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Some aspects of numerical methods
for partial differential equations (PDEs):

Modeling

Qualitative analysis

Discretization

Grid adaptation

Algebraic solver

Parallelization

Model validation

 integrated study
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Discretization, Adaptivity and Algebraic Solver

Integrated study: (The interplay between discretization, adaptivity and algebraic solution method)
I Design of algebraic solvers should take advantages of special properties

of underlying PDEs and discretization (discretization-friendly solvers).
I Design of discretization should take into account how the discretized

system is solved (solver-friendly discretizations)
I Adaptivity is critically important for the efficiency of both discretization

and solver

Problem-oriented approach

I optimized design and integrated appliation of discretization, adaptivity,
solvers (multigrid) and parallelization

Algorithm-oriented approach

I less problem-dependent, more user friendly
I black-box: algebraic multigrid method
I grey box: use whatever information available such as grid ...
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Robustness with respect to various physical parameters

Accuracy: discretization with grid adaptation

Stability: discretization with grid adaptation
I Example: convection dominated problems (−ε∆u+ v · ∇u = f)

F special discretization: upwinding scheme
F standard discretization: OK on adaptive grid (Chen and Xu 2006)

Efficiency (discretization and solver)
I Robust solvers
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Algebraic solvers

Basic problem:

Given A ∈ RN×N , b ∈ RN , how to solve Ax = b?

Solvers:

Gaussian elimination
I most commonly used method in practice
I black-box
I expensive: O(N3),O(N2), . . . (N3 = 1018 if N = 106!)

Optimal solvers: multigrid methods
I O(N | logN |σ) operations
I difficult to use, problem-dependent, robust?

This talk: how multigrid methods can be made

practical and user-friendly

applicable to complicated PDEs

robust w.r.t. various discretization and physical parameters
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Linear iterative methods

uk = uk−1 +B(f −Auk−1) (k = 1, 2, 3, . . .)

for
Au = f

consisting of the following three steps:

1 Form the residual: r = f −Auk−1

2 Solve the residual equation Ae = r approximately ê = Br with
B ≈ A−1

3 Update uk = uk−1 + ê

Example. Assume A = (aij) ∈ Rn×n and A = D − L− U . We may take

B = D−1(Jacobi) & or B = (D − L)−1(Gauss-Seidel).
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Preconditioned Krylov space methods

The PCG for symmetric, positive and definite (SPD) system

‖u− uk‖A
‖u− u0‖A

≤ 2

(√
κ(BA)− 1√
κ(BA) + 1

)k
(k ≥ 1),

(
κ(BA) =

λmax(BA)
λmin(BA)

)

non-SPD systems: MINRes, GMRes (usually not as efficient or robust
as CG for SPD systems)
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The method of subspace corrections (MSC)
(Xu, SIAM Review 1992)

Find u ∈ V such that a(u, v) = f(v), ∀v ∈ V.
I (e.g. Au = f ⇔ (Au, v) = (f, v), ∀v ∈ RJ)

Space decomposition: V =
∑

i Vi
I (e.g. RJ =

∑J
i=1{ei})

Successive subspace correction: u← u+ ei for i = 1 : J
where ei ∈ Vi solves ai(ei, vi) = f(vi)− a(u, vi) ∀vi ∈ Vi.

I (e.g. Gauss-Seidel: u← u+ (D − L)−1(b−Au))

Parallel subspace correction (BPX preconditioner):

u← u+B(f −Au), B =
J∑
i=1

IiA
−1
i ITi .

I (e.g. Jacobi: u← u+D−1(b−Au))
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A sharp convergence identity
(SPD case)

Theorem (Xu and Zikatanov (2002, J. AMS))

The MSC is convergent if each subspace solver is convergent.

Furthermore

‖
J∏
i=1

(I − Ti)‖2 = 1− 1
K
, K = sup

‖v‖=1
infP
i vi=v

J∑
i=1

‖vi + T ∗i

J∑
j=i+1

vj‖2R̄−1
i

Special case:

‖
J∏
i=1

(I − Pi)‖2 = 1−

 sup
‖v‖=1

infP
i vi=v

J∑
i=1

‖Pi
J∑
j=i

vi‖2
−1

if Ti = Pi

Applications: Multigrid and domain decomposition methods
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Singular and nearly singular SPD systems
A simple example:

A0 =

 1 −1 0
−1 2 −1

0 −1 1

 , b =

 −1
−1

2

 ∈ R(A0)

The Gauss-Seidel method for (A0 + εI)x = b (with x0 = b and stopping
criterion: ‖Axk − b‖ ≤ 10−8):

ε # of iterations

1. 18
10−1 100
10−2 852
10−3 6982
10−4 54470
0. [singular case] 2
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More general nearly singular systems

Given A0 (semi-definite) and D (SPD), consider

(A0 + εD)u = f

Facts:

Most methods (such as CG, MG, and DD) converge for any ε ≥ 0.

Convergence becomes slower when ε gets smaller, and, in particular
slower than for ε = 0.

Questions:

Why?

How to fix the problems?
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MSC still efficient for singular systems:
(Another sharp convergence identity for semi-definite case system)

Theorem (Y. Lee, J. Wu, J. Xu and L. Zikatanov, Math. Comp.)

The MSC is (semi-)convergent if each subspace solver is
(semi-)convergent and

|EJ |2a = 1− 1
K

where

K = sup
|v|a=1,v∈N⊥

inf
c∈N

infP
vi=v+c

J∑
i=1

‖vi + T ∗i

J∑
j=i+1

vj‖2R̃† .

References: Keller 1965, Berman and Plemmons 1994, Marek and Szyld 2000, Cao 2001
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A general critierion for designing robust iterative solvers for
nearly singular systems
(A0 + εD)u = f

Theorem (Lee, Wu, Xu and Zikatanov M3AS (2007))

The MSC method converges uniformly w.r.t. ε as long as the
decomposition V =

∑J
j=1 Vj satisfies the near-null space recovery

condition:

N(A0) =
J∑
j=1

[Vj ∩N(A0)].

Important note: The exact information on the near-null space N(A0) is
not needed as long as it is fully (perhaps over) represented by its
components in all subspaces.

Related methods: augmented or bordered matrix method: Keller 1977, . . .
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Application to previous example: MSC (modified Gauss-Seidel)
converges uniformly w.r.t ε by introducing additional subspace N(A0):

R3 =
3∑
i=1

{ei}+ {e}, e = (1, 1, 1)T , (N(A0) =
J∑
j=1

[Vj ∩N(A0)]).

The resulting algorithm is:

x← xGS + α(b−AxGS), α =
eT (b−AxGS)

ε‖e‖2

ε iterations modified algorithm
1. 18 12
10−1 100 10
10−2 852 6
10−3 6982 6
10−4 54470 4
0. [singular case] 2 2
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More examples: H(curl) and H(div) systems

R −−−−→ C∞
grad−−−−→ C∞

curl−−−−→ C∞
div−−−−→ C∞ −−−−→ 0yΠgrad

h

yΠcurl
h

yΠdiv
h

yΠ0
h

R −−−−→ Hh(grad )
grad−−−−→ Hh(curl ) curl−−−−→ Hh(div ) div−−−−→ L2

h −−−−→ 0

N(grad)=R, N(curl)=R(grad), N(div)=R(curl).

Related minisymposium: 11:15am, Room K02 F180
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H(curl) and H(div) systems

Let D =grad, curl or div, and V = H(D; Ω) or V = H0(D; Ω), consider

Find u ∈ V : a(u, v) ≡ (Du,Dv) + (u, v) = (f, v), v ∈ V

Relevant applications: Poisson equations (D =grad), Maxwell equations
(D =curl) and Darcy’s law (with mixed FE) (D =div).

Finite element discretization:

Find uh ∈ Vh : a(uh, vh) = (f, vh), v ∈ Vh.

Or equivalently, with (Ahuh, vh) = a(uh, vh) and fh = Qhf ,

Ahuh = fh, (Ah ≈ D∗hDh + h2I)

Ah, for D = curl or div , is nearly singular with a huge near-null
subspace.
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Geometric multigrid with robust smoother
Robust multigrid methods: using smoothers based on decompositions
satisfying the near-null space recovery condition;

e.g.

Hh(curl ) = {φcurl
i }+

∑
j

{grad φgrad
j }.

or more generally:

Hh(curl ) =
∑
k

Vk : {grad φgrad
j } ⊂ Vk(j) for each j.

Examples of relevant references:
H(curl) and H(div) systems

I Ewing and Wang (1991)
I Hiptmair (1997)
I Arnold, Falk and Winther (1997)

Stokes and nearly incompressible elasticity:
I Schöberl (1999)
I Lee, Wu, Xu and Zikatanov (2006)

Divergence dominated systems
I Austin, Manteuffel and McCormick (2000)
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From geometric to algebraic multigrid (AMG) methods

Facts: Geometric MG are optimal (O(N)), but difficult to apply.

AMG: More algebraic/user-friendly, but less efficient?

AMG for H(grad) system:

Simple (near-)null space easily recoverable algebraically

Various robust and efficient AMG solvers have been developed.

AMG for H(curl) and H(div) systems:

Large (near-)null spaces, not easily recoverable algebraically

Few robust methods have been developed
I R. Beck, Tech Report, ZIB, 1999
I Reitzinger and Schöberl, 2002, NLAA
I Bochev, Garasi, Hu, Robinson and Tuminaro, SISC, 2003

I Bochev, Hu, Siefert and Tuminaro, SISC (submitted) 2007
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I Bochev, Garasi, Hu, Robinson and Tuminaro, SISC, 2003

I Bochev, Hu, Siefert and Tuminaro, SISC (submitted) 2007

Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 21 / 70



An “auxiliary space preconditioner” for H(curl)/H(div)
(Hiptmair and Xu 2005, 2007)

Given vh ∈ Hh(curl ), ∃ ṽh ∈ Hh(curl ),Φh ∈ [H1
h(Ω)]3, ph ∈ H1

h(Ω) s.t.

vh = ṽh + Πcurl
h Ψh + grad ph

and ‖h−1ṽh‖L2 + ‖Ψh‖H1 + ‖ph‖H1 . ‖vh‖H(curl).

Using Xu (Computing’1996), and Hiptmair and Xu (SINUM, to appear),

Bcurl
h = Scurl

h +Πcurl
h

 Bgrad
h 0 0
0 Bgrad

h 0
0 0 Bgrad

h

 (Πcurl
h )T+grad Bgrad

h (grad )T

Features:

consisting of 4 Poisson solvers such as AMG (Bgrad
h ) and 1 simple

relaxation method such as point Jacobi (Scurl
h );

optimal and efficient for problems on unstructured grids

very little programming effort
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Similarly

Bdiv
h = Sdiv

h + Πdiv
h Bgrad

h (Πdiv
h )T + curl Bcurl

h (curl )T

= Sdiv
h + Πdiv

h Bgrad
h (Πdiv

h )T

+ curl Scurl
h (curl )T + (Πdiv

h curl )Bgrad
h (Πdiv

h curl )T

Features:

consisting of 6 Poisson solvers (Bgrad
h ) and 2 simple relaxation (Scurl

h

and Sdiv
h );

optimally efficient for unstructured grids
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Numerical Experiment I: uniform grid

Bgrad
h : one iteration of a symmetric AMG solver for the Poisson

equation

Sh: two iterations of symmetric Gauss-Seidel

PCG iterations

Th # iter (with Scurl
h ) # iter (without Scurl

h )

83 14 28

163 14 53

323 14 107

Without extra smoothing (ṽh?)

Th iter

83 28

163 53

323 107

483 156

Recall:
vh = ṽh + Π

curl
h Ψh + grad ph

B
curl
h = S

curl
h + Π

curl
h B

grad
h

(Π
curl
h )

T
+ grad B

grad
h

(grad )
T
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Experiment II: unstructured grids on unit ball

sphere elem iter CPUtimes(s)
8 8865 11

9 17260 12

10 35849 13

11 46543 12

12 66402 13

13 95593 13 26.76

14 148554 13 45.30

15 242588 14 83.48
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More general equations

Consider:
curl (µ(x)curl u) + σ(x)u = f

µ and σ may be discontinuous, degenerating, and large variations

1 The following equations (instead of Poisson) need to be solved:

−div (µ(x)grad u) + σ(x)u = f

−div (σ(x)grad p) = div f

2 Numerical experiments show that our preconditioners are very robust
and efficient in both two [Hiptmair and Xu] and three [Kolev and
Vassilevski, LLNL] dimensions

3 The preconditioners have been included and tested in LLNL’s hypre
package.
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Applications: (LLNL)

Auxiliary space Maxwell solver (AMS)

AMS: a massively parallel implementation in .

“Black-box”: requires only discrete gradient matrix + vertex
coordinates.

Can handle complicated geometries and coefficient jumps.

Scales with the problem size and on large parallel machines.

Supports simplified magnetostatics mode.

Can utilize Poisson matrices, when available.

Based on hypre’s parallel algebraic multigrid solver BoomerAMG.

Freely available (under LGPL).
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Copper wire in a cylinder

Simulation of the electromagnetic diffusion of a copper wire (red
region) in air (green region) using the AMS solver in hypre.

This is a test problem for one of the MHD packages in LLNL with
large jumps in the material coefficients (6 orders of magnitude).

Weak parallel scalability of one representative definite Maxwell solve
(more processors are used, while the problem size per processor
remains constant).

Comparison of AMS-CG and DS-PCG with PCG tolerance 10−9.

Courtesy of Tzanio Kolev (LLNL).
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Scalability (70K edge unknowns per processor)
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Speedup (compared to previous solver)
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Bifilar helical coil

Results from a simulation of the electromagnetic diffusion in a bifilar
helical coil using the AMS solver in hypre.

This is a real application (a model of an actual device) having
complicated geometry and large jumps in the material coefficients.

On a coarser model, AMS-CG is 4 times faster than DS-CG, while
producing 2 orders of magnitude more accurate residual error.

Courtesy of Robert Rieben (LLNL).
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Indefinite problems
(reduction to nearly singular symmetric positive definite (SPD) system)

{
Au+B∗p = f

Bu = g
Stokes:

{ −∆u−∇p = f
div u = g (2.1)

Decoupling: Given ε > 0, let p̃ = ε−1(Bũ− g) and ũ solves

(εA+B∗B)ũ = εf +B∗g Elasticity: (−ε∆−∇div )ũ = εf −∇g. (2.2)

Then, we have ‖u− ũ‖A = O(ε1.5) and ‖p− p̃‖ = O(ε).
Consequently

Indefinite (2.1) =⇒ (nearly singular) SPD

1 Stokes equation: ⇒ 1 linear elasticity (div free space has a locally supported basis?)

which can be efficiently solved by (robust) method of subspace corrections!
Related methods: Augmented Lagrangian: Fortin and Glowinski 1983, . . .
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Outline
1 Introduction

2 Algebraic solvers
The method of subspace corrections
Practical and optimal solvers for H(curl) and H(div) systems
Indefinite systems: Stokes equations

3 Higher order PDEs
Conforming and nonconforming finite element methods
On the reduction of higher order to lower order systems
Two families of new nonconforming elements

4 Electron Magneto Hydrodynamics
A (curl curl curl curl)-formulation
A new nonconforming element for (∇×)4 systems

5 Solver-friendly discretization for incompressible MHD
A family of non-Newtonian models
Mathematical similarity between MHD and non-Newtonian models
A possible new “solver-friendly” discretization approach

6 Concluding remarks
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Higher order partial differential equations

Examples

Kirchhoff thin plate bending problem and tream function formulation
of Stokes equation (2D):

∆2u = f

A Cahn-Hilliard equation modeling the spinodal decomposition and
coarsening phenomena in binary alloys.

∂u
∂t = ∇ · (b(u)∇(−γ∆u+ Ψ′(u))), in ΩT := Ω× (0, T )
u(x, 0) = u0(x), ∀ x ∈ Ω,
∂u
∂n = b(u) ∂∂n (−γ∆u+ Ψ′(u)) = 0, on ∂Ω× (0, T )
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A 6th order phase field simulation of the morphological evolution of a
strained epitaxial thin film on a compliant substrate

∂c

∂t
=

1
ε2

0

∇ · (M(c)∇µ) + S(c)

µ = F (c)− ε2
0∇2c+ χ2

0∇4c

A 6th equation on the oxidation of silicon in superconductor devices
∂u
∂t = ∇(b(u)∇∆2u), in ΩT := Ω× (0, T )
u(x, 0) = u0(x), ∀ x ∈ Ω,
∂u
∂n = ∂∆u

∂n = b(u)∂∆2u
∂n = 0, on ∂Ω× (0, T )
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Internal approximation and conforming finite element
The approximation space is a subspace of Hm (for 2m-th oder PDE)

Vh ⊂ Hm(Ω) (globally Cm−1)

n = 1,m ≥ 0: easy (splines, finite elements, wavelets (Daubechies))

n > 1,m ≥ 0: easy for special domain: Πn
i=1(ai, bi)

n > 1 and general (polyhedral) domain with simplicial partition

1 m = 0, 1: easy

2 m ≥ 2: complicated and require very high degree of polynomials.
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Difficulty for constructing conforming elements for high
order PDEs

n = 2 and m = 2 (for 4-th order PDEs)

minimal order: 5-th order polynomial (with 21 degrees of freedom) in
each triangle (Argyris elements)

Bell element (dof=18): application to MHD (2D) (Jardin 2004, Jardin and
Breslau 2005, Jardin, Breslau and Ferraro 2007)
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More general cases

Minimal (?) degree (for FE):

(m− 1)2n + 1 =


1 m = 1, n ≥ 1 (dof = n+ 1)
5 m = 2, n = 2 (dof = 21)
9 m = 3, n = 2 (dof = 55)
9 m = 2, n = 3 (dof = 220)
17 m = 3, n = 3 (dof = 1180)

lower orders are possible but complicated: super-splines (difficult to
get locally supported basiss), composite elements

references: Alfeld, Boor, Cui, Lai, Davydov, Schumake, Sirvent, Zenisek, . . .
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A commonly used methods: reduction to 2nd order systems

For 4th order, introduce an intermediate variable:

v = −∆u

For 6th order, introduce another intermediate variable:

w = −∆v

As a result, 4th or 6th order equations are reduced to a system
of Poisson (like) equations!
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Example: a simply supported polygonal plate{
∆2u = f, in Ω,
u = ∆u = 0, on ∂Ω.

With v = −∆u, we obtain two decoupled Poisson equations:{
−∆v = f, in Ω,

v = 0, on ∂Ω.

{
−∆u = v, in Ω,

u = 0, on ∂Ω.

Observation (f = 1): Two solutions are different!
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External approximation: nonconforming FE
The approximation space is not a subspace of Hm

Vh 6⊂ Hm(Ω)

Completely discontinuous approximation space:

Trivial to construct spaces

DG methods: using many penalty terms to enforce “smoothness”
approximately (G. Baker 1977 and others)

Nonconforming finite elements and advantages

minimal smoothness [to assure the right amount consistency] are
imposed in the spaces so that lower order elements can be
constructed:

conforming elements are unnecessarily “too” consistent!

no additional penalty parameters are needed to enforce the
smoothness when applied to, e.g., numerical PDEs
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Nonconforming finite element methods

FEM based on piecewise derivatives ∂αh should converge

Variational: Let a(u, v) =
∑
|α|≤m(∂αu, ∂αv), f ∈W ∗

Find u ∈W : a(u, v) = 〈f, v〉 ≡
∑
|α|≤m

(fα, ∂αv), ∀v ∈W (fα ∈ L2).

PDE: With some Neumann boundary conditions and∑
|α|≤m

(−1)|α|∂α(∂αu) = f in Ω.

FEM: ah(u, v) =
∑
α(∂αhu ∂

α
h v), 〈f, vh〉h =

∑
α(fα, ∂αh v)

Find uh ∈Wh: ah(uh, vh) = 〈f, vh〉h ∀vh ∈Wh.

Convergence:
lim
h→0
‖u− uh‖m,h = 0.
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A general FE of lowest degree for Hm in Rn (n ≥ m)

Let n ≥ m ≥ 1. Define (T, PT , Dm
T ) by

T : the geometric shape of the element: n-simplex.

PT : the shape function space: Pm(T ).

Dm
T : the set of the degrees of freedom: the integral averages of normal

derivatives of order m− k on all subsimplexes of dimension n− k for
1 ≤ k ≤ m.
The number of the total degrees of freedom is given by

m∑
k=1

Cn−k+1
n+1 Cm−km−1 = Cmn+m (Vandermonde combinatorial identity)

Global FE space Wh: piecewise Pm that is continuous on all d.o.f. (w.r.t.
simplicial partition Th).
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T ) by

T : the geometric shape of the element: n-simplex.

PT : the shape function space: Pm(T ).

Dm
T : the set of the degrees of freedom: the integral averages of normal

derivatives of order m− k on all subsimplexes of dimension n− k for
1 ≤ k ≤ m.
The number of the total degrees of freedom is given by

m∑
k=1

Cn−k+1
n+1 Cm−km−1 = Cmn+m (Vandermonde combinatorial identity)

Global FE space Wh: piecewise Pm that is continuous on all d.o.f. (w.r.t.
simplicial partition Th).
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Table: Some examples (degrees of freedom)

m = 1 m = 2 m = 3

n = 1

n = 2

n = 3
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Some special cases: 1 ≤ m ≤ 3

For m = 1 and n = 1, we obtain the well-known conforming linear
elements. This is the only conforming element in this family of
elements.

For m = 1 and n ≥ 2, we obtain the well-known nonconforming linear
elements.

For m = 2, we recover the well-known Morley element for n = 2 and
its generalization to n ≥ 2 (Wang and Xu, Numer Math, 2006).

For m = 3 and n = 3, we obtain a new cubic element on a simplex
that has 20 degrees of freedom.
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Nonconforming FE for 2m-th order elliptic problems

FEM: ah(u, v) =
∑
α(∂αhu ∂

α
h v), 〈f, vh〉h =

∑
α(fα, ∂αh v)

Find uh ∈Wh: ah(uh, vh) = 〈f, vh〉h ∀vh ∈Wh. (3.3)

Error estimates:
‖u− uh‖m,h = O(h)
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Inclusion property: ∂hM
m+1
h = Mm

h

Given any n > m ≥ 1 and a simplex T , the set of subsimplexes of T
that are used to define for Dm

T is a subset of that for Dm+1
T .

More precisely, the degrees of freedom for Dm+1
T can be obtained by

taking the integral of one order higher normal derivatives of functions
on the same subsimplexes used for Dm

T , plus the integral average of
function over all the additional (n−m− 1) dimensional subsimplexes.

Furthermore,

Mm
h = span{∂e1Mm+1

h , ∂e2Mm+1
h , · · · , ∂enMm+1

h },
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Nodal basis function

It is both theoretically and (apparently) practically interesting to see if a
set of nodal basis functions can be explicitly constructed for our new finite
element spaces. We are indeed able to do so. In particular, we have given
all the details for m = 1, 2 and 3.
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Other properties and comments

Lowest order possible elements

The d.o.f. are well defined on Hm for all m and n.

The d.o.f. of most other finite element spaces for Hm are not
well-defined on Hm (except for n = 1)

perfect fitting (any deeper mathematical implication?)

Nodal basis can be easily constructed

Theory: are nonconforming more natural (better) than conforming?
Example(n = 2,m = 1): nonconforming P1

I With a slight local modification, it provides a local conservation property like the one by the finite volume
method

I Together with piecewise constant, it provides a stable element for Stokes equation (whereas the conforming P1
does not)

I Nodal basis functions are L2 orthogonal.

Morley element: from “most peculiar” to “most natural”?

Practical use?
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A modified Zienkiewicz element for 4th order PDEs in n-D
(Wang, Shi and Xu 2007)

Given an n-simplex T , let q0 = λ1λ2 . . . λn+1, and, for 1 6 i < j 6 n+ 1

qij = λ
2
iλj − λiλ

2
j +

(2n− 1)!

n!

“ (n− 1)n

n + 1
(λi − λj) +

X
16k6n+1,k 6=i,j

(∇λi −∇λj)>∇λk
‖∇λk‖

(nλk − 1)
”
q0.

A Z-type nonconforming element is defined by (T, PT ,ΦT ) with

1 T is an n−simplex, with a1, . . . , an+1 the vertices;

2 PT = P2(T ) + span{qij , 1 6 i 6= j 6 n+ 1};
3 The components of ΦT are

v(aj), 1 6 j 6 n+ 1, (aj − ai)>∇v(ai), 1 6 i 6= j 6 n+ 1.
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Nodal basis functions

For 1 ≤ i 6= j ≤ n+ 1, the nodal basis functions can be given explicitly:

pij =
1
2
λiλj(1 + λi − λj) +

(2n− 1)!
2n!

(
(n− 1)n
n+ 1

(λi − λj)

+
∑

1≤k≤n+1,k 6=i,j

(∇λi −∇λj)T∇λk
‖∇λk‖2

(nλk − 1)q0


pi = λ2

i + 2
∑

1≤j≤n+1,j 6=i

pij

It can be verified that for 1 ≤ i 6= j ≤ n+ 1 and 1 ≤ k 6= l ≤ n+ 1

pi(ak) = δik, (al − ak)T∇pi(ak) = 0, pij(ak) = δik, (al − ak)T∇pij(ak) = δikδjl.
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Outline
1 Introduction

2 Algebraic solvers
The method of subspace corrections
Practical and optimal solvers for H(curl) and H(div) systems
Indefinite systems: Stokes equations

3 Higher order PDEs
Conforming and nonconforming finite element methods
On the reduction of higher order to lower order systems
Two families of new nonconforming elements

4 Electron Magneto Hydrodynamics
A (curl curl curl curl)-formulation
A new nonconforming element for (∇×)4 systems

5 Solver-friendly discretization for incompressible MHD
A family of non-Newtonian models
Mathematical similarity between MHD and non-Newtonian models
A possible new “solver-friendly” discretization approach

6 Concluding remarks
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Electron Magnetohydrodynamics

A single electron fluid description of plasma behaviors at
I fast time scale: t� ω−1

ci /2π
I small spatial scale: L� c/ωpi
I ions are stationary, electron flow determines electric current
I B: magnetic field
I v = − 1

en j = − c
4πen∇× B, j is plasma current density

I de = c/ωpeL: electron inertial skin depth

Governing equations for magnetic field B:

∂t(B− d2
e∇2B) +∇× [v× (B− d2

e∇2B)] = η1∇2B− η2(∇2)2B

When de ≈ 0, we have

∂tB +∇× (v× B) = η1(∇×)2B− η2(∇×)4B
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A new formulation of in terms of curl operators

The Electron MHD equation can be reformulated as

∂tB−∇× (v× B) = η1(∇×)2B− η2(∇×)4B

Since ∇ · B = 0, we have

−∆B = ∇× (∇× B)−∇(∇ · B) = ∇×∇× B

and
∆2B = ∇×∇×∇×∇× B

Advantage:

∇ · B = 0 is built-in: ∂t(∇ · B) = 0 (from the equation in curl form)

finite element approximation (properly constructed) with fewer d.o.f!
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A new finite element for 4th order curl equations in 3D
(Zheng 2008 (thesis), Hu, Xu and Zheng 2008)

1 finite element: a tetrahedron K

2 f.e. space PK = R2(K), incomplete quadratic polynomial space.

3 (20) Degrees of freedom (d.o.f):

Me(u) =
{∫

e
u · τ q ds | ∀ q ∈ P1(e),

}
, ∀ edge e ⊂ K

Mf (u) =
{

1
|f |2

∫
f
(∇×u)×n·q dA | ∀ q ∈ (P0(f))2

}
. ∀ face f ⊂ K

Number of d.o.f. = 20.
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Nodal basis functions

Explicit expression of basis functions (tricky and lucky!)

Two basis functions on each face k (1 ≤ k ≤ 4):

ψmk = λk((−1)mLk+m,k+2 − Lk+1,k+2) (m = 1, 2)

where Lij = λi∇λj − λj∇λi.
Two basis functions on each edge ij (1 ≤ i < j ≤ 4):

ψ1
ij = λi∇λj + λj∇λi,

ψ2
ij = Lij +

4∑
l=1

2∑
m=1

Mm
l (Lij)ψml .
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Error estimates

First order convergence:

‖B− Bh‖+ ‖∇ × (B− Bh)‖+ ‖(∇×)2(B− Bh)‖ = O(h).

Discrete divergence free:

(Bh,∇ph) = 0, for any continuous piecewise quadratic ph
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Ongoing work
(Zheng)

implementation (3D)
I Morley element
I Modified Zienkiewicz element (with Zhang)
I New 4th order curl element

solvers
I geometric multigrid methods
I Navier-Stokes equations

a posterior error estimates
I problem-independent: Bank, Xu and Zheng (2006)
I problem-specific
I 3D bisection refinement (with Chen)

Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 58 / 70



Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 59 / 70



Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 59 / 70



Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 59 / 70



Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 59 / 70



Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 59 / 70



Outline
1 Introduction

2 Algebraic solvers
The method of subspace corrections
Practical and optimal solvers for H(curl) and H(div) systems
Indefinite systems: Stokes equations

3 Higher order PDEs
Conforming and nonconforming finite element methods
On the reduction of higher order to lower order systems
Two families of new nonconforming elements

4 Electron Magneto Hydrodynamics
A (curl curl curl curl)-formulation
A new nonconforming element for (∇×)4 systems

5 Solver-friendly discretization for incompressible MHD
A family of non-Newtonian models
Mathematical similarity between MHD and non-Newtonian models
A possible new “solver-friendly” discretization approach

6 Concluding remarks

Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 60 / 70



A nonlinear example: non-Newtonian fluid models
(development of “solver-friendly” discretization!)

Complex fluids: blood, milk, petroleum, drugs, cosmetics, slurries, and

wastewater ....

The Johnson-Segalman model: (⇒ Navier-Stokes if We = 0)
ReDuDt = div [τ + µsD(u)]−∇p

div u = 0
τ + We[DτDt −R(u)τ − τR(u)T ] = 2µpD(u),

where
Du
Dt = ∂u

∂t + (u · ∇)u, D(u) = 1
2 (∇u+∇uT ), R(u) = (a+1

2 ∇u+ a−1
2 ∇u

T )

More difficult than Navier-Stokes equations

The high Weissenberg number problem:
Most (all?) existing discretizations start to diverge at critical values of the Weissenberg number (We).

Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 61 / 70



A nonlinear example: non-Newtonian fluid models
(development of “solver-friendly” discretization!)

Complex fluids: blood, milk, petroleum, drugs, cosmetics, slurries, and

wastewater ....

The Johnson-Segalman model: (⇒ Navier-Stokes if We = 0)
ReDuDt = div [τ + µsD(u)]−∇p

div u = 0
τ + We[DτDt −R(u)τ − τR(u)T ] = 2µpD(u),

where
Du
Dt = ∂u

∂t + (u · ∇)u,

D(u) = 1
2 (∇u+∇uT ), R(u) = (a+1

2 ∇u+ a−1
2 ∇u

T )

More difficult than Navier-Stokes equations

The high Weissenberg number problem:
Most (all?) existing discretizations start to diverge at critical values of the Weissenberg number (We).

Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 61 / 70



A nonlinear example: non-Newtonian fluid models
(development of “solver-friendly” discretization!)

Complex fluids: blood, milk, petroleum, drugs, cosmetics, slurries, and

wastewater ....

The Johnson-Segalman model: (⇒ Navier-Stokes if We = 0)
ReDuDt = div [τ + µsD(u)]−∇p

div u = 0
τ + We[DτDt −R(u)τ − τR(u)T ] = 2µpD(u),

where
Du
Dt = ∂u

∂t + (u · ∇)u, D(u) = 1
2 (∇u+∇uT ),

R(u) = (a+1
2 ∇u+ a−1

2 ∇u
T )

More difficult than Navier-Stokes equations

The high Weissenberg number problem:
Most (all?) existing discretizations start to diverge at critical values of the Weissenberg number (We).

Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 61 / 70



A nonlinear example: non-Newtonian fluid models
(development of “solver-friendly” discretization!)

Complex fluids: blood, milk, petroleum, drugs, cosmetics, slurries, and

wastewater ....

The Johnson-Segalman model: (⇒ Navier-Stokes if We = 0)
ReDuDt = div [τ + µsD(u)]−∇p

div u = 0
τ + We[DτDt −R(u)τ − τR(u)T ] = 2µpD(u),

where
Du
Dt = ∂u

∂t + (u · ∇)u, D(u) = 1
2 (∇u+∇uT ), R(u) = (a+1

2 ∇u+ a−1
2 ∇u

T )

More difficult than Navier-Stokes equations

The high Weissenberg number problem:
Most (all?) existing discretizations start to diverge at critical values of the Weissenberg number (We).

Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 61 / 70



A nonlinear example: non-Newtonian fluid models
(development of “solver-friendly” discretization!)

Complex fluids: blood, milk, petroleum, drugs, cosmetics, slurries, and

wastewater ....

The Johnson-Segalman model: (⇒ Navier-Stokes if We = 0)
ReDuDt = div [τ + µsD(u)]−∇p

div u = 0
τ + We[DτDt −R(u)τ − τR(u)T ] = 2µpD(u),

where
Du
Dt = ∂u

∂t + (u · ∇)u, D(u) = 1
2 (∇u+∇uT ), R(u) = (a+1

2 ∇u+ a−1
2 ∇u

T )

More difficult than Navier-Stokes equations

The high Weissenberg number problem:
Most (all?) existing discretizations start to diverge at critical values of the Weissenberg number (We).

Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 61 / 70



A nonlinear example: non-Newtonian fluid models
(development of “solver-friendly” discretization!)

Complex fluids: blood, milk, petroleum, drugs, cosmetics, slurries, and

wastewater ....

The Johnson-Segalman model: (⇒ Navier-Stokes if We = 0)
ReDuDt = div [τ + µsD(u)]−∇p

div u = 0
τ + We[DτDt −R(u)τ − τR(u)T ] = 2µpD(u),

where
Du
Dt = ∂u

∂t + (u · ∇)u, D(u) = 1
2 (∇u+∇uT ), R(u) = (a+1

2 ∇u+ a−1
2 ∇u

T )

More difficult than Navier-Stokes equations

The high Weissenberg number problem:
Most (all?) existing discretizations start to diverge at critical values of the Weissenberg number (We).

Jinchao Xu (Penn State University) Nonconforming elements and solvers 1 Feburary 2008, PPPL 61 / 70



First key step: reformulation of constitutive equation
(Lee and Xu 2006)

Johnson-Segalman derivative:

δEτ

δt
≡ Dτ

Dt
−R(u)τ − τR(u)T = lim

s→t

D(E(s, t)τ(t, s)E(s, t)T )
Ds

where
DE(s, t)
Dt

= R(t)E(s, t), E(s, s) = I. (5.4)

Note that

δLI

δt
=
DI

Dt
−R(u)I − IR(u)T = −R(u)−R(u)T = −2aD(u).

Thus τ + We[DτDt −R(u)τ − τR(u)T ] = 2µpD(u) can be written as

δEτA
δt

+
1

We
τA =

µp

aWe2 I.

A “clean” first order “linear” ODE (along particle trajectory)!
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A new discretization
[Lee (2004, Ph.D. thesis), Lee and Xu 2006]

ReDuDt = div [τA + µsD(u)]−∇p
div u = 0

δEτA
δt + 1

WeτA = µp
aWe2 I.

Solve for τA to obtain integral representation for Johnson-Segalman:

τA(t) =
µp

aWe2

∫ t

s

e−
t−ξ
We E(ξ, t)E(ξ, t)T dξ + e−

t−s
We E(s, t)τA(t, s)E(s, t)T

=
µp

aWe2

∫ t

−∞
e−

t−ξ
We E(ξ, t)E(ξ, t)T dξ (≥ 0!). (s→ −∞)

1 Eulerian-Lagrangian for Du
Dt and δEτA

δt [Douglas and Russell (1982) and Pironneau (1982)]

2 Positivity preserving for τA (Ricatti) [Dieci and Eirola (1994)]

3 Positivity preserving for spatial variable [piecewise constants and linears]

4 Volume preserving FE for velocity and pressure [Scott and Vogelius (1985)]

5 Volume preserving schemes for characteristic feet [Feng and Shang (1995)]
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An example of full discretization schemes

x− yn

k
=

1
2

(
u(
x+ yn

2
, tn+1) + u(

x+ yn

2
, tn)

)
(d = 2)

Re
un+1
h −Πv

h (unh ◦ yn)
k

+∇hpn+1
h + ηsAhu

n+1
h = divhτn+1

A,h

divun+1
h = 0

Eh(tn, tn+1)− I
k

= Rh(tn+1)Eh(tn, tn+1)

τn+1
A,h −ΠS

h

(
Eh(tn, tn+1)(τA,h(tn) ◦ yn)Eh(tn, tn+1)T

)
k

= −αn+1τn+1
A,h + βn+1I,
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Two important properties

Theorem (Positivity preserving property)

If ΠS
h ≥ 0 and τ0

A,h ≥ 0, then τnA,h ≥ 0, n ≥ 0.

Theorem (Discree energy estimates)

En ≡ Re‖unh‖20 +
1
2a
‖τnA,h‖L1 : En ≤ c0e

−c1tnE0 + c2
µp

(aWe)2

where c0, c1 and c2 are generic constants.

The energy of the discrete solution En remains bounded for any
number of time steps with any sizes of Weissenberg number.
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Other features of the new scheme

Solver-friendly: At each time step in the new discretization, the
following Stokes like system needs to be solved:(

Re
k I − ηs∆h ∇h
−div 0

)(
uh
ph

)
=
(
fh
0

)
,

together with a number of independent [parallel] nonlinear ODEs.

Generality: It works for a whoel range of models including
Oldrolyd-B (a = 1), FENE-PM, Phan-Thien and Tanner ....
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Incompressible Magneto Hydrodynamics

ρ(ut + u · ∇u) +∇p = µ4u+
1
c
J ×B,

∇ · u = 0,

1
c
Bt +∇× E = 0,

∇×B =
4π
c
J,

σ(E +
1
c
u×B) = J.

ρ is the fluid density, u the fluid velocity

B, J,E: the magnetic field, the electric current density, the electric field

µ, σ, c: the viscosity, the electric conductivity, the speed of light

Lorentz’s force (induced stress): J × B
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MHD: a reformulation similar to the non-Newtonian model

ρ
Du

Dt
− µ∆u+∇p =

1
c
∇ · (B ×B),

∇ · u = 0,

δFB

δt
+
σc2

4π
∇×∇×B = 0.

where
Du

Dt
= ut + u · ∇u and

δFB

δt
= Bt + u · ∇B −B · ∇u.

With similar numerical techniques applied to this system (but using edge
elements to discretize B), at each time-step, we mainly need to solve one
(or few)

Stokes system + H(curl) system!

which can be both solved using optimal multilevel methods!
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