Units and additional scalings in M3D
(*Units and scalings are different. Units have 3 degrees of freedom in this case, so 3 units should determine all other units. If there is no additional scaling, this info is enough, and such code can be called a minimally scaled code. Unfortunately our code has 2 additional scalings.)

For a minimally scaled MHD code, the mapping from code values to machine

values require 3 quantities. An example:

Geometry is determined by specifying Length.unit.

The equilibrium is determined by additional B.unit.

Time evolution is determined by additional Time.unit, or equivalently

Density.unit [in that case, the Time.unit is Alfven time for above 3 units].

 Eta in the code is then the inverse of the resistive time

 for 1 Length.unit in Time.unit.

 [When Time.unit is Alfven time, 1/Eta=S for 1 Length.unit.]

 Rmu is the inverse of a similar momentum diffusion time, and kappa is the

 inverse of a similar heat diffusion time.

 [Rmu/Eta is the Prantdl number.]

M3D has 2 additional scalings in addition
to make code quantities order 1 for high-beta tokamaks;

[rationalized emu units are used, and eps=Length.unit/rmajor]

1) Bcode = (B/B.unit) *eps or =B/(B.unit/eps)
 2) Pcode = (P/B.unit**2) *eps or = P/(B.unit**2/eps)
Without these *eps factors, the code would be a minimally scaled code,

which would have been more convenient, e.g., one can map any thing in the code

to machine values instantly by knowing 3 units. (This was not done at the beginning of
the code development because of disagreement from above.)

Some consequences;

We take Bcode near axis about 1, so B.unit is about Baxis*eps,

which is poloidal field like quantity in tokamaks.

We take density about 1 at the axis, and minor radius about 1,

so the time unit is close to Alfven time= R/(B.axis/sqrt(density.axis))

= a/(B.unit/sqrt(density.axis))

[To set the time unit exactly the Alfven time at the geometric.axis

in the vacuum for peak density, we can scale such that Bcode.geo.axis.vac=1,

peak density=1, and rmajor=R.geo.axis. But alternatively,
we can also postprocess quantities like growth rate to match this unit,

if needed. This usually results in a small variation.]

Length.unit is close to minor radius, and Velocity unit is order of

poloidal Alfven speed.

In high-beta tokamaks, Pcode is order one, with Pcode = P/B.unit**2 *eps

~ Beta.pol/2 *eps.

An example of mapping from code values to machine;

(First get the unit, then add additional scaling if such is used in the code.)

For tokamaks, we normally use (Xmax-Xmin)/2 = 1 in the code,

 so Length.unit=(Xmax.mach-Xmin.mach)/2

B.code at the axis is 1.1, and the corresponding machine value is 1.3 T,

 then B.unit=B.mach/B.code*eps=1.3/1.1*eps T.

 B.mach=B.code/eps*B.unit

Density.code.axis is 1.2 and Density.mach.axis is say 0.0015 Kg/m**3,

 then Density.unit=0.0015/1.2 Kg/m**3.

Alfven time corresponding to above 3 units is the Time.unit

1/Eta.code *Time.unit is the dissipation time in the machine for the

Length.unit, i.e., Length.unit**2/Eta.mach=1/Eta.code *Time.unit.
Rmu.mach and Kappa.mach are similar.
