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In this paper, we discuss convergence results for general (successive) subspace correction
methods for solving nearly singular systems of equations. We provide parameter inde-
pendent estimates under appropriate assumptions on the subspace solvers and space
decompositions. The main agssumption is that any component in the kernel of the singu-
lar part of the system can be decomposed into a sum of local (in each subspace) kernel
components. This assumption also covers the case of “hidden” nearly singular behavior
due to decreasing mesh size in the systems resulting from finite element discretizations
of second order elliptic problems. To illustrate our abstract convergence framework,
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we analyze a multilevel method for the Neumann problem (H(grad) system), and also
two-level methods for H(div) and H(curl) systems.

Keywords: Nearly singular problems; subspace corrections; nonexpansive operators;
multigrid, domain decomposition.

AMS Subject Classification: 47A58, 47N10, 65N22, 65N55

1. Introduction

We consider the solution of the nearly singular system of equations: Find u € V'
such that

Ay = (.Ao -+ €A1)’LL = f, (11)

where V' is a finite dimensional Hilbert space, Ag is symmetric and positive semi-
definite, and A; is symmetric and positive definite, and € > 0 is a parameter. We
are interested in the convergence properties of a special class of linear iterative
methods (subspace correction methods) for the approximate solution of (1.1). For
€ = 0, the operator 4 reduces to Ag, which is symmetric and positive semi-definite
and a convergence study in this case has been done in Ref. 26. Our considerations
here are for € > 0, and we focus on proving e-independent convergence results under
appropriate (minimal) assumptions.

There are abundant examples that fall into the category of nearly singular sys-
tems like (1.1). Such examples are given by the finite element discretizations for
H(grad), H{div), and H(curl) systems as discussed in Refs. 23, 3 and 1; stable
discretizations of the nearly incompressible linear elasticity problems (see Refs. 33,
31 and 36),

~V(divu) - (1 —2v)Au=f inQ, (1.2)

where the Poisson’s ratio v is close to 1/2. Nearly singular problems also occur
when solving indefinite systems arising from mixed finite element discretizations
such as (Navier—) Stokes equations®® or more complicated system of equations such
as non-Newtonian flow equations as discussed in Refs. 6, 24 and 27 by augmented
Lagrangian method (see Refs. 21, 13 and 19).

The main goal in this paper is to provide unified theoretical framework for the
analysis of multilevel methods for nearly singular systems of equations. Apparently,
problems like (1.1) are badly conditioned, since the smaller € is the larger the
condition number of A becomes. To illustrate how this affects the convergence
rate of an iterative method, let us consider Gauss—Seidel iterations, applied to the
following simple example:

1 -1 0 1 00
Au= (Ap+eAr)u= -1 2 —-1|4+€|l0 1 0 u = f. (1.3)
0 -1 1 0 0 1
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Table 1. The number of iterations to obtain the energy norm error
|l — wtl 4 < 1078 for various values of .

€ 1 107* 1072 1073 107¢ 10~8 0

# of iterations 14 94 823 7427 66,556 588,770 2

Here, we assume that f = (f1, f2, f3)! € R® and f is in the range of Ap. The
convergence history of the Gauss—Seidel method for (1.3) for different values of ¢ is
recorded in Table 1. Tt is clearly seen that for € vanishingly small, the convergence
deteriorates. To explain such behavior, we consider the energy norm convergence
rate 6 of the Gauss—Seidel method for (1.3), which is given by (see Refs. 35 and 26),
1 (1+€)7 "3 + (2+¢)~'vd

P=1-=, K=1+  sup
K v=(v1,v2,v3)*ER3 (Av,v)

(1.4)

Clearly, by choosing v in the null space of Ag, for example, v = (1,1,1)%, we
obtain

1+ +@2+e"

>
K>1+ 3

(1.5)

Hence K — oo and § — 1, when € — 0.

Of course, the Gauss—Seidel method is a special iterative method, and if we con-
sider the Conjugate Gradient or the Richardson method, the convergence behavior
will be different. Indeed, in the extreme case when the right-hand side f and the
initial guess u0 belong to the range of Ag all the iterates u’ generated by Richardson
method or the Conjugate Gradient method belong to the range of Ap. This is due
to the fact that in the above example, A; = I, i.e. A = Ap + el. In such extreme
case, with special initial guess, it is not difficult to show that the convergence
rate of Richardson method or the Conjugate Gradient method is independent of
the parameter €. However, most subspace correction methods including multigrid
methods do not in general possess this property. Moreover, for a practical iterative
method, it is desirable that e-uniform bound on the convergence holds for any ini-
tial guess u®, which rules out the special choice u? € R(Ap). Generally speaking,
if we decompose the solution v to (1.1) as v = v + ¢ where v and ¢ belong to the
range and the null space of Aq, respectively, the difficulty is to approximate ¢ (the
component of u in the null space of 4p). In summary, from the results in Table 1
and (1.5), we may conclude that a naive application of an algorithm based on space
decomposition and subspace corrections (such as Gauss—Seidel relaxation) would
result in an inefficient method.

As it turns out, a crucial assumption on the space decomposition is needed, in
order to obtain e-uniform convergence (see Sec. 4.2, assumption (A1)). Roughly
speaking, this assumption says that every kernel component of Ay can be decom-
posed as a sum of “local” kernel components in the subspaces. For example, for finite
element discretizations of variational problems in H{curl) and H(div), pointwise
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smoothers violates (A1), while block Schwarz smoothers with blocks correspond-
ing to vertices (or edges in H(div)) satisfy (Al). In the former case (pointwise
smoothers), it can be shown that a two-level method is not optimal (see Ref. 37).
In the latter case, when using block smoothers, a uniform convergence is proved
in Refs. 23 and 3. These results show that (A1) is necessary and sufficient for
e-uniform convergence.

The rest of the paper is organized as follows. In Sec. 2 we introduce some of
the frequently used notation. In Sec. 2.1, we discuss examples of nearly singular
problems, and in Sec. 2.2 we show how to reduce an indefinite problem to a nearly
singular problem. In Sec. 3 we first formulate a method based on the augmented
system and analyze the simplest case when the kernel of Ag is one dimensional.
In Sec. 4 we present the subspace correction algorithm, the main assumptions,
and the abstract convergence theory. Further, in Sec. 4.1 we also prove that the
augmented system methods are equivalent to subspace correction methods and
hence our analysis applies in more general cases, when the null space of Ag is
not just one dimensional. To illustrate the abstract results, in Sec. 5 we derive
convergence estimates for a multilevel method for the Neumann problem and for
two-grid methods for variational problems in H(div) and H (curl). Finally in Sec. 6
we give some concluding remarks.

2. Notation and Preliminaries

Throughout this paper, we use the notation introduced below. Let V be a finite
dimensional Hilbert space with an inner product (-,-) and a corresponding norm
Il - || For a bounded operator T : V — V, N(T') and R(T") denote the null space
of T and the range of T respectively. Let Q C R%,d = 2,3 be a connected bounded
domain. We will use the standard notation for the differential operators grad, div,
and curl. The space L%(Q) denotes the space of square integrable functions and
H(Q) = H(grad) denotes the standard Sobolev space consisting of square inte-
grable functions with square integrable (weak) derivatives of first order. Similarly,
H(curl) and H(div) denote the spaces of L%() functions with square integrable
curl or divergence, respectively. The bilinear forms (-, -)o and (-,-); denote the usual
L%(Q) inner product and H?(Q) inner product, respectively. Also |- |lo, || - |1, and
|-|1 denote the L% norm, H* norm, and H' semi-norm, respectively. We also denote
- Navs |- Jaivs || - lleurt, @nd | - |cun by H(div) norm, H(div) semi-norm, H (curl)
norm, and H(curl) semi-norm, respectively. Following Ref. 34, we use the notation
z1 S yp and 22 2 y2 whenever there exist constants C; and Cs independent of ¢
and other important parameters such that z1 < Ciyr and 22 > Coys.

2.1. Examples of positive definite nearly singular problems

We summarize here some examples that fall into the category of nearly singular
problems and in our opinion, are encountered quite often in the numerical models
of physical phenomena.
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2.1.1. Discretizations of variational problems in H(grad), H(curl) and H(div)

For this type of problems we have
(Aou,v) := (Gu, Gv), (eAiu,v) = (Tu,v),

where G = curl or G = div and 7 is a given function. As we mentioned in Sec. 1, the
nearly singular behavior is “hidden” in the lower order term. In Secs. 5.1 and 5.2,
we apply the abstract theory to analyze the convergence of two-level methods for
variational problems in H(curl) and H(div), and multilevel method for variational
problem in H(grad).

2.1.2. Anisotropic problems

An interesting example, which we will not consider further in this paper is related
to the finite element discretizations of anisotropic problems:

(Au,v) := (agradu, gradw),

and V = H} (). The coefficient tensor a behaves differently in different coordinate
directions, and we may take a = diag(1,1,...,€), for 0 < € < €pax < 1. Apparently
(Au,v) can then be rewritten as A = Ag + €4y, where

d—1
(Agu,v) := Z((l —€)Ou, Ov), (eAiu,v) = (egradu, gradv).

i=1

We remark that when the mesh is aligned with the anisotropy and the null
space of Ap is known, there are several techniques that can be applied to design
of an optimal iterative method. These techniques use semi-coarsening, line (plane)
smoothers or both and they precisely correspond to splittings that satisfy assump-
tion (A1) (see Sec. 4.2). When the mesh is not aligned with the anisotropy or a
varies throughout the computational domain, to find a splitting that satisfies (A1)
is a challenging and complicated task, which we will study in the future.

2.2. Reduction of indefinite problems to nearly singular problems

Other examples of nearly singular problems are obtained when solving systems
arising from mixed and hybrid finite element discretizations of second order partial
differential equations,'® such as the indefinite systems corresponding to mixed finite
element discretizations for elliptic problems (Darcy’s law in porous media) or the
Stokes equation.”'%30 We aim to show that implementing an efficient iterative
method for the resulting indefinite linear system reduces to designing an efficient
method for the solution of an auxiliary nearly singular problem.

To begin, we briefly describe a minimal set-up needed for our discussion. Let
V and W be two Hilbert spaces, and V* and W* be the dual spaces of V' and
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W, respectively. Here (-,-) will denote the dual pairing. Consider the following
variational problem: Find (u,p) € V x W such that

{Au+ B*p = f,

2.
Bu=g, 2.1)

where feV*, geW*, A: V= V* B:V—W* and B*: W +— V* is the dual
operator of B, namely

(v,B*q) = (g, Bv) YwveV, geW. (2.2)

We assume that A is coercive, B is onto and B satisfies the following inf-sup
condition:

2 : (g, Bv) _

W) 2 el e> 0 8 S TolvTalw ~°
By the Babugka-Brezzi theory,®1%13 problem (2.1) is well-posed. Since same con-
ditions would hold for any compatible discretization of (2.1), we may assume here,
without loss of generality, that V and W is a pair of compatible finite element
spaces. One of the most popular methods for solving discrete equations result-
ing from (2.1) is the classical Uzawa method: For given (uf,p?), the next iterate
(uf*1, ptt1) is obtained by

Aue+1 — f_ B* E’ pé+1 ___pé' _ ﬁ(g“’ Buf-{—l)’

where £ > 0 is a damping parameter. It is known that the Uzawa method converges
if Kk satisfles 0 < Kk < -5(279-)-, where S = BA™!B* is the Schur complement corre-
sponding to the p variable. One may say that the Uzawa method is equivalent to a
Richardson relaxation for a linear system with the Schur complement S. Certainly,
the choice of the damping parameter  affects the convergence of the Uzawa’s itera-
tion and to come up with a procedure for choosing optimal damping parameter is a
non-trivial task (if at all possible). One remedy is to use the Augmented Lagrangian
method, 31921 which solves a modified problem, equivalent to (2.1) by the Uzawa
method. The modified problem is as follows:

{ (A+ e 1B*B)ju+ B*p= f+e¢'B*g,

Bu— g (2.3)

Application of the Uzawa method to (2.3) with damping parameter x = ¢~}
reads: Given (uf, p%), the new iterate (u®t?, p+!) is obtained by solving the following
system:

A+ e 1B*Butt! = f + e 1B*g — B*pt,
{( € Ju f g (2.4)

¢ £ -1 £+1
pttl = pf —e71(g — Buftl).
Convergence of this method has been discussed in several works.%1%:2! Here, we also

provide a result on the rate of convergence of the augmented Lagrangian method,
which indicates that for small €, the iterates converge very fast to the solution
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of (2.1). The payoff, however, is that to obtain u’T! we need to solve a nearly
singular system, such as

(eA+ B*B)uf*! = ef + B*g — eB*p". (2.5)

In many applications, B*B would be a singular operator. Thus, the design
of optimal iterative method for the nearly singular system (2.5) will result in an
optimal iterative method for the indefinite system (2.1) and a general solution
strategy for various mixed and hybrid finite element discretizations.

We now state and prove a convergence result for the augmented Lagrangian
method.

Lemma 2.1. Let (u%,p°) be a given initial guess and for £ > 1, let (u®,p%) be
the iterates obtained via the augmented Lagrangian method. Then the following
estimates hold:

lp =¥ w < (

14
0
=) Ib-Plw

W,

£
- €
fu—la < vellp— " < ﬁ( ) o=

€+ iy
where ug is the minimum eigenvalue of S = BA™1B*.

Proof. Let el =(p— p%) and ef, = (u — u’) be the errors after £ iterations (£ > 0).
From the definition of (uf,p?), (2.3), and (2.4) we obtain that (ef, ef) satisfy:
{ (A+e'B*B)el = —B*ef 1,
£ ___ —_ —_ * —_ *\ _f—
ey =(I—€e'B(A+e'B*B)"1B*)es L.

A simple application of Shermann—Morrison-Woodburry formula for (e¢A+ B*B)~!
gives

€ 'B(A+¢'B*B)"'B* = B(eA+ B*B)"'B* =S, — S.(I + S.) '8,
where Se = €718 = ¢ "1 BA~!B*. It is also straightforward to verify that
I—€'B(A+ e 'B*B) 'B* =1~ 8.+ Sc(I+8) 7 'Se =T+ 8)™".  (2.6)
Hence
eh = (I+e19) el

and the first estimate follows immediately. The second estimate is obtained using
the following identities:

lesll% = (Aeh,ef) = (A+ ¢ 'B*B — € 'B*B)el, b))
= —(B*e5™t, €l) — (€7 Bel, Bet)
=€[(Ze5 el — 11 Ze57 %),

where Z = B(eA+B*B)~! B*. The proof is complete by observing that (2.6) implies
that || Z||w < 1. O
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3. Solution of Nearly Singular Problems via Augmented System

The first method for nearly singular problems that we now present in this paper is
based on the so-called augmented or modified system of equations*?® by means of
a basis of N(4p) is known. We equip V = R" with the discrete £2 inner product
(v-) = (-,-)¢z and a norm || - || = (-, -)*/2. Assuming that a basis in the kernel of A
is known:

N(AO) C spa'n{gél, vy .d’m}' (31)

We define @ = [¢1,...,0m] : W — V with W = R™ and obtain the augmented
system of equations for the problem (1.1) as follows (see Refs. 4 and 29):

i DEAD PTA = r tIth -
u_(A@A =i =) (3.2

‘We note that the system (3.2) is singular and, furthermore, the range and null space
of A are characterized by

R(A)={(®;v):vev} and N(A)z{(_&)J:céW}. (3.3)

Obviously, there exist infinitely many solutions to Eq. (3.2). However, if 7 =
(Z;) is a solution to (3.2) then the solution u to the original system (1.1) can be
recovered in a unique fashion by setting u = ®uy + us.

‘We now consider the block Gauss—Seidel method for the augmented system (3.2)
with one block given by ®*A®. This method has convergence rate independent of
€ and it is, as we shall see in Sec. 4.1, equivalent to a two-level method with coarse
space N (Ag).2%34

As an example, we first analyze a simpler problem, with A; = I, and f € RAy,
that is

Au= (Ag+el)u=f, (3.4)

where dim A/(Ag) = 1, i.e. N(Ag) = span{¢}. The augmented system of equations
for this problem is given by

gAE AN
Au = T=f, (3.5)
A A
where f = (‘%ﬂ = (?)
Assume that
A=D.—L—-L% Ay=Dy—L-Lt (3.6)

where D, and Dy are the diagonal matrices corresponding to A and Ay, respectively,
and —L is the strict lower triangle of both A and Ay. We then define

Se=LD7'L' and Sp=LDj'L
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Since D, = Dg + el, there exists c(e) such that for any v € V,
(Sov,v) = (Sev,v) > ale)(Spv,v), and zi_r)% ale) =1. (3.7
We also introduce a splitting of the augmented matrix A
A=D-L'—L and S=LD'LL
Note that the null space and the range of A are

NA=spen{( L)} wa ra={o= (€ )ivev).

Furthermore, both the energy norm convergence rate d4 of the Gauss—Seidel
method for matrix 4 and 04, of the Gauss—Seidel method for the matrix Ay are as
follows35:26:

B=1-—to, K(A)=1+ sp g SO*DE+D)

K(A)’ TERATEN A (U,9).4
and
1 . (So{v +¢), (v+¢)
2 =1—————, K(4)) =1+ su inf . .
Ao K(Ao) ( 0) ,,,G'RI?% cEN Ag (’U, 'U)Ao

The constant K(Ap) is independent of ¢ and we have the following convergence
result.

Lemma 3.1. Let 84 and 84, be defined as above. Then
lin% da=0b4,. (3.8)

Proof. A simple calculation yields

K(A) =1+ sup i (B0 +28), (v + /\f)) + || Pe(v + AE)I1%
T=((§,v),v* )t ERA AER z11% ’

(3.9)

where P is the A-orthogonal projection on A (4p), namely
P = (6T AE)TIEA
Now, for a given v € V, we consider the orthogonal decomposition
v=1"+1%,
where 1° € RAg and v € R. With this decomposition, ||7]|% can be written as
[Bl% = llv+ (€)% = [0l + ey + (€, 0)Pll€l™. (3.10)
From (3.9), we see that l

, (S04 AE), (20 + A8)
KA)>1+ s sup inf . TP
Wit sup 0 1L O T eh + G o)PIEP

0 0
>14+ sup inf (So(v +)\£O)’2(U +)\§)).
wOER(Ag) AER ”’U ”A

(3.11)
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Observe that for v € N(Ap), we have

g (Sev+26), (0 +28)) + IPelv + 2O _

— 0
XER 9114

and also for v =19 +y€ €V,
inf (Se(v + A8, (v + A8) + [ Pelw + 2|1

= inf (Sc(v° +A8), (v + A9)) + | Pe(0” + AQ)IL%.

Therefore, K (A) can be estimated by

a o (Se(v+ M), (v + A8)) + || Pe(v = M)A
= f
KAy =1+s0 L =001 + ey + G )P

<1-+sup inf (Se(v + AE), (v + AE)) + || Pe(v + ,\g)“g’
vex AER w02,

0 0 . (1,0 2
—1+ swp inf (Se(v® + XE), (v +)(\)§)r))+HPS(U +,\§)||A’
vER(Ag) AER 10°11%,

(3.12)
where
X = {Ci”) €R(A):v=12"+7E witho® #£0 € R(Ao)}.
Finally, we observe that
[Pe(v® + 285 = €| Pe(+® + 28)[1. (3.13)

As a result, we see that

ellPe(v® + 2%

K(A) <ale)K(Ap) + su inf 3.14

A SOk o)+ o B T, (314

Thanks to the inequalities (3.11) and (3.14), by taking the limit ¢ — 0, we complete
the proof. ]

More general cases can be treated using the analysis provided in Ref. 26, since
in Sec. 4.1 we prove that an iterative method for the augmented system is in fact
equivalent to a subspace correction method for the original problem (1.1).

4. Abstract Convergence Analysis for General Subspace Correction
Method

Let us introduce the bilinear forms that correspond to the operators (matrices) A,
Ag, and A;. We define a, a9, and a3 : V x V — R by

a(u,v) = (Au,v), ao(u,v) = (Aou,v), and ai1(u,v) = (Aiu,v), VuveV
(4.1)
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The corresponding induced (semi)-norms are then defined by |[ull2 = a(u,u),
lulZ, = ao(u,u), and [|ull2, = ai(u,u). The solution u € V to the system (1.1)
satisfies the following variational problem:

a(u,v) = ao(u,v) + €ar(u,v) = (fv), YVeeV (4.2)
The null space of the operator Ag denoted by A is given by
N={ueV:aquv)=0 YveV}
We then define the a(-, -)-orthogonal complement AL of AV
Nt={ueV:auv)=0,VoveN}={ueV a(uv)=0, Yve N}

Note that, N+ is also the orthogonal complement of A/ with respect to the inner
product a; (-, -). To describe the iterative algorithm that we study, we assume that V
is decomposed into a sum of subspaces {V;}7_; such that ¥V = 37, V;. A subspace
correction algorithm then can be written as follows.

Algorithm 4.1 (MSSC). Let u’ € V be given,
for [ =1,... until convergence,
Ukt = gt
fori=1,...,J
Let e; € V; solve

a'les,v;) = f(vi) —a(uw’i,ve), VeV (4.3)

-1 -1

u; =y te;
endfor

L l-1
U = ’LLJ

endfor

Here, as usual, the bilinear forms a®(-,+) are approximations of a(-,-) on V;. For
each i =1,...,J, we assume that they satisfy the inf-sup conditions:
a’ (vi, wi) _

Tlay. aps
inf sup ——— = inf sup o (i, wi)
viVi wev; [villllwsll  wigVi vev llosll]lws

= ﬁi; (4‘4)
where 8; > 0. The assumptions make all the steps in Algorithm 4.1 well-defined.

Remark 4.1. In what follows, we shall often use the following convention: A
decomposition {V;};_, such that Z,‘;l V; =V, and approximating bilinear forms
a*(-,-), satisfying (4.4) uniquely determine all steps in a subspace correction algo-
rithm, such as Algorithm 4.1.

To obtain an estimate on the convergence rate we need to introduce some addi-
tional notions and terminology, commonly used in the analysis of iterative methods
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such as Algorithm 4.1. We first define the subspace solvers T} : V + V;, by setting
T;v be the unique solution to the variational problem:

(T, ui) = a(v,v;), YveV, Yy eV (4.5)

We note that if * = o on Vj, then T} is the orthogonal projection on V; with respect
to the inner product a(-,-). In such case we denote the ezact subspace solver by
P;, instead of T;. Evidently, after | iterations the errors (u — u!), (u — u!=1), and
(u — uP) are related as follows:

u—u = Eu—u)
=--=FE(u—u", where E={T~T)I~Ty_q1)---(I-T1). (4.6)

The operator E is usually referred to as the error transfer operator. For each 1 <
i < J, there exists a unique T;* : V — 1}, the Hilbert adjoint of T; with respect to
the inner product a(-,-), i.e.

aTiv,w) = alv, Tfw), Vo,weV. (4.7)
The symmetrization T; of T; for each i = 1,...,J is given by
T =T, +TF — TrT;. (4.8)
For eachi=1,...,J, we introduce a projection P, ;. P;; : V — V; defined by
a1(Pav,v) =a1(v,v), YeeV, v eV

We also need a projection P, o, orthogonal with respect to ag{-,-). Since this bilinear
form has a non-trivial kernel, we need to define the action P; ¢ in a non-ambiguous
way. This can be done as follows. Denote by A, the local null space of ag, namely,

Ni = {u; € Vi : ap(us,v:) =0, Vu; € V}
and the orthogonal complement of A; with respect to the inner product a(-,-),
= {’I.Li eV;: a(ui,vi) =0, Vu; GM} = {Ul eV;: al(ui,vi) =0, Vu; EM}

Then P; gv € J\/’,—L, for all v € V is uniquely determinated by the following variational
problem:

ao(Pi,o'U, ’Ui) = ao('b’, ’U-,:), YeeV, v el

4.1. Eguivalence with methods for the augmented system

We now show that every subspace correction method (SSCA) for the augmented
system (3.2) corresponds to an equivalent subspace correction method (SSCO) for
the original problem (1.1). Let V = R"*™ and let a(-,) : V xV — R be the bilinear
form corresponding to the augmented matrix A : Vi V namely,

a(u,7) = (AT,T), Yu,5eV. (4.9)
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In order to introduce the subspace correction method for the augmented system,
we decompose the space V as follows:

J
V=3 V. (4.10)
By the convention that we have made above, associated with each subspace f’,

we have a bilinear form a(-,-) : VixV; = R satisfying the inf-sup conditions,
required for the well-posedness of the local problems:

a* (Ui, W . (U, W)
inf sup E:(—z—’—f—) = inf sup M =p;>0. (4.11)
wets ger, NOlll0ill @e¥ gep [Tl

We denote the subspace correction method for the augmented system of equations
based on the decomposition (4.10) and the bilinear forms &! on V; by (SSCA).

We now introduce the components needed for a subspace correction method
(SSCO) for the original problem (1.1). For V =R", we define A : V — V by

AT = (8, )5 = (3,1 (z;) = Buy + vs. C (412)
It is obvious that the operator A is onto, but in general it may not be one-to-one.
To obtain a space decomposition for V', each subspace V; is chosen to be
Vi={vi € V:v = A, V¥ € V).
Next, we introduce a’ : V; x V; — R, using the definition of @ on V;.
at(vi, wi) = @ (AT;, Ad;) = @ (T, @), Vi, @; € Vi, (4.13)

where v; = Av; and w; = Aw;. The mapping A : ‘72 — V; is clearly one-to-one (on
Vi) due to the solvability conditions (4.11) and therefore, it is an isomorphism. Fur-
thermore, the bilinear forms a'(-, -) also satisfy the corresponding inf-sup conditions
on V;. '

We now show that the two methods (SSCO) and (SSCA) are equivalent,.

Theorem 4.1. Let {u} and {u} be two sequences of iterates generated by the
methods (SSCO) and (SSCA) with initial guesses u® and u°, respectively. Then the
algorithms (SSCA) and (SSCO) are equivalent in the following sense: If u® = AP,
then u® = A,

Proof. Let #* denote the £th iterate obtained by (SSCA) and uf denote the fth
iterate obtained by (SSCO). We will show that

wftt = AT, (4.14)
under the assumption that % and u’ satisfy

ub = ATE. : (4.15)
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Thanks to the relation (3.2), we see that
~ &t ~
(7o) = (( ’ )f, m) = (F,45), VT e, (4.16)
and alsc
a(v,w) = (Av, W) = (AAD, Aw) = a(A7, Aw). (4.17)
We consider now the local residual equations as follows:
a'(ei, v:) = (f,v:) — a(ub_i, vi), Vv € Vi,
@& W) = (FAB) — 8@, %) = (F,) — G(@_,, ), VeV

Therefore, If uf_, = Au¢_;, we get e; = Ag; and uf = AT! directly by the above
local residual equations. Since we assume that u§ = u® = Au® = A% and from
the aforementioned observation, we have uf = A%{. Repeat this argument for i =
2,...,J, we get uft! = AT, Then, a simple induction shows that u® = Auf for
all £. o

As an illustration, let us revisit the example from Sec. 3, with dim A (4g) =1
(see (3.5)). The Gauss—Seidel method for (3.5) is based on the decomposition

V= Z Vi, (4.18)

i=0

where V; = span{€;y1} for i = 0,...,n. Here, € is the canonical basis for the
space V = R™*1, The equivalent subspace correction method for the original equa-
tion (3.4) is based on the space decomposition

V= i Vi, (4.19)
i=0

where V; = AV; = span{e;} for ¢ =1,...,n and Vp = span{¢}.

A simple conclusion that can be drawn from the aforementioned analysis is
that if the null space is contained in one of subspaces, then the convergence of
the subspace correction method will be e-independent. However, in many cases it
does not lead to an efficient solution method, because the dimension of the null
space of Ap may grow with the size of the problem. Nearly singular problems that
exhibit such a behavior are easily found by considering discretizations of variational
problems in H(curl) or H(div), because the dimension of the null space increases
with the problem size and it is hard or even impossible to solve systems with 7 A/®
directly. Apparently, in such cases a good candidate for providing efficient iterative
solver is a multigrid method. As it turns out, when designing a multigrid method,
the role of the smoother (or equivalently the choice of the local subspaces) is crucial.
As we have mentioned in Sec. 2, a point Gauss—Seidel relaxation will not work for
discrete systems resulting from H(curl) or H(div) discretizations (see Ref. 37 for
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a proof of such result) and the local subspaces should contain the kernel functions
to obtain a good smoother (see Ref. 2 and 3 for the relevant results on uniform
convergence of multigrid method in such cases). In the next section, we formulate a
general assumption that encompasses in a way these observations, and then prove
a convergence result.

4.2. Abstract assumptions

In this section, we present the abstract assumptions under which we can obtain
the parameter independent convergence of Algorithm 4.1. For the discussion of the
parameter independent convergence, when inexact subspace solvers are used, we

need some additional assumptions. We first assume that for each i =1,..., J, there
exists a constant §; € [0, 1), independent on ¢ such that
sup 1T = Ti)villa < 65 (4.20)

v EVi:flui|le=1
This assumption is equivalent to the following two assumptions: There exist w; €
(0,2) and p; > 0 independent of € such that

(Tivs, Tivi)a S wi(Tivi,vi)a Y v € V3, (4.21)

(Tivi, Twi)a 2 pi(vi, vi)a Y v € Vi (4.22)

We remark that the assumptions (4.21) and (4.22) are automatic for T} = P; with
w; = p; = 1. In particular, the assumption (4.21) is well known to be a necessary
and sufficient condition for the energy norm convergence of the subspace correction
method.3+3% On the other hand, (4.22) is related to the limiting case € = 0 and is
necessary to guarantee e-independent convergence. Similar assumptions have been
introduced as necessary and sufficient conditions for the energy norm convergence
of the semi-definite problems (case ¢ = 0) in Refs. 26 and 25.

The next assumption is on the splitting of the null space of Ag. It plays a crucial
role in the convergence analysis.

(A1) The decomposition V = 37 V; satisfies M = 'Ei=1 (Vi NN).

i=1

In another word, (A1) implies that any element in A" can be decomposed into a
sum of elements in Vi, NN.

4.3. Convergence estimate for Algorithm 4.1

With all assumptions and notation in hand, we are ready to prove a convergence
rate estimate for Algorithm 4.1, applied to problem (1.1).

The following lemmas are needed to prove the main results (Theorems 4.2
and 4.3).

Lemma 4.1. The following inequality holds true.

IPiully < |Pioulz, + el Piaula,, Yue V.
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Proof. For any ue V,
a(u, Paw) = aplu, Piu) + ear(u, Piu)
o(Piou, Pu) + ear(P;q1u, Piu)

2

<

[

(ao(Piu, Piu) + ag(Py,0u, Piou))

+ = (a1 (Piu, Pu) + a1(P;1u, Pau)).

o™

This completes the proof. O

‘We now show the e-independent convergence rate for the local subspace solver
based on the assumptions (4.21) and (4.22).
Lemma 4.2. Assume (4.21) and (4.22). Then we have

(Trvi, vi)a = llillz = 1 = Th)usll

> M (;}2— — 1) ”’Ui,”i, Yu; € V:i, (423)
(T,E*Ui,Ti*’Ui)a, S w«?(via 'Ui)av V'Ui € W’ (4.24)
and
Fly o) < — 2 0w Yo € V. :
(Tz Vi, 'Uz)a = /-Li(2 — wi) ('Uz: 'UL)a: v; € Vi (4 25)

Proof. The inequalities follow directly from the definitions and assumptions (4.21)
and (4.22). d

The following convergence rate result for the subspace correction method for
the symmetric and positive definite problems (see Ref. 26) will be crucial in our
analysis.

Lemma 4.3. If (4.21) kolds, then
1
IBIZ = sup [|Bvl2=1- .
“'UHa=1
with
J sl
K =sup inf 2= (T wiswi)a
veV T, vi=v H’l’”%

where w; = v; + T} ;Li 1Y

Since an estimate on K also gives an estimate on the convergence rate || E|,,
below we only state the results in terms of K. Under the assumptions (4.21) and
(4.22), we get an estimate which only depends on the exact subspace solvers and
the constants w; and u; in (4.21) and (4.22).
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Lemma 4.4. Assume that (4.21) and (4.22) hold. Then,

J J
. 2wy 2
K < su inf — | |l]]? + P P v 2)/ vlf2.
swp ot S (2 +oim 30 wilt) fieie
Proof. Set
J
w; = Vg +Ti* Z Vj.
=it
Using (4.21) and (4.22), and applying Lemma 4.2, leads to
— wv
T:_—l '.5 ’i < .———L-—— ‘i 2
( 1 Wy, ,wr)ﬂ —_ Ml(2 _wi)“u’ ”a
J 2
Wi 2 *
< ———— < 2||wllz + 2||TF B v
e _wi){ losllz +2||T3 Z; ) }
92 J 2
20y 2 2
< ———— < iz +wi|| B v .
ﬂ’i(2'—wi){i I ’ jZ;H ’ a}
The proof is completed by applying Lemma 4.3. [}

Lemma 4.5. For any v € V, we decompose v = w + @, with w € Nt and ¢ € N,
then

ol = lwlz, +ellwllz, + elellz, (4.26)

Proof. Noting that A/* is the orthogonal complement of A" with respect to a; (-, )
(see the beginning of Sec. 4), we have

a(v,v) = a(w + @, w+ )
= a(w,w) + a(p, ¢)
= ap(w, w) + €ai (w, w) + €a1(p, ).

The first estimate that gives e-independent convergence rate is for exact sub-
space solvers.

Theorem 4.2. If (A1) holds, then Algorithm 4.1 with exact local subspace solves
converges uniformly with respect to € and we have the estimate

J 2 J
J (lPi,o 2 i Vilag N P12 5= 'Uj||21>

w2, o112,

K <2 sup _inf
=1
J J o
+2 sup inf Z-i—_q ”P'i,l Zj_—_i 'ﬁj”gl
EN Ei ‘Pi=§93§9i€N ”‘19“(211

(4.27)
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Proof. By Lemma 4.3, we get

K(v)
K = sup +—=, B v;
vev vl Z !
For a given v € V, we have the decomposition v = w + ¢ where w € N'* and
@ € N. By (A1), there exist ¢; € V; NN such that ), ¢; = ¢. Then

with K(v) = Z. 3 Z

2

J J 2
K{v) < inf inf P v+ Qs
( ) Slemu T, tpi=¢,¢iEN’; i Z( j QVJ)
= J=t a
J J 2 J J 2
<2 inf Z P,;Zvj +2 inf Z PiZL,’)j
v =l 3 pi=ppi €N S i .

By Lemma 4.5 and the above inequality, we get
S 1Py vl
K <2 sup inf
vent Tiu=v  [of5; +ellvflZ

2 Zz'-]_ “P E =q (P.7”2
+ — sup n 3
€ peN 2 @i=p,@iEN ”‘1"”0.1

By Lemma 4.1, we obtain that

2 J 2 J 2
PZ% < |Pod_vi| +e||Pua v
=i i=i  lao i=i  lay
and
J 2 J 2 J 2
Pz'zﬁpj Pi,OZ‘Pj +e Pi,lzﬂﬂj =€ 112991
j=t a J=t ap j=i ay j=1 ay
Combining the above three inequalities, we get the inequality (4.27). o

By Lemma 4.4 and using similar arguments as in the proof of Theorem 4.2, we
get convergence result for the case of inexact subspace solvers.

Theorem 4.3. Assume (Al), (4.21) and (4.22) hold true. Then the convergence
rate of Algorithm 4.1 is given by | E||2 =1 — K~ with

J
K <2 sup _inf 2wy (|U1|ao ""*)2|Pz sz}uﬁ + ”Ui”gl +W§I|Pi,1wi“§1>
veN+ Tivi=v 7 1i(2 — wi) V]2, vl2,
J
+2 sup - Z 2w; ||‘Pi“il ‘|“wr?“Pi,1wi,cp”¢2u
‘PE-N E Y=, ,O'LEN 2 w?) “99”21 i

1

J J
where w; = 375,11 Vi and Wi = ) 5_i 1 P
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We remark that the estimate on K in Theorems 4.2 and 4.3 are also indepen-
dent of the upper bound on e. In the next section, we apply these estimates for
discretizations of variational problems in H (grad), H(curl) and H(div).

5. H(grad), H(curl) and H{(div) Systems

Let G represents any of the grad, curl or div operators. Given a bounded and convex
polyhedral domain Q € R3, we introduce the following Sobolev spaces:

H(G;Q) = {v e L*(Q), Gve L*(Q)}.
We now consider the following model problems: Find v € H(G; Q) such that
a(u,v) = (Gu, Gv) + e(u,v) = (f,v), v €& H(G;Q), (5.1)

where (-,-) = (-, -)o is the L? inner product. (5.2) corresponds to the partial differ-
ential equation

G*Gu+teu=f,

where G* is the adjoint operator of G with respect to (-,-) inner product, with
natural (Neumann) boundary condition.

To introduce the finite element discretization for (5.1), we assume that the
domain € is triangulated using simplexes and the triangulation is quasi-uniform.
We denote this triangulation with 75 = {7 }. The spaces V},(G) are the conforming
finite element spaces corresponding to the triangulation 73,.

The finite element discretizations of (5.1) is: Find u;, € V4 (G) such that

a(uh,vh) = (f, ’Uh), v e Vh(G). (5.2)

Examples for the lowest order H(G,)-conforming finite element spaces on a
tetrahedral mesh 7;, of  are listed below for various G.

Va(grad) := {vp € H(grad) : vp-(x) =a+b-x, e €R,beR? V7 € T},
Vi(curl) := {v, € H(cwrl,Q) : vi.(x) =a+xxb,a,beR? VreT},
Vi(div) = {vp € H(div,Q) : vp-(x) =a+0x,a¢€ R%,BeR,VTET},
Vi(0) := {vn € L*(Q) : vpi-(x) =a, a €R, V7 € Tp}.
The readers are refered to Refs. 23 and 28 for a detailed discussion on the finite

element space V,(G). A simple description on V3 (G) is made in Table 2.

Table 2. Finite element spaces of Whitney forms.

G H(G, Q) Vi(G) C H(G,Q) FE space Reference
grad HY(Q) Vi (grad) Linear Lagrangian FE 18
curl  H(curl,Q) Vi (curl) Edge elements 28
div H(div,2) Vi (div) Face elements 28

0 L2() V3,(0) p.w. constants
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5.1. Two-level method with Schwarz smoothers for H(curl) and H(div)
systems

To be specific, we will restrict our concern only on the two-level method with
the exact coarse grid solver. We denote Ty = {7y} by the triangulation of
with the mesh size H, and assume that 75 is obtained from the refinement of the
triangulation Ty. Vi (G) denotes the conforming finite element spaces based on the
triangulation 7.

Following the notation presented in our abstract convergence theories, we shall
set V = Vj,(G) and

a(v,v) = ag(u,v) + e(v,v),
where (-,-) = (-, -)o and ao(u,v) = (Gu, Gv). The null space of qg is denoted by N
and V can be decomposed (orthogonal) as
V=NaN,

where L is with respect to the L? inner product.
Now, we construct the subspace correction methods for (5.2) based on the
vertex-based space decomposition as done in Ref. 3. For a vertex 2' of 7,, we define

Ti={reTy:z' €}, and Q) = interior (U ’Z}f) .

Then the domain Qf is the subdomain of  formed by the patch of elements with
2% as a vertex. The subspaces and the space decomposition are then given by

J J
Vi={veV:supp(v) CQL}, and V=Vag+)» W=> Vi, (5.3)

i=1 =0
where for convenience we have denoted V;? = Vg and J is the number of vertices
of 7;. We then apply the exact subspace solver in each subspace V} as well as
in the coarse space Vy. We call the aforementioned subspace correction methods
as two-level method with vertex-based smoother. Observe that by the commuting

diagram given in Fig. 1 (see also Ref. 3), we have

J J
N=> Ni=> NnVLi
=0 =0
Thus, the decomposition (5.3) satisfies (A1). The following lemma is well-known
(see Ref. 3).

Lemma 5.1. Let Py be the orthogonal projection onto Vi with respect to H(G)
inmer product. Then under the assumption H 2 h and v € (I — Pg)V},, there exists
a decornposition v = Z;le v; with v; € V}* such that

J
Z lvilltrey S vl e)- (5.4)

i=1

Furthermore, we can show the following result.
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4 .
gra c>® curl o> div oas 0

lnirad lnﬁurl lHL’i‘iv lng

R —— Vi(grad) -9, v (curl) —25 Vy(div) —2¥ 12— 0

L

Fig. 1. Exact sequences, commutative diagrams, and degrees of freedom for the finite element
spaces in the lowest order case.

Lemma 5.2. Let I§ : V(G) — Vu(G) be the interpolation operator. Then under
the assumption that H 2, h and ¢ € (I — OGN, there exists a decomposition
¢ =0, v with p; € N such that

J
> leilid S

=1

oll3- (5.5)

Proof. The proof for both curl and div systems is similar. Here, we only prove
the case G = curl. Then N = {grad¢ : ¢ € Vj(grad)} and we have the following
commuting relation (see Fig. 1),

grad TIE*¢ = I3 grad.
For ¢ € (I — I N, there exists a function ¢ € Vj,(grad) such that
¢ = grad[l — II5™]¢.
Now, by the interpolating locally, there exists a decomposition of ¢ = (I —
11524 ¢ = $°7 | 4 such that
J

> IR S Il

i=1

Then ¢ = Zgzl Y = 25:1 grad vy is the desired decomposition, i.e.

J J
> llerad il S A2 DG S R IE S Ill3 = I3
i=1

i=1

|

Note that in the setting described above, since a1(:,-) = (-, -)o, the projection
operator P;; is nothing else than the local L? projection for each i = 1,...,J.
Applying Theorems 4.2 and 4.3, one can obtain the following convergence rate
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estimate:

Lemma 5.3. The two-level method with vertez-based Schwarz smoother for H(div)
and H(curl) systems converges uniformly with respect to € and the mesh size h.

Proof. We have that |2 =1 — 3 with

J J 12 ) Joo2
inf Z <,Pi,0 iji Uj laq i Il Pix Zj:i UJHU)

|v[%e i3

K £ sup
veNL T vi=v Ty
J J
+ sup inf -
QEN i pi=v,0i€N; lella
For both systems, the last quantity can be similarly estimated by a generic constant,
and here we shall estimate the first term only. We observe that by setting vg = Prv,

(5.6)

J J 2 J J 2 2
Do|Pod | S|P v +|Pav
i=0 j=i ao i=1 j=i ag ag
J
<D ol + i,
i=1
Similarly, we see that by setting vy = Pgo,
J J 2 J 2
Do\ B D vl S|\ Bad vl +IPavl
i=0 J=i 0 i=1 J=i 0

J
S D losls + lleliz-

i=1

With the choice of decompositions {vj}37=1 given in Lemma 5.1, we can conclude
that

J J
. J |P;,0 Zj:«i Ujlzg P2 Ej.—_i Uj ”%
sup _ inf 5 + 5
VEN 205 vi=v Y lvlZ, 013

< 1T = Prjole, + lg, | I = Pevllg + [lvli3
~ vl ll113

S

The above inequalities are obtained by the stability of the operator Pg. This com-
pletes the proof. O

5.2. Multigrid analysis for H(grad) = H*(Q)

In this subsection, we will illustrate how our general theory may also be applied to
multilevel analysis for the case G = grad. The technique presented in this section
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relies on the techniques introduced in Refs. 24 and 26 for semi-definite problems.
The difference is that for € > 0, one can see the important role played by assumption
(A1), in order to obtain {e, h}-independent convergence of Algorithm 4.1. We now
consider the following problem in H(grad):

—Au+eu=f, inQ, (5.7)
subject to the pure Neumann boundary condition on €2, i.e.
n-Vu=0, (5.8)

where n is the unit normal vector to d€). The variational problem corresponding to
(5.7) is as follows: Find u € H*(Q2) such that

a’(us U) = CL()(’ZL, 'I)) -+ €aq (’LL, 'l)) = (f7 U)a Vv e Hl (Q)a (59)
where
ao{u,v) = (u,v)1 =/ Vu - Vude,
Q
a1 (u,v) = (u,v)p = / uv dz,
JQ
and

(f,v) = '/vadcc.

The null space N of ag(-,-) is N = span{1}. As usual, we assume that £ is triangu-
lated with a nested sequence of quasi-uniform triangles 7y = {7}:} of size h;, where
the quasi-uniformity constants are independent of k and hy ~ ¥* with v € (0,1)
for k = 1,...,J. Associated with each 7, we have the finite element space of
continuous piecewise linear functions Vi, C H1({2). In this setting, it is clear that

wc.---C ch...cI/J:—_V

The standard nodal basis functions for each space Vj are denoted by ¢%, and
we have the following decomposition of V:

T

Vi =span {$},...., 85} = > W,
i=1

where Vi = span{¢%}, dim V}! = 1. We are interested in solving the system resulting
from the standard finite element discretization: Find v € V withh = hyand V =V
such that

a(u,v) = (f,v), YveVW (5.10)

To solve problem (5.10), we consider a multigrid method with the Gauss—Seidel
method as a smoother. Setting Vo = N, ng = 1, and V§ = Vg, then V can be
decomposed as follows:

J gk

V=>"> "V

k=0 d==1



1960 Y.-J. Lee et al.

It is easy to see that the decomposition satisfies (A1). The error transfer oper-
ator, E, is

E =T5_oM% (I - PY), (5.11)

where P} is the exact solver on V} (see also Ref. 34). In the following discussion,
Pl, and P}, are the ap and ay orthogonal projections on V), respectively. We
note that for all k and I, Pxy and P,f,'1 are L? projections. Following more popular
convention, we use the standard notation Qy = P, 1 and Q}, = Pzi,r

By a direct application of Theorem 4.2, we obtain the following convergence
estimate.

Theorem 5.1.
IEI; <6 <1, (5.12)

where § is bounded uniformly with respect to the parameter €, the number of levels
J and the mesh size h.

Proof. By the Poincare’s inequality and Theorem 4.2, we obtain

J Nk 2
K <1+ sup lr}ji ) ZZ Pfé,o v /|Uﬁ
VENE Lo Tidy vi=v \ 120 =1 &>k

J L 2
3l v o / ol
k=0i=1 |l @H=ks llo
J ; i j 112
Zk=o E?:kl Q% Z(é,j)z(k}i) 90'21“8
+ sup inf 5 .
WEN Zk:—cl 21_1 Sak—‘Pa‘PLE-N" ”LP”O

For simplicity, we shall denote

J  ng ) J ng 2
=33 X o /wwzz o ¥ [
k=0 i=1 (é=9>>(k i) k=0 i=1 &=ks) o

N

Il = sup ZZ

weN Ti-o 21_1 "’k—‘P"PkG-’\’k k=0 i=1

Qi

’ /I|¢II3~

¥z
(£.9)2 (k1)

Since ¥ is one dimensional, we have

= 2 sup 128€IE _
sen ol

_—
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/ of

Now, by setting, v} = 0, we obtain the following estimate:

J ng

[ <1+ sup inf EZ

veN+ Nl Tik vi=v k=1 i=1

2
Qi > / llo[i3
(&,9) 2 (ki) 0

The estimate of the right-hand side of the above inequality is standard, we refer to
Ref. 26 for the details. O

P, Ii.O Z vZQ
(£:.9)2 (ki)
J mp

+2.2

k=1 i=1

6. Conclusions

‘We presented a transparent theoretical framework for proving convergence esti-
mates for subspace correction algorithms for nearly singular problems. We have
stated the minimal assumptions needed to provide parameter independent con-
vergence. The abstract theory is applicable to a wide range of numerical models
corresponding to finite element discretizations of partial differential equations, for
example it can be used to design and analyze efficient methods for indefinite prob-
lems. As a future research, we plan to extend this work and derive convergence esti-
mates for multigrid methods for anisotropic problems and linear elasticity problems.
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