1. Boundary Conditions for Non-Rectangular Domain:

(i) We need to be able to replace a row with a linear combination of some factor times that row plus another factor times another row, 
(ii) We will need a way to obtain the angle that the normal vector at a boundary point makes with the x-axis.  We need this to obtain the appropriate linear combination of rows to take for imposing Neuman boundary conditions (next item).
(iii) We need the capability to set a linear combination of 2 boundary values to zero on a particular row.   Recall that the DOF for a variable are:  U, U_x, U_y, U_xx, U_xy, U_yy.  We need to be able to set (alpha)*U_x + (beta)*U_y =  0 (for some alpha and beta), or U_xx + U_yy = 0.
2. Adaptive Meshing:

We need tools for transfer the solution from one mesh to the next.  This is probably best done using the restart files.
3. Upgrade SCOREC routines to use SuperLU/2.1 instead of SuperLU/2.0

This should be fairly easy, and may only need to load the appropriate module

4.  Fix bug in PETSc solves for numvar > 1.

Jin Chen can provide details on the evidence for this.
5. Ability to precondition a PETSc Matrix Solve with another Matrix

This is motivated by our desire to try solving the matrix equations with a direct solver (SuperLU) only occasionally, and using the LU factors from the direct solve as a preconditioner for subsequent iterative solves in PETSc.  Suppose we want to reuse (as preconditioners) the SuperLU factors (L0, U0) obtained for matrix A0 at timestep n0 for the next few timesteps:  say, starting from nn= n0+1, n0+2,... for preconditioning the solve having matrix An. The following PETSc function call will do the job:

KSPSetOperators(ksp,An,A0,SAME_PRECONDITIONER).

Thus, in order to pass the required information, we need new SCOREC interface routines with the following capabilities:
(i) The ability to specify that we want perform a direct solve and keep the LU factorization of a particular matrix for use as a preconditioner for a future solve. 

(ii) The ability to specify that we want to perform an iterative solve, using the LU factorization of a previous direct solve as a preconditioner.
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Abstract: 

The M3D code [1] has proven itself to be an invaluable tool for the simulation and understanding of global nonlinear phenomena in magnetic fusion confinement devices.  However, the structure of M3D is not optimal for computing in regimes where two-fluid (2F) effects dominate, or for times that are very long compared to the Alfven transit time.  We have built upon many of the favorable features of the M3D approach to construct the M3D-C1 code [2], which is based on high-order, compact conformal finite elements with C1 continuity on an unstructured adaptive grid.  The efficient split-implicit time advance is shown to be closely related to the ideal MHD energy principle, and allows time steps several orders of magnitude in excess of the Courant condition based on the Alfven or whistler waves. The full model consists of 8 3D scalar variables.  Nontrivial, energy conserving, subsets of the full equations exist including 2-variable 3D reduced MHD which is a toroidal generalization of [3] and a 4-variable 3D reduced model which is a toroidal generalization of [4].  The structure of the code makes linear calculations exceptionally efficient.  Illustrative results in 2F toroidal equilibrium, 3D linear stability and 2F magnetic reconnection are given.  Future capabilities including a surrounding resistive wall and a scalable full 3D nonlinear time evolution are discussed.
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