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An Efficient 3-D Spectral-Element Method for
Schrödinger Equation in Nanodevice Simulation
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Abstract—A three-dimensional (3-D) spectral-element method
(SEM) based on Gauss–Lobatto–Legendre (GLL) polynomials is
proposed to solve the Schrödinger equation in nanodevice simula-
tion. Galerkin’s method is employed to obtain the system equation.
The high-order basis functions employed are orthogonal and the
numerical quadrature points are the same as the GLL integration
points, leading to a diagonal mass matrix and a more sparse
stiffness matrix. Thus, the proposed method leads to a regular
eigenvalue problem, rather than a generalized eigenvalue problem,
greatly reducing the computer-memory requirement and central-
processing-unit (CPU) time in comparison with the conventional
finite-element method (FEM). Furthermore, the SEM is imple-
mented for high geometrical orders, where curved structures can
be modeled up to the accuracy comparable to the interpolation
accuracy afforded by the basis functions. Numerical examples ver-
ify a spectral accuracy with the interpolation orders, and confirm
that higher geometrical orders are essential for curved structures
to achieve overall spectral accuracy. Examples of quantum dots
in various structures, including a waveguide, are analyzed with
mixed boundary conditions. Numerical results show that the SEM
is an efficient alternative to conventional FEM and to the finite-
difference method (FDM) for nanodevice simulation.

Index Terms—Galerkin’s method, Gauss–Lobatto–Legendre
(GLL) interpolation, nanodevices, quantum dot, Schrödinger
equation, spectral-element method (SEM).

I. INTRODUCTION

A S quantum effects are critical in the understanding and
design optimization of nanodevices, the numerical solu-

tion of Schrödinger’s equation becomes increasingly important.
Many researchers have successfully developed various numer-
ical methods for this purpose, for example, [1]. In particu-
lar, three-dimensional (3-D) solutions of Schrödinger equation
or self-consistent Schrödinger–Poisson system have attracted
much attention recently (see, for example, [2]–[7]). It has been
noted that some quantum effects can only be explained if a 3-D
model is used [3].

Previously, for one-dimensional (1-D) problems, several
methods have been employed to solve Schrödinger’s equation,
including analytical methods such as phase-shift analysis [8]
and Airy function methods with real and complex arguments
[9]–[12], and numerical methods such as variational methods
[13], finite-element method [14], finite-difference method
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[15]–[18], Green function [19], stabilization graph [20], [21],
Fourier series [21], complex coordinates [22], and optical-
potential wave-packet propagation method [23]. As an efficient
alternative, we have introduced a spectral-grid method (SGM)
[24] that utilizes the Chebyshev pseudospectral method as
it was employed in computational electromagnetics [25]. We
have shown that the numerical accuracy of the SGM is far
superior to the conventional finite-element and finite-difference
methods in 1-D examples. More recently, we have extended
this idea to the Galerkin formulation in the spectral-element
framework, and applied the method to solve the 1-D self-
consistent Schrödinger–Poisson system [26]. Compared to the
SGM [25], this spectral-element method (SEM) [26] is easier
to implement at the boundaries between elements.

In this paper, we further extend the SEM to solve the 3-D
Schrödinger equation. One important difference between 1-D
and 3-D problems is that the problem geometry in 3-D can
be curved. Under this situation, we show that it is essential
that the curved geometry is accurately represented up to high
orders, in order to achieve the spectral accuracy of the method.
This paper can be considered as extensions of similar ideas
in electromagnetics and elastodynamics in the time domain
[27]–[32]. It is a direct extension of our work on the electromag-
netic eigenvalue solver reported in [33]. Although we focus on
the Schrödinger equation in this paper, it is natural for us to ex-
tend this to the self-consistent Schrödinger–Poisson system in
3-D in our future work, as has been done in the 1-D case [26].

The organization of this paper is as follows. In Section II,
we will present the detailed formulation of the SEM. This will
be followed by the high-order model in curved 3-D structures
in Section III. Finally, we will present numerical examples in
Section IV to demonstrate the capability of the SEM.

II. FORMULATION

For the convenience of numerical computation, we consider
the normalized Schrödinger equation

− 1
π2

∇ ·
(

1
m
∇ϕ

)
+ (V − E)ϕ = f (1)

where ϕ is the wave function, m the effective mass normalized
by the mass density m0 of the electron, V the potential normal-
ized by E0 (here we choose E0 = �

2π2/2m0d
2 as the eigen-

energy of the electron in an infinite quantum well of width d),
E the eigenenergy normalized by E0, and f is the incoming
electron source [24].

0278-0070/$20.00 © 2005 IEEE



LEE AND LIU: 3-D SPECTRAL-ELEMENT METHOD FOR SCHRÖDINGER EQUATION IN NANODEVICE SIMULATION 1849

The boundary conditions to be considered can be de-
scribed by

1
π2m

∂ϕ

∂n
+ γϕ = q (2)

where γ and q are known parameters associated with the phys-
ical properties of the boundary. It is noted that both Dirichlet
(γ → ∞, q = 0), Neumann (γ = 0, q = 0), and the one-way
wave conditions are special cases of this equation. The goal of
this work is to develop an SEM for the efficient solution of this
Schrödinger equation.

A. Basis Functions on a Reference Element

The SEM is characterized by its spectral accuracy, i.e., the
error decreases exponentially with the order of basis func-
tions. In order to achieve spectral accuracy, we introduce
a Gauss–Lobatto–Legendre (GLL) element discretization for
Schrödinger equation (1). The N th order GLL basis functions
in a 1-D standard reference element ξ ∈ [−1, 1] are defined by

φ
(N)
j (ξ) =

−1
N(N + 1)LN (ξj)

(1 − ξ2)L′
N (ξ)

(ξ − ξj)
(3)

for j = 0, . . . , N , where LN (ξ) is the Legendre polynomial of
N th order and L′

N (ξ) is its derivative. The grid points {ξj , j =
0, 1, . . . , N} within the element ξ ∈ [−1, 1] are chosen as the
GLL points, i.e., the zeros of (1 − ξ2)L′

N (ξj) = 0. Using (3)
as an interpolation function, an arbitrary smooth function f(ξ)
can be written as

f(ξ) =
N∑

j=0

f(ξj)φ
(N)
j (ξ) (4)

with an error of O(∆ξN+1), where ∆ξ is the average increment
of the grid points. By definition, the above Lagrange–Legendre
interpolation has the fundamental property

φj(ξi) = δji (5)

which greatly simplifies the implementation of the SEM.
Moreover, the integration of a function can be written as

1∫
−1

f(ξ)dξ =
N∑

j=0

w
(N)
j f(ξj) (6)

with an error of O(∆ξ2N−1), where the weights for the numer-
ical quadrature integration are

w
(N)
j =

2
N(N + 1)L2

N (ξj)
. (7)

On a 3-D standard reference element, i.e., a cubic element
(ξ, η, ζ) ∈ [−1, 1] × [−1, 1] × [−1, 1], the basis functions can
be written as

φrst = φ
(Nξ)
r (ξ)φ(Nη)

s (η)φ(Nζ)
t (ζ) (8)

Fig. 1. A general curved hexahedron in the (a) physical and (b) reference
domains. In general, high-order polynomials will be used for this mapping,
but for clarity here only the second-order mapping (Mξ = Mη = Mζ = 2)
is shown.

for r = 0, . . . , Nξ; s = 0, . . . , Nη; t = 0, . . . , Nζ . The interpo-
lation and integration of a function f(ξ, η, ζ) can be written as

f(ξ, η, ζ)

=
Nξ∑
r=0

Nη∑
s=0

Nζ∑
t=0

f(ξr, ηs, ζt) × φ
(Nξ)
r (ξ)φ(Nη)

s (η)φ(Nζ)
t (ζ)

(9)

1∫
−1

1∫
−1

1∫
−1

f(ξ, η, ζ)dξdηdζ

=
Nξ∑
r=0

Nη∑
s=0

Nζ∑
t=0

w
(Nξ)
r w

(Nη)
s w

(Nζ)
t f(ξr, ηs, ζt). (10)

B. Division of Physical Domain Into Elements

The basis functions presented above are for a standard cubic
reference element in 3-D. For complex problems, the phys-
ical domain is first subdivided into a set of nonoverlapping
generally curved hexahedron elements. Each such hexahedron
element in Cartesian coordinates (x, y, z) is mapped into a
reference cubic element in (ξ, η, ζ) coordinates through an
invertible curvilinear coordinate transformation. As an exam-
ple, a curved hexahedron element is mapped into a reference
(standard) element in Fig. 1. In general, the curved hexahedron
can be accurately transformed into a cube through high-order
curvilinear mapping, as will be discussed in more detail in
Section III. In the example in Fig. 1, for clarity we only show a
curved cube modeled by a quadratic mapping.

In the reference element, we consider the wave function
ϕ(ξ, η, ζ). This reference element is discretized by (Nξ + 1)
(Nη + 1)(Nζ + 1) GLL points {ξr; ηs; ζt; r = 0, . . . , Nξ;
s = 0, . . . , Nη; t = 0, . . . , Nζ}, where ξr, ηs, and ζt represent
the locations of GLL grid points in the ξ, η, and ζ directions,
respectively. Consequently, the wave function can be repre-
sented by the tensor product of Lagrange–Legendre inter-
polation polynomials as

ϕ(ξ, η, ζ) =
Nξ∑
r=0

Nη∑
s=0

Nζ∑
t=0

ϕ(ξr, ηs, ζt)φr(ξ)φs(η)φt(ζ)

≡
N∑

j=1

ϕjΨj (11)
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where Nξ, Nη, and Nζ are interpolation orders of the reference
domain along ξ, η, and ζ parametric coordinates, respectively,
N = (Nξ + 1)(Nη + 1)(Nζ + 1) is the total number of points
in the reference element, and Ψj = ϕr(ξ)ϕs(η)ϕt(ζ) is the
basis function.

C. Galerkin Weighted-Residual Formulation

The residual of (1) is

r = − 1
π2

∇ ·
(

1
m
∇ϕ

)
+ (V − E)ϕ − f. (12)

The Galerkin weighted-residual method is applied to minimize
the residual (12) over the entire region. It can be expressed
in the eth element as

Re
i =

∫
ve

Ψirdv, i = 1, 2, . . . , N. (13)

Substituting the wave function (11) into (13) yields

Re
i =

N∑
j=1

∫
ve

[
1
π2

(∇Ψi) ·
(

1
m
∇Ψj

)
ϕj

+ (V − E)ΨiΨjϕj − Ψi f

]
dv

−
Nb∑
j=1

∮
Γe

1
π2m

∂Ψi

∂n
ϕjds (14)

where Nb is the number of boundary nodes in the eth element.
If homogeneous boundary conditions are applied, the boundary
integral terms will vanish.

Applying (14) to all elements, and using (2), we have a
discretized system of equations in the reference domain

K∑
e=1

N∑
j=1

1∫
−1

1∫
−1

1∫
−1

1
π2

(∇Ψi)·J−T
e J−1

e

(
1
m
∇Ψj

)
ϕj |Je|dξdηdζ

+
K∑

e=1

N∑
j=1

1∫
−1

1∫
−1

1∫
−1

(V − E)ΨiΨjϕj |Je|dξdηdζ

+
Kb∑
b=1

Nb∑
j=1

1∫
−1

1∫
−1

γΨiΨjϕj |Jb|dudv

=
K∑

e=1

1∫
−1

1∫
−1

1∫
−1

fΨi|Je|dξdηd+
Kb∑
b=1

1∫
−1

1∫
−1

qΨi|Jb|dudv

(15)

where i = 1, 2, . . . , N ; K is the number of elements, Kb is
the number of boundary elements, Je is the Jacobian matrix

associated with the mapping from an element to the reference
domain, Jb is the Jacobian matrix for the surface reference
domain (it is a special case of Je on the boundary), and (u, v)
are the reference coordinates on the boundary. The gradient in
(15) is computed in the reference domain

∇Ψ =∇ (φr(ξ)φs(η)φt(ζ))

= ξ̂φ′
r(ξ)φs(η)φt(ζ) + η̂φr(ξ)φ′

s(η)φt(ζ)

+ ζ̂φr(ξ)φs(η)φ′
t(ζ) (16)

where φ′ denotes the derivative of the Lagrange–Legendre in-
terpolation polynomials with respect to the reference coordi-
nate. After this spatial discretization with spectral elements, we
can rewrite (15) in matrix form as

(A + B + G)ϕ = F + Q (17)

where A is the stiffness matrix, B = B1 − EB2 is the mass
matrix, B1 is related to the normalized potential V , EB2 is
related to the normalized energy E, G is the boundary integral
matrix, F is the forcing vector, and Q is the boundary source
vector arising from the boundary condition in (2). As shown
next, since the element basis functions are orthogonal, we can
obtain the diagonal mass matrix, which is an important property
of the SEM.

D. Numerical Integration

To obtain the system (17), numerical integration should be
used in (15). If the element is straight, (15) involves a polyno-
mial of degree 2N because of the product of two polynomials
of degree N ; if the element is curved, the integrand is a func-
tion of order higher than 2N . The GLL quadrature is exact for
the integration of polynomials of order 2N − 1 [34]. There-
fore, exact evaluation of the stiffness matrix and mass matrix
requires increasing the number of GLL points up to N + 1
(or more for curved elements), which results in a nondiagonal
mass matrix.

For examples, in a straight element, the stiffness matrix in-
cludes an integration

A′
ij =

1∫
−1

1∫
−1

1∫
−1

φ
′(Nξ)
m φ

(Nη)
n φ

(Nζ)
p φ

′(Nξ)
m′ φ

(Nη)
n′ φ

(Nζ)
p′ dξdηdζ

(18)

and the mass matrix includes an integration

B′
ij =

1∫
−1

1∫
−1

1∫
−1

φ
(Nξ)
m φ

(Nη)
n φ

(Nζ)
p φ

(Nξ)
m′ φ

(Nη)
n′ φ

(Nζ)
p′ dξdηdζ

(19)

where i is a compound index of (m, n, p) and j is a com-
pound index of (m′, n′, p′). The exact evaluation of these
two integrations can be expressed in terms of the (Nξ, Nη+1,
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TABLE I
ANALYTICAL EIGENVALUE SOLUTIONS OF THE

LOWEST SEVEN MODES FOR A CUBE MODEL

Nζ + 1)th-order and (Nξ + 1, Nη + 1, Nζ + 1)th-order GLL
quadrature, respectively

A′
ij =

Nξ∑
r=0

Nη+1∑
s=0

Nζ+1∑
t=0

w
(Nξ)
r w

(Nη+1)
s w

(Nζ+1)
t

× φ
′(Nξ)
m (ξr)φ

′(Nξ)
m′ (ξr)φ

(Nη)
n (ηs)φ

(Nη)
n′ (ηs)

× φ
(Nζ)
p (ζt)φ

(Nζ)
p′ (ζt) (20)

B′
ij =

Nξ+1∑
r=0

Nη+1∑
s=0

Nζ+1∑
t=0

w
(Nξ+1)
r w

(Nη+1)
s w

(Nζ+1)
t

× φ
(Nξ)
m (ξr)φ

(Nξ)
m′ (ξr)φ

(Nη)
n (ηs)φ

(Nη)
n′ (ηs)

× φ
(Nζ)
p (ζt)φ

(Nζ)
p′ (ζt). (21)

On the other hand, if we only use (Nξ, Nη , Nζ) orders for
the GLL quadrature, the approximate evaluation of the two in
tegrations can be simplified as

A′
ij �

Nξ∑
r=0

Nη∑
s=0

Nζ∑
t=0

w
(Nξ)
r w

(Nη)
s w

(Nζ)
t

× φ
′(Nξ)
m φ

′(Nξ)
m′ φ

(Nη)
n φ

(Nη)
n′ φ

(Nζ)
p φ

(Nζ)
p′

= δnn′δpp′w
(Nη)
n w

(Nζ)
p

Nξ∑
r=0

w
(Nξ)
m φ

′(Nξ)
m φ

′(Nξ)
m′ (22)

B′
ij �

Nξ∑
r=0

Nη∑
s=0

Nζ∑
t=0

w
(Nξ)
r w

(Nη)
s w

(Nζ)
t

× φ
(Nξ)
m φ

(Nξ)
m′ φ

(Nη)
n φ

(Nη)
n′ φ

(Nζ)
p φ

(Nζ)
p′

= δmm′δnn′δpp′w
(Nξ)
m w

(Nη)
n w

(Nζ)
p . (23)

The stiffness and mass matrix by the approximate inte-
grations require O(N7/3) and O(N) operations, respectively,
while those by the exact integrations require O(N3) and
O(N3) operations, respectively. In addition, the approximate
integrations give a diagonal mass matrix. Therefore, the approx-
imate integrations require less central-processing-unit (CPU)
time and computer memory than the exact integrations, but
the exact integrations give a more accurate evaluation of the
matrices (for curved elements, it is also only approximate). In
the numerical examples in the next section, we will investi-
gate which integration method is more efficient, given a fixed
accuracy. For error estimates and convergence properties of
the spectral and pseudospectral methods, the reader is referred
to [36]–[39].

Fig. 2. Error of eigenvalues obtained by (a) approximate and (b) exact
integration of stiffness and mass matrices for one element. The normalized
effective mass m is 1, and the normalized potential V is 0. The Dirichlet
boundary condition was applied to all outer boundaries.

III. HIGHER ORDER GEOMETRICAL MODELING

In the traditional weighted-residual method, the problem
geometry is modeled by the first-order approximation (i.e.,
straight elements), leading to at best a second-order accurate
solution no matter how high the interpolation order used for
curved geometries. As a result, unfortunately, in most appli-
cations, the accuracy is usually limited by a geometry repre-
sentation, rather than the basis functions. To achieve higher
order accuracy, more accurate geometrical representation is
required. Here, we employ a higher order geometrical modeling
technique to provide accuracy and efficiency of the analysis in
practical applications.

During geometrical modeling, we use generalized curved
parametric hexahedrons of higher geometrical order [35]. A
general curved-hexahedron element can be described approx-
imately as

r(ξ, η, ζ) =
M∑
i=1

riL
(M)
i (ξ, η, ζ)

=
Mξ∑
r=0

Mη∑
s=0

Mζ∑
t=0

rrstL
(Mξ)
r (ξ)L(Mη)

s (η)L(Mζ)
t (ζ),

− 1 ≤ ξ, η, ζ ≤ 1 (24)
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Fig. 3. Comparison of (a) CPU time and (b) efficiency for exact and approxi-
mate integrations.

TABLE II
COMPARISON OF EFFICIENCY AND ACCURACY BETWEEN

THE SEM AND THE CONVENTIONAL FEM

where Mξ, Mη, and Mζ are geometrical orders of an element
along ξ-, η-, and ζ- parametric coordinates, respectively, M =
(Mξ + 1)(Mη + 1)(Mζ + 1) is the total number of points, ri

is the position vector of the interpolation points, i = m +
n(Mξ + 1) + p(Mξ + 1)(Mη + 1) + 1, and L

Mξ
r , L

Mη
s , and

L
Mζ

t represent Lagrange interpolating polynomials. Increasing
orders (Mξ, Mη , Mζ) will lead to an improved accuracy in
geometrical modeling.

We have used the scheme in (24) and model curved ele-
ments up to the order of (Mξ,Mη,Mζ) = (9, 9, 9). For clarity,
Fig. 1 shows the second-order geometrical modeling where
the structure is determined by 27 points. In order to make a
realistic modeling, we allow different geometrical orders in the
same mesh so that high orders are used only for the curved
subdomain.

As will be shown in the next section, the combined high-
order modeling of the geometry and basis functions provide a
spectral accuracy in the SEM.

TABLE III
ANALYTIC EIGENVALUE SOLUTIONS OF THE LOWEST TEN

MODES FOR A SPHERE OF RADIUS a = 1 nm

Fig. 4. The curved mesh of the sphere model. This mesh consists of six curved
outer elements and one straight cubic element at the center.

Fig. 5. Errors of the fundamental eigenvalue for various geometrical orders.
GLL points are employed as the geometrical interpolation points.

IV. NUMERICAL EXAMPLES AND DISCUSSIONS

A. Test Models

In order to verify its accuracy and efficiency, we applied
the proposed SEM to numerous test models; below we show
two such models. These models are generalized eigenvalue
problems for the Schrödinger equation with Dirichlet boundary
condition; they can be obtained by letting G = 0, F = 0, and
Q = 0 in (17)

(A + B1)ϕ = EB2ϕ. (25)

As we noted earlier, if an exact method is used, B1 and B2 are
full matrices within each element. On the other hand, if we use
the (Nξ, Nη , Nζ)th-order GLL quadrature, i.e., the approximate
integration, these matrices are diagonal. In the latter case, it can
be converted to a regular eigenvalue problem

Ãϕ̃ = Eϕ̃ (26)
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Fig. 6. Errors of higher eigenvalues versus the order of basis functions.
Geometrical orders (Mξ = Mη = Mζ) are (a) 3, (b) 5, and (c) 9.

where ϕ̃ = B1/2
2 ϕ and

Ã = B− 1
2

2 (A + B1)B
− 1

2
2 . (27)

Such a regular eigenvalue problem is much more desirable
than the generalized eigenvalue problem because of its reduced
computational cost.

The first example is a homogeneous-cube model with dimen-
sions 2 nm × 2 nm × 2 nm, with V = 0 inside the cube. It
is modeled by a single trilinear hexahedron element. Table I
shows the first three eigenvalues obtained by analytical solu-

Fig. 7. A cubic quantum dot with V = 0 and m = 2 surrounded by a cubic
outer shell with V = 2 and m = 1. The size of c = 3 nm and d = 1 nm.

Fig. 8. Errors of eigenvalues obtained by the second-, third-, and fourth-order
basis functions with 27 orthogonal elements for the cube.

tions. The relative errors of the eigenvalues obtained by the
SEM are shown in Fig. 2(a) and (b) versus the orders Nξ =
Nη = Nζ when the integrations are obtained by exact and
approximate methods, respectively. Both figures confirm that
the proposed SEM has exponential accuracy with increasing
order in the basis functions. In the approximate-integration
method, the error is, overall, a straight line in the semilog plot;
for the exact integration, the errors are also straight lines if one
groups the even and odd orders separately, and the even and
odd orders have different constant offsets. The exact integration
gives slightly more accurate results than approximate integra-
tion. It is also observed that although the exact integration is
slightly more accurate, its accuracy is in the same order as the
approximate integration.

On the other hand, we compared the CPU time consumed
by the approximate integration and the exact integration in
Fig. 3(a). We observe that approximate integration is superior
to exact integration. The CPU time of approximate integration
is less than 1% of that consumed by exact integration when the
order of basis functions is 8.

Next, in Fig. 3(b), we compared the CPU time between
the two integrations versus the accuracy. From the figure, we
observe that approximate integration is much more efficient
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Fig. 9. Eigenvectors of modes 1, 3, 5, and 8 with the fifth-order basis functions. The normalized effective mass is 1 both inside and outside of the quantum dot.

than exact integration, given a fixed accuracy requirement.
For example, to reach an accuracy better than 10−6, the ap-
proximate integration will be 131 times faster than the exact
integration.

In general, assembling and solving the system require O(N2)
and O(N3) operations, respectively. In this example, most
of the CPU time was consumed in the assembling process,
because of the small number of unknowns. Since the two inte-
gration methods affect only the assembling time, the difference
of the CPU time would reduce if the number of unknowns
increase. However, approximate integration yields a diagonal
mass matrix and more sparse stiffness matrices, giving further
improvement in the CPU time over exact integration. As such,
approximate integration is used in the following examples.

To compare the efficiency and the accuracy of the SEM and
FEM, the required CPU time and memory for an accuracy
better than 1% for the fundamental eigenvalue are compared in
Table II. The conventional FEM requires 245 times more CPU
time and 652 times more memory than SEM.

The second example is a homogeneous sphere model of
a = 1 nm in a radius with V = 0 inside the sphere. The analytic
eigenvalues of this model are the zeros of the spherical Bessel
function

jn(ka) = 0, n = 0, 1, 2, . . . (28)

where k = π
√

m(E − V ). Table III shows the lowest ten
eigenvalues by means of analytical solution. In the SEM, the
sphere is divided by seven (curved) elements as shown in

Fig. 4. We analyzed the sphere model with geometrical orders
from Mξ = Mη = Mζ = 2 to Mξ = Mη = Mζ = 9 and in-
terpolation orders Nξ = Nη = Nζ = 1 to Nξ = Nη = Nζ = 9
(the so-called p-refinement) for each geometrical order, requir-
ing 72 different eigenvalue calculations. Fig. 5 shows errors
of the fundamental eigenvalue calculated by the SEM. We
observe that the error is below 1% for the fourth-order basis
function with the second-order geometrical modeling, or the
third-order basis functions with third-order geometrical model-
ing, or the second-order basis functions with higher than third-
order geometrical modeling. We also note that the convergence
properties with respect to the interpolation orders depend on
the geometrical orders. For example, the error of the fifth-
order geometrical modeling does not decrease anymore after
the sixth-order basis functions. Therefore, the accuracy of SEM
is limited by geometrical orders due to the inherent geomet-
rical error of the model. In other words, the p-refinement can
improve the results, but its accuracy is limited by an inherent
geometrical model error.

The errors of higher eigenvalues of the sphere model for
some higher geometrical orders are also shown in Fig. 6.
Similar to the fundamental mode, the errors are limited at 0.3%
for third-order geometrical modeling and 0.03% for fifth-order
geometrical modeling, whereas errors decrease exponentially
with the interpolation orders for the ninth-order geometrical
modeling.

It is noted that the geometrical orders are entirely indepen-
dent of the interpolation orders. Therefore, as the order of geo-
metrical modeling increases, the number of unknowns will not
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Fig. 10. Geometry of a rectangular waveguide with three spherical quantum
dots. The dimensions of the waveguide are a = 2 nm, b = 2 nm, and L =
14 nm. The radius of the quantum dots is 0.75 nm and the distance between
quantum dots is 1 nm. The normalized potential is 0 and 2 inside and outside
the quantum dots, respectively. Geometrical orders are (Mξ = Mη = Mζ) =
6 for curved elements and (Mξ = Mη = Mζ) = 1 for straight orthogonal
elements.

increase; it merely requires more CPU time for the calculation
of Jacobian matrices. In other words, increasing the geometrical
orders of a curved structure can give more accurate results with
little increase in the total CPU time.

B. A Quantum Dot

Next, consider a cubic quantum dot shown in Fig. 7. The
dimension of the quantum dot is 1 nm × 1 nm × 1 nm with the
potential V = 0 and the normalized effective mass m = 2, and
is surrounded by a cube of dimension 3 nm × 3 nm × 3 nm,
with V = 2 and m = 1. Wave functions on the outer boundary
are assumed zero. This problem does not have an analytical
solution, so a high-order result (Nξ = Nη = Nζ = 5) serves
as a reference. The model is divided into 27 elements with an
orthogonal mesh. Fig. 8 shows the relative errors of eigenvalues
for several modes. Since eigenvalues of mode 2, mode 3, and
mode 4 are the same, only mode 1, mode 4, and mode 8 are
considered in the calculation of errors.

Fig. 9 shows eigenvectors obtained by using (11) at the
center of the xy plane (z = 1.5 nm).

C. Quantum Dots in a Waveguide

Finally, we considered a rectangular waveguide of length
L = 14 nm with three spherical quantum dots, as illustrated
in Fig. 10. The potential function V = 0 for the quantum dots,
and V = 2 in the surrounding waveguide; the outer boundary of
the waveguide walls satisfies the Dirichlet boundary condition.
Geometrical orders Mξ = Mη = Mζ = 6 is used for curved
elements and Mξ = Mη = Mζ = 1 for straight orthogonal el-
ements. An electron beam is propagating along a straight rec-
tangular waveguide (x direction) with the fundamental guided
mode. The incident electron wave is described by ϕinc. The
centers of quantum dots are located at (x, y, z) = (5, 1, 1),
(7,1,1), and (9,1,1), respectively. In quantum-dot device design,
determination of the reflected and transmitted portions of elec-
trons is very important. In this configuration, we assume that
the incoming electron energy E is low enough that only the
dominant mode can propagate along the waveguide. The elec-

Fig. 11. (a) Reflection and (b) transmission coefficients as functions of the
normalized electron energy. (c) Error of |R|2 + |T |2 − 1.

tron wave can be expressed as the summation of the incident
and reflected waves as

ϕ = ϕinc + ϕr

= ϕ0e−jkxx + Rϕ0e jkxx, x ≤ 0 (29)

to the left of the waveguide, where R is the reflection coef-
ficient, kx = π

√
m(E − V ) − [(1/a2) + (1/b2)] is the propa-

gation constant along the waveguide, and ϕ0 is given by

ϕ0(y, z) = sin
(πy

a

)
sin

(πz

a

)
. (30)
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Fig. 12. Contours of wave function on the xy plane (z = 1 nm). Interpolation orders Nξ = Nη = Nζ = 6. At the given normalized electron energy,
(a) E = 2.78 and |R| = 0.654, |T | = 0.756; or (b) E = 3.10 and |R| = 0, |T | = 1.
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Similarly, the transmitted wave to the right of the waveguide
can be expressed as

ϕ = ϕt

= Tϕ0e−jkxx, x ≥ L (31)

where T is the transmission coefficient.
To apply the boundary condition (2), we took the derivative

of (29) with respect to x as

∂ϕ

∂x
= jkxϕ − 2jkxϕ0e−jkxx. (32)

Similarly, we obtained the boundary condition of (31) as

∂ϕ

∂x
= −jkxϕ. (33)

Substituting (32) and (33) into (2) and (15), together with the
Dirichlet boundary condition on the waveguide walls, one can
obtain final (17) for the analysis of this waveguide model.

We analyzed this problem with basis functions of order from
Nξ = Nη = Nζ = 4 to Nξ = Nη = Nζ = 7, in the range of
normalized eigenenergy from 2.52 to 3.60 with an increment
of 0.02. The number of unknowns for each interpolation orders
are 7589, 15 216, 26 755, and 43 016, respectively.

Once the wave function has been found, the reflection and
transmission coefficient can be calculated as

R =
4
ab

∫
ϕr(x1, y, z)ϕ0(y, z)dydz (34)

T =
4
ab

∫
ϕt(x2, y, z)ϕ0(y, z)dydz (35)

where x1 = 0 denotes the position where the wave is incident,
and x2 = L denotes the position where the wave is transmitted.

Fig. 11 gives the magnitudes of the reflection and transmis-
sion coefficients as functions of the electron energy. We observe
that the two coefficients converge as the order is increased to
6. The reflection and transmission coefficients satisfy |R|2 +
|T |2 = 1. The maximum error of 1 − |R|2 − |T |2 is less than
10−10 for all interpolation orders.

Fig. 12 shows contours of the wave functions interpolated
on the xy plane (z = 1). In general, R 
= 0, except for some
specific energies. For example, when the normalized eigenen-
ergy is 2.78, wave functions to the left of the quantum dots
show the interference pattern between the incident and reflected
electronic waves because the reflection coefficient is nonzero at
this energy. However, if the normalized eigenenergy E = 3.10,
the reflection and transmission coefficients are 0 and 1, respec-
tively; thus the magnitudes of the wave functions to the left
and to the right of the quantum dots are uniform and are the
same as the incident wave. The CPU time for each analysis
with interpolation orders Nξ = Nη = Nζ = 6 is 532 s on a
Pentium IV 2.5-GHz computer. The SEM provides an efficient
alternative to the finite element and finite difference methods
for complex 3-D problems in nanodevice simulation.

V. CONCLUSION

We have presented an efficient 3-D SEM to solve the Schrö-
dinger equation in nanodevice simulation. The basis functions
are the Lagrange–Legendre polynomials on curved hexahe-
dron elements. The geometrical model of curved structures is
achieved by high-order polynomials. From the eigenvalue
analysis, it is demonstrated that the proposed method gives a
spectral accuracy with increasing interpolation orders. In as-
sembling the system matrix, the approximate GLL quadrature
integration is superior to exact integration because it gives
a diagonal mass matrix and a more sparse stiffness matrix.
It is demonstrated that the high-order geometrical model is
essential for high accuracy if curved elements are involved.
Since geometrical orders are entirely independent of the basis-
function orders, increasing the geometrical orders of a curved
structure can give more accurate results with little increase in
CPU time. Numerical examples demonstrate that the SEM is a
highly efficient alternative method for solving the Schrödinger
equation in nanodevice simulation. Future research will focus
on its application in the self-consistent Schrödinger–Poisson
system.
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