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Abstract In this paper, the well-known nonconforming Morley element for bihar-
monic equations in two spatial dimensions is extended to any higher dimensions
in a canonical fashion. The general n-dimensional Morley element consists of all
quadratic polynomials defined on each n-simplex with degrees of freedom given
by the integral average of the normal derivative on each (n − 1)-subsimplex and
the integral average of the function value on each (n − 2)-subsimplex. Explicit
expressions of nodal basis functions are also obtained for this element on general
n-simplicial grids. Convergence analysis is given for this element when it is applied
as a nonconforming finite element discretization for the biharmonic equation.

Keywords Nonconforming finite element · Forth order elliptic equation ·
Biharmonic · Morley element

1 Introduction

In this paper we consider nonconforming finite elements for higher dimensional
fourth order elliptic equations. There are some well-known nonconforming finite
elements in two dimensional case (cf. [1]–[4]). Among them, the Morley element
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is perhaps the most interesting one. The Morley element has the least number of
degrees of freedom on each element for fourth order boundary value problems as
its shape function space consists of only quadratic polynomials.

Motivated by both theoretical and practical interests, in our recent paper [9],
we proposed and analyzed several tetrahedron nonconforming finite elements for
three dimensional fourth order elliptic partial differential operators. But the exten-
sion of the Morley element to three dimensions was then not obvious. In [5] an
extension of the Morley element to n-dimensional case (n > 2) was given in a
special manner, but it is interesting to note that this extension does not recover
the two dimensional Morley element in the generalized family. In this paper, we
generalize the two dimensional Morley element to any n-dimensional case (n ≥ 2)
in a more canonical fashion . Our generalization naturally recovers the two dimen-
sional Morley element and also the three dimensional element given in [5]. Our
new element is different from the element in [5] when n > 3. An error estimate
was given in [5] for (and only for) the three dimensional case, but this estimate is
not as sharp as the one that is obtained in this paper for any n ≥ 2 in a unified
analysis.

With quadratic polynomial as shape function on a general n-simplex, the de-
grees of freedom of the general Morley element presented in this paper are given
by the integral average of the normal derivative on each (n−1)-subsimplex and the
integral average of the function value on each (n − 2)-subsimplex. It is intriguing
that everything just fits together very nicely.

The paper is organized as follows. The rest of this section gives some notation.
Section 2 describes the Morley element for the n-dimensional case with n ≥ 2.
Section 3 shows the convergence of the element (following the work of Shi [6]).
The final section contains some brief concluding remarks.

We will use the following standard notation. � denotes a general bounded poly-
hedral domain in Rn (n ≥ 2), ∂� the boundary of �, and ν = (ν1, ν2, . . . , νn)

�
the unit outer normal to ∂� . For a nonnegative integer s, Hs(�), ‖ ·‖s,� and | · |s,�
denote the usual Sobolev space, its corresponding norm and semi-norm respec-
tively, Hs

0 (�) the closure of C∞
0 (�) in Hs(�) with respect to the norm ‖·‖s,�, and

(·, ·) the inner product of L2(�). For a subset B ⊂ Rn and a nonnegative integer
r , Pr(B) denotes the space of all polynomials on B with degree not greater than r .

2 The n-dimensional Morley element

In this section, we will give a detailed description of our new n-dimensional Morley
element and discuss some basic properties. In §2.1, we will give the definition of
the element and its justification. In §2.2, we will give an explicit construction of
the nodal basis functions. In §2.3, we will discuss some basic properties.

2.1 The definition of the new element

LetT be a generaln-simplex withn+1 vertices denoted byai = (x1i , x2i , . . . , xni)
�

(1 ≤ i ≤ n + 1) and with its barycentric coordinates denoted by λ1, λ2, . . . , λn+1.
We will use Fi (1 ≤ i ≤ n + 1) to denote the (n − 1)-dimensional subsimplex of
T without ai as its vertices and bi its barycenter and Sij (1 ≤ i < j ≤ n + 1) to
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denote the (n − 2)-dimensional subsimplex without ai and aj as its vertices. As
usual, |T |, |Fi | and |Sij | denote the measures of T , Fi and Sij respectively.

Definition 1 (The n-dimensional Morley element) The Morley element of
n-dimension is defined by (T , PT , ΦT ) with

1. T is an n-simplex.
2. PT = P2(T ), the space of all quadratic polynomials.
3. �T is the vector with its components the following degrees of freedom,

1

|Sij |
∫

Sij

v, 1≤ i <j ≤ n+1,
1

|Fj |
∫

Fj

∂v

∂ν
, 1≤j ≤n+1, ∀v ∈ C1(T ). (1)

Remark 1 For n = 2, Sij = ak is a vertex of T . We have

1

|Sij |
∫

Sij

v = v(ak).

We thus recover the definition of the Morley element in two dimensions, see Fig. 1.

Remark 2 For n = 3, Sij are edges of the simplex, the degrees of freedom are
illustrated in Fig. 2.

Remark 3 Just like the 2-dimensional Morley element, the degrees of freedom of
the element can be replaced by

1

|Sij |
∫

Sij

v, 1 ≤ i < j ≤ n + 1,
∂v

∂ν
(bj ), 1 ≤ j ≤ n + 1, ∀v ∈ C1(T ).

�

��

•

• •

Fig. 1

�

��

Fig. 2
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In this situation, the corresponding basis functions remain unchanged and the cor-
responding finite element spaces are the same as the previous case.

Remark 4 Let eij (1 ≤ i < j ≤ n + 1) be the edge of T with ai and aj as its end-
points, and let |eij | be its length and mij its midpoint. The n-dimensional Morley
element given in [5] has the following degrees of freedom:

µv(mij ) + 1 − µ

|eij |
∫

eij

v, 1 ≤ i < j ≤ n + 1,
∂v

∂ν
(bj ),

1 ≤ j ≤ n + 1, ∀v ∈ C1(T ), (2)

where µ = 4 − 12/n and n > 2. This family of elements exclude the existing
Morley element for n = 2. It is interesting to note that this element is identical to
our new element for n = 3 but is quite different from our element for n > 3.

Lemma 1 Given v ∈ C1(T ), the degrees of freedom given in (1) uniquely deter-
mine the integrals of all first order derivatives

∫
Fj

∇v

on each (n − 1)-dimensional subsimplex Fj of T .

Proof Given 1 ≤ j ≤ n+ 1, denote the unit normal of Fj by ν, all (n− 2)-dimen-
sional subsimplexes of Fj by S1, S2, . . . , Sn, and the unit out normal of Si by n(i),
viewed as the boundary of an (n−1)-simplex in (n−1)-dimensional space. Given
any constant n-vector α ∈ Rn, let τ = α − (α · ν)ν. Then τ · ν = 0, namely τ is
tangent to F . It follows that

∫
Fj

∇v · α = (α · ν)

∫
Fj

∂v

∂ν
+

n∑
i=1

τ · n(i)

∫
Si

v. (3)

This gives an explicit expression of
∫
Fj

∇v · α in terms of the degrees of freedom
(1) for any α ∈ Rn. The desired result then follows.

We now prove that the n-dimensional Morley element is well-defined.

Lemma 2 For the Morley element of n-dimension, �T is PT -unisolvent.

Proof Because the dimension of P2(T ) and the number of degrees of freedom are
all 1

2 (n + 1)(n + 2), it is enough to show that if p ∈ P2(T ) and

∫
Sij

p = 0, 1 ≤ i < j ≤ n + 1,

∫
Fj

∂p

∂ν
= 0, 1 ≤ j ≤ n + 1 (4)

then p ≡ 0.
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By Lemma 1 and its proof, we deduce that
∫

Fj

∇p = 0, 1 ≤ j ≤ n + 1. (5)

Now let 1 ≤ k, l ≤ n. By Green’s formula and (5) we have

∂2p

∂xk∂xl

= 1

|T |
∫

T

∂2p

∂xk∂xl

= 1

|T |
n+1∑
j=1

∫
Fj

∂p

∂xk

νl = 0.

That is, p ∈ P1(T ). From (5), ∇p = 0 and p is a constant on T . Hence p ≡ 0
by (4).

2.2 The nodal basis functions and the nodal value interpolant

For both theoretical and practical interests, we now give an explicit construction
of the nodal basis functions for our new n-dimensional Morley element. Explicit
nodal basis functions of course allow an explicit definition of the canonical nodal
basis interpolant for the n-dimensional Morley element.

The nodal basis functions Let us first give the formulae for nodal basis functions.

Theorem 1 The nodal basis functions associated with the degrees of freedom given
by (1) for the n-dimensional Morley element are give by




qi = 1

2‖∇λi‖λi(nλi − 2), 1 ≤ i ≤ n + 1,

pij = 1 − (n − 1)(λi + λj ) + n(n − 1)λiλj

−(n − 1)∇λ�
i ∇λj

∑
k=i,j

λk(nλk − 2)

2‖∇λk‖2
, 1 ≤ i < j ≤ n + 1,

(6)

where ‖∇λi‖ is the Euclidean norm of ∇λi .

Proof Let 1 ≤ i ≤ n + 1, 1 ≤ k < l ≤ n + 1. If k = i or l = i then qi |Skl
= 0. If

k �= i and l �= i then

1

|Skl|
∫

Skl

qi = (n − 2)!

2‖∇λi‖
(

2n

n!
− 2

(n − 1)!

)
= 0.

For j ∈ {1, 2, . . . , n+1}, −∇λj is the outer normal of Fj and the integral average
of a linear polynomial over Fj equals to its value at point bj . Since

∇qi = 1

‖∇λi‖ (nλi − 1)∇λi, ∇qi(bj ) =



− ∇λi

‖∇λi‖ , j = i,

0 j �= i,
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we obtain that for i ∈ {1, 2, · · · , n + 1}


1

|Skl|
∫

Skl

qi = 0, 1 ≤ k < l ≤ n + 1,

1

|Fk|
∫

Fk

∂qi

∂ν
= δik, 1 ≤ k ≤ n + 1,

(7)

where δik is the Kronecker delta.
Now let 1 ≤ i < j ≤ n + 1 and 1 ≤ k < l ≤ n + 1. If k = i and l = j then

pij |Skl
= 1. If {i, j} ∩ {k, l} has only one element, for example k = i and l �= j ,

then

1

|Skl|
∫

Skl

pij = 1

|Skl|
∫

Skl

(
1 − (n − 1)λj

) = (n − 2)!

(
1

(n − 2)!
− n − 1

(n − 1)!

)
= 0

where we have used the first equality of (7). If {i, j} ∩ {k, l} is empty then

1

|Skl|
∫

Skl

pij = 1

|Skl|
∫

Skl

(
1 − (n − 1)(λi + λj ) + n(n − 1)λiλj

)

= (n − 2)!

(
1

(n − 2)!
− 2(n − 1)

(n − 1)!
+ n(n − 1)

n!

)
= 0.

By virtue of the following equality

∇pij = (n − 1)


− ∇λi − ∇λj + n(λi∇λj + λj∇λi)

−∇λ�
i ∇λj

∑
k=i,j

(nλk − 1)∇λk

‖∇λk‖2




we have

∇pij (bk) =




−∇λj + ∇λ�
i ∇λj

∇λi

‖∇λi‖2
, k = i,

−∇λi + ∇λ�
i ∇λj

∇λj

‖∇λj‖2
, k = j,

0 k �= i, j.

Therefore

∂pij

∂ν
(bk) = 0, 1 ≤ k ≤ n + 1.

In summary, we have, for 1 ≤ i < j ≤ n + 1


1

|Skl|
∫

Skl

pij = δikδjl, 1 ≤ k < l ≤ n + 1,

1

|Fk|
∫

Fk

∂pij

∂ν
= 0, 1 ≤ k ≤ n + 1.

(8)
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From (7) and (8), pij and qi are the nodal basis functions with respect to the degrees
of freedom (1).

Theorem 1 can of course be used directly to give another proof of Lemma 2.
For practical interests, let us take a closer look at the nodal basis functions in

three dimensional case. We note that ∇λi is a constant vector and can be represented
by the components of vertices. Set

c1 =

 (x22 − x23)(x34 − x33) − (x23 − x24)(x33 − x32)

(x13 − x12)(x34 − x33) − (x14 − x13)(x33 − x32)
(x13 − x12)(x23 − x24) − (x14 − x13)(x22 − x23)


 ,

c2 =

 (x23 − x21)(x34 − x33) − (x24 − x23)(x33 − x31)

(x11 − x13)(x34 − x33) − (x13 − x14)(x33 − x31)
(x11 − x13)(x23 − x24) − (x13 − x14)(x21 − x23)


 ,

c3 =

 (x21 − x22)(x34 − x32) − (x22 − x24)(x32 − x31)

(x12 − x11)(x34 − x32) − (x14 − x12)(x32 − x31)
(x12 − x11)(x22 − x24) − (x14 − x12)(x21 − x22)


 ,

c4 =

 (x22 − x21)(x33 − x32) − (x23 − x22)(x32 − x31)

(x11 − x12)(x33 − x32) − (x12 − x13)(x32 − x31)
(x11 − x12)(x22 − x23) − (x12 − x13)(x21 − x22)


 .

Then, for the 3-dimensional Morley element, its nodal basis function can be
written as



qi = 3|T |
‖ci‖ λi(3λi − 2), 1 ≤ i ≤ 4,

pij = 1 − 2(λi + λj ) + 6λiλj − c�
i cj

∑
k=i,j

λk(3λk − 2)

‖ck‖2
, 1 ≤ i < j ≤ 4.

(9)

The nodal value interpolant With the nodal basis functions given above, the cor-
responding interpolation operator ΠT can then be given by

ΠT v =
∑

1≤i<j≤n+1

pij

|Sij |
∫

Sij

v +
n+1∑
j=1

qj

|Fj |
∫

Fj

∂v

∂ν
, ∀v ∈ H 2(T ). (10)

By construction, we have

ΠT p = p, ∀p ∈ P2(T ). (11)

Using (11) and the interpolation theory [2], we obtain the following lemma.

Lemma 3 For the n-dimensional Morley element, there exists a constant C inde-
pendent of h such that

|v − �T v|m,T ≤ Ch3−m|v|3,T , 0 ≤ m ≤ 3, ∀v ∈ H 3(T ), T ∈ T h. (12)
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Define �h by (�hv)|T = �T (v|T ), ∀T ∈ Th, where v is appropriately smooth.
By (7), (8) and (10), we have, for v ∈ H 2(T ),




1

|Sij |
∫

Sij

�T v = 1

|Sij |
∫

Sij

v, 1 ≤ i < j ≤ n + 1,

1

|Fj |
∫

Fj

∂�T v

∂ν
= 1

|Fj |
∫

Fj

∂v

∂ν
, 1 ≤ j ≤ n + 1.

(13)

The n-dimensional Morley finite element space Let hT be the diameter of the small-
est ball containing T and ρT be the diameter of the largest ball contained in T . Let
{Th} be a family of triangulations of �, consisting of n-simplexes, with mesh size
h → 0. Throughout the paper, we assume that {Th} satisfies: hT ≤ h, ∀T ∈ Th, and
there exists a positive constant η independent of h, such that ηh ≤ ρT , ∀T ∈ Th.

For the n-dimensional Morley element, the corresponding finite element spaces
Vh and Vh0 are defined as follows. Vh consists of all piecewise quadratic functions
on Th such that, their integral average over each (n − 2)-dimensional subsimplex
of elements in Th are continuous, and their normal derivatives are continuous at
the barycentric point of each (n − 1)-dimensional subsimplex of elements in Th,
and Vh0 consists of functions in Vh whose degrees of freedom (1) vanish on ∂�.

2.3 Some properties

For vh ∈ Vh and T ∈ Th, denote by vT
h the continuous extension of vh from the

interior of T to T . Given any (n − 1)-dimensional subsimplex F , let us define the
jumps of vh and ∇vh across F as follows:

[vh] = vT
h − vT ′

h and [∇vh] = ∇vT
h − ∇vT ′

h

if F = T ∩ T ′ for some T , T ′ ∈ Th and

[vh] = vT
h and [∇vh] = ∇vT

h

if F = T ∩ ∂�.
The first property we will state now is a direct consequence of Lemma 1.

Lemma 4 If F is a common (n − 1)-dimensional subsimplex of T , T ′ ∈ Th, then

∫
F

[∇vh] = 0, ∀vh ∈ Vh. (14)

If an (n − 1)-dimensional subsimplex F of T ∈ Th is on ∂� then

∫
F

[∇vh] = 0, ∀vh ∈ Vh0. (15)
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Lemma 5 There exists a constant C independent of h such that∥∥[vh]
∥∥

0,F
+ h

∥∥[∇vh]
∥∥

0,F
≤ Ch3/2

(|vh|2,T + |vh|2,T ′
)
, ∀vh ∈ Vh (16)

if F = T ∩ T ′ is a common (n − 1)-dimensional subsimplex of some T , T ′ ∈ Th,
and ∥∥[vh]

∥∥
0,F

+ h
∥∥[∇vh]

∥∥
0,F

≤ Ch3/2|vh|2,T , ∀vh ∈ Vh0 (17)

if F = T ∩ ∂�.

Proof Let vh ∈ Vh and F = T ∩ T ′. From (14) we know that [∇vh] vanishes at a
point on F . Then

max
x∈F

∥∥[∇vh](x)
∥∥ ≤ h max

x∈F

n∑
i,j=1

∣∣∣
[

∂vh

∂xi∂xj

]
(x)

∣∣∣. (18)

By a standard scaling argument (or inverse inequality), we obtain∥∥[∇vh]
∥∥

0,F
≤ Ch1/2

(|vh|2,T + |vh|2,T ′
)
. (19)

From the definition of Vh, [vh] vanishes at some point on F . Then∥∥[vh]
∥∥

0,F
≤ h(n−1)/2 max

x∈F

∣∣[vh](x)
∣∣ ≤ h(n+1)/2 max

x∈F

∥∥[∇vh](x)
∥∥

≤ Ch
∥∥[∇vh]

∥∥
0,F

. (20)

Inequality (19) leads to∥∥[vh]
∥∥

0,F
≤ Ch3/2

(|vh|2,T + |vh|2,T ′
)
. (21)

Inequality (16) follows from (19) and (21).
Let vh ∈ Vh0 and F = T ∩ ∂�. Then [vh] = vh|F and [∇vh] = ∇vh|F . From

the definition of Vh0 and (15), [vh] and [∇vh] vanish at some points on F respec-
tively. Then inequalities (18) and (20) can be proved similarly in this case. Thus
inequality (17) is true.

3 The convergence analysis for the biharmonic equations

For f ∈ L2(�), we consider the following boundary value problem of the bihar-
monic equation




�2u = f, in �,

u|∂� = ∂u

∂ν

∣∣∣
∂�

= 0
(22)

where � is the standard Laplacian operator. Define

a(v, w) =
∫

�

n∑
i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj

, ∀v, w ∈ H 2(�). (23)
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The weak form of problem (22) is: find u ∈ H 2
0 (�) such that

a(u, v) = (f, v), ∀v ∈ H 2
0 (�). (24)

The 2-dimensional Morley element is a convergent element for the fourth order
elliptic equations (see [2,3,6,7]), while it is divergent in general for the second
order equations (see [8]). In this section, we discuss some convergence proper-
ties of the n-dimensional Morley element for problem (22). The main idea of the
analysis follows from Shi [6].

We introduce the following mesh dependent norm ‖·‖m,h and semi-norm |·|m,h:

‖v‖m,h =

∑

T ∈Th

‖v‖2
m,T




1/2

, |v|m,h =

∑

T ∈Th

|v|2m,T




1/2

for all function v ∈ L2(�) that v|T ∈ Hm(T ), ∀T ∈ Th.

Lemma 6 For any vh ∈Vh0 there exist functions whk ∈ H 1
0 (�), 0 ≤ k ≤ n, such

that whk|T ∈ C∞(T ), ∀T ∈ Th, and

|vh − wh0|m,h ≤ Ch2−m|vh|2,h, 0 ≤ m ≤ 2, (25)

∣∣∣∂vh

∂xk

− whk

∣∣∣
m,h

≤ Ch1−m|vh|2,h, 0 ≤ m ≤ 1, 1 ≤ k ≤ n (26)

where C is a constant independent of h.

Proof Let vh ∈ Vh0, and let P 1
T : L2(T ) → P1(T ) be the L2-orthogonal projec-

tion. Define P 1
h : L2(�) → L2(�) as follows: for any v ∈ L2(�), P 1

h v|T = P 1
T v,

∀T ∈ Th. Set

φh0 = P 1
h vh, φhk = P 1

h

∂vh

∂xk

, 1 ≤ k ≤ n.

By a standard error analysis, we have



|vh − φh0|m,h ≤ Ch2−m|vh|2,h, 0 ≤ m ≤ 2,
∣∣∣∂vh

∂xk

− φhk

∣∣∣
m,h

≤ Ch1−m|vh|2,h, 0 ≤ m ≤ 1, 1 ≤ k ≤ n.
(27)

Given a set B ⊂ Rn, let Th(B) = { T ∈ Th | B ∩T �= ∅ } and Nh(B) the number
of the elements in Th(B).

For k ∈ {0, 1, . . . , n}, we define whk ∈ H 1
0 (�) as follows: for any T ∈ Th,

whk|T ∈ P1(T ) and for i ∈ {1, 2, . . . , n + 1}

whk(ai) = 1

Nh(ai)

∑
T ′∈Th(ai )

φT ′
hk(ai)
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when vertex ai of T is in �. Obviously, whk is well-defined. To prove the lemma,
we only need to show that


|vh − wh0|m,h ≤ Ch2−m|v|2,h, 0 ≤ m ≤ 2,
∣∣∣∂vh

∂xk

− whk

∣∣∣
m,h

≤ Ch1−m|vh|2,h, 0 ≤ m ≤ 1, 1 ≤ k ≤ n.
(28)

Let T ∈ Th, by a standard scaling argument, we have

|p|2m,T ≤ Chn−2m

n+1∑
i=1

|p(ai)|2, 0 ≤ m ≤ 2, ∀p ∈ P1(T ). (29)

If vertex ai of T is in � then by the definition of whk ,

(φT
hk − whk)(ai) = φT

hk(ai) − 1

Nh(ai)

∑
T ′∈Th(ai )

φT ′
hk(ai)

= 1

Nh(ai)

∑
T ′∈Th(ai )

(
φT

hk(ai) − φT ′
hk(ai)

)
.

For T ′ ∈ Th(ai) there exist T1, · · · , TJ ∈ Th(ai) such that T1 = T , TJ = T ′ and
F̃j = Tj ∩ Tj+1 is a common (n − 1)-dimensional subsimplex of Tj and Tj+1 and
ai ∈ F̃j , 1 ≤ j < J . By standard inverse inequalities, we have

∣∣∣φT
h0(ai) − φT ′

h0(ai)

∣∣∣2 =
∣∣∣

J−1∑
j=1

(
φ

Tj

h0(ai) − φ
Tj+1

h0 (ai)
)∣∣∣2

≤ C

J−1∑
j=1

∣∣∣φTj

h0(ai) − φ
Tj+1

h0 (ai)

∣∣∣2 ≤Ch1−n

J−1∑
j=1

∣∣∣φTj

h0 − φ
Tj+1

h0

∣∣∣2
0,F̃j

≤ Ch1−n

J−1∑
j=1

( ∣∣∣vTj

h − φ
Tj

h0

∣∣∣2
0,F̃j

+
∣∣∣vTj+1

h − φ
Tj+1

h0

∣∣∣2
0,F̃j

+ ∣∣[vh]
∣∣2
0,F̃j

)
.

Similarly,
∣∣∣φT

hk(ai) − φT ′
hk(ai)

∣∣∣2

≤ Ch1−n

J−1∑
j=1

( ∣∣∣∂v
Tj

h

∂xk

− φ
Tj

hk

∣∣∣2
0,F̃j

+
∣∣∣∂v

Tj+1

h

∂xk

− φ
Tj+1

hk

∣∣∣2
0,F̃j

+ ∣∣[∇vh]
∣∣2
0,F̃j

)

when 1 ≤ k ≤ n. By a standard analysis, we obtain

∣∣∣φT
h0(ai) − φT ′

h0(ai)

∣∣∣2 ≤ Ch1−n


h3

J∑
j=1

|vh|22,Tj
+

J−1∑
j=1

∣∣[vh]
∣∣2
0,F̃j


 ,
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∣∣∣φT
hk(ai) − φT ′

hk(ai)

∣∣∣2 ≤ Ch1−n


h

J∑
j=1

|vh|22,Tj
+

J−1∑
j=1

∣∣[∇vh]
∣∣2
0,F̃j


 , 1 ≤ k ≤ n.

From Lemma 5 we have

∣∣∣φT
h0(ai) − φT ′

h0(ai)

∣∣∣2 ≤ Ch4−n

J∑
j=1

|v|22,Tj
,

∣∣∣φT
hk(ai) − φT ′

hk(ai)

∣∣∣2 ≤ Ch2−n

J∑
j=1

|v|22,Tj
, 1 ≤ k ≤ n.

Since Nh(T ) is bounded, we get



|(φT
h0 − wh0)(ai)|2 ≤ Ch4−n

∑
T ′∈Th(T )

|v|22,T ′,

|(φT
hk − whk)(ai)|2 ≤ Ch2−n

∑
T ′∈Th(T )

|v|22,T ′, 1 ≤ k ≤ n.
(30)

If vertex ai of T is on ∂�, there exists T ′ ∈ Th(ai) with an (n−1)-dimensional
subsimplex F of T ′ belonging to ∂� and ai ∈ F . By the definitions of whk and φhk ,

|(φT
h0 − wh0)(ai)| ≤ |φT

h0(ai) − φT ′
h0(ai)| + |vT ′

h (ai) − φT ′
h0(ai)| + |vT ′

h (ai)|.
and for 1 ≤ k ≤ n

|(φT
hk − whk)(ai)| ≤ |φT

hk(ai) − φT ′
hk(ai)| +

∣∣∣∂vT ′
h

∂xk

(ai) − φT ′
hk(ai)

∣∣∣+
∣∣∣∂vT ′

h

∂xk

(ai)

∣∣∣.
By scaling argument and Lemma 5, we have

|vT ′
h (ai)|2 ≤ Ch4−n|vh|22,T ′,

∣∣∣∂vT ′
h

∂xk

(ai)

∣∣∣2 ≤ Ch2−n|vh|22,T ′, 1 ≤ k ≤ n.

Using a routine analysis, we have

|vT ′
h (ai) − φT ′

h0(ai)|2 ≤ Ch4−n|vh|22,T ′,

∣∣∣∂vT ′
h

∂xk

(ai) − φT ′
hk(ai)

∣∣∣2 ≤ Ch2−n|vh|22,T ′, 1 ≤ k ≤ n.

By a similar analysis for |φT
hk(ai) − φT ′

hk(ai)|, 0 ≤ k ≤ n, we conclude that (30) is
also true in this case.
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Combining (29) and (30), we have

h2m|φh0 − wh0|2m,T ≤ Ch4
∑

T ′∈Th(T )

|vh|22,T ′,

h2m|φhk − whk|2m,T ≤ Ch2
∑

T ′∈Th(T )

|vh|22,T ′, 1 ≤ k ≤ n.

Summing the above inequalities over all T ∈ Th, we obtain that

h2m|φh0 − wh0|2m,h ≤ Ch4
∑
T ∈Th

∑
T ′∈Th(T )

|vh|22,T ′,

h2m|φhk − whk|2m,h ≤ Ch2
∑
T ∈Th

∑
T ′∈Th(T )

|vh|22,T ′, 1 ≤ k ≤ n.

Consequently

h2m|φh0 − wh0|2m,h ≤ Ch4|vh|22,h, (31)

h2m|φhk − whk|2m,h ≤ Ch2|vh|22,h, 1 ≤ k ≤ n. (32)

Then (28) follows from (31), (32) and (27).

For v, w ∈ H 2(�) + Vh, we define

ah(v, w) =
∑
T ∈Th

∫
T

n∑
i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj

. (33)

The finite element method for problem (24) is: find uh ∈ Vh0 such that

ah(uh, vh) = (f, vh), ∀vh ∈ Vh0. (34)

Lemma 7 There exists a constant C independent of h such that for v ∈ H 3(�) ∩
H 2

0 (�) with �2v ∈ L2(�),

|ah(v, vh) − (�2v, vh)| ≤ Ch(|v|3,� + h‖�2v‖0,�)|vh|2,h, ∀vh ∈ Vh0. (35)

Proof For v ∈ H 3(�)∩H 2
0 (�) with �2v ∈ L2(�) and vh ∈ Vh0, let wh0 ∈ H 1

0 (�)
be as in (25). We write

ah(v, vh) − (�2v, vh) = (
ah(v, vh) − (�2v, wh0)

)+ (�2v, wh0 − vh). (36)

By (25) and the Schwarz inequality we obtain immediately that

|(�2v, wh0 − vh)| ≤ Ch2‖�2v‖0,�|vh|2,h. (37)
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For the first term on the right of (36), an integration by parts gives

ah(v, vh) − (�2v, wh0) =
n∑

i,j=1

∑
T ∈Th

∫
T

(
∂2v

∂xi∂xj

∂2vh

∂xi∂xj

+ ∂3v

∂xi∂x2
j

∂vh

∂xi

)

+
n∑

i,j=1

∑
T ∈Th

∫
T

∂3v

∂xi∂x2
j

∂(wh0 − vh)

∂xi

.

(38)

Now let i, j ∈ {1, 2, · · · , n}. By (25) and the Schwarz inequality we have∣∣∣∣∣∣
∑
T ∈Th

∫
T

∂3v

∂xi∂x2
j

∂(wh0 − vh)

∂xi

∣∣∣∣∣∣ ≤ Ch|v|3,�|vh|2,h. (39)

For an (n − 1)-subsimplex Fk of T ∈ Th, let P 0
Fk

: L2(Fk) → P0(Fk) be the
L2-orthogonal projection. By Green’s formula and Lemma 4, we have

∑
T ∈Th

∫
T

(
∂2v

∂xi∂xj

∂2vh

∂xi∂xj

+ ∂3v

∂xi∂x2
j

∂vh

∂xi

)
=
∑
T ∈Th

n+1∑
k=1

∫
Fk

∂2v

∂xi∂xj

∂vh

∂xi

νj

=
∑
T ∈Th

n+1∑
k=1

∫
Fk

(
∂2v

∂xi∂xj

− P 0
Fk

∂2v

∂xi∂xj

)(
∂vh

∂xi

− P 0
Fk

∂vh

∂xi

)
νj ,

which implies that∣∣∣∣∣∣
∑
T ∈Th

∫
T

(
∂2v

∂xi∂xj

∂2vh

∂xi∂xj

+ ∂3v

∂xi∂x2
j

∂vh

∂xi

)∣∣∣∣∣∣ ≤ Ch|v|3,�|vh|2,h. (40)

Equality (38) together with (39) and (40) leads to∣∣ ah(v, vh) − (�2v, wh0)
∣∣ ≤ Ch|v|3,�|vh|2,h. (41)

Inequality (35) follows from (36), (37) and (41).

Lemma 8 There exists a constant C independent of h such that, for any vh ∈ Vh0,

|vh|2,h ≤ ‖vh‖2,h ≤ C|vh|2,h. (42)

Proof For vh ∈ Vh0, let whk ∈ H 1
0 (�), 0 ≤ k ≤ n, such that inequalities (25) and

(26) hold. Then from (25) and (26)

‖vh‖0,h ≤ ‖vh − wh0‖0,h + ‖wh0‖0,�

≤ C(|vh|2,h + |wh0|1,�)

≤ C(|vh|2,h + |vh|1,h),

|vh|1,h ≤
n∑

k=1

( ∣∣∣∂vh

∂xk

− whk

∣∣∣
0,h

+ ‖whk‖0,�

)

≤ C

(
|vh|2,h +

n∑
k=1

|whk|1,�

)

≤ C|vh|2,h.
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The above inequalities lead to the second inequality of (42).

Theorem 2 Let u and uh be the solutions of problem (24) and (34) respectively.
Then there exists a constant C independent of h such that

‖u − uh‖2,h ≤ Ch(|u|3,� + h‖f ‖0,�) (43)

when u ∈ H 3(�).

Proof The well-known Strang’s Lemma (see [7] or [2]) says that

|u−uh|2,h ≤ C

(
inf

wh∈Vh0

|u−wh|2,h+ sup
wh∈Vh0 wh �=0

| ah(u, wh)−(f, wh)|
|wh|2,h

)
. (44)

By (42), we may replace the semi-norm | · |2,h above by the full norm ‖ · ‖2,h. The
desired estimate (43) then follows from Lemma 3 and Lemma 7.

4 Concluding remarks

The two dimensional nonconforming Morley element is a very simple but peculiar
element for biharmonic equations. In this paper, this element is extended to the
general n-dimensional case in a canonical fashion. The new class of nonconform-
ing elements constructed in this paper for fourth order partial differential equations
is hoped to shed some new insight to the finite element theory on nonconforming
elements. In addition to its theoretical interest, as pointed out in [9], this type of
element is potentially useful in practice such as in computational material sciences.
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