
Chapter 9

INTEGRATION METHODS

9.1 Introduction

Recall that the finite element analysis techniques are always based on an integral
formulation. At the very minimum it will always be necessary to integrate at least an
element square matrix. This means that every coefficient function in the matrix must be
integrated. In the following sections various methods will be considered for evaluating
the typical integrals that arise. Most simple finite element matrices for two-dimensional
problems are based on the use of linear triangular or quadrilateral elements. Since a
quadrilateral can be divided into two or more triangles, only exact integrals over arbitrary
triangles will be considered here. Integrals over triangular elements commonly involve
integrands of the form

(9.1)I =
A
∫ xm yn dx dy

where A is the area of a typical triangle. When 0≤ (m + n) ≤ 2, the above integral can
easily be expressed in closed form in terms of the spatial coordinates of the three corner
points. For a right-handed coordinate system, the corners must be numbered in counter-
clockwise order. In this case, the above integrals are given in Table 9.1. These integrals
should be recognized as the area, and first and second moments of the area. If one had a
volume of revolution that had a triangular cross-section in theρ − z plane, then one
should recall that

I =
V
∫ ρ f (ρ, z) dρ dz dφ = 2π

A
∫ ρ f (ρ, z) dρ dz

so that similar expressions could be used to evaluate the volume integrals. Similar
operations for quadrilaterals could be performed by splitting the quadrilateral into two
triangles.
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Table 9.1 Exact integrals for a triangle

m n  I =
A
∫ xm yn dx dy

0 0 ∫ dA = A = [ x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2) ]/2

0 1 ∫ y dA = Ay = A(y1 + y2 + y3) / 3

1 0 ∫ x dA = Ax = A(x1 + x2 + x3) / 3

0 2 ∫ y2 dA = A(y2
1 + y2

2 + y2
3 + 9y2) / 12

1 1 ∫ xy dA = A(x1 y1 + x2 y2 + x3 y3 + 9x y) / 12

2 0 ∫ x2 dA = A(x2
1 + x2

2 + x2
3 + 9x2) / 12

9.2 Unit Coordinate Integration

The utilization of global coordinate interpolation is becoming increasingly rare.
However, as we hav e seen, the use of non-dimensional local coordinates is common.
Thus we often see local coordinate polynomials integrated over the physical domain of an
element. Sect. 5.3 presented some typical unit coordinate integrals in 1-D, written in
exact closed form. These concepts can be extended to two- and three-dimensional
elements. For example, consider an integration over a triangular element. It is known
that for an element with a constant Jacobian

(9.2)I =
A
∫ r m sn da =

2AΓ(m + 1)Γ(n + 1)

Γ(3 + m + n)

whereΓ denote the Gamma function. Restricting consideration to positive integer values
of the exponents,m andn, yields

(9.3)I = 2 Ae m! n!

(2 + m + n) !
=

Ae

Kmn
,

where ! denotes the factorial andKmn is an integer constant given in Table 9.2 for
common values ofm andn. Similarly for the tetrahedron element

(9.4)I e =
Ve
∫ r m sn t p dv = 6Ve m! n! p!

(3 + m + n + p) !
.

Thus, one notes that common integrals of this type can be evaluated by simply
multiplying the element characteristic (i.e., global length, area, or volume) by known
constants which could be stored in a data statement.

To illustrate the application of these equations in evaluating element matrices, we
consider the following example for the three node triangle in unit coordinates:
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I =
Ae
∫ HT da =

Ae
∫







(1 − r − s)

r

s







da =







Ae − Ae / 3 − Ae / 3

Ae / 3

Ae / 3







=
Ae

3







1

1

1







.

IV = 2π
Ae
∫ HT ρ da = 2π



 Ae

∫ HTH da
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2π Ae

12
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1

1

1

2

1

1

1
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ρe .

9.3 Simplex Coordinate Integration

A simplex region is one where the minimum number of vertices is one more than
the dimension of the space. These were illustrated in Fig. 4.2.2. Some analysts like to
define a set ofsimplex coordinatesor baracentric coordinates. If there areN vertices
thenN non-dimensional coordinates,Li , 1 ≤ i ≤ N, are defined and constrained so that

1 =
N

i= 1
Σ Li

at any point in space. Thus, they are not independent. However, they can be used to
simplify certain recursion relations. In physical spaces these coordinates are sometimes
called line coordinates, area coordinates, andvolume coordinates. At a giv en point in
the region we can define the simplex coordinate for nodej, L j , in a generalized manner.
It is the ratio of the generalized volume from the point to all other vertices (other thanj )
and the total generalized volume of the simplex. This is illustrated in Fig. 9.3.1. If the
simplex has a constant Jacobian (e.g., straight sides and flat faces), then the exact form of
the integrals of the simplex coordinates are simple. They are

(9.5)

L
∫ La

1 Lb
2 dL =

a!b!

(a + b + 1)!
(L)

A
∫ La

1 Lb
2 Lc

3 da =
a!b!c!

(a + b + c + 2)!
(2A)

V
∫ La

1 Lb
2 Lc

3 Ld
4 dv =

a!b!c!d!

(a + b + c + d + 3)!
(6V) .

The evaluation of partial derivatives in baracentric coordinates is not obvious since one
coordinate is always dependent on the others. The independent coordinates are those we
have generally referred to as the unit coordinates of an element. Since a lot of references
make use of baracentric coordinates it is useful to learn how to manipulate them correctly.
The baracentric coordinates, sayL j , essentially measure the percent of total volume
contained in the region from the face (lower dimensional simplex) opposite to nodej to
any point in the simplex. Therefore,L j ≡ 0 when the point lies on the opposite face and
L j ≡ 1 when the point is located at nodej . Clearly, the sum of all these volumes is the
total volume of the simplex.
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Table 9.2 Denominator,K , for unit triangle I =
A
∫ r m sn da = A/ KI =
A
∫ r m sn da = A/ K

M N : 0  1  2 3 4 5  6 7 8

0 1 3 6  10 15 21 28 36 45
1 3 12 30 60 105 168 252 360 495
2 6 30 90 210 420 756 1260 1980 2970

3 10 60 210 560 1260 2520 4620 7920 12870
4 15 105 420 1260 3150 6930 13860 25740 45045
5 21 168 756 2520 6930 16632 36036 72072 135135

6 28 252 1260 4620 13860 36036 84084 180180 360360
7 36 360 1980 7920 25740 72072 180180 411840 875160
8 45 495 2970 12870 45045 135135 360360 875160 1969110

1

2

3

A3A1

A2

y

x

L3

L1

L2

A = A1 + A2 + A3

Lk = Ak / A

Figure 9.3.1 Area coordinates

We hav e referred to the independent coordinates in the set as the unit coordinates.
For simplex elements, the use of baracentric coordinates simplifies the algebra needed to
define the interpolation functions; howev er, it complicates the calculation of their
derivatives. Baracentric coordinates are often used to tabulate numerical integration rules
for simplex domains.

For example, consider the three-dimensional case whereL1 = r , L2 = s, L3 = t, and
L1 + L2 + L3 + L4 = 1. The interpolation functions for the linear tetrahedron (P4) are
simply Gj = L j . The expressions for the Lagrangian quadratic tetrahedron (P10)
vertices are
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G1 = L1 ( 2 L1 − 1 )

G3 = L3 ( 2 L3 − 1 )

G2 = L2 ( 2 L2 − 1 )

G4 = L4 ( 2 L4 − 1 )

and the six mid-edge values are

G5 = 4 L1 L2

G7 = 4 L1 L4

G9 = 4 L3 L4

G6 = 4 L1 L3

G8 = 4 L2 L3

G10 = 4 L2 L4 .

All the tetrahedra have the condition that

L4 = 1 − L1 − L2 − L3 = 1 − r − s − t

so that we can write the unit coordinate partial derivatives as

∂L j

∂r
= 1, 0, 0,− 1 ,

∂L j

∂s
= 0, 1, 0,− 1 ,

∂L j

∂t
= 0, 0, 1,− 1

for j = 1, 2, 3, 4, respectively. The Jacobian calculation requires the derivatives of the
geometric interpolation functions,G. Here we have

∂G
∂r

=
∂G
∂L1

∂L1

∂r
+

∂G
∂L2

∂L2

∂r
+

∂G
∂L3

∂L3

∂r
+

∂G
∂L4

∂L4

∂r

=
∂G
∂L1

−
∂G
∂L4

.

Likewise,
∂G
∂s

=
∂G
∂L2

−
∂G
∂L4

,
∂G
∂t

=
∂G
∂L3

−
∂G
∂L4

.

For a general simplex, we have

∂l G = ∂L G − I
∂G
∂L

.

To illustrate these rules for derivatives, consider the linear triangle (T3) in baracentric
coordinates (NOD_PER_EL = 3). The geometric interpolation array is

G =  L3 L1 L2 
and the two independent local space derivatives are

∆ = ∂l G =







∂
∂r
∂
∂s







G =







∂
∂L1

−
∂

∂L3

∂
∂L2

−
∂

∂L3







G

∆ =




(0 − 1)

(0 − 1)

(1 − 0)

(0 − 0)

(0 − 0)

(1 − 0)





=




−1

−1

1

0

0

1





,

which is the same as the previous result in Sect. 9.2 .
If one is willing to restrict the elements to having a constant Jacobian (straight edges

and flat faces), then the inverse global to baracentric mapping is simple to develop. Then
the global derivatives that we desire are easy to write
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∂
∂x

=
n+1

j = 1
Σ ∂

∂L j

∂L j

∂x
,

where∂L j / ∂x is a known value, sayVj . For example, in1-D we hav e





L1

L2





=
1

Le





x2

− x1

− 1

1





e




1

x





,

and in 2-D







L1

L2

L3







=
1

2Ae






2 A23

2 A13

2 A12

(y2 − y3)

(y3 − y1)

(y1 − y2)

(x3 − x2)

(x1 − x3)

(x2 − x1)












1

x

y







whereAi j is the triangular area enclosed by the origin (0, 0) and nodesi and j .

9.4 Numerical Integration

In many cases it is impossible or impractical to integrate the expression in closed
form and numerical integration must therefore be utilized. If one is using sophisticated
elements, it is almost always necessary to use numerical integration. Similarly, if the
application is complicated, e.g., the solution of a non-linear ordinary differential
equation, then even simple one-dimensional elements can require numerical integration.
Many analysts have found that the use of numerical integration simplifies the
programming of the element matrices. This results from the fact that lengthy algebraic
expressions are avoided and thus the chance of algebraic and/or programming errors is
reduced. There are many numerical integration methods available. Only those methods
commonly used in finite element applications will be considered here.

9.4.1 Unit Coordinate Quadrature
Numerical quadrature in one-dimension was introduced in Sec. 5.4. There we saw

that an integral is replaced with a summation of functions evaluated at tabulated points
and then multiplied by tabulated weights. The same procedure applies to all numerical
integration rules. The main difficulty is to obtain the tabulated data. For triangular unit
coordinate regions the weights,Wi , and abscissae (r i , si ) are less well known. Typical
points for rules on the unit triangle are shown in Fig. 9.4.1. It presents rules that yield
points that are symmetric with respect to all corners of the triangle. These low order data
are placed in subroutine SYMRUL.

As before, one approximates an integral off (x, y) = F(r, s) over a triangle by

I = ∫ f (x, y) dx dy =
n

i= 1
Σ Wi F ( r i , si ) |Ji | .

As a simple example of integration over a triangle, letf = y and consider the integral
over a triangle with its three vertices at (0, 0), (3, 0), and (0, 6), respectively, in (x, y)
coordinates. Then the areaA = 9 and the Jacobian is a constant |J| = 18. For a three
point quadrature rule the integral is thus given by
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I =
3

i= 1
Σ Wi yi |Ji | .

Since our interpolation definesy(r, s) = y1 + (y2 − y1)r + (y3 − y1)s = 0 + 0 + 6s, the
transformed integrand isF(r, s) = 6s. Thus, at integration point,i , F(r i , si ) = 6si .
Substituting a three-point quadrature rule and factoring out the constant Jacobian gives
I = 18 [ ( 6(1/6) ) (1/6)+ ( 6(1/6)(1/6)+ (6(2/3) ) (1/6) ] = 18 which is the exact solution.

Table 9.3 gives a tabulation of symmetric quadrature rules over the unit triangle.
Decimal versions are given in subroutine SYMRUL of values ofn up to 13 . A similar
set of rules for extension to the three-dimensional tetrahedra in unit coordinates are given
in Table 9.4 for polynomials up to degree five [5]. Quadrature rules for high degree
polynomials on triangles have been published by Dunavant [4]. They are suitable for use
with hierarchial elements. Those rules are given in Table 9.5 in area coordinates, since
that form requires the smallest table size. Most of the lines are used multiple times by
cycling through the area coordinates. The numberN in the table indicates if the line is
for the centroid, three symmetric points, or six symmetric locations. These data are
expanded to their full form (up to 61 points for a polynomial of degree 17) in subroutine
DUNAVANT_UNIT_TRIANGLE_RULE. The corresponding unit triangle coordinate
data are also given in subroutine D_Q_RULE.

9.4.2 Natural Coordinate Quadrature
Here we assume that the coordinates are in the range of−1 to +1. In this space it is

common to employ Gaussian quadratures. The one-dimensional rules were discussed in
Sect. 5.4. For a higher number of space dimensions one obtains a multiple summation
(tensor product) for evaluating the integral. For example, a typical integration in two
dimensions

I =
1

−1
∫

1

−1
∫ f (r, s) dr ds ≈

n

j= 1
Σ

n

k =1
Σ f (r j , sk ) Wj Wk

for n integration points in each dimension. This can be written as a single summation as

I ≈
m

i =1
Σ f (r i , si ) Wi

where m = n2 , i = j + (k − 1)n, and wherer i = α j , si = α k, andWi = WjWk. Hereα j

andWj denote the tabulated one-dimensional abscissae and weights given in Sect. 5.4. A
similar rule can be given for a three-dimensional region. The result of the above
summation is given in Table 9.6. The extension of the1-D data to the quadrilateral and
hexahedra are done by subroutines GAUSS_2D and GAUSS_3D (see Fig. 9.4.2).

9.5 Typical Source Distribution Integrals*

Previously we introduced the contributions of distributed source terms. For theC°
continuity line elements we had
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Table 9.3. Symmetric quadrature for the unit triangle :
1

0
∫

1−r

0
∫ f (r, s) dr ds=

n

i= 1
Σ f (r i , si ) Wi

1

0
∫

1−r

0
∫ f (r, s) dr ds=

n

i= 1
Σ f (r i , si ) Wi

n p† i r i si Wi

1 1 1 1/3 1/3 1/2

3 2 1 1/6 1/6 1/6
2 2/3 1/6 1/6
3 1/6 2/3 1/6

4 3 1 1/3 1/3 −9/32
2 3/5 1/5 25/96
3 1/5 3/5 25/96
4 1/5 1/5 25/96

7 4 1 0 0 1/40
2 1/2 0 1/15
3 1 0 1/40
4 1/2 1/2 1/15
5 0 1 1/40
6 0 1/2 1/15
7 1/3 1/3 9/40

P = Degree of Polynomial for exact integration.
See subroutine DUNAVANT_UNIT_TRIANGLE_RULE

Figure 9.4.1 Symmetric quadrature locations for unit triangle
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Table 9.4 Quadrature for unit tetrahedra

Number Degree Unit coordinates
of of Weights

points N precision r i si ti Wi

1 1 1/4 1/4 1/4 1/6

4 2 a b  b 1/24
b a b 1/24
b b  a 1/24
b b b 1/24

a = ( 5 + 3√5 ) / 20 = 0. 5854101966249685
b = ( 5 − √5 ) / 20 = 0. 1381966011250105

5 3 1/4 1/4 1/4 − 4/30
1/2 1/6 1/6 9/120
1/6 1/2 1/6 9/120
1/6 1/6 1/2 9/120
1/6 1/6 1/6 9/120

11 4 1/4 1/4 1/4 − 74/5625
11/14 1/14 1/14 343/45000
1/14 11/14 1/14 343/45000
1/14 1/14 11/14 343/45000
1/14 1/14 1/14 343 / 45000

a a b 56 / 2250
a b  a 56 / 2250
a b  b 56 / 2250
b a a 56 / 2250
b a b 56 / 2250
b b  a 56 / 2250

a = ( 1 + √ (5/14) )/ 4 = 0. 3994035761667992
b = ( 1 − √ (5/14) )/ 4 = 0. 1005964238332008

See subroutine KEAST_UNIT_TET_RULE
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Ce
Q =

Le
∫ HeT

Qe dx .

Similar forms occur in two-dimensional problems. Then typically one has

Ce
Q =

Ae
∫ HeT

Qe da .

If the typical source or forcing term,Qe, varies with position we usually use the
interpolation functions to define it in terms of the nodal values,Qe , as

(9.6)Qe = HeT
Qe .

Thus, a common element integral for the consistent nodal sources is

(9.7)Ce
Q =

Ωe
∫ HeT

He dΩ Qe .

The previous sections present analytic and numerical methods for evaluating these
integrals. Figure 9.5.1 shows the typical analytic results for the two and three node line
integrals. For linear or constant source distributions the normalized nodal resultants are
summarized in Fig. 9.5.2. Once one goes beyond the linear (two-node) element the
consistent results usually differ from physical intuition estimates. Thus, you must rely on
the mathematics or the summaries in the above figures. Many programs will numerically
integrate the source distributions for any element shape. If the source acts on an area
shaped like the parent element (constant Jacobian) then we can again easily evaluate the
integrals analytically. For a uniform source over an area the consistent nodal
contributions for quadrilaterals and triangles are shown in Figs. 9.5.3 and 9.5.4,
respectively. Note that the Serendipity families can actually develop negative
contributions. Triangular and Lagrangian elements do not have that behavior for uniform
sources. Of course, a general loading can be treated by numerical integration.
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Table 9.5. Dunavant quadrature for area coordinate triangle

P N  Wt L1 L2 L3

1 1 1.000000000000000 0.333333333333333 0.333333333333333 0.333333333333333

2 3 0.333333333333333 0.666666666666667 0.166666666666667 0.166666666666667

3 1 −0.562500000000000 0.333333333333333 0.333333333333333 0.333333333333333
3 0.520833333333333 0.600000000000000 0.200000000000000 0.200000000000000

4 3 0.223381589678011 0.108103018168070 0.445948490915965 0.445948490915965
3 0.109951743655322 0.816847572980459 0.091576213509771 0.091576213509771

5 1 0.225000000000000 0.333333333333333 0.333333333333333 0.333333333333333
3 0.132394152788506 0.059715871789770 0.470142064105115 0.470142064105115
3 0.125939180544827 0.797426985353087 0.101286507323456 0.101286507323456

6 3 0.116786275726379 0.501426509658179 0.249286745170910 0.249286745170910
3 0.050844906370207 0.873821971016996 0.063089014491502 0.063089014491502
6 0.082851075618374 0.053145049844817 0.310352451033784 0.636502499121399

7 1 −0.149570044467682 0.333333333333333 0.333333333333333 0.333333333333333
3 0.175615257433208 0.479308067841920 0.260345966079040 0.260345966079040
3 0.053347235608838 0.869739794195568 0.065130102902216 0.065130102902216
6 0.077113760890257 0.048690315425316 0.312865496004874 0.638444188569810

8 1 0.144315607677787 0.333333333333333 0.333333333333333 0.333333333333333
3 0.095091634267285 0.081414823414554 0.459292588292723 0.459292588292723
3 0.103217370534718 0.658861384496480 0.170569307751760 0.170569307751760
3 0.032458497623198 0.898905543365938 0.050547228317031 0.050547228317031
6 0.027230314174435 0.008394777409958 0.263112829634638 0.728492392955404

9 1 0.097135796282799 0.333333333333333 0.333333333333333 0.333333333333333
3 0.031334700227139 0.020634961602525 0.489682519198738 0.489682519198738
3 0.077827541004774 0.125820817014127 0.437089591492937 0.437089591492937
3 0.079647738927210 0.623592928761935 0.188203535619033 0.188203535619033
3 0.025577675658698 0.910540973211095 0.044729513394453 0.044729513394453
6 0.043283539377289 0.036838412054736 0.221962989160766 0.741198598784498

10 1 0.090817990382754 0.333333333333333 0.333333333333333 0.333333333333333
3 0.036725957756467 0.028844733232685 0.485577633383657 0.485577633383657
3 0.045321059435528 0.781036849029926 0.109481575485037 0.109481575485037
6 0.072757916845420 0.141707219414880 0.307939838764121 0.550352941820999
6 0.028327242531057 0.025003534762686 0.246672560639903 0.728323904597411
6 0.009421666963733 0.009540815400299 0.066803251012200 0.923655933587500

P = Degree of complete polynomial exactly integrated,N = Number of cyclic uses
Wt = Weight at point, L j = Area coordinates at the point

(See subroutine D_Q_RULE forP ≤ 17)
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Table 9.6. Gaussian quadrature on a quadrilateral

1

−1
∫

1

−1
∫ f (r, s) dr ds=

n

i= 1
Σ f (r i , si ) Wi

1

−1
∫

1

−1
∫ f (r, s) dr ds=

n

i= 1
Σ f (r i , si ) Wi

n i  ri si Wi

1 1  0 0 4

4 1 −1/√3 −1/√3 1
2 +1/√3 −1/√3 1
3 −1/√3 +1/√3 1
4 +1/√3 +1/√3 1

9 1 −√ 3/5 −√ 3/5 25 / 81

2 0  −√ 3/5 40 / 81

3 +√ 3/5 −√ 3/5 25 / 81

4 −√ 3/5 0 40/81
5 0  0 64 / 81

6 +√ 3/5 0 40/81

7 −√ 3/5 +√ 3/5 25 / 81

8 0  +√ 3/5 40 / 81

9 +√ 3/5 +√ 3/5 25 / 81
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SUBROUTINE GAUSS_3D (M_QP, N_IP, PT, WT) ! 1
! * * * * * * * * * * * * * * * * * * * * * * * *  ! 2
! USE 1-D GAUSSIAN DATA TO GENERATE ! 3
! QUADRATURE DATA FOR A CUBE ! 4
! * * * * * * * * * * * * * * * * * * * * * * * *  ! 5
Use Precision_Module ! 6

IMPLICIT NONE ! 7
INTEGER, INTENT(IN) :: M_QP, N_IP ! 8
REAL(DP), INTENT(OUT) :: PT (3, N_IP), WT (N_IP) ! 9
REAL(DP) :: GPT (M_QP), GWT (M_QP) ! Automatic Arrays !10
INTEGER :: I, J, K, L, N_GP ! Loops !11

!12
! M_QP = NUMBER OF TABULATED 1-D POINTS !13
! N_IP = M_QP**3 = NUMBER OF 3-D POINTS !14
! GPT = TABULATED 1-D QUADRATURE POINTS !15
! GWT = TABULATED 1-D QUADRATURE WEIGHTS !16
! PT = CALCULATED COORDS IN A CUBE !17
! WT = CALCULATED WEIGHTS IN A CUBE !18

!19
N_GP = M_QP !20
CALL GAUSS_COEFF (N_GP, GPT, GWT) ! GET 1-D DATA !21

!22
! LOOP OVER GENERATED POINTS !23

K = 0  !24
DO L = 1, N_GP !25

DO I = 1, N_GP !26
DO J = 1, N_GP !27

K = K + 1  !28
WT (K) = GWT (I) * GWT (J) * GWT (L) !29
PT (1, K) = GPT (J) !30
PT (2, K) = GPT (I) !31
PT (3, K) = GPT (L) !32

END DO !33
END DO !34

END DO !35
END SUBROUTINE GAUSS_3D !36

Figure 9.4.2 Gaussian rules for a cube

9.6 Minimal, Optimal, Reduced and Selected Integration*

Since the numerical integration of the element square matrix can represent a large
part of the total cost it is desirable to use low order integration rules. Care must be taken
when selecting theminimal orderof integration. Usually the integrand will contain global
derivatives so that in the limit, as the element size h approaches zero, the integrand can be

assumed to be constant, and then only the integralI = ∫ dv = ∫ |J|dr ds dt remains to be

integrated exactly. Such a rule could be considered the minimal order. Howev er, the
order is often too low to be practical since it may lead to a rank deficient element (and
system) square matrix, if the rule does not exactly integrate the equations. Typical
integrands involve terms such as the strain energy density per unit volume:BTDB / 2.

Let N_QP denote the number of element integration points while NI represents the
number of independent relations at each integration point; then the rank of the element is
N_QP*NI. Generally, NI corresponds to the number of rows inB in the usual symbolic
integrandBTDB. For a typical element, we want N_QP*(NI − NC)≥ N_EL_FRE, where
NC represents the number of element constraints, if any. For a non-singular system
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Q2
Q2 Q3

1 2L 1 2 3

C1 = L(2Q1 + Q2)/6

C2 = L(Q1 + 2Q2)/6

C1= L(4Q1 + 2Q2 - Q3)/30

C2= L(2Q1 + 2Q2 + 16Q3)/30

C3= L(4Q3 - Q1 + 2Q2)/30

Figure 9.5.1 General consistent line sources
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Figure 9.5.2 Consistent resultants for a unit source
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Figure 9.5.3 Resultants for a constant source rectangle
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Figure 9.5.4 Resultants for a uniform source on a triangle

matrix a similar expression is N_ELEMS*(N_QP*NI-NC)≥ N_D_FRE-NR, where NR
denotes the number of nodal parameter restraints (NR≥ 1). these relations can be used as
guides in selecting a minimal value of N_QP. Consider a problem involving a governing
integral statement withm-th order derivatives. If the interpolation (trial) functions are
complete polynomials of order p then to maintain the theoretical convergence rate N_QP
should be selected [11] to give accuracy of order 0(h2(p−m)+1). That is, to integrate
polynomial terms of order (2p − m) exactly.

It has long been known that a finite element model gives a stiffness which is too
high. Using reduced integration so as to underestimate the element stiffness has been
accepted as one way to improve the results. These procedures have been investigated by
several authors including Zienkiewicz [11], Zienkiewicz and Hinton [11], Hughes, Cohen
and Haroun [6] and Malkus and Hughes [9]. Reduced integration has been especially
useful in problems with constraints, such as material incompressibility. A danger of low
order integration rules is thatzero energy modesmay arise in an element. That is, the
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element energy isDeT Se De = 0 for De ≠ 0. Usually these zero energy modes,De, are
incompatible with the same modes in an adjacent element. Thus, the assembly of
elements may have no zero energy modes (except for the standardrigid modes).
Cook [3] illustrates that an eigen-analysis of the element can be used as a check since
zero eigenvalues correspond to zero energy modes.

The integrand usually involves derivatives of the function of interest. Many
solutions require the post-solution calculation of these derivatives for auxiliary
calculations. Thus a related question is which points give the most accurate estimates for
those derivatives. These points are often calledoptimal pointsor Barlow points. Their
locations have been derived by Barlow [1, 2] and Moan [10]. The optimal points usually
are the common quadrature points. For low order elements the optimal points usually
correspond to the minimal integration points. This is indeed fortunate. As discussed in
Chap. 1, it is possible in some cases to obtain exact derivative estimates from the optimal
points. Barlow considered line elements, quadrilaterals and hexahedra while Moan
considered the triangular elements. The points were found by assuming that thep-th
order polynomial solution, in a small element, is approximately equal to the (p + 1)
order exact polynomial solution. The derivatives of the two forms were equated and the
coordinates of points where the identity is satisfied were determined. For triangles the
optimal rules are the symmetric rules involving 1, 4, 7, and 13 points. For machines with
small word lengths the 4 and 13 point rules may require higher precision due to the
negative centroid weights. Generally, all interior point quadrature rules can be used to
give more accurate derivative estimates. The derivatives of the interpolation functions are
least accurate at the nodes. Later we will show how patch methods can be used to
generate much more accurate derivatives at the nodes.

For element formulations involving element constraints, or penalties, it is now
considered best to employ selective integration rules [11]. For penalty formulations it is
common to have equations of the form (S1 + α S2 ) D = C where the constantα → ∞ in
the case where the penalty constraint is exactly satisfied. In the limit asα → ∞ the
system degenerates toS2 D = 0, where the solution approaches the trivial result,D = 0.
To obtain a non-trivial solution in this limit it is necessary forS2 to be singular.
Therefore, the two contributing element partsSe

1 andSe
2 areselectivelyintegrated. That

is, Se
2 is under integrated so as to be rank deficient (singular) whileSe

1 is integrated with a
rule which rendersS1 non-singular. Typical applications of selective integration were
cited above and include problems such as plate bending where the bending contributions
are inSe

1 while the shear contributions are inSe
2.

9.7 Exercises

1. Explain why in Tables 9.3, 9.4, 9.5, and 9.6 and in Fig. 9.4.2 the sum of the
weights are exactly 1/2, 1/6, 1, 4, and 8, respectively.

2. Numerically evaluate the matrices:

a) Ce =
Ωe
∫ HT dx, b) M e =

Ωe
∫ HT H dx ,
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c) Se =
Ωe
∫

dHT

dx

dH
dx

dx , d) Ue =
Ωe
∫ HT dH

dx
dx .

for: 1) a unit right angle triangle, 2) a unit square, based on linear interpolation.
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