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Abstract
A spectral element library has been developed and applied to the M3D extended MHD code.

Spectral element methods offer several possible advantages for MHD simulations. They
are high order discretizations and offer the possibility ofexponential decrease of the error
with increasing degree. Since spectral element methods canbe implemented with discrete
operators that are combinations of tensor product matricesand point-wise operations, they
can be implemented efficiently at close-to-peak on modern computer architectures. The
resulting global stiffness and system matrices are sparse block matrices in which the blocks
are dense and of a special structure. Direct solvers can use static condensation and sparse
solvers for the much smaller Schur complement system which leads to a fast and efficient
solution algorithm.

M3D [1] is a highly modular code for extended MHD problems. Its modularity allows
the implementation of several discretizations and the change from one to another for the
same problem. Originally, M3D used a spectral discretization in the toroidal and poloidal
angles combined with finite differences in the radial direction. While leading to fast solvers
and accurate solutions, that discretization did not allow for complicated geometries of the
cross sections such as needed to model stellarators and divertor tokamaks. To handle such
geometries, a discretization with linear finite elements [2] was introduced, which is still the
standard version at present. The current implementation ofa spectral element discretiza-
tion, as described in this presentation, should allow for complex geometries while at the
same time recovering the high accuracy that the original version achieved on simple ge-
ometries. A comparison of results from the linear finite element and the spectral element
discretizations will be presented.

Spectral element (SEL) methods [3, 4] have been recently intoduced in MHD simula-
tions [5, 6]. The SEL approach offers several possible benefits. The discretization can be
made accurate to high order, with exponential decrease of error as the order is increased.
Static condensation provides an efficient solution method for elliptic problems, in which
the Schur complement matrix to be solved is orders of magnitude smaller than the orig-
inal matrix. Curved isoparametric elements allow alignment with realtively complicated
boundary shapes encountered in simulation of magnetic fusion experiments. Spectral ele-
ments give a diagonal mass matrix, which is big advantage forthe partially implicit M3D
time stepping scheme.

Against these benefits, there is a concern that high order methods are only good for
smooth problems and will not work for highly nonlinear turbulent MHD flows, such as can
occur in magnetic fusion disruptions and Edge Localized Modes (ELMs).
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M3D has been parallelized using Openmp for shared memory computers, and MPI /
Petsci for distributed memory computers. The Openmp version is more restricted in prob-
lem size, mainly because no domain decomposition in poloidal planes is employed. Each
poloidal plane is assigned to a separate processor. The MPI /Petsci distributed memory
version is being developed. For now, the standard Petsci solvers are used, without taking
advantage of static decomposition. This will be addressed in the future.

Spectral Elements
The SEL elements haveC0 continuity, which is the standard approach. There existC1

SEL methods, but they are more complicated to implement and have certain restrictions to
their applicability.

The SEL method consists of a spectral discretization insideof discrete spatial regions.
The spectral representation allows for an efficient high order discretization. The use of
finite elements allows the mesh to be aligned with more or lessarbitrary boundaries.

The solution is expanded in terms of Lagrange basis functions, and evaluated by collo-
cation on the Gauss Lobatto Legendre (GLL) nodal points. Thediscretization is a tensor
product of one dimensional representations. This makes themethod highly efficient. Map-
pings and curved elements bring in geometrical factors inside of diagnonal matrices.

Here a nodal representation is used. Each basis function is zero except a single point.
Hence the product of two basis functions, evaluated by collocation, is zero if the basis
functions are different. This gives a diagonal mass matrix which is trivial to invert, and
allows a large speedup in a partially explicit method such asM3D. The nodal representation
can easily be transformed into a modal representation, which might lend itself to easier
spatial filtering, or truncation error analysis. In this implementation, no special filtering
is used. Instead we rely on adequate physically based dissipation by viscosity, thermal
condunctivity, and resistivity to obtain a suffiently smooth solution.

The curved elements are applied by an isoparametric representation of the element
edges. These are blended by a linear weighting inside the elements.

Coupling of Spectral Elements to M3D
M3D is a highly modular code, which makes it possible to change the underlying dis-

cretization of the solution. The right hand side of the equations is built up by calling a set of
subroutines which implement various operators, such as derivatives in the three coordinate
directions, Poisson brackets, inner product of derivatives, and Laplacian. The left hand
side of the equations involves solving a set of two dimensional elliptic operators, such as
Poisson and Helmholtz equations. The high level driver partof the M3D code, which is for
the most part Fortran legacy code, does not explicitly contain mesh information. It simply
calls functions from the SEL library of solvers and differential functions. The physical
variables, as well as many auxillary variables, are stored in common blocks in the driver
code. It is assumed that the mesh is unstructured, and the variables are simply listed in
two index arrays. The first index refers to the location in thepoloidal plane, and the sec-
ond refers to toroidal angle. When an operator is called, thevariables in its arguments are
passed to functions in the SEL library, which is written in C.The variables must be mapped
to temporary C arrays which have a different layout than the “flat” Fortan arrays. The C
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arrays are organized by elements, and include storage for the nodal values interior to each
element, and the boundary values of each element. This arrangement is convenient for the
solvers, which use static condensation. Although it seems redundant to move data between
different arrays which represent the same data in differentformats, the movement of data
consumes a generally negligible amount of computer time. The same strategy was used
the couple M3D to linear and low order finite elements, while leaving the Fortran code
essentially intact.

Mesh generation is initiated in the driver code. A skeleton mesh is generated, which
consists of the corner vertices of quadrilateral elements.In addition, the GLL points lying
on the curved element boundaries are generated. This information is passed to the SEL
library, which generates the full mesh, which consists of the GLL points on lines connecting
the boundary points. The interior points lie on curves whichare linearly blended from the
element boundary points. It would be desirable, instead, tohave the interior element points
generated by calling back the driver program. This would ensure that the points were
aligned with flux surfaces. On the other hand, higher order discretations should be less
sensistive to the mesh than low order.

Equilibrium and Linear Stability Comparison of
Spectral Element and FEM Implementations

Some preliminary testing is presented. Some initial tests were done of a tokamak equi-
librium. The equilibria were produced by choosing the same nonequilibrium initial state
for both versions and relaxing to a two dimensional equilibrium. A simple case was chose
which was used to benchmark the FEM version to the initial spectral M3D. The equilibria
are in excellent agreement for sufficiently high resolution. The SEL run used the skeleton
mesh shown in Fig.1, with 8th order polynomials. Fig.2,Fig.3 show the equilibrium pres-
sure in (a) and the toroidal current density, which somewhatmore sensitive to discretization,
in (b).

These equilibria were perturbed with toroidal mode numbern = 3 perturbations and
were advanced in time until the solution was dominated by an unstable eigenfunctions. The
eigenfunctions show some small diffences in detail. This can be seen in Fig.4, where (a)
is the FEM and (b) the SEL solution. The convergence of growthrates with number of
meshpoints in shown in Fig.5. The solid curve is growth rate as a function of meshpoints
for the FEM, and the dashed curve is the growth rate as a function of meshpoints for the
SEL. The SEL calculations all used the skeleton mesh of Fig.1, but the polynomial order
was varied from 2 to 8. Except for order 2, the growth rate seems to not vary very much
with order. This is an example of the improved convergence expected of SEL methods.

Nonlinear Simulations
In general, the low order elements are more robust in nonlinear simulations, because

they seem to require less smoothness. An important lesson seems to be that adequate
smoothing must be included, by means of viscous dissipationcoefficents such as viscosity
and resistivity, to keep the solution sufficiently smooth for spectral elements. The results
indicate that high order elements can be robust. Looking at Fig.6(a), and Fig.7(a) the
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pressure in the FEM seems to have extra smoothing. This is also evident in Fig.6(b),
Fig.7(b), the toroidal current density.
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(a) (b) (c)

Figure 1: (a) Linear finite element mesh (b) skeleton mesh forspectral elements (c) spectral
element mesh

(a) (c)

Figure 2: (a) Equilibrium (a) pressure (b) toroidal currentdensity calculated with linear
finite elements
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(a) (b)

Figure 3: Equilibrium (a) pressure (b) toroidal current density calculated with 8th order
spectral elements

(a) (b)

Figure 4: (a) perturbed magnetic flux functionψ (a) calculated with linear finite elements
(b) calculated with 8th order spectral elements
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Growth Rate vs. Mesh Size 

Figure 5: Growth rate as a function of number of mesh points. Solid curve: Finite elements;
Dotted curve, spectral elements. Note the expected improved convergence of the growth
rate with spectral elements. The number of mesh points in theSEL mesh was changed by
varying the polynomial order from 2 to 8.

(a) (b)

Figure 6: (a) nonlinear pressure (b) nonlinear current density calculated with linear finite
elements
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(a) (b)

Figure 7: (a) nonlinear pressure (b) nonlinear current density calculated with 8th order
spectral elements
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