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Abstract—In electrical impedance tomography (EIT), a forward
solver capable of predicting the voltages on electrodes for a given
conductivity distribution is essential for reconstruction. The EIT
forward solver is normally based on the conventional finite element
method (FEM). One of the major problems of three-dimensional
(3-D) EIT is its high demand in computing power and memory
since high precision is required for obtaining a small secondary
field which is typical for a small anomaly. This accuracy require-
ment is also set by the level of noise in the real data; although cur-
rently the noise level is still an issue, future EIT systems should
significantly reduce the noise level to be capable of detecting very
small anomalies. To accurately simulate the forward solution with
the FEM, a mesh with large number of nodes and elements is usu-
ally needed. To overcome this problem, we proposed the spectral
element method (SEM) for EIT forward problem. With the intro-
duction of SEM, a smaller number of nodes and hence less compu-
tational time and memory are needed to achieve the same or better
accuracy in the forward solution than the FEM. Numerical results
demonstrate the efficiency of the SEM in 3-D EIT simulation.

Index Terms—Electrical impedance tomography (EIT), finite el-
ement method (FEM), forward solver, spectral element method
(SEM).

I. INTRODUCTION

THE basic idea of electrical impedance tomography (EIT)
is to reconstruct the internal electrical conductivity distri-

bution of the medium by measuring the low-frequency elec-
trical potentials on the boundary. To measure the surface po-
tentials, an array of electrodes is attached to the boundary. A set
of current patterns is applied to the electrodes and the voltages
on the probing electrodes are measured. From these measured
voltages, the internal electrical properties, namely conductivity
or admittivity, can be estimated. The three major applications
of EIT are biomedical imaging [1]–[5], geophysical exploration
[6], [7], and industrial applications [8]–[11].

A forward solver capable of predicting the voltages on
electrodes for a given conductivity distribution is essential for
EIT reconstruction. One of the most popular reconstruction
algorithms is the regularized Gauss–Newton or quasi-Newton
method [4], [7], [12]. In each of the Newton iterations, the
forward solver will be called to compute the voltages on the
electrodes and the internal electric potential, as well as the
Fréchet derivatives. The internal electric potential is required

Manuscript received February 15, 2006; revised March 28, 2006. This work
was supported by the Susan Komen Breast Cancer Foundation under Grant
IMG02-1054-3-D. Asterisk indicates corresponding author.

K. H. Lim, J.-H. Lee, and G. Ye are with Department of Electrical and Com-
puter Engineering, Duke University, Durham, NC 27708-0291 USA.

*Q. H. Liu is with Department of Electrical and Computer Engineering, Duke
University, Durham, NC 27708-0291 USA (e-mail: qhliu@ee.duke.edu).

Digital Object Identifier 10.1109/TMI.2006.876143

Fig. 1. Nodal distribution in 2-D for fourth order (a) FEM and (b) SEM.

to assemble the Jacobian matrix for the inversion, for details
please refer to [4], [13]. So it is a prerequisite to have a forward
solver capable of predicting the voltages at least as accurately
as the measured data.

The forward solver is normally based on the first order fi-
nite element method (FEM) with the complete electrode model
(CEM) [4], [14]–[16]. Here, we refer the first order FEM as the
conventional FEM. It has been noted that the complete elec-
trode model is superior to the previous continuum, gap and shunt
models because it predicts the measured data more accurately
[16], [17]. One of the problems of three-dimensional (3-D) EIT
is its high demand on computing power and memory. This is
because the total number of unknowns becomes exceedingly
large if we need to accurately simulate the forward solution for
a small object. The secondary field (i.e., the difference in the
potential between the medium with and without the object) of a
small object is a few order smaller than the primary field (i.e.,
the potential for the background). One of the ways to reduce the
numerical error is to refine the mesh adaptively where the so-
lution is most likely to suffer from discretization errors. As the
electric field is more intense near the electrodes, a finer mesh
will be needed in these areas. Consequently, the mesh of a 3-D
EIT system with more than 64 electrodes will require a large
number of nodes. It is, thus, desirable to have a method that is
able to achieve the same accuracy as the conventional FEM for-
ward solver with fewer nodes and elements.

One of the immediate candidates is the higher-order FEM. In
the higher-order FEM, the basis functions are higher order La-
grange polynomials passing through regular uniform grid points
in each volume element. It is able to achieve better accuracy than
the conventional FEM. In this paper, we propose to use the spec-
tral element method (SEM) for EIT forward problem. The SEM
is capable of achieving even better accuracy than higher order
FEM because of the distribution of nodal points. The nodal dis-
tributions of a high-order FEM and SEM in two-dimensional
(2-D) are shown in Fig. 1.
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The SEM was first proposed in 1984 by Patera et al. in
computational fluid dynamics [18]. It has the flexibility of the
FEM and the high accuracy of the spectral and pseudospectral
methods. The SEM is basically a higher-order FEM, with the
major difference in their basis functions. The basis functions of
SEM are based on Gauss–Lobatto–Legendre (GLL) points in
which the functions are Lagrange polynomials passing through
these GLL points, whereas the FEM basis functions are based
on uniform grid points in the reference domain. These basis
functions are orthogonal to one another in both FEM and SEM.
However, the SEM is more accurate than higher order FEM
because interpolation by GLL nodes is able to suppress the
so-called Runge Phenomenon [19] in the FEM. Note the Runge
phenomenon is the high interpolation error near the boundaries
when high-order polynomial interpolation is used with uniform
nodal points, as in the higher order FEM. Another characteristic
of SEM is that can achieve the so-called Spectral Accuracy in
which the error decreases exponentially with the order of the
basis functions [19]–[23]. To evaluate integrals in each com-
ponents of the system matrix, the GLL quadrature integration
can be easily employed. This has rendered SEM much easier
to implement than the higher order FEM, although the latter
can also be achieved by the same numerical quadrature. In
this paper, due to the lacking of higher order FEM codes, we
compare the results of SEM to the first-order FEM which is the
conventional FEM.

The organization of the paper is as follows. In Section II, we
will present the detail formulations of the EIT forward problem
and the SEM. This will be followed by the numerical results for
the SEM and its comparison with conventional FEM and ex-
perimental data in Section III. Finally, we will have concluding
remarks in Section IV.

II. FORMULATION

A. The EIT Forward Problem

EIT problem is schematically shown in Fig. 2. The system
consists of a number of source and probing electrodes. The for-
ward problem of EIT can be described by Laplace’s equation

(1)

where is the imaging domain and is its outer boundary.
The electrical potential and conductivity distribution in are
denoted as and , respectively.

The boundary conditions that we used are the mixed
boundary conditions (Dirichlet and Neumann) which are based
on the so called the complete electrode model [4]: If is
the current injected from the th electrode with a contact
impedance , the boundary conditions on this electrode are

(2)

(3)

Fig. 2. Schematic diagram of EIT system.

where is the voltage measured on electrode , is the out-
ward unit normal vector, and is the inward current
density on the surface boundary. The boundary condition on the
inter electrodes gap is simply

(4)

In order to make sure that the model has a unique solution,
charge conservation

(5)

must be satisfied, and a choice of ground condition needs to be
set. The grounding condition that we used is simply
where th electrode is the ground electrode.

B. Galerkin’s Formulation

The conventional way of solving the EIT forward problem is
the FEM. The detail formulation of FEM for EIT with complete
electrode model can be found in [4], [17]. In the SEM, a similar
Galerkin’s formulation is used.

From the Laplace’s equation (1), we form the weak form
equation by testing function

(6)

Here, the testing functions are chosen the same as the
basis functions in this Galerkin’s formulation. In the conven-
tional FEM, these are just linear shape functions peak at the
nodal points of each volume element.

Next, we expand in terms of the basis functions , i.e.
and substitute it into (6)

(7)
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and after integration by parts we arrive at

(8)

From (2), the current density can be rearranged as

(9)

on the electrodes.
Substituting this into (8), we arrive at

(10)
with and is the number of nodes. Equation
(10) can be written in matrix form

(11)

Here, , , and are column vectors formed by , and
, respectively, with indices and .

Each of the elemental matrices , and , denoted as , ,
and are given by

(12)

(13)

for (14)

where indices and . Here, is the
area of the th electrode.

The matrix formed by the elemental matrices , , and

(15)

is known as the global admittance matrix, where is the
number of elements. The admittance matrix is, however, not
in full-rank and therefore the system equation (11) does not
have a unique solution. In order to overcome this, a choice
of grounding condition needs to be made. In this paper, we
achieve the grounding condition by taking away the row and
column of the admittance matrix which correspond to a fixed
ground electrode and then set the corresponding .

C. Basis Functions for SEM

The SEM is basically the same as the higher-order FEM
except for the basis functions and their integration method.
The basis functions of a higher order FEM are polynomials
passing through regular grid points. However, the SEM is based

on GLL points in which its basis functions are polynomials
passing through these GLL points.

The th order GLL basis functions in a one-dimensional
standard reference element are defined by

(16)

for , where is the Legendre polynomial of
th order and is its derivative. The grid points ,

within the element are chosen as the
GLL points, i.e., the zeros of . Using (16) as the
basis functions, an arbitrary smooth function can be interpolated
as

(17)

with an error of , where is the average increment
of the grid points [20]. By definition, the above Lagrange–Le-
gendre interpolation has a property

(18)

The integration of a function can be performed numerically
by the GLL quadrature

(19)

with an error of [20], where the GLL quadrature
weights for the numerical integration are

(20)

In 3-D, within the standard reference element, i.e., a cubic el-
ement , the basis functions
can be written as

(21)

for ; ; . With these
basis functions, an arbitrary 3-D function can be
written as

(22)

The integration of a function becomes

(23)
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Fig. 3. General curved hexahedron in the (a) physical domain and (b) reference
domain. Here only the second-order mapping is shown.

D. SEM for the EIT Forward Problem

To apply the SEM to the EIT forward problem, the physical
domain is first divided into hexahedral elements. Each of the
hexahedral element in Cartesian coordinates is mapped
into a local reference cubic element in coordinates, see
Fig. 3. The meshing with hexahedron elements is more diffi-
cult than tetrahedral meshing. One of the ways is to mesh it
with tetrahedrons and then split each tetrahedron into four hex-
ahedrons. The hexahedron meshing is still an ongoing research
topic which deserves much attention.

The global admittance matrix in (15) is assembled by going
through each hexahedral element and by computing the ele-
mental matrices , , and in local reference coordinates.
The first and second terms of in (12) computed in local co-
ordinates become

(24)

and

(25)

where is the Jacobian matrix associated with the mapping
from a hexahedral element to the local reference cubic element,

is the Jacobian matrix associated with the mapping from a
boundary surface element to the local reference surface element,
and are the local reference coordinates on the boundary.
Note that the boundary contribution in (25) is nonzero only for
elements on the outer boundary .

The gradient is defined as

(26)

Component in (13) becomes

(27)

Fig. 4. (a) Tetrahedral mesh used in EIDORS. (b) Hexahedral mesh for SEM.

Component remains the same (14) as it can be computed
directly with the physical values of electrodes. To compute (24),
(25), and (27), numerical integration by quadrature described
in (23) is employed. Once the global admittance has been
assembled, (11) can be solved the same way as in FEM.

III. RESULTS AND DISCUSSIONS

A. Validation

To validate the results of SEM, a cylindrical mesh with 32
electrodes, the same geometry as the demonstration case found
in EIDORS 3-D toolkit [4], is used. The cylinder has a height
of 3 m and radius of 1 m. It has two layers of 16 rectangular
electrodes attached on its boundary as shown in Fig. 4. The mesh
used in the EIDORS 3-D toolkit has 828 tetrahedral cells and
252 nodes, whereas our mesh for SEM has 255 hexahedral cells
and 408 nodes.

In the simulation, the contact impedances of the electrodes
are set to . The current patterns used are the
adjacent pair current patterns in which 16 pairs of horizontally
adjacent electrodes from each planes are chosen to be source
and ground. There are altogether 32 current patterns and each
current pattern has 32 voltage measurements on the electrodes.
Therefore, there will be voltage measurements.

To visualize the voltage on electrodes for all current patterns,
we stack all the 1024 voltage values together. In Fig. 5, the first
256 normalized voltage values for SEM and EIDORS results
are shown. The normalized voltage is obtained by dividing the
voltage on an electrode by the maximum value of all the voltages
that belong to the same current pattern.

The result for SEM is obtained using the first order GLL basis
functions, the same order as in the conventional FEM. The re-
sults show that the two methods agree very well with the
norm error less than 0.001. However, if we use the absolute in-
stead of the normalized voltage value, the error will be much
larger. This is because both our SEM and EIDORS results have
not converged to the exact solution yet with this mesh. To obtain
a more accurate solution, we need to use either a much denser
mesh or higher-order elements in FEM or SEM. One way is to
refine the mesh adaptively where the solution is most likely to
suffer from discretization errors [17]. As the electric potential
changes more rapidly near the electrodes, a finer mesh will be
needed in these areas. A 3-D EIT system with the number of
electrodes exceeding 64 will require a large number of nodes. It
is thus desirable to have a method that is able to achieve the
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Fig. 5. Normalized voltage measurements. There are altogether 1024 voltage
measurements, here only the first 256 are plotted. The normalized voltage is
obtained by dividing the voltage on an electrode by the maximum value of all
the voltages that belong to the same current pattern.

Fig. 6. Higher order SEM results with Z = 0:001 
 � m . (a) First, second,
third, and tenth order. (b) Error convergence.

same accuracy as the conventional FEM forward solver with
fewer nodes and elements. The higher-order SEM is an ideal
candidate for this requirement. In the next subsection, we shall
study the performance of the higher-order SEM with the same
geometry as described here.

B. Higher Order SEM Results

1) Spectral Convergence of SEM: The first example of a
higher order SEM is shown in Fig. 6(a). The result is obtained
using the mesh in Fig. 4(b) and a contact impedance

. As before, only the first 256 out of 1024 values
are plotted. Here, we only show the first-, second-, third-, and
tenth-order results.

The tenth-order result is the most accurate solution which we
can safely take it as the reference solution. From the graph in
Fig. 6(a), we observe that the result converges to the reference
solution as the number of order increases. The error convergence
for this result is shown in Fig. 6(b). The error is the norm
error with the tenth order result as the reference. One of the
characteristics of SEM is its spectral accuracy in which the error

decreases exponentially with the increasing order [20],
i.e.,

(28)

Fig. 7. Error convergence for Z = 0:001 
 �m and Z = 0:1 
 �m .

The least square fitted line indeed shows that the error decreases
exponentially with the exponent . Ideally, the exponent

should as large as possible.
One possible reason why this is not very large may be the

singularities in the current density near the edges of electrodes
when there is no or relatively small contact impedance. Ac-
cording to [16] and [17], the current density peaks at the edges
of the electrodes when the contact impedances are small. The
contact impedance used in this example is only 0.001
which is rather small and hence the problem of singularities.

To validate the above claim, we increase the contact
impedance to 0.1 . The error convergence for both

and are shown in Fig. 7.
Clearly, the overall performance for the case is
better than that of . The exponent becomes
0.9, much closer to the value of 1.

2) Comparison Between SEM and FEM: A numerical ex-
periment is set up to compare the efficiency of SEM and con-
ventional FEM. The geometry of the experiment is the same as
the Section III-A. Two set of meshes, one for the FEM and one
for the SEM are generated. The meshes for FEM will have the
same number of nodes as the number of degrees of freedom of
the higher order SEM. This is to show that with the same de-
grees of freedom, the SEM is able to achieve better accuracy
than the FEM.

First of all, we found that the second-, third-, fourth-, and
fifth-order SEM meshes have 2611, 8140, 18525, and 35296
degrees-of-freedom, respectively. Then, we refine the mesh in
Fig. 4(b) so that they have the same number of nodes as the
higher-order SEM. The refined meshes that correspond to the
second and third order are shown in Fig. 8. We generated the
refined meshes up to the fifth order.

We apply the conventional FEM to these refined meshes and
the results are shown in Fig. 9. The machine that we used to run
this case is a personal computer with 2.4-GHz Intel Pentium pro-
cessor and 1 GB of RAM running on Linux operating system.
In Fig. 9(a), the error versus the spectral order is shown.
In Fig. 9(b), the error versus the number of nodes is shown.
From these two figures, we observe that with the same number
of nodes, the SEM can achieve a much smaller error than the
conventional FEM. In order to achieve an accuracy of just 0.03,
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Fig. 8. Refined mesh with the same number of nodes as (a) second-order SEM
and (b) third-order SEM.

Fig. 9. (a)L error versus spectral order. (b) L error versus number of nodes.
(c) L error versus CPU times. (d) L error versus memory.

the conventional FEM needs more than nodes, but the
SEM just needs nodes.

In Fig. 9(c), the error versus CPU time is plotted. The
CPU time is the total time taken to assemble the system ma-
trix and also to solve the system equation. The preconditioned
conjugate-gradient method is used to solve the system equation,
where the preconditioner is the diagonal part of the system ma-
trix. Given an accuracy of 0.03, the conventional FEM needs
more than 100 s, whereas the SEM needs about 20 s, over five-
fold improvement. Furthermore, from Fig. 9(d), we observe that
the memory usage for the SEM is much less than that of con-
ventional FEM. The memory usage is mainly for the storage of
sparse system matrix. For the same accuracy of 0.03, conven-
tional FEM has used more than 700 MB memory, but the SEM
has used only 50 MB, more than ten times in memory saving.
With these comparisons, the superiority of the SEM in terms of
computational time and memory usage has been illustrated. The
main reason for the EIT system to require very high accuracy is
that the secondary field is usually several orders of magnitude
smaller than the primary field. This will be further illustrated
below.

Fig. 10. (a) Funnel-shaped applicator with 128 electrodes attached to it.
(b) Cone shape mesh used to simulate the applicator.

Fig. 11. (a) Contact impedances estimated for all the electrodes. Some of the
values are constant because we do not have enough information to estimate
them. (b) Simulated and measured voltage on electrodes.

C. Comparison With Experimental Data

A 3-D EIT imaging system has been developed at Duke
University [24]. The system has a funnel-shaped applicator as
shown in Fig. 10(a). The applicator has 128 electrodes attached
to it. A detail descriptions and operations of the system can be
found in [24]. In each experimental setup, the applicator is filled
with saline solution. A small current is injected through a set of
predefined electrode pairs sequentially. The voltages between
a selected reference electrode and all the other electrodes are
measured. Two sets of data are measured in each experiment
setups. The first set of data is obtained with only the saline
solution and the second set is measured when a phantom is
placed in the applicator. In this section, the measured data is
used to compare with the simulated data obtained by the SEM
forward solver.

The mesh that we used to simulate the system is shown in
Fig. 10(b). The mesh has 4448 nodes and 3472 hexahedral
elements. The contact impedance of each electrodes varies
whenever a new saline solution is poured into the applicator,
therefore, we employed a simple least square fitting method
to estimate the background conductivity and contact imped-
ances for all the electrodes. In one of the experimental setups,
the background conductivity estimated is 0.0043 S/cm. The
contact impedances estimated are shown in Fig. 11(a), ranging
approximately from 16 to 22 .

We stack all the measurement values into one vector and plot
it in a graph. The comparison is shown in Fig. 11(b). Here, only
the first 512 values are shown for clarity. The SEM results agree
very well with the measured data. The error for the two is less
than 0.01. This again validated the accuracy of the SEM forward
solver.
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Fig. 12. (a) Conductive, cylindrical object hung in the applicator. (b) Sec-
ondary field.

The main objective of EIT is to reconstruct objects that are
present in the applicator from the voltage data measured on
the electrodes. The difference in voltage measurements between
with and without the objects is defined as the secondary field.
The secondary field is basically caused by the objects. So, it
is essential that the forward model is able to simulate the sec-
ondary field accurately.

To verify the accuracy of the SEM forward solver for the sec-
ondary field, a metallic cylinder is hung in the middle of the
applicator as shown in Fig. 12(a). The experiment is carried out
by measuring the voltages on the electrodes without and with
the object. The secondary field is simply the difference between
the voltages measured with and without the object. The com-
parison between the measured and simulated secondary field is
shown in Fig. 12(b). We observe that the simulated secondary
field agree well with the measured data with error of about
0.1.

IV. CONCLUSION

The spectral element method has been developed and vali-
dated for the EIT forward problem. Numerical results show that
SEM is able to achieve the spectral accuracy. The convergence
is faster for a larger contact impedance. The improvements in
computation time and memory usage for SEM over the first
order FEM have been illustrated. Given the same accuracy, the
total computational time and memory usage for SEM are much
less than the first order FEM. The accuracy of the SEM forward

solver has also been validated with experimental data. In sum-
mary, we have shown that SEM is an efficient forward solver
for electrical impedance tomography. The efficiency of SEM
forward solver can be further improved by multigrid techniques
such as algebraic multigrid method [25].
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