that the virtual refinement hierarchy may be different from the
actual sequence of meshes spawned during adaptive refinement.

2. Inductively, we assign to each tetrahedron K ∈ Ml a level ℓ(K) ∈ N0 by
counting the number of subdivisions it took to generate it from an element
ofM0.

3. For all 0 ≤ l < L the meshMl+1 is created by subdividing some or all of the
tetrahedra in {K ∈ Ml : ℓ(K) = l}.

4. The shape regularity measures of the meshes Ml are uniformly bounded
independently of L.

Refinement may be local, but it must be regular in the following sense, cf. [45]:
we can find a second sequence of nested tetrahedral meshes of Ω

M0 = M̂0 ≺ M̂1 ≺ M̂2 ≺ · · · ≺ M̂L .(3.2)

that satisfies
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1. Ml ≺ M̂l and {K ∈Ml : ℓ(K) = l} ⊂ M̂l, l = 0, . . . , L,
2. that the shape regularity measure ρcMl

is bounded independently of l,
3. and that there exist two constants C > 0 and 0 < θ < 1 independent of l and
L such that

C−1θl ≤ hK ≤ Cθ
l ∀K ∈ M̂l , 0 ≤ l ≤ L .(3.3)

This means that the family {M̂l}l is quasi-uniform. Hence, it makes sense to

refer to a mesh width hl := max{hK , K ∈ M̂l} of M̂l. It decreases geomet-
rically for growing l.

Popular tetrahedral refinement schemes generate meshes that meet the require-
ments. A first example is local regular refinement with hanging nodes [1], which, in
each step, splits a subset of the tetrahedra of the current mesh into eight smaller
ones. An illustrative 2D1 example with hanging nodes is depicted in Figure 3.1. The
accompanying sequence {M̂l}0≤l≤L is produced by global regular refinement, which
implies (3.3) with θ = 1

2 . Uniform shape-regularity can also be guaranteed for repeated
regular refinement of tetrahedra, see [8].

M0 M1 M2 M3 =Mh

Fig. 3.1. Virtual refinement hierarchy for 2D triangular meshes. The quasi-uniform sequence

{ cMl}0≤l≤L is sketched in blue. Elements of Ml eligible for further subdivision are marked yellow.

Another viable refinement scheme is to use bisection of tetrahedra. This procedure
refers to splitting a tetrahedron into two by promoting the midpoint of the so-called
refinement edge to a new vertex. Variants of bisection differ by the selection of re-
finement edges: The iterative bisection strategy by Bänsch [5] needs the intermediate
handling of hanging nodes. The recursive bisection strategies of [29,31] do not create
such hanging nodes and, therefore, are easier to implement. But for special M0, the
two recursive algorithms result in exactly the same tetrahedral meshes as the iterative
algorithm. Since our implementation relies on the bisection algorithm of [29], we out-
line its bisection policy in the following. For more information on bisection algorithms,
we refer to [38].

For the recursive bisection algorithm of [29], the bisections of tetrahedra are to-
tally determined by the local vertex numbering of M0, plus a prescribed type for
every element in M0. Each tetrahedron K is endowed with the local indices 0, 1, 2,
and 3 for its vertices. The refinement edge of each element is always set to be the edge
connecting vertex 0 and vertex 1. After bisection of K, the “child tetrahedron” of K
which contains vertex 0 of K is denoted by Child[0] and the other one is denoted by

1For ease of visualization, we will always elucidate geometric concepts in two-dimensional settings.
Their underlying ideas are the same in 2D and 3D.
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Child[1]. The types of Child[0] and Child[1] are defined by

type(Child[0]) = type(Child[1]) = (type(K) + 1) mod 3.

The new vertex at the midpoint of the refinement edge of K is always numbered
by 3 in Child[0] and Child[1]. The four vertices of K are numbered in Child[0] and
Child[1] as follows (see Fig. 3.2):

In Child[0] : (0, 2, 3)→ (0, 1, 2),

In Child[1] : (0, 2, 3)→ (0, 2, 1) if type(K) = 0,

In Child[1] : (0, 2, 3)→ (0, 1, 2) if type(K) > 0.

This recursive bisection creates only a small number of similarity classes of tetrahedra
(see [29, 38]).
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2 

0 
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0 
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2 

Type 0 

Children[0] of K
5
 

Children[1] of K
5
 Children[0] of K

6
 

Children[1] of K
4
 Children[1] of K

3
 Children[1] of K

6
 

Children[0] of K
4
 Children[0] of K

3
 

Fig. 3.2. Bisection of tetrahedra in the course of recursive bisection. Assignment of types to
children

Fig 3.3 shows a 2D example of the recursive bisection refinement (the algorithm
for 2D case is called “the newest vertex bisection” in [32]). Similar to the 3D algorithm,
for any element K, its three vertices are locally numbered by 0, 1, and 2, its refinement
edge is the edge between vertex 0 and 1. The newly created vertex in the two children
of K are numbered by 2. In the child element containing vertex 0 of K, vertex 0 and
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2 of K are renumbered by 1 and 0 respectively. In the other child element, vertex 1
and 2 of K are renumbered by 0 and 1 respectively.

M1 M2 M3

M4 M5 M6

Fig. 3.3. Virtual refinement hierarchy for 2D triangular meshes emerging in the course of
successive local newest vertex bisection refinement of M0 from Fig. 3.1. Accompanying quasi-uniform
meshes outlined in blue, maximally refined triangles marked yellow.

In order to keep the mesh conforming during refinements, the bisection of an edge
is only allowed when such an edge is the refinement edge for all elements which share
this edge. If a tetrahedron has to be refined, we have to loop around its refinement edge
and collect all elements at this edge to create an refinement patch. Then this patch
is refined by bisecting the common refinement edge. For any mesh Ml an associated
“quasi-uniform” mesh M̂l according to (3.2), Ml ≺ M̂l, is obtained as follows: the

elements in {K ∈ Ml : ℓ(K) < l} undergo bisection until ℓ(K) = l for any K ∈ M̂l.
We still have to make sure that the recursive bisection allows the definition of

a virtual refinement hierarchy. Thus, let Mh = ML be generated from the initial
meshM0 by the bisection algorithm in [29]. Denote byMhier the set of all tetrahedra
created during the bisection process, i.e., for any K ∈ Mhier, there is a K ′ ∈ Mh

such that either K ′ = K or K ′ is created by refining K. Then, the virtual meshes
Ml, 0 < l < L can be defined as

Ml := {K ∈Mhier : ℓ(K) ≤ l} 0 < l < L .(3.4)

In the following, we are going to prove that eachMl is a conforming mesh, that is, no
hanging nodes occur inMl, 0 ≤ l ≤ L. The proof depends on some mild assumptions
onM0 (see assumptions (A1) and (A2) in [29]) which will be taken for granted.

Lemma 3.1. [29, Lemmas 2,3] Let T, T ′ ∈ Mh be a pair of tetrahedra sharing a
face F = K ∩K ′. It holds true that
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1. if T contains the refinement edge of T ′ and vice versa, then they have the
same refinement edge,

2. if F contains the refinement edges of both K and K ′, then ℓ(K) = ℓ(K ′),
3. if F contains the refinement edge of K, but does not contain the refinement

edge of K ′, then ℓ(K) = ℓ(K ′) + 1,
4. if F does not contain the refinement edges of K and K ′, then ℓ(K) = ℓ(K ′).

Lemma 3.2. The meshes Ml, 0 ≤ l ≤ L, according to (3.4) are conforming
meshes.

A
new

 

0 0 

1 1

E E 
K 

K’ 

K
p
 

K’
p
 

Fig. 3.4. The patch around a refinement edge E with vertex 0 and 1. ℓ(K) = ℓ(K ′) = L and
ℓ(Kp) = ℓ(K ′

p) = L − 1.

Proof. We are going to prove the lemma by backward induction starting from
l = L. Since ML =Mh is conforming, for any K ∈ ML satisfying ℓ(K) = L, there
exists a brother of K, denoted by K ′ ∈ ML, such that ℓ(K ′) = L and Kp := K∪K ′ ∈
ML−1. Here Kp is called the parent of K and K ′ with ℓ(Kp) = L− 1 (see Fig. 3.4).

Let E be the refinement edge of Kp. By the recursive bisection algorithm, E must
be the common refinement edge of all tetrahedra in the refinement patch:

PE =
⋃
{K ′

p : K ′
p ∈ML−1 and E ⊂ K ′

p }.

By Lemma 3.1, ℓ(K ′
p) = L − 1 for any K ′

p ⊂ PE and the midpoint of E, denoted by
Anew, is the unique new vertex ofML in PE . We conclude that

PE =
⋃
{K : K ∈ML, ℓ(K) = L, and Anew is a vertex of K }.

Coarsen the sub-mesh ML|PE
by removing the vertex Anew and all edges related to

it and adding E to this patch. Thus a conforming sub-mesh ML−1|PE
is obtained.

Do above coarsening process for every element K ∈ ML with ℓ(K) = L. This proves
thatML−1 is conforming.

Finally, an induction argument confirms thatMl is conforming, l = L− 2, · · · , 1.
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4. Local multigrid. To begin with, we introduce nested refinement zones as
open subsets of Ω:

ωl := interior
(⋃
{K : K ∈Mh, ℓ(K) ≥ l}

)
⊂ Ω ,(4.1)

see Fig. 4.1 and Fig. 4.2. The notion of refinement zones allows a concise definition of
the local multilevel decompositions of the finite element spaces V (Mh) and U(Mh)
that underly the local multigrid method.

“Refinement strips”: set differ-
ences of refinement zones

: Σ0 := ω0 \ ω1

: Σ1 := ω1 \ ω2

: Σ2 := ω2 \ ω3

: Σ3 := ω3

Fig. 4.1. Refinement zones for the 2D refinement hierarchy of Figure 3.1.
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“Refinement strips”: set differ-
ences of refinement zones

: Σ0 := ω0 \ ω1

: Σ1 := ω1 \ ω2

: Σ2 := ω2 \ ω3

: Σ3 := ω3 \ ω4
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: Σ4 := ω4 \ ω5
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����
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����

: Σ5 := ω5 \ ω6

����
����
����

����
����
����

: Σ6 := ω6

Fig. 4.2. Refinement zones for the 2D refinement hierarchy of Figure 3.3.

We introduce local multigrid from the perspective of multilevel successive sub-
space correction (SSC) [46–48]. First, we give an abstract description for a linear
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variational problem

u ∈ H : a(u, v) = f(v) ∀v ∈ H ,(4.2)

involving a positive definite bilinear form a on a Hilbert space H . The method is
completely defined after we have provided a finite subspace decomposition

H =
J∑

j=0

Hj , Hj ⊂ H closed subspaces, j = 0, . . . , J, J ∈ N .(4.3)

Then the correction scheme implementation of one step of SSC acting on the iterate
um−1 reads:

for m = 1, 2, · · ·
um−1

0 = um−1

for j = 0, 1, · · · , J
Let ej ∈ Hj solve

a(ej, vj) = f(vj)− a(um−1
j−1 , vj) ∀ vj ∈ Hj

um−1
j = um−1

j−1 + ej

endfor
um = um−1

J

endfor
This amounts to a stationary linear iterative method with error propagation op-

erator

E = (I − PJ )(I − PJ−1) · · · (I − P0) ,(4.4)

where Pj : H 7→ Hj stands for the Galerkin projection defined through

(4.5) a(Pjv, vj) = a(v, vj) ∀ vj ∈ Hj .

The convergence theory of SSC for an inner product a rests on two assumptions.
The first one concerns the stability of the space decomposition. We assume that there
exists a constant Cstab independent of J such that

(4.6) inf
{ J∑

j=0

‖vj‖
2
A :

J∑

j=0

vj = v
}
≤ Cstab ‖v‖

2
A ∀ v ∈ H.

The second assumption is a strengthened Cauchy-Schwartz inequality, namely, there
exist two constants 0 ≤ q < 1 and Corth independent of j and k such that

(4.7) a(vj , vk) ≤ Corthq
|k−j| ‖vj‖A ‖vk‖A ∀ vj ∈ Hj , vk ∈ Hk .

The above inequality states a kind of quasi-orthogonality between the subspaces.
From [46, Theorem 4.4] and [50, Theorem 5.1] we cite the following central convergence
theorem:

Theorem 4.1. Provided that (4.6) and (4.7) hold, the convergence rate of Algo-
rithm SSC is bounded by

(4.8) ‖E‖2A ≤ 1−
1

Cstab(1 + Θ)2
with Θ = Corth

1 + q

1− q
,
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where the operator norm is defined by

‖E‖A := sup
v∈H,v 6=0

‖Ev‖A
‖v‖A

.

The bottom line is that the subspace splitting (4.3) already provides a full de-
scription of the method. Showing that both constants Cstab from (4.6) and Corth from
(4.7) can be chosen independently of the number L of refinement levels is the challenge
in asymptotic multigrid analysis.

In concrete terms, the role of the linear variational problem (4.2) is played by
(1.1) considered on the edge element space U(Mh), which replaces the Hilbert space
H . To define the local multilevel decomposition of U(Mh), we define “sets of new
basis functions” on the various refinement levels

B
0
V := BV (M0), B

l
V := {bh ∈ BV (Ml) : supp bh ⊂ ωl} ,

B
0
U

:= BU(M0), B
l
U

:= {bh ∈ BU(Ml) : suppbh ⊂ ωl} ,
1 ≤ l ≤ L .(4.9)

A 2D drawing of the sets B
l
V is given in Fig. 4.3 where ΓD = ∂Ω. Note that we

also have to deal with V (Mh), because, as suggested by the reasoning in [24], a local
multilevel decomposition of U(Mh) has to incorporate an appropriate local multilevel
decomposition of V (Mh).

l = 0 l = 1 l = 2 l = 3

Fig. 4.3. Active vertices (red) carrying “tent functions” in B
l
V , ΓD = ∂Ω, refinement hierarchy

of Fig. 3.1

Then, a possible local multigrid iteration for the linear system of equations arising
from a finite element Galerkin discretization of a H1

ΓD
(Ω)-elliptic variational problem

boils down to a successive subspace correction method based on the local multilevel
decomposition

V (Mh) = V (M0) +

L∑

l=1

∑

bh∈Bl

V

Span {bh} .(4.10)

Similarly, the local multilevel splitting of U(Mh) is based on the multilevel de-
composition

U(Mh) = U(M0) +

L∑

l=1

∑

bh∈Bl

V

Span {grad bh}+

L∑

l=1

∑

bh∈Bl

U

Span {bh} .(4.11)

These choices are motivated both by the design of multigrid methods for (1.1) and
U(M) in the case of uniform refinement and local multigrid approaches to H1

ΓD
(Ω)-

elliptic variational problems after discretization by means of linear finite elements [32,
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45]. The occurrence of gradients of “tent functions” bh in (4.11) is related to the hybrid
local relaxation, which is essential for the performance of multigrid in H(curl,Ω),
see [24] for a rationale. A rigorous justification will emerge during the theoretical
analysis in the following sections. It will establish the following main theorem.

Theorem 4.2 (Asymptotic convergence of local multigrid for edge elements).
Under the assumptions on the meshes made above and allowing at most one hanging
node per edge, the decomposition (4.11) leads to an SSC iteration whose convergence
rate is bounded away from 1 uniformly in the number L of refinement steps.

5. Stability. First we tackle the stability estimate (4.6) for the local multilevel
decomposition (4.10), which is implicitly contained in (4.11).

5.1. Local quasi-interpolation onto V (M). Quasi-interpolation operators
are projectors onto finite element spaces that have been devised to accommodate two
conflicting goals: locality and boundedness in weak norms [17,35,39,40]. We resort to
a construction employing local linear L2-dual basis functions.

For a generic tetrahedron K define ψK
j , j = 1, 2, 3, 4, by L2(K)-duality to the

barycentric coordinate functions λi, i = 1, 2, 3, 4, of K:

ψK
j ∈ P1(K) :

∫

K

ψK
j (x)λi(x) dx = δij , i, j ∈ {1, . . . , 4} .(5.1)

Computing an explicit representation of the ψK
j we find

C−1 ≤ |K|
∥∥ψK

j

∥∥2

L2(K)
≤ C , C−1 ≤

∥∥ψK
j

∥∥
L1(K)

≤ C ,(5.2)

with an absolute constant C > 0. We can regard ψK
j as belonging to the j-th vertex

of K. Thus, we will also write ψK
p , p ∈ N (K), N (K) the set of vetices of K.

We assume a generic tetrahedral mesh M of Ω. In order to introduce quasi-
interpolation operators we take for granted some “node→cell”–assignment, a mapping
N (M) 7→ M, p ∈ N (M) 7→ Kp ∈M.

Definition 5.1. Writing {bp}p∈N (M) := BV (M), define the local quasi-

interpolation operator

(5.3) Qh :

{
L2(Ω) 7→ V (M)

u 7→
∑

p∈N (M)

∫
Kp

ψ
Kp

p (x)u(x) dx · bp .

Analoguously, we introduce the local quasi-interpolation Qh : L2(Ω) 7→ V (M).

We point out that Qh respects u = 0 on ΓD, because the sum does not cover basis
functions attached to vertices on ΓD. From (5.1) it is also evident that both Qh and
Qh are projections, for instance,

(5.4) Qhuh = uh ∀uh ∈ V (M) .

Moreover, they satisfy the following strong continuity and approximation properties:

Lemma 5.2. The quasi-interpolation operators from Def. 5.1 allow the estimates
(set ΓD = ∅ for QM)

∃C = C(ρM) : ‖Qhu‖L2(Ω) ≤ C ‖u‖L2(Ω) ∀u ∈ L
2(Ω) ,(5.5)

∃C = C(ρM,Ω,ΓD) : |Qhu|H1(Ω) ≤ C|u|H1(Ω) ∀u ∈ H1
ΓD

(Ω) ,(5.6)

∃C = C(ρM, k) :
∥∥h−k(u − Qu)

∥∥
L2(Ω)

≤ C|u|Hk(Ω) ∀u ∈ Hk(Ω) ∩H1
ΓD

(Ω) ,(5.7)
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and k = 1, 2.

Proof. [Part I] Continuity in L2(Ω) is a simple consequence of the stability (2.6)
of the nodal bases BV (M) and of the Cauchy-Schwarz inequality:

‖Qhu‖
2
L2(Ω) ≤ C

∑

p∈N (M)

|Qhu(p)|2 ‖bp‖
2
L2(Ω)

= C
∑

p∈N (M)

∣∣∣∣∣

∫

Kp

ψ
Kp

p (x)u(x) dx

∣∣∣∣∣

2

‖bp‖
2
L2(Ω)

≤ C
∑

p∈N (M)

∥∥∥ψKp

p

∥∥∥
2

L2(Kp)
‖bp‖

2
L2(Ω) ‖u‖

2
L2(Kp) ≤ C ‖u‖

2
L2(Ω) ,

with C = C(ρM) > 0, because
∥∥∥ψKp

p

∥∥∥
2

L2(Kp)
‖bp‖

2
L2(Ω) ≤ C, too.

The following estimate is instrumental in establishing continuity of Qh inH1
ΓD

(Ω):

Theorem 5.3 (Generalized Hardy inquality).

∃C = C(Ω,ΓD) > 0 :

∫

Ω

∣∣∣∣
u

dist(x,ΓD)

∣∣∣∣
2

dx ≤ C|u|2H1(Ω) ∀u ∈ H1
ΓD

(Ω) .

Proof. By density it suffices to consider u ∈ C∞(Ω), supp(u) ∩ ΓD = ∅. Using a
partition of unity, we can confine the estimate to neighborhoods of ΓD, in which ∂Ω is
the graph of a Lipschitz-continuous function. Thus, after bi-Lipschitz transformations,
we need only investigate three canonical situations, see Fig. 5.1:

1. ΓD = {z = 0}, for which the 1D Hardy inequality gives the estimate, see the
proof of Thm. 1.4.4.4 in [22].

2. ΓD = {z = 0 ∧ x > 0}, which can be treated using polar coordinates in the
(x, z)-plane and then integrating in y-direction:

∞∫

0

π∫

0

∣∣∣∣
u(r, ϕ)

r

∣∣∣∣
2

dϕr dr ≤

∞∫

0

π∫

0

∣∣∣∣
π

r

∂u

∂ϕ
(r, ϕ)

∣∣∣∣
2

dϕr dr ≤ π2

∫

z>0

| gradx,z u|
2 dxdz .

3. ΓD = {z = 0 ∧ x > 0 ∧ y > 0}, for which we obtain a similar estimate using
spherical coordinates.

This ends the proof.

x

y

z

ΓD

ΓD = {z = 0}

x

y

z

ΓD

∂Ω
\ Γ

D ϕr

ΓD = {z = 0 ∧ x > 0}

x

y

z

ΓD

∂Ω \ ΓD

∂Ω \ ΓD

ΓD = {z = 0 ∧x > 0 ∧ y > 0}

Fig. 5.1. Canonical situations to be examined in the proof of Thm. 5.3
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Proof. [of Lemma 5.2, part II] In order to tackle the H1(Ω)-continuity of Qh, we
use that gradV (M) ⊂ U(M) along with the stability estimate (2.4)

‖gradQhu‖
2
L2(Ω) ≤ C

∑

E=[p,q]∈E(M)

(Qhu(p)− Qhu(q))2 ‖bE‖
2
L2(Ω) ,(5.8)

with the notation {bE}E∈E(M) := BU(M).

(i) for the case E = [p, q] ∈ E(M), p, q 6∈ ΓD, we adapt arguments from [39].
For any u ∈ H1

ΓD
(Ω), by (5.1), we have the identity

|(Qhu)(p)− (Qhu)(q)| =
∣∣∣
∫

Kp

∫

Kq

ψ
Kp

p (x)ψ
Kq

q (y)(u(x)− u(y)) dydx

∣∣∣

=
∣∣∣
∫

Kp

∫

Kq

ψ
Kp

p (x)ψ
Kq

q (y)

1∫

0

gradu(y + τ(x− y)) · (x− y) dτ dydx

∣∣∣ .

Then split the innermost integral and transform

∫ 1

0

f(y + τ(x− y)) dτ =

∫ 1

1
2

f(y + τ(x− y)) dτ +

∫ 1

1
2

f(x + τ(y − x)) dτ .

We infer

|(Qhu)(p)− (Qhu)(q)|

≤

1∫

1
2

∫

Kp

∫

Kq

|ψ
Kp

p (x)||ψ
Kq

q (y)| | gradu(y + τ(x− y))||x− y| dydxdτ

+

1∫

1
2

∫

Kp

∫

Kq

|ψ
Kp

p (x)||ψ
Kq

q (y)| | gradu(x + τ(y − x))| |x− y| dydxdτ

The transformation formula for integrals reveals

∫

K

f(x + τ(y − x)) dy = τ−3

∫

K′

f(z) dz , K ′ := x + τ(K − x) .

Appealing to the bounds for
∥∥ψK

j

∥∥
L2(K)

,
∥∥ψK

j

∥∥
L1(K)

,K ∈M, from (5.2), the Cauchy-

Schwarz inequality yields

|(Qhu)(p)− (Qhu)(q)| ‖bE‖L2(Ω)(5.9)

≤ C

[
|p− q| ‖bE‖L2(Ω)

min{|Kq|
1
2 , |Kp|

1
2 }

]

︸ ︷︷ ︸
≤C=C(ρM)

∫ 1

1
2

τ−3/2 dτ · |u|H1(〈ΩE〉) .

Here 〈ΩE〉 stands for the convex hull of all tetrahedra adjacent to the edge E.
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(ii) now consider E = [p, q] ∈ E(M), p ∈ ΓD. Then, for any u ∈ H1
ΓD

(Ω)

|(Qhu)(q)− (Qhu)(p)|2 = |(Qhu)(q)|2 =

∣∣∣∣∣

∫

Kq

ψ
Kq

q (x)u(x) dx

∣∣∣∣∣

2

=
∣∣∣
∫

Kq

dist(x,ΓD)︸ ︷︷ ︸
≤C|p−q|

ψ
Kq

q (x)
u(x)

dist(x,ΓD)
dx

∣∣∣
2

≤
C|p− q|2

|Kq|
·

∫

Kq

∣∣∣∣
u(x)

dist(x,ΓD)

∣∣∣∣
2

dx

≤
C

|p− q|

∫

ΩE

∣∣∣∣
u(x)

dist(x,ΓD)

∣∣∣∣
2

dx ,

with (different) constants C = C(ρM) > 0.
Combining (5.8), (5.9), using the finite overlap property ofM in the form

∃C = C(ρM) : ♯{E ∈ E(M) : x ∈ 〈ΩE〉} ≤ C ∀x ∈ Ω ,

and appealing to Thm. 5.3 confirm |Qhu|H1(Ω) ≤ C|u|H1(Ω). Observe that the Hardy
inequality makes the constant depend on Ω and ΓD in addition.

The quasi-interpolation error estimate (5.7) results from scaling arguments. Pick
K ∈ M, u ∈ H2(Ω) ∩H1

ΓD
(Ω), and write IKu ∈ P1(K) for the linear interpolant of

u on K. Thanks to the projection property, we deduce as in Part I of the proof that,
with C = C(ρM),

‖(Id− Qh)u‖L2(K) = ‖(Id− Qh)(u− IKu)‖L2(K) ≤ C ‖u− IKu‖L2(ΩK)

≤ Ch2
K |u|H2(ΩK) .

Here, we wrote ΩK :=
⋃
{K ′ : K ′ ∩ K 6= ∅}, and the final estimate can be shown

by a simple scaling argument, cf. (2.7). Estimate (5.7) for k = 1 follows by scaling
arguments and interpolation between the Sobolev spaces H2(ΩK) and L2(ΩK).

5.2. Multilevel splitting of V (M̂L). In this section we revisit the well-known
uniform stability of multilevel splittings of H1(Ω)-conforming Lagrangian finite ele-
ment functions in the case of mesh hierarchies generated by uniform, i.e. non-local,
regular refinement.

We take for granted a virtual refinement hierarchy (3.1) of tetrahedral meshes as
introduced in Sect. 3 and its accompanying quasi-uniform family of meshes (3.2).

Owing to the inf in (4.6), it is enough to find a concrete family of admissible
“candidate” decompositions that enjoys the desired L-uniform stability. We aim for
candidates that fit the locally refined mesh hierarchy.

The principal idea is to use a sequence of quasi-interpolation operators Ql :
L2(Ω) 7→ V (M̂l) based on a judiciously chosen node→element–assignments. For

M̂l we introduce a “coarsest neighbor node→element–assignment”: First, for any
p ∈ N (M̂l), l = 1, . . . , L, we pick K ∈ Ml such that

ℓ(K) = min{ℓ(K) : p ∈ K, K ∈ Ml} .

Secondly, we select a “coarsest neighbor” Kp ∈ M̂l among those elements of M̂l that

are contained in K. This defines a mapping N (M̂l) 7→ M̂l, p 7→ Kp. We write Ql :

L2(Ω) 7→ V (M̂l) for the induced quasi-interpolation operator according to Def. 5.1.
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Next, we examine the candidate multilevel splitting

uh = Q0uh +
L∑

l=1

(Ql − Ql−1)uh , uh ∈ V (M̂L) .(5.10)

Lemma 5.4. There holds, with a constant C > 0 solely depending on Ω and the
uniform bound for the shape regularity measures ρcMl

, 0 ≤ l ≤ L,

(5.11)
∣∣Q0uh

∣∣2
H1(Ω)

+

L∑

l=1

h−2
l

∥∥(Ql − Ql−1)uh

∥∥2

L2(Ω)
≤ C|uh|

2
H1(Ω) ∀uh ∈ V (M̂L) .

Proof. We take the cue from the elegant approach of Bornemann and Yserentant
in [9], who discovered how to bring techniques of real interpolation theory of Sobolev
spaces [30] to bear on (5.10). The main tools are the so-called K-functionals given by

K(t, u)2 := inf
w∈H2(Ω)

{
‖u− w‖2L2(Ω) + t2 |w|2H2(Ω)

}
,

KR3(t, u)2 := inf
w∈H2(R3)

{
‖u− w‖2L2(R3) + t2 |w|2H2(R3)

}
.

The estimates (5.6) and (5.7) of Lemma 5.2 create a link between the terms in (5.11)
and K(t, u): owing to (5.5) and (5.7) there holds for any u ∈ L2(Ω)

∥∥(Ql − Ql−1)u
∥∥

L2(Ω)
≤
∥∥(Ql − Ql−1)(u− w)

∥∥
L2(Ω)

+
∥∥(Ql − Ql−1)w

∥∥
L2(Ω)

≤ C
(
‖u− w‖L2(Ω) + h2

l |w|H2(Ω)

)
∀w ∈ H2(Ω) .

Here and below the generic constants C may depend on shape regularity max
0≤l≤L

ρcMl

and the (quasi-uniformity) constants in (3.3). We conclude

∥∥(Ql − Ql−1)u
∥∥2

L2(Ω)
≤ C K(h2

l , u)
2 ∀u ∈ L2(Ω) ,(5.12)

which implies

(5.13)
∣∣Q0u

∣∣2
H1(Ω)

+
L∑

l=1

h−2
l

∥∥(Ql − Ql−1)u
∥∥2

L2(Ω)
≤ C

{
|u|2H1(Ω)+

L∑

l=1

h−2
l K(h2

l , u)
}
.

Let ũ ∈ H1(R3) be the Sobolev extension of u such that, with C = C(Ω) > 0,

ũ|Ω = u and |u|H1(R3) ≤ C|u|H1(Ω).

Define the Fourier Transform of ũ by

û(ξ) =
1

(2π)3/2

∫

R3

ũ(x)e−ı x·ξ dx.

By the equivalent definition of Sobolev-norms on R3

|ũ|2Hi(R3) ≈

∫

R3

|ξ|2i|û(ξ)|2 dξ , i = 0, 1,
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we have

KR3(t, ũ)2 ≤ C inf
w∈H2(R3)

∫

R3

{
|û(ξ)− ŵ(ξ)|2 + t2|ξ|4 |ŵ|2

}
dξ

= C

∫

R3

t2|ξ|4

1 + t2|ξ|4
|û(ξ)|2 dξ ,

because the infimum is attained for ŵ(ξ) = û(ξ)/(1 + t2|ξ|4). Since

K(t, u)2 = inf
w∈H2(Ω)

{
‖u− w‖2L2(Ω) + t2 |w|2H2(Ω)

}
,

= inf
w∈H2(R3)

{
‖u− w‖2L2(Ω) + t2 |w|2H2(Ω)

}
≤ KR3(t, ũ)2,

we deduce that

L∑

l=1

h−2
l K(h2

l , u)
2 ≤ C

L∑

l=1

∫

R3

h2
l |ξ|

4

1 + h4
l |ξ|

4
|û(ξ)|2 dξ(5.14)

≤ C sup
ξ∈R3

{ L∑

l=1

θ2l|ξ|2

1 + θ4l|ξ|4

}∫

R3

|ξ|2|û(ξ)|2 dξ

≤ C |û|2H1(R3) ≤ C|u|
2
H1(Ω),

where we have used assumption (3.3). The proof is finished by combining (5.13) and
(5.14).

Thanks to the particular design of the node→element–assignment underlying Ql,
the terms in the decomposition (5.10) turn out to be localized.

Lemma 5.5. For all uh ∈ V (Mh) and 0 ≤ l ≤ j ≤ L,

Qjµh = µh in Ω \ ωl+1.(5.15)

Proof. If p ∈ N (M̂j) and p 6∈ ωl+1 (open set !), then Kp 6⊂ ωl+1 (Kp ∈ M̂j).
Recall that Kp was deliberately chosen such that there is K ∈ Ml with Kp ⊂ K.
Since uh is linear on K, the same holds for Kp and (5.1) guarantees

(Qjuh)(p) = uh(p) .

When restricted to Ω \ ωl+1, the mesh M̂j is a refinement ofMh. Hence, agreement

of the Mh-piecewise linear function uh with Qjuh in all nodes of M̂j outside ωl+1

implies Qjuh|Ω\ωl+1
= uh|Ω\ωl+1

.

Consequently, for any uh ∈ V (Mh), outside ωl both Qluh and Ql−1uh agree with
uh.

Corollary 5.6. For any uh ∈ V (Mh) and 1 ≤ l ≤ L,

supp((Ql − Ql−1)uh) ⊂ ωl .
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In other words, the components of (5.10) are localized inside refined regions of Ω.
In light of the definition (4.1) of the refinement zones, we also find

(Ql − Ql−1)uh ∈ V (Ml) !(5.16)

However, having used Ql we cannot expect the splitting to match potential
homogeneous Dirichlet boundary conditions. This can be remedied using Oswald’s
trick [34, Cor. 30]. We fix uh ∈ V (Mh) and abbreviate u0 = Q0uh ∈ V (M0),
ul := (Ql − Ql−1)uh ∈ V (Ml), l ≥ 1. Then, we consider the partial sums

sl :=
l∑

j=0

uj ∈ V (Ml) l ≥ 0 .(5.17)

Flatly dropping those basis functions in BV (Ml) that belong to vertices in ΓD in the
representation of sl we arrive at sl ∈ V (Ml) ∈ H1

ΓD
(Ω).

Due to Cor. 5.6, we observe that

sl and sl−1 agree on Ω \ ωl.(5.18)

Hence, away from ωl∩ΓD the same basis contribution are removed from both functions
when building sl and sl−1, respectively. This permits us to conclude

sl and sl−1 agree on Ω \ ωl.(5.19)

Putting it differently,

supp(sl − sl−1) ⊂ ωl .(5.20)

Hence, for all 1 ≤ l ≤ L we can estimate

‖sl − sl−1‖L2(Ω) = ‖sl − sl−1‖L2(ωl)

≤‖sl − sl‖L2(ωl)
+ ‖sl−1 − sl−1‖L2(ωl)

+ ‖ul‖L2(ωl)
.

(5.21)

The benefit of zeroing in on ωl is that on this subdomain sl has the same “uniform
scale” hl as ul. Thus, repeated application of uniform L2-stability estimates for basis
representations and elementary Cauchy-Schwarz inequalities make possible the esti-
mates (for arbitrary 0 < ǫ < 1

2 )

‖sl − sl‖
2
L2(ωl)

≤ Ch3
l

∑

p∈N (Γl)

sl(p)2 ≤ Chl

∥∥sl|∂Ω

∥∥2

L2(Γl)
= Chl

∥∥∥∥∥∥

L∑

j=0

uj −
l∑

j=0

uj

∥∥∥∥∥∥

2

L2(Γl)

≤ Chl

( L∑

j=l+1

‖uj‖L2(Γl)

)2

≤ Chl

( L∑

j=l+1

h
− 1

2
j ‖uj‖L2(ωl)

)2

≤ Chl ·
L∑

j=l+1

h1−2ǫ
j ·

L∑

j=l+1

h2ǫ−2
j ‖uj‖

2
L2(ωl)

≤ Ch2−2ǫ
l ·

L∑

j=l+1

h2ǫ−2
j ‖uj‖

2
L2(ωl)

.
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Here the set N (Γl) comprises the nodes of N (M̂l) that lie on ωl ∩ ΓD and we make
heavy use of the geometric decay of hl. The latter also yields

L∑

l=1

h−2
l ‖sl − sl‖

2
L2(ωl)

≤ C
L∑

l=1

h−2ǫ
l

L∑

j=l+1

h2ǫ−2
j ‖uj‖

2
L2(ωl)

= C

L∑

j=2

(
j∑

l=1

h−2ǫ
l

)
h−2+2ǫ

j ‖uj‖
2
L2(ωl)

≤ C
L∑

j=2

h−2
j ‖uj‖

2
L2(Ω) ≤ C|uh|

2
H1(Ω) ,

by virtue of Lemma 5.4. Except for the last line, all constants only depend on ρcMl

and the constants in (3.3). Merging the last estimate with (5.21) gives us

L∑

l=1

h−2
l ‖sl − sl−1‖

2
L2(Ω) ≤ C|uh|

2
H1(Ω) .(5.22)

Thus, in light of (5.20) and the following identity

s0 +

L∑

l=1

(sl − sl−1) = sL = sL = uh,

we have accomplished the proof of the following theorem:

Theorem 5.7. For any uh ∈ V (Mh) we can find ul ∈ V (Ml) such that

uh =
L∑

l=0

ul, supp(ul) ⊂ ωl ,(5.23)

and

|u0|
2
H1(Ω) +

L∑

l=1

h−2
l ‖ul‖

2
L2(Ω) ≤ C|uh|

2
H1(Ω) ,

with C > 0 independent of L.

Notice that in combination with the L2-stability (2.6) of nodal bases and inverse
inequalities, this theorem asserts an L-uniform estimate of the form (4.6) for the
splitting (4.10) w.r.t. the energy norm |·|H1(Ω). From (5.23) it is clear that the basis

functions admitted in (4.10) can represent the functions ul of Thm. 5.7.

Remark 5.8. It is interesting to note that, in contrast to other analyses [1,9], the
above proof does not impose restrictions on the ratios of sizes of adjacent elements.
This becomes relevant for refinement with hanging nodes: our theory for the H1(Ω)-
case can cope with an arbitrary number of hanging nodes on an active edge.

5.3. Helmholtz-type decompositions. Helmholtz-type decompositions have
emerged as a powerful tool for answering questions connected with H(curl,Ω). In
particular, they have paved the way for a rigorous multigrid theory for H(curl,Ω)-
elliptic problems [14,21,24,26–28,36]. We refer to [25, Sect. 2.4] for more information.
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We will need a very general version provided by the following theorem.
Theorem 5.9. Let Ω meet the requirements stated in Sect. 1. Then, for any

v ∈HΓD
(curl,Ω), there exists a p ∈ H1

ΓD
(Ω) and Ψ ∈ (H1

ΓD
(Ω))3 such that

v = ∇p+ Ψ,(5.24)

|p|H1(Ω) ≤ C‖v‖H(curl,Ω), ‖Ψ‖H1(Ω) ≤ C‖ curl v‖L2(Ω),(5.25)

where the constant C only depends on Ω.

Ω

Ω1

Ω2

Ω3

Fig. 5.2. Buffer zones attached to connected components of (red) Dirichlet boundary part ΓD

Proof. Given u ∈ HΓD
(curl,Ω), we define ũ ∈ H(curl, Ω̃), Ω̃ := interior(Ω ∪

Ω1 ∪Ω2 ∪ . . . ) (see Sect. 1 and Fig. 5.2 for the meaning of Ωi), by

ũ(x) =

{
u(x) for x ∈ Ω ,

0 for x ∈ Ωi for some i .
(5.26)

Notice that the tangential components of ũ are continuous across ∂Ω, which ensures
ũ ∈H(curl, Ω̃). Then extend ũ to u ∈H(curl,R3), see [13].

Since curl u ∈ H(div 0,R3), Fourier techniques [20] yield a Φ ∈ (H1(R3))3 that
fulfills

curlΦ = curl u , ‖Φ‖H1(R3) ≤ C ‖curl u‖L2(R3) ,(5.27)

with C = C(Ω) > 0. As a consequence

curl(u−Φ) = 0 ⇒ u−Φ = grad q in R
3 .(5.28)

On every Ωi, by definition u = 0, which implies q|Ωi
∈ H2(Ωi). As the attached

domains Ωi are well separated Lipschitz domains, see Fig. 5.2, the H2-extension of
q|

S
i
Ωi

to q ∈ H2(R3) is possible. Moreover, it satisfies

‖q‖H2(R3) ≤ C‖q‖H2(
S

i
Ωi)
≤ C‖Φ‖H1(R3) ≤ ‖curl u‖L2(Ω) .(5.29)
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u = Φ− grad q + grad(q + q) .(5.30)

Finally, set Ψ := (Φ− grad q)|Ω, p := q + q, and observe

‖Ψ‖H1(Ω) ≤ ‖Φ‖H1(R3) + ‖q‖H2(R3) ≤ C ‖curl u‖L2(Ω) .(5.31)

The constants may depend on Ω, ΓD, and the chosen Ωi.
The stable Helmholtz-type decomposition (5.24) immediately suggests the follow-

ing idea: when given vh ∈ U(Mh), first split it according to (5.24) and then attack
both components by the uniformly H1-stable local multilevel decompositions explored
in the previous section. Alas, the idea is flawed, because neither of the terms in (5.24)
is guaranteed to be a finite element function, even if this holds for vh.

Fortunately, the idea can be mended by building a purely discrete counterpart of
(5.24) as in [28, Lemma 5.1]. For the sake of completeness we also elaborate the proof
below.

However, to accommodate nonconforming meshes in our theory, we have to rule
out extreme jumps of local meshwidth. For the sake of simplicity, we make the fol-
lowing assumption for the rest of this section:

Assumption 5.9.1. Any edge of Mh may contain at most one hanging node.
As a consequence, there exists a constant C > 0 independent of the mesh such

that

∀K1,K2 ∈Mh, K1

⋂
K2 6= ∅ : C−1hK1 ≤ hK2 ≤ ChK1 .(5.32)

Moreover, given that the meshM complies with Ass. 5.9.1, the assertion of Lemma 2.1
remains valid for the interpolation onto U(M). This can be concluded from local
considerations. zeroing on a situation, for which a 2D analogue is depicted in Fig. 5.3.

T

Fig. 5.3. subdivided triangle (yellow) with hanging nodes. The magenta disks represent “coarse”
active edges, the red squares “fine” active edges.

Write T for a subdivided tetrahedron, with edges carrying hanging nodes. We de-
fine UT := U(M)|T and, temporarily, Πh to be the corresponding edge interpolation

operator, cf. (2.5). In addition, let ΠT be the edge interpolation onto the local edge
element space U(T ). Simple affine transformation techniques establish that

|Πhu|H1(T ) ≤ C|u|H1(T ) ∀u ∈ {v ∈ (H1(T ))3 : curl u ∈ curlUT } ,(5.33)

with C > 0 only depending on the shape regularity of T . Thus, by using Lemma 2.1
and (5.33) and because Πh ◦ΠT = ΠT ,

‖u−Πhu‖L2(T ) ≤ ‖u−ΠT u‖L2(T ) + C ‖u−ΠTu‖L2(T ) ≤ ChT |u|H1(T ) ,
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for all u ∈ {v ∈ (H1(T ))3 : curl u ∈ curlUT }. Therefore, without further explana-
tion, we will use the estimate of Lemma 2.1 for meshes with hanging nodes, too.

Hanging nodes can be removed by invoking so-called green refinements [7], see
Fig. 5.4. This will create another conforming mesh Th, which satisfiesMh ≺ Th and

∀K ∈ Th : ∃K ′ ∈Mh : K ⊂ K ′ ∧ hK′ ≤ ChK ,(5.34)

with C > 0 only depending on the shape regularity measure ρMh
. In other words,Mh

and Th have about the same local resolution: writing hM and hT for the respective
locally constant meshwidth functions, we find

∃C = C(ρMh
) > 0 : C−1hM ≤ hT ≤ ChM a.e. in Ω .(5.35)

Fig. 5.4. Green refinements of a tetrahedron with hanging nodes (marked red).

The close relationship between local meshwidths implies uniform continuity of
finite element interpolations back and forth betweenMh and Th. In particular, stan-
dard local scaling arguments confirm the existence of a constant C = C(ρMh

) > 0
such that

∥∥hk
MΠhwh

∥∥
L2(Ω)

≤ C
∥∥hk

T wh

∥∥
L2(Ω)

∀wh ∈ U(Th), k = 0,−1 ,(5.36)
∥∥h−1

M (Id− Ih)Ψh

∥∥
L2(Ω)

≤ C|Ψh|H1(Ω) ∀Ψh ∈ (V (Th))3 ,(5.37)

where Ih is componentwise linear interpolation onto (V (Mh))3.
Lemma 5.10. For any vh ∈ U(Mh), there is Ψh ∈ (V (Mh))3, ph ∈ V (Mh),

and ṽh ∈ U(Mh) such that

vh = ṽh + ΠhΨh +∇ph ,(5.38)

‖ph‖H1(Ω) ≤ C ‖vh‖H (curl,Ω) ,(5.39)
∥∥h−1ṽh

∥∥
L2(Ω)

+ ‖Ψh‖H1(Ω) ≤ C ‖curl vh‖L2(Ω) ,(5.40)

where the constant C only depends on Ω, ΓD, and the shape regularity of Mh.
Proof. (cf. [28, Lemma 5.1]) Initially, we confine ourselves to conforming meshes.

We fix a vh ∈ U(Mh) and use the stable regular decomposition of Thm. 5.9 to split
it according to

vh = Ψ + gradp , Ψ ∈ (H1
ΓD

(Ω))3 , p ∈ H1
ΓD

(Ω) .(5.41)

We have already known that the functions Ψ and p satisfy

‖Ψ‖H1(Ω) ≤ C ‖curl vh‖L2(Ω) , ‖gradp‖L2(Ω) ≤ C ‖vh‖H(curl,Ω) ,(5.42)
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with constants only depending on Ω and ΓD.
Next, note that in (5.41) curlΨ = curl vh ∈ curlU(Mh), and, owing to

Lemma 2.1, ΠhΨ is well defined. Further, a commuting diagram property together
with Lemma 2.3 implies

curl(Id−Πh)Ψ = 0 ⇒ ∃q ∈ H1
ΓD

(Ω) : (Id−Πh)Ψ = grad q .(5.43)

The estimate of Lemma 2.1 together with (5.42) yields

∥∥h−1 grad q
∥∥

L2(Ω)
=
∥∥h−1(Id−Πh)Ψ

∥∥
L2(Ω)

≤ C|Ψ|H1(Ω) ≤ C ‖curl vh‖L2(Ω) .

(5.44)

In order to push Ψ into a finite element space, a quasi-interpolation operator
Qh : (L2(Ω))3 7→ (V (Mh))3 is the right tool. We simply get it from componentwise
application of an operator according to Def. 5.1 where any node→element–assignment
will do. Thus, we can define the terms in the decomposition (5.38) as

ṽh := Πh(Ψ− QhΨ) ∈ U(Mh) ,(5.45)

Ψh := QhΨ ∈ (V (Mh))3 ,(5.46)

gradph := grad(p+ q) , ph ∈ V (Mh) .(5.47)

Indeed, grad(p+ q) ∈ U(Mh) such that p+ q ∈ V (Mh). The stability of the decom-
position (5.38) can be established as follows: first, make use of Lemma 2.1 and (5.7)
to obtain, with C = C(ρMh

) > 0,
∥∥h−1ṽh

∥∥
L2(Ω)

≤
∥∥h−1(Id−Πh)(Ψ − QhΨ)

∥∥
L2(Ω)

+
∥∥h−1(Id− Qh)Ψ

∥∥
L2(Ω)

≤ C|(Id− Qh)Ψ|H1(Ω) + |Ψ|H1(Ω)

≤ C|Ψ|H1(Ω) ≤ C ‖curl vh‖L2(Ω) .

Due to the definition (5.46), the next estimate is a simple consequence of (5.6) and
Thm. 5.9

‖Ψh‖H1(Ω) ≤ C‖Ψ‖H1(Ω) ≤ C ‖curl vh‖L2(Ω) .(5.48)

Finally, the estimates established so far plus the triangle inequality yield

‖grad ph‖L2(Ω) ≤ C ‖vh‖H(curl,Ω) .(5.49)

Next, we tackle meshes with hanging nodes satisfying Assumption 5.9.1. Let an
auxiliary conforming mesh Th be constructed as above. Since vh ∈ U(Mh) ⊂ U(Th),

by the above arguments, there is Ψ̂h ∈ (V (Th))3, qh ∈ V (Th), and wh ∈ U(Th) such
that

vh = wh + ΠTh
Ψ̂h +∇qh ,(5.50)

‖qh‖H1(Ω) ≤ C ‖vh‖H (curl,Ω) ,(5.51)
∥∥h−1wh

∥∥
L2(Ω)

+
∥∥∥Ψ̂h

∥∥∥
H1(Ω)

≤ C ‖curl vh‖L2(Ω) ,(5.52)

where ΠTh
is the interpolation operator onto U(Th). Using the commuting diagram

and Lemma 2.2, we have

vh = Πhwh + ΠhΠTh
Ψ̂h + Πh∇qh = Πhwh + ΠhΨ̂h +∇(Ihqh)

= Πhwh + Πh(Id− Ih)Ψ̂h + ΠhIhΨ̂h +∇(Ihqh) .
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Setting ṽh = Πhwh + Πh(Id− Ih)Ψ̂h, (5.36) and (5.37) together with (5.35) yield

∥∥h−1ṽh

∥∥
L2(Ω)

≤
∥∥h−1Πhwh

∥∥
L2(Ω)

+
∥∥∥h−1(Id− Ih)Ψ̂h

∥∥∥
L2(Ω)

≤
∥∥h−1

T wh

∥∥
L2(Ω)

+
∣∣∣Ψ̂h

∣∣∣
H1(Ω)

.
(5.53)

In addition, we may choose ph = Ihqh and Ψh := IhΨ̂h and easily see

‖ph‖H1(Ω) ≤ ‖qh‖H1(Ω) ≤ C ‖vh‖H (curl,Ω) ,

‖Ψh‖H1(Ω) ≤
∥∥∥Ψ̂h

∥∥∥
H1(Ω)

≤ C ‖curl vh‖L2(Ω) .

This finishes the proof also for nonconforming meshes.

5.4. Local multilevel splitting of U(Mh). With the discrete Helmholz-type
decomposition of Lemma 5.10 at our disposal, we can now tackle its piecewise linear
and continuous components with Thm. 5.7.

Lemma 5.11. For any vh ∈ U(Mh), there exists a constant C only depending on
the domain, the Dirichlet boundary part ΓD, the shape regularity of the meshes Ml,
M̂l, 0 ≤ l ≤ L, and the constants in (3.3), such that

vh =

L∑

l=0

(
vl +∇pl

)
, vl ∈ Span

{
B

l
U

}
, pl ∈ Span

{
B

l
V

}
,(5.54)

and

(5.55)

‖v0‖
2
H(curl,Ω) + |p0|

2
H1(Ω) +

L∑

l=1

h−2
l

(
‖vl‖

2
L2(Ω) + ‖pl‖

2
L2(Ω)

)
≤ C ‖vh‖

2
H(curl,Ω) ,

where B
l
V and B

l
U

are defined in (4.9).

Proof. We start from the discrete Helmholtz-type decomposition of vh in (5.38):

vh = ṽh + ΠhΨh +∇ph, Ψh ∈ (V (Mh))3, ph ∈ V (Mh), ṽh ∈ U(Mh).

We apply the result of Thm. 5.7 about the existence of stable local multilevel splittings
of V (Mh) componentwise to Ψh: this gives

Ψh =

L∑

l=0

Ψl , Ψl ∈ Span
{
B

l
V

}3
,(5.56)

|Ψ0|
2
H1(Ω) +

L∑

l=1

h−2
l ‖Ψl‖

2
L2(Ω) ≤ C|Ψh|

2
H1(Ω) .(5.57)

Observe that the functions Ψl do not belong to U(Ml). Thus, we target them with
edge element interpolation operators Πl onto U(Ml), see (2.5), and obtain the split-
ting described in Lemma 2.2:

(5.58) Ψl = ΠlΨl +∇wl , wl ∈ Ṽ2(Ml) .
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The gradient terms introduced by (5.58) are well under control: writing sh :=
∑L

l=0 wl,
the L2-stability of (5.58), see Lemma 2.2, yields

‖ΠlΨl‖L2(Ω) ≤ C ‖Ψl‖L2(Ω) ,

|sh|
2
H1(Ω) ≤ C

( L∑

l=0

‖Ψl‖L2(Ω)

)2

≤ C
L∑

l=0

h2
l ·

L∑

l=0

h−2
l ‖Ψl‖

2
L2(Ω)

(5.57)

≤ C|Ψh|
2
H1(Ω) .

Because of curlΠ0Ψ0 = curlΨ0, we infer from (5.57)

‖Π0Ψ0‖
2
H(curl,Ω) +

L∑

l=1

h−2
l ‖ΠlΨl‖

2
L2(Ω) ≤ C|Ψh|

2
H1(Ω) .(5.59)

Above and throughout the remainder of the proof, constants are independent of L.
By the projector property Πh◦Πl = Πl, l = 0, . . . , L, and the commuting diagram

property (2.8), we arrive at

vh = ṽh +

L∑

l=0

ΠlΨl + grad(Ihsh + ph) ,(5.60)

where Ih is the nodal linear interpolation operator onto V (Mh). Recall (2.17) to see
that

|Ihsh + ph|H1(Ω) ≤ C|sh|H1(Ω) + |ph|H1(Ω) ≤ C ‖vh‖H(curl,Ω) .

The local multilevel splitting of Ihsh + ph according to Thm. 5.7 gives

Ihsh + ph =
L∑

l=0

pl , pl ∈ Span
{
B

l
V

}
,(5.61)

|p0|
2
H1(Ω) +

L∑

l=1

h−2
l ‖pl‖

2
L2(Ω) ≤ C|Ihsh + ph|

2
H1(Ω) ≤ C ‖vh‖

2
H(curl,Ω) .(5.62)

Still, the contribution ṽh does not yet match (4.11). The idea is to distribute ṽh

to the ΠlΨl by scale separation. To that end, we assign a level to each active edge of
Mh

ℓ(E) := min{ℓ(K) : K ∈Mh, E ⊂ K} , E ∈ E(Mh) .(5.63)

Thus, we distinguish parts of ṽh on different levels: given the basis representation

ṽh =
∑

E∈E(Mh)

αEbE , {bE}E∈E(Mh) = BU(Mh) ,(5.64)

we split

ṽh =

L∑

l=0

ṽl , ṽl :=
∑

E∈E(Mh)

ℓ(E)=l

αEbE , supp(ṽl) ⊂ ωl .(5.65)
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The estimate
∥∥h−1ṽh

∥∥
L2(Ω)

≤ C ‖curl vh‖L2(Ω) from Lemma 5.10 means that ṽh is

“small on fine scales”. Thanks to the L2-stability (2.4) of the edge bases, this carries
over to ṽl:

L∑

l=0

h−2
l ‖ṽl‖

2
L2(Ω) ≤ C

L∑

l=0

h−2
l

∑

E∈E(Mh),ℓ(E)=l

α2
E ‖bE‖

2
L2(Ω)

≤ C
L∑

l=0

h−2
l

∑

E∈E(Mh),ℓ(E)=l

α2
E ‖bE‖

2
L2(TE)(5.66)

≤ C
L∑

l=0

h−2
l ‖ṽh‖

2
L2(Σl)

≤ C
∥∥h−1ṽh

∥∥2

L2(Ω)
,

where TE ∈ Mh is coarsest element adjacent to E, cf. (5.63), and refinement strips
are defined by

Σl := ωl \ ωl+1 , 0 ≤ l < L, ΣL := ωL ,(5.67)

see Figs. 4.1 and 4.2.
Yet, in the case of bisection refinement, ṽl may not be spanned by basis functions

in B
l
U

, because the basis function of U(Mh) attached to each edge on Σl

⋂
ωl+1,

0 ≤ l < L does not belong to any B
l
U

!

Edge E, support of basis
function bE

Support of bl
E Edges supporting bl+1

E1
,

bl+1
E2

Fig. 5.5. Basis function with which bE can be represented

Take any E ⊂ Σl

⋂
ωl+1. Let bE , bl

E , and bl+1
E be the basis functions of U(Mh),

U(Ml), and U(Ml+1) associated with E, see Fig. 5.5 for a 2D illustration. Denote
by K1, . . . ,Kn all elements in ωl+1 andMl which contain E, and by E1, . . . , Em their
new edges connecting E but not contained by the refinement edges of K1, . . . ,Kn

(see Fig. 5.6). Supposing the orientations of each Ei and E point to their common
endpoint, we have

bE = bl
E +

1

2

m∑

i=1

bl+1
Ei

.(5.68)

This decomposition is L2-stable with constants merely depending on shape regularity.



Local Multigrid in H(curl) 29

E 

K
i
 

E
j

Fig. 5.6. An edge E lies on the interface between Σl and ωl+1.

Since
∑m

i=1 bl+1
Ei
∈ B

l+1
U

, we may move the component of ṽl associated with this
term to ṽl+1 for any E. Then the decomposition (5.65) and the stability estimate
(5.66) remain valid.

Summing up, the stability estimate (5.59) is preserved after replacing ΠlΨh with
ΠlΨh + ṽl ∈ U(Ml).

Eventually, the proof of Thm. 4.2 is readily accomplished. With Lemma 5.11
at our disposal, we merely appeal to the L2-stabilities expressed in (2.4) and (2.6)
and inverse inequalities to see that all components in (5.54) can be split into local
contributions of basis functions in B

l
U

and B
l
V , respectively.

6. Quasi-orthogonality. The strengthened Cauchy-Schwartz inequality (4.7)
has been established [46,49] for the standard H1-conforming case, in [23] for the stand
H(div)-conforming case, and also been discussed in [24, 26] for the stand H(curl)-
conforming case. Here we resort the techniques in [23, §6] to establish (4.7) in the

multilevel decompositions of V (Mh) and U(Mh). Since B
l
V ⊂ BV (M̂l) and B

l
U
⊂

BU(M̂l), l = 0, . . . , L, we need merely show the quasi-orthogonality for multilevel
splittings on globally refined meshes.

The trick is, not to consider the one-dimensional spaces spanned by individual
basis functions as building blocks of the splitting (4.3), but larger aggregates. Thus,

we put the nodal basis functions of V (M̂l) and U(M̂l) into a small number of classes,
such that the supports of any two basis functions in the same class do not overlap.
Since the basis functions of V (M̂l) and U(M̂l) are attached to active vertices and

edges respectively, we may as well start with partitioning the vertices/edges of M̂l

into disjoint sets such that any two vertices/edges of the same set do not belong
to the same tetrahedron. We denote these sets by N i

l , i = 1, . . . , N l
N for vertices of

M̂l and E i
l , i = 1, . . . , N l

E for edges M̂l respectively. In fact, due to the uniform
shape regularity of the meshes, N l

N and N l
E are bounded by a small constant integer

independent of l. Define subspaces of V (M̂l) and U(M̂l) by

V i
l := Span

{
bp, p ∈ N i

l

}
and Ui

l = Span
{
bE , E ∈ E

i
l

}
,
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where bp is the nodal basis function of V (M̂l) attached to the vertex p and bE is the

nodal basis function of U(M̂l) attached to the edge E.
Note that the basis functions in one class are mutually orthogonal. Hence, the

block relaxation (e.g. Gauss-Seidel) in (4.5) with Hj = V i
l or Ui

l is equivalent to the
point relaxations performed on each vertex in N i

l or each edge in E i
l . Thus, replacing

the one-dimensional spaces in (4.10) and (4.11) with V i
l and Ui

l does not affect on
Cstab and Corth in (4.8).

Lemma 6.1. Let K be an arbitrary open tetrahedron inMm (m = 0, 1, . . . , L−1)
and m < l ≤ L. Then there exists a constant C > 0 only depending on the shape
regularity of the meshes such that, for any ui

l ∈ Ui
l, i = 1, . . . , N l

E and vm ∈ U(Mm),

(6.1) a|K(ui
l ,vm) ≤ C

∥∥curl ui
l

∥∥
L2(K)

{
hl ‖vm‖L2(K) +

√
hl/hm ‖curl vm‖L2(K)

}
.

Proof. Consider the basis representation of ui
l

ui
l =

∑

E∈Ei

l

∫

E

ui
l · d~s bE = ui

l,bd + ui
l,int,

where

ui
l,bd =

∑

E⊂∂K,E∈Ei

l

∫

E

ui
l · d~s bE and ui

l,int =
∑

E⊂K,E∈Ei

l

∫

E

ui
l · d~s bE .

Since curl vm is a constant vector in K and ui
l,int×n = 0 on ∂K, by Green’s formula,

it is easy to see
∫

K

curl ui
l · curl vmdx =

∫

K

curl ui
l,bd · curl vmdx =

∫

Γ

curl ui
l,bd · curl vmdx,

where Γ :=
⋃
{suppbE : E ⊂ ∂K,E ∈ E i

l } is a narrow strip along the boundary of
K. Using the Cauchy-Schwartz inequality and noting that the basis functions in Ui

l

are mutually orthogonal, we have
∫

K

curl ui
l · curl vmdx ≤

∥∥curl ui
l,bd

∥∥
L2(Γ)

|Γ|1/2 |curl vm|(6.2)

≤ C

√
hl

hm

∥∥curl ui
l

∥∥
L2(K)

|K|1/2 |curl vm|

= C

√
hl

hm

∥∥curl ui
l

∥∥
L2(K)

‖curl vm‖L2(K) ,

where C only depends on the shape regularity of the meshes.
To estimate the L2-inner product in the bilinear form, we view the following fact

‖b‖L2(K) ≤ Ch
1/2
K ≤ ChK ‖curl b‖L2(K) ∀b ∈ BU(M̂l), K ⊂ suppb, K ∈ M̂l,

where C only depends on the shape regularity of K. Since the basis functions of Ui
l

are orthogonal, we have
∫

K

ui
l · vmdx ≤

∥∥ui
l

∥∥
L2(K)

‖vm‖L2(K) ≤ Chl

∥∥curl ui
l

∥∥
L2(K)

‖vm‖L2(K) .(6.3)
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Now (6.1) follows from (6.2) and (6.3).

After replacing Ui
l with V i

l in the proof of Lemma 6.1, similar arguments show
the following Lemma:

Lemma 6.2. Let K be an arbitrary open tetrahedron inMm (m = 0, 1, . . . , L−1)
and m < l ≤ L. Then there exists a constant C > 0 only depending on the shape
regularity of the meshes such that, for any ui

l ∈ V
i
l , i = 1, . . . , N l

N and vm ∈ V (Mm),

∫

K

ui
l(x) vm(x)dx ≤ C hl

∣∣ui
l

∣∣
H1(K)

‖vm‖L2(K) ,(6.4)

∫

K

gradui
l(x) · grad vm(x)dx ≤ C

√
hl/hm

∣∣ui
l

∣∣
H1(K)

|vm|H1(K) .(6.5)

As gradV (M̂l) ⊂ U(M̂l) for 0 ≤ l ≤ L, Lemmata 6.1 and 6.2 actually amount
to the strengthened Cauchy-Schwartz inequality in the form (4.7) with Hi = Ui

l or
gradV i

l for the H(curl)-conforming case, and Hi = V i
l for the H1-conforming case.

We denote by Hi
l the two types of lumped subspaces Ui

l and V i
l .

Theorem 6.3. (Strengthened Cauchy-Schwartz inequality) For the decomposition
of (4.10) with Hi

l = Ui
l and the decomposition of (4.11) with Hi

l = V i
l , there exists a

constant C only depending on the shape regularity of meshes such that the strengthened
Cauchy-Schwartz inequality

(6.6) a(ui
l , v

j
m) ≤ Cθ|l−m|/2

∥∥ui
l

∥∥
A

∥∥vj
m

∥∥
A

0 ≤ i, j ≤ Nl, 0 ≤ l, m ≤ L

holds, where 0 < θ < 1 is the decrease rate of the mesh width defined in (3.3),Nl = N l
E

or N l
N respectively,

∥∥ui
l

∥∥
A

:= a(ui
l , u

i
l)

1/2, and

a(ui
l, v

j
m) = (ui

l , v
j
m)L2(Ω) + (curl ui

l, curl vj
m)L2(Ω) if Hi

l = Ui
l ,

a(ui
l, v

j
m) = (ui

l , v
j
m)L2(Ω) + (gradui

l, grad vj
m)L2(Ω) if Hi

l = V i
l .

Proof. Without loss of generality, we assume m ≤ l and again consider the case
of uniform meshes M̂m and M̂l. Then by Lemma 6.1 and 6.2, we have

a(ui
l, v

j
m) =

∑

K∈ cMm

a|K(ui
l, v

j
m)

≤ C
∑

K∈ cMm

∣∣ui
l

∣∣
A,K

{
hl

∥∥vj
m

∥∥
L2(K)

+
√
hl/hm

∣∣vj
m

∣∣
A,K

}

≤ Cθ|l−m|/2
∑

K∈ cMm

∣∣ui
l

∣∣
A,K

∥∥vj
m

∥∥
A,K

≤ Cθ|l−m|/2
∥∥ui

l

∥∥
A

∥∥vj
m

∥∥
A
,

where ‖·‖A,K and |·|A,K are the energy semi-norm and energy norm on K.

7. Implementation and numerical experiments. On each level l a multi-
grid V-cycle involves five basic operations: pre-smoothing, restriction of the equation
residual to level l−1, prolongation of the solution from level l−1 to level l, correction
of the solution on level l, and post-smoothing on level l.
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To insure that one multigrid cycle requires only O(Nh) operations with Nh =
dim U(Mh), we rely on the so-called non-recursive implementation of the local multi-
grid method, cf. [45, 47]:

Algorithm 7.1. (Non-recursive local multigrid algorithm)
Given the right hand side vector fh and the solution un from the last iteration, the

solution un+1 is defined as follows

1. Compute the residual vector

gL ← fh − ALun

2. for l = L, . . . , 1
2.1. Point Gauss-Seidel relaxations associated with active edges of new elements

inMl

el ←Rl(gl,m)

2.2. Compute the restriction of the residual to ∇V (Ml)

rl ← (Ie
l,v)t(gl − Alel)

2.3. Point Gauss-Seidel relaxations associated with active vertices of new ele-
ments inMl

ẽl ← Sl(rl,m)

2.4. Prolongate ẽl and correct el

el ← el + Ie
l,v ẽl

2.5. Compute the restriction of the residual vector

gl−1 ←
(
I l
l−1

)t
(gl − Alel)

endfor

3. Exact solution of the error equation onM0

e0 ← A
−1
0 g0

4. for l = 1, . . . , L
4.1. Correct el by the error from level l − 1

el ← el + I l
l−1el−1

4.2. Post-smoothing: point Gauss-Seidel relaxations associated with active edges
of new elements in Ml

el ← el +Rl(gl − Alel,m)

4.3. Compute the restriction of the residual to ∇V (Ml)

rl ← (Ie
l,v)t(gl − Alel)
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4.4. Post-smoothing: point Gauss-Seidel relaxations associated with active ver-
tices of new elements in Ml

ẽl ← Sl(rl,m)

4.5. Prolongate ẽl and correct el

el ← el + Ie
l,v ẽl

endfor

5. Correct the solution

un+1 ← un + eL

In Algorithm 7.1, Al is the stiffness matrix of the discrete problem (2.3), Rl is the
local Gauss-Seidel relaxation operator for (2.3), which only targets active edges of new
elements in Ml. Further, Sl is the local Gauss-Seidel relaxation operator related to
the V (Ml)-Galerkin matrix for (1.4). Again, it is restricted to active vertices of new
elements inMl. The integer m is the number of Gauss-Seidel relaxations (always set
to m = 1 in the numerical experiments reported below). Further, I l

l−1 is the matrix
representation of the embedding operation U(Ml) 7→ U(Ml+1), and the edge-vertex
incidence matrix Ie

l,v describes the embedding gradV (Ml) 7→ U(Ml). A superscript
t tags transpose matrices.

To explain Algorithm 7.1, we denote by Enew
l = {El

1, . . . , E
l
Nl
} the set of edges of

new elements and by N new
l = {pl

1, . . . ,p
l
Ml
} the set of vertices of new elements inMl

for convenience.
In steps 2.1 and 4.2, x←Rl(y, 1) is equivalent to

x(E)←
y(E)

a(bE ,bE)
∀E ∈ Enew

l ,

where x(E) is the component of x associated with E. In step 2.3 and 4.4, x← Sl(y, 1)
is equivalent to

x(p)←
y(p)

(grad bp, grad bp)L2(Ω)
∀p ∈ N new

l ,

where x(p) is the component of x associated with p. Thus the total number of oper-
ations of these steps is O(Nl +Ml) = O(Nl).

The concrete implementation of prolongation and restriction operators is as fol-
lows. In step 4.1, let K ∈ Ml−1 \Ml and define

el−1 =
∑

E⊂∂K,E∈E(Ml−1)

el−1(E)bE in K.

For any K ′ ∈ Ml and K ′ ⊂ K, we have

(
I l
l−1el−1

)
(E′) =

∫

E′

el−1 · d~s ∀E′ ⊂ ∂K ′, E′ ∈ E(Ml).

Similarly, steps 2.4 and 4.5 are realized as follows:

ẽl =
∑

p∈∂K, p∈N (Ml)

ẽl(p) grad bp in K ∈Ml \Ml−1.
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For any K ∈ Ml \Ml−1, we have

(
Ie
l,v ẽl

)
(E) =

∫

E

ẽl · d~s ∀E ⊂ ∂K, E ∈ E(Ml).

Clearly, the prolongation processes only involve operations on new elements in Ml

and thus the total number of computations is also O(Nl). The restriction matrices in
steps 2.2, 4.3, and 2.5 are the transposes of the corresponding prolongation matrices,
and, thus, only involve operations on new elements. The total number of computations
required for the transfer operations on level l is of order O(Nl).

Now we discuss how to compute the product Alel in step 2.2, 2.5, 4.2, and 4.3
efficiently. Since Rl only involves the operations on Enew

l , el in step 2.2 only have
nonzero components associated with the edges in Enew

l . Furthermore, since (I l
l−1)

t

only affects Enew
l , we may compute ξl = Alel in step 2.2 as follows:

Algorithm 7.2.
for i = 1, . . . , Nl

ξl(Ei) = 0
for j = 1, . . . , Nl

ξl(Ei)← ξ(Ei) + Al(Ei, Ej)× el(Ej)
endfor

endfor

Algorithm 7.2 clearly needs only O(Nl) operations. A further examination of the
algorithm reveals that all that is needed is a Nl×Nl sub-block of the stiffness matrix
Al. This can be computed in O(Nl) operations. As for the computation of ξ = Alel in
steps 2.5, 4.2, and 4.3, note that (I l

l−1)
t in step 2.5, (Ie

l,v)t in step 4.3, and Rl in step
4.2 only involve new elements; everything can be done along the lines of Algorithm
7.2.

The last computation concerns the corrections in step 2.4, 4.1, 4.2, and 4.5. Since
all other operations on the l-th level only involve new elements, each degree of freedom
el(E), E ∈ E(Ml) \ Enew

l remains unchanged. Thus, asymptotically, O(Nl) computa-
tions are sufficient to add the correction.

The number of computations in step 1 and 5 is at most O(Nh) and the effort for
step 3 is negligible. Finally, we obtain the total number of operations in one step of
local multigrid iteration by summing up the computations on all levels:

O(Nh) +

L∑

l=1

O(Nl) = O(Nh) +O

(
L∑

l=1

Nl

)
= O(Nh).

We conclude that the non-recursive implementation of the local multigrid method is
optimal in terms of the amount of computations in each iteration.

In the ensuing numerical experiments the implementation of adaptive mesh re-
finement was based on the adaptive finite element package ALBERT [37], which uses
the bisection strategy of [29], see Sect. 3.

Let M0 be an initial mesh satisfying the two assumptions (A1) and (A2) in [29,
P. 282], the adaptive mesh refinements are governed by a residual based a posteriori
error estimator: given a finite element approximation uh ∈ U(Mh), for any T ∈Mh

the estimator is given by

η2
T := h2

T ‖f − uh‖
2
H(div,T ) +

hT

2

∑

F⊂∂T

{
‖[uh]F ‖

2
0,F + ‖[curl uh × ν]F ‖

2
0,F

}
,
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where F is a face of T , ν is the unit normal of F , and [uh]F is the jump of uh across
F . The global a posteriori error estimate and the maximal estimated element error
onMh are defined by

(7.1) ηh :=

( ∑

T∈Mh

η2
T

)1/2

, ηmax = max
T∈Mh

ηT .

Using ηh and ηmax, we use [14, Algorithm 5.1] to mark and refine Mh adaptively.
In the following, we report two numerical experiments to demonstrate the compet-

itive behavior of the local multigrid method and to validate our convergence theory.
example 7.1. We consider the Maxwell equation on the three-dimensional “L-

shaped” domain Ω = (−1, 1)3 \ {(0, 1)× (−1, 0)× (−1, 1)}. The Dirichlet boundary
condition and the righthand side f are chosen so that the exact solution is

u := ∇
{
r1/2 sin(φ/2)

}

in cylindrical coordinates (r, φ, z).
Table 7.1 shows the numbers of multigrid iterations required to reduce the initial

residual by a factor 10−8 on different levels. We observe that the multigrid algorithm
converges in almost the same small number of steps, though the number of elements
varies from 156 to 100,420.

Table 7.1
The number of adaptive iterations Nit, the number of elements Nel, the number of multigrid

iterations Nitrs required to reduce the initial residual by a factor 10−8, the relative error between the
true solution u and the discrete solution uh: Erel = ‖u − uh‖H(curl,Ω) / ‖u‖

H(curl,Ω) (Example

7.1).

Nit 2 5 10 15 20 25 30 35
Nel 156 388 1,900 4,356 9608 19,424 48,088 100,420
Erel 0.4510 0.3437 0.2456 0.1919 0.1600 0.1350 0.1094 0.0915
Nitrs 11 21 19 19 19 19 19 19

Fig. 7.1 plots the CPU time versus the number of degrees of freedom on different
adaptive meshes. It shows that the CPU time of solving the algebraic system increases
roughly linearly with respect to the number of elements.

Fig. 7.2 depicts a locally refined mesh of 100,420 elements created by the adaptive
finite element algorithm.

example 7.2. This example uses the same solution as Example 7.1

u := ∇
{
r1/2 sin(φ/2)

}

in cylindrical coordinates (r, φ, z). But the computational domain is changed to a three-
dimensional non-Lipschitz domain with an inner crack-type boundary, which is defined
by

Ω = (−1, 1)3 \ {(x, 0, z) : 0 ≤ x < 1, −1 < z < 1}.

The Dirichlet boundary condition and the source function f are the same as above.
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Fig. 7.1. CPU time for solving the algebraic system by multigrid method( Example 7.1).

Table 7.2
The number of adaptive iterations Nit, the number of elements Nel, the number of multigrid

iterations Nitrs required to reduce the initial residual by a factor 10−8, the relative error between the
true solution u and the discrete solution uh: Erel = ‖u − uh‖H(curl,Ω) / ‖u‖

H(curl,Ω) (Example

7.2).

Nit 2 5 10 15 20 25 30 33
Nel 128 404 1,236 3,416 12,420 29,428 81,508 135,876
Erel 0.4616 0.3762 0.2992 0.2347 0.1752 0.1394 0.1095 0.0958
Nitrs 14 30 25 26 26 27 27 27

Table 7.2 records the numbers of multigrid iterations required to reduce the initial
residual by a factor 10−8 on different levels. We observe that the multigrid algorithm
converges in less than 30 steps, with the number of elements soaring from 128 to
135,876.

Fig. 7.3 shows the CPU time versus the number of degrees of freedom on different
adaptive meshes. Obviously, the CPU time for solving the algebraic system increases
nearly linearly with respect to the number of elements.

Fig. 7.4 displays a locally refined mesh of 135,876 elements using adaptive finite
element algorithm. In addition, the restriction of the mesh to the cross-section {y = 0},
which contains the inner boundary, is drawn. This reveals strong local refinement.

This experiment bears out that the local multigrid is also efficient for the problems
in non-Lipschitz doamins, which are outside the scope of our theory.
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Fig. 7.2. A locally refined mesh of 100,420 elements ( Example 7.1).
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Appendix A. Notations.

H(curl,Ω) : Sobolev space of square integrable vector fields on Ω ⊂ R3 with
square integrable curl

HΓD
(curl,Ω): vector fields in H(curl,Ω) with vanishing tangential compo-

nents on ΓD ⊂ ∂Ω
M, T : tetrahedral finite element meshes, may contain hanging nodes
ρK , ρM : shape regularity measures
h : – local meshwidth function for a finite element mesh

– (as subscript) tag for finite element functions
U(M) : lowest order edge element space onM
bE : nodal basis function of U(M) associated with edge E
V (M) : space of continuous piecewise linear functions on M
bp : nodal basis function of V (M) (“tent function”) associated with

vertex p

BX(M) : set of nodal basis functions for finite element space X on mesh
M

Πh : nodal edge interpolation operator onto U(M)
Ih : piecewise linar interpolation
Pp : space of 3-variate polynomials of total degree ≤ p
ωl : refinement zone, see (4.1)
Σl : refinement strip, see (5.67)
B

l
V , B

l
U

: sets of basis functions supported inside refinement zones, see
(4.9)

Qh : quasi-interpolation operator, Def. 5.1


