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1 Introduction

In these lecture notes some mathematical aspects of finite and spectral element discretiz-
ations for partial differential equations are presented. The mathematics in these notes is
not used to prove theorems and error estimates but only to obtain a better understanding
of some aspects concerning the discretization of partial differential equations. As a con-
sequence only little attention is paid on precise and formal mathematical fundamentals
of the methods.
In section 2, the weighted residual method is introduced and several kinds of collocation
(finite difference and finite volume) and Galerkin (spectral and finite element) methods
are derived as particular cases to that method. Furthermore, the concept of the spectral
methods is described and an example of the application of the spectral element method
to a second-order elliptic equation provides the reader a practical information about it.
Next, some direct and iterative methods to solve the resulting linear algebraic systems
are described. At the end of the section some stabilization methods frequently used in the
finite or spectral element formulations of convection-diffusion equations are introduced.
In section 3 an overview of the most commonly used time integration methods for unsteady
problems is given in the context of the spectral space discretization. The possibilities to
combine them using operator splitting are also discussed. At the end of this section,
results of their practical application to some convection-diffusion problems are presented.
In section 4 different approaches for solution of the steady and unsteady Navier-Stokes
are introduced in the context of the spectral and finite element methods. Some results of
the practical implementation of SEM to 2-D problems are presented.
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2 Spatial discretization of partial differential equa-

tions

2.1 Introduction

Finite volume, finite element, spectral and also finite difference methods may be viewed
as a specific application of the method of weighted residuals. In general the method
of weighted residuals employs expansion functions 1 as basis functions for a truncated
series expansion of the solution of the partial differential equation. In order to ensure
that the approximate solution, defined by the truncated series expansion, satisfies the
differential equation as closely as possible, test functions 2 are used to minimize the
residual that is formed when the approximate solution is substituted into the partial
differential equations. The combination of expansion and test functions distinguishes
between the different spatial discretization methods mentioned above.

2.1.1 Strong formulation of a partial differential equation

To illustrate the framework of the weighted residual method consider a domain Ω with
boundary Γ and assume that f : Ω→ IR is a given function. Then consider the following
differential equation:


Lu− f = 0 in Ω

u = uΓ on Γ
(1)

Here L is a continuous positive-definite differential operator. As an example we will
consider the diffusion equation:


−∂

2u

∂x2
= f in [0, 1]

u(0) = 0 u(1) = 1

(2)

2.1.2 Weighted residual formulation of a partial differential equation

If a set of trial functions, denoted by U , is defined as U = {u|u ∈ H2(Ω), u = uΓ on Γ}
and a set of test functions, denoted by W , is defined asW = {w|w ∈ L2(Ω), w = 0 on Γ},
a corresponding form of equation (1) is:

Find u ∈ U such that:
(Lu− f, w)

W
= 0 ∀w∈W (3)

Actually this form ensures the projection of the function Lu − f on W to be zero. In
terms of the L2(Ω) inner product (3) reads:

1The expansion functions are also called trial or approximating functions.
2The test functions are also referred to as weighting functions.
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Find u ∈ U such that:∫
Ω

(Lu− f)wdΩ = 0 ∀w∈W (4)

The next step in the discretization scheme is to choose a finite dimensional subspace
Uh ⊂ U with basis ϕi, (i = 0, ..., N). The trial functions ϕi are used as basis functions for
a truncated series expansion of the solution. The approximate solution uh ∈ Uh is then
written as:

uh =
N∑
i=0

ciϕi (5)

Depending on the choice of the space Uh, either the exact differential operator L or
an appropriate discrete differential operator Lh can be used. If this approximation is
substituted in the differential equation (1), it will not be identically zero but: Lhuh−f =
rh in Ω where rh is called the residual of the equation.
The expansion coefficients ci are the unknowns that can be obtained by requiring the
residual to be zero in the L2-norm: (r

h, w)
W
= 0, ∀w∈W 3. Since the approximate solution

and thus rh now is an element of a finite dimensional subspace of U , also the space of
test functions W can be reduced to a finite dimensional subspace W h ⊂ W . To this end
a basis ψj (j = 0, ..., N) of test functions is introduced such that W

h = {ψj}Ni=0 and the
discrete weighted-residual formulation then reads:

Find uh ∈ Uh such that:

(Lhuh − f, wh)
W
= 0 ∀wh∈Wh (6)

or equivalently again using the L2-inner product:

Find ci, (i = 0, ...N) such that:

N∑
i=0

ci

∫
Ω

(Lhϕi)ψjdΩ =
∫
Ω

fψjdΩ j = 0, ..., N (7)

In matrix notation this yields:

Lc = f (8)

with:

Lij =
∫
Ω

(Lhϕj)ψidΩ, fi =
∫
Ω

fψidΩ. (9)

and c = [c0, ..., cN ]
T , f = [f0, ..., fN ]

T . Once the coefficients ci are obtained from the set
of equations (8) the approximate solution uh of the partial differential equation (1) can
be computed from (5).
Different choice for the test function ψj results in different discretization methods. Some
of them will be mentioned in (2.1.4÷2.1.6).
3Least square methods minimize (rh, rh)

W
.
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2.1.3 Weak formulation of a partial differential equation

If L is a second order differential operator (that is the case with a lot of the equations
of the mathematical physics) it is convenient to perform an integration by parts of the
weighted residual form (3). In many cases an equivalent bilinear form a(u, w)

W
can be

derived such that (1) can be written as:
Find u ∈ U such that:

a(u, w)
W
= (f, w)

W
∀w∈W (10)

For the diffusion equation (2) we find:

a(u, w)
W
= (

∂u

∂x
,
∂w

∂x
)
W

(11)

According to the Lax-Milgram theorem (see Appendix A2), this problem has a unique
solution u equivalent to the one of the original differential equation if the bilinear form
a(u, w) is coercive on W (positive definite) and bounded.
Note that the inner product (∂u

∂x
, ∂w
∂x
) requires that now both U ⊂ H1(Ω) andW ⊂ H1(Ω).

This weakens the restriction for u (originally u ∈ H2(Ω) for second order differential equa-
tions). Often the weak formulation is derived from a variational form of a minimization
problem and is referred to as the variational formulation of the differential equations (see
e.g. Reddy and Rasmussen, 1982).
The integration by parts results in boundary integrals which vanish on the parts of the
boundary where Dirichlet boundary conditions are prescribed. On the rest of the bound-
ary the boundary conditions have to be formulated in a form which enables the evaluation
of these integrals - so called natural boundary conditions of the problem.

2.1.4 Point collocation methods

In point collocation methods collocation points xj are defined in Ω and the test functions
ψj are chosen to be the Dirac delta functions according to:

ψj(x) = δ(x− xj) (12)

Substitution in the weighted residual equation (7) then yields:

Find uh such that:

Lhuh|x=xj = f(xj) j = 0, ..., N (13)

The residual rh is forced to be zero in the set of collocation points {xj}Nj=1. Typical
examples of point collocation methods are:

Orthogonal collocation methods :
The approximating functions are chosen to be orthogonal polynomials in W i.e.:

(φi, φj)W = 0 for i 6= j (14)

Examples of orthogonal polynomials that are commonly used are Legendre and
Chebyshev polynomials. The coefficients ci of the truncated expansion functions
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(5) are chosen to be the values (ui) of the approximate solution in the collocation
points. As the polynomials are analytical functions, the discrete differential operator
Lh can be equal to the original operator L but also a discrete version can be derived if
the derivatives are expressed in terms of the coefficients of the approximate solution.
An extended description can be found in Canuto et al. (1988).

Finite difference methods : The finite difference method can be seen as a point colloc-
ation method without the use of an approximate solution. Here a discrete differential
operator Lh is derived using truncated Taylor-series around the collocation points:

Find u(xj) such that:

Lhu|x=xj = f(xj) j = 0, ..., N (15)

The error of finite difference approximations is determined by both the number
of collocation points chosen and the truncation error in the Taylor series used to
approximate the differential operator. In Hirsch (1988) the finite difference method
is treated in details.

2.1.5 Domain collocation methods

In domain collocation methods subdomains Ωj are defined in Ω and the test functions ψj
are chosen to be functions according to:

ψj(x) =

{
1 for x ∈ Ωj
0 for x 6∈ Ωj (16)

Equation (6) then yields:

Find uh such that:∫
Ωj

(Lhuh − f)dΩj = 0 j = 0, ..., N (17)

Typical examples of domain collocation methods are:

Finite volume methods : Similar to finite difference methods there is no explicit in-
troduction of an approximate solution. The volume integrals over the subdomains
Ωj are mostly expressed in surface integrals using Green’s theorem. The approxim-
ation error is determined by both the number of subdomains and the accuracy of
the integration method used. In Hirsch (1988) the finite volume method is treated
in details.

2.1.6 Galerkin methods

If the spaces Uh and W h are chosen to be the same and the weak formulation (10) is used
as a starting point the method is called a Galerkin weighted-residual method:
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Find uh ∈ Uh such that:

a(uh, wh)
W
= (f, wh)

W
∀wh∈Wh (18)

Let u be the exact solution of the weighted-residual formulation (3). Then since Uh ⊂ U
it follows:

a(u, wh)U = (f, w
h)U , ∀wh ∈ Uh (19)

Subtracting (19) from (18):

(L(uh − u), wh)U = 0, ∀wh ∈ Uh (20)

which may be interpreted as an orthogonal condition: the error e = u−uh of the Galerkin
approximation uh of the solution of (3) is orthogonal (in U -sense) to the subspace Uh.
Now suppose that a(u, w) is a symmetric and positive definite: a(u, w) = a(w, u) and
a(u, u) ≥ 0, ∀u, w ∈ U ; a(u, u) = 0⇐⇒ u ≡ 0. Then for arbitrary wh ∈ Uh:

a(u− wh, u− wh) = a(e+ (uh − wh), e+ (uh − wh)) (21)

= a(e, e) + a(uh − wh, uh − wh) (22)

where (20) is used. Since a is positive definite it follows that a(u − wh, u − wh) reaches
its minimum for wh = uh, i.e. from all the functions wh ∈ Uh the closest to the actual
solution u (in the norm of Uh) is the Galerkin approximation uh. That is why it is called
the best approximation to u in Uh.
In case that a(uh, wh) is continuous and positive definite on Uh the Lax-Milgram lemma
holds and the Galerkin problem (18) has an unique solution. It is important to know
that it may possess an unique solution even if the weighted-residual formulation (3) may
not because in the approximate (Galerkin) problem we require a(uh, wh) to be positive
definite on a certain subspace of U but not in the whole U .
Typical examples of a Galerkin methods are:

Galerkin spectral methods : For spectral methods the trial functions are infinitely
differentiable global functions. A more detailed description of spectral methods is
given in section 2.2.

Galerkin finite element methods : In finite element methods, the domain Ω is di-
vided into elements, and trial functions are specified in each element and are local
in character (see section 2.3).

.

2.1.7 Numerical integration

All the methods which start from an integral formulation of the conservation laws (typical
examples are the finite element method, finite volume method and the spectral methods),
require evaluation of volume or surface integrals. Some of them (like the finite volume
method) evaluate these integrals by means of a simple trapezoidal rule which retains
the accuracy of the method. The higher order methods, however, require higher order
integration rules. Common feature of these methods (except the Fourier spectral methods)
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is that the solution is expanded over a certain polynomial basis. Thus, they require the
calculation of integrals of polynomials of certain order. The quadratures derived from
the requirement to be exact for all the polynomials of certain order are called Gauss
quadratures. The derivation of such quadratures proceeds as follows. The general formula
for numerical integration can be written as:

b∫
a

p(ξ)f(ξ)dξ =
N∑
i=0

wif(ξi) +RN(f) (23)

where p(ξ) is the weight function of the integration satisfying p(ξ) ≥ 0 and b∫
a
p(ξ)dξ > 0

and RN (f) is the error of the quadrature. The Gauss numerical integration problem
then formulates as: find wi and ξi such that RN (f) ≡ 0 for polynomials of the maximal
possible degree. Since (23) contains 2N+2 free parameters it cannot be generally exact
for polynomials of order higher than 2N + 1. Let Q0 = 1, Q1, ..., QN , ... is the system of
orthogonal polynomials with respect to the weight function p(ξ), i.e.:

b∫
a

p(ξ)QiQjdξ = δij , i, j = 0, ..., N, ... (24)

with δij being the Cronecker symbol. Note that for a given p(ξ) the system Qi is uniquely
determined by (24). In case of finite element methods and many of the spectral methods
p(x) = 1 and the corresponding orthogonal system consists of the so-called Legendre
polynomials (see 2.2.2). Another important particular case is the system of Chebyshev
polynomials orthogonal with respect to p(ξ) = 1/

√
1− ξ2 which is used as a basis for

some spectral methods (see 2.2.2). Let we take {ξi}Ni=0 to be the zeros of QN+1. Then
(23) defines unique sequence {wi}Ni=0 such that it is exact for all the polynomials of order
N . We shall prove now that RN(f) ≡ 0 for all the polynomials of order 2N + 1. Let Φ is
an arbitrary polynomial of order 2N + 1. Then we can write it as:

Φ(ξ) = QN+1(ξ)q(ξ) + r(ξ), q, r ∈ PN (25)

with PN being the linear space consisting of all the polynomials of order less or equal to
N . From (24) and (25) it follows that:

b∫
a

p(ξ)Φ(ξ)dξ =

b∫
a

p(ξ)QN(ξ)q(ξ)dξ +

b∫
a

p(ξ)r(ξ)dξ (26)

=

b∫
a

p(ξ)r(ξ)dξ (27)

But since Φ(ξi) = r(ξi) (ξi are zeros of QN+1) then:

b∫
a

p(ξ)Φ(ξ)dξ ≡
N∑
i=0

wiΦ(ξi) (28)

The opposite can also be proved, i.e. if (23) is exact for all the polynomials of order
2N + 1 than {ξi}Ni=0 must be the zeros of QN+1 and {wi}Ni=0 should be chosen as given
above.
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In the most important cases of Legendre and Chebyshev orthogonal systems the weights
and nodes of the corresponding quadratures are given below.

Chebyshev-Gauss :
The Gauss points are:

xj = cos
(2j + 1)π

2N + 2
(29)

The weights for numerical integration are:

wj =
π

N + 1
0 ≤ j ≤ N (30)

Legendre-Gauss :
The Gauss points are:

xj = zeroes of LN+1 0 ≤ j ≤ N (31)

The weights for numerical integration are:

wj =
2

(1− x2j )[LN+1(xj)]2
j = 0, ..., N (32)

For many practical needs it is convenient to include the edges of the interval among the
nodes of the quadrature. Since the number of the free parameters in (23) is than 2N
one can expect that the resulting quadrature cannot be generally exact for polynomials
of order higher than 2N − 1. Indeed, in a way similar to the one described above, a
quadrature can be constructed which is exact for all the polynomials of order 2N − 1 and
not exact for all the polynomials 2N . It is called Gauss-Lobatto quadrature. In the case of
Chebyshev and Legendre orthogonal systems the nodes and weights of the corresponding
quadratures read:

Chebyshev-Gauss-Lobatto :
The Gauss-Lobatto points are:

xj = cos
πj

N
(33)

The weights for numerical integration are:

w0 =
π

2N
, wj =

π

N
, wN =

π

2N
1 ≤ j ≤ N − 1 (34)

Legendre-Gauss-Lobatto :
The Gauss-Lobatto points are:

x0 = −1, xj = zeroes of L
′
N , xN = 1 1 ≤ j ≤ N − 1 (35)

The weights for numerical integration are:

wj =
2

N(N + 1)

1

[LN (xj)]2
j = 0, ..., N (36)
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For more detailed information on Gauss and Gauss-Lobatto integration the reader is
referred to Canuto et al. (1988).

Example 1 Legendre-Gauss-Lobatto integration of polynomials.

Let we choose N = 3. The Gauss-Legendre-Lobatto points then are:

− ξo = ξ3 = 1,−ξ1 = ξ2 = 0.4472... (37)

and the corresponding weights:

w0 = w3 =
1

6
, w1 = w2 =

5

6
(38)

The integral:

1∫
−1
(1 + ξ + ξ2 + ξ3 + ξ4 + ξ5)dξ = 3.0666... (39)

is exactly calculated by means of GLL quadrature (check it).
Consider the integral:

1∫
−1
ξ6dξ =

2

7
= 0.2857... (40)

The GLL quadrature for N = 3 yields a value of 0.3466... which is about 20% higher.
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2.2 Spectral methods

2.2.1 Spectral approximation

As mentioned, in the weighted residual method the solution u ∈ U is expanded in a series
of expansion functions:

u =
∞∑
i=0

ciϕi (41)

with ci being the expansion coefficients and ϕi belonging to the orthogonal set of trial
functions. The orthogonality with respect to a weight function w is defined by:

1∫
−1
ϕi(x)ϕj(x)w(x)dx = δij (42)

Then the coefficients ci in (41) are given by the weighted inner product:

ci =
1

‖ϕi‖2
1∫
−1
u(x)ϕi(x)w(x)dx (43)

with:

‖ϕi‖2 =
1∫
−1
ϕi(x)ϕi(x)w(x)dx (44)

The expansion (41) underlies all the spectral methods. A classical example of such a
method is the Fourier spectral method using the set of functions:

ϕi(x) = e
ikx (45)

which is orthogonal in the interval (0, 2π) with weight 1. If u is infinitely smooth and
periodic together with all its derivatives then the k-th coefficient of the expansion decays
faster than any inverse power of k. In practice, of course, this never happens but this
property (called spectral accuracy) is attainable also for non-periodic but smooth func-
tions provided that the orthogonal set is properly constructed. Another classical result
of the approximation theory (Gottlieb and Orszag, 1977) is that for analytical functions
exponential (or spectral) decay of the coefficients can be obtained for trial functions that
are eigenfunctions of singular Sturm-Liouville problems defined on Ω = (−1, 1).

− d

dx

(
a(x)

dϕi

dx

)
+ b(x)ϕi = λiw(x)ϕi, a > 0, b ≥ 0 (46)

In general, polynomial solutions of singular Sturm-Liouville problems are Jacobi poly-
nomials like Chebyshev and Legendre polynomials (see section 2.2.2). Since the Jacobi
polynomials are mutually orthogonal over the interval (-1,1) it can be proven that ∀u∈U :

lim
N→∞

‖u− P h
Nu‖U = 0 (47)
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If u ∈ Hm(Ω) so say if u ism times differentiable the truncation error can be approximated
by (Canuto et al., 1988):

‖u− P h
Nu‖L2 ≤ C1N

−m‖u‖Hm (48)

So an exponential convergence is obtained for infinitely smooth functions.
In practice, instead of (41) a finite expansion is used represented by the truncated series:

P h
Nu =

N∑
i=0

ciϕi (49)

In spectral methods convergence is achieved by increasing N .

2.2.2 Chebyshev and Legendre polynomials

The most commonly used special cases of Jacobi polynomials are the Chebishev and
Legendre polynomials.

Chebyshev polynomials If in (46) we take a(x) = (1 − x2)1/2, b(x) = 0 and w(x) =
(1− x2)−1/2 the solutions are Chebyshev polynomials given by the recurrence relation:


T0(x) = 1
T1(x) = x
Tn+1(x) = 2xTn(x)− Tn−1(x)

(50)

Legendre polynomials If in (46) we take a(x) = (1− x2), b(x) = 0 and w(x) = 1 the
solutions are Legendre polynomials given by the recurrence relation:


L0(x) = 1
L1(x) = x
Ln+1(x) =

2n+1
n+1

xLn(x)− n
n+1

Ln−1(x)
(51)
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Figure 1: Chebyshev and Legendre polynomials for n = 1, ...5.
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Note that for Legendre polynomials the weight function w is defined by w(x) = 1 which
easily enables an integration by parts in Galerkin formulations of second order differential
equations. For Chebyshev polynomials, where w is given by w(x) = (1 − x2)−1/2 this is
not the case. It is for this reason that in weak formulations mostly Legendre polynomials
are used.

2.2.3 Pseudospectral approximation

Actually the spectral approximation defines a transform from the physical space to the
spectral space (like the Fourier coefficients in a Fourier transform). The coefficients ci
in the spectral approximation depend on all the values of u(x) in the physical space and
can only be computed by numerical integration. Since this can not be performed exactly
for arbitrary functions u(x), in pseudospectral methods a set of approximate coefficients
ĉi is derived using an interpolating polynomial Π

h
Nu(x) of u(x) defined by a finite set of

interpolation points. So, an interpolant is constructed as:

ΠhNu =
N∑
i=0

ĉiϕi (52)

The interpolating polynomial satisfies

ΠhNu(xk) = u(xk), k = 0, ..., N (53)

If xk and wk are the quadrature points and weights of some numerical quadrature rule,
the discrete coefficients ĉi can be approximated by:

ĉi =
1

‖ϕi‖2
N∑
k=0

u(xk)ϕi(xk)wk (54)

with

‖ϕi‖2 =
N∑
k=0

ϕi(xk)ϕi(xk)wk (55)

It can be shown that spectral convergence is retained in replacing the continuous transform
(49) by the interpolating polynomial (52) if the interpolation points are the corresponding
Gauss-type quadrature points. The interpolation error then can be approximated by
(Canuto et al., 1988):

‖u− ΠhNu‖L2 ≤ C2N
1/2N−m‖u‖Hm (56)

Still the coefficients ĉi have to be computed from (54). In practice, however, the in-
terpolation polynomials are written as a linear combination of Lagrange interpolation
polynomials through the Gauss-type quadrature points:

ΠhNu =
N∑
i=0

uiφi (57)

in this way the coefficients are just given by the value of the function in the interpolation
points ui = u(xi).
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Chebyshev-Gauss-Lobatto-Lagrange interpolation polynomials :
The basisfunctions φi then are given by:

φi =
(−1)i+1
αin2

(1− x2)T ′n(x)
x− xi (58)

with αi = 1(i = 1, ..., N − 1), α0 = αN = 2.
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0.0
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−1 −0.5 0 0.5 1

φi(x)

x

i = 0
i = 2
i = 3
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Figure 2: Lagrange interpolants φi(x) (i = 0, . . . , N) through the Chebyshev Gauss-
Lobatto points (•) for N = 2 (left) and N = 6 (right).

Legendre-Gauss-Lobatto-Lagrange interpolation polynomials :
The basisfunctions φi then are given by:

φi =
−1

N(N + 1)LN(xi)

(1− x2)L′N (x)
x− xi (59)

In summary, it has been shown that the interpolation error of Lagrange interpolation poly-
nomials shows spectral convergence if the interpolation points are Gauss-type quadrature
points corresponding with Jacobi polynomials. In practice the Gauss-Lobatto points are
taken in order to be able to prescribe function values at the boundary. The Gauss points
are all located in the internal of the domain. As the weight function for Legendre polyno-
mials is given by w = 1, for combination with variational (weak) formulations of partial
differential equations Legendre polynomials are more suitable then Chebyshev polynomi-
als.

2.3 Spectral element methods (SEM)

2.3.1 General remarks

Spectral elements, proposed by Patera (1984), combine the advantages and disadvantages
of Galerkin spectral methods with those of finite element methods by a simple application
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Figure 3: Lagrange interpolants φi(x) (i = 0, . . . , N) through the Legendre Gauss-Lobatto
points (•) for N = 2 (left) and N = 6 (right).

of the spectral method per element. This means that, like in finite element methods, the
domain is divided into Nel non-overlapping subdomains (elements) Ωe:

Ω̄ =
Nel⋃
e=1

Ω̄e,
Nel⋂
e=1

Ωe = ∅ (60)

Again the space of approximation Uh is taken to be:

Uh = {u ∈ U | u|Ωe ∈ PN(Ωe)} (61)

where PN(Ωe) denotes the space of polynomials in Ωe of degree ≤ N . Convergence is
either obtained by increasing the degree of the polynomials or by increasing the number
of elements Nel. The basis functions φi are typically high-order Lagrange interpolation
polynomials through the local Gauss-Lobatto integration points defined per element.
If Nel = 1 we obtain a spectral Galerkin method of order Nnd − 1. If N = 1 or N = 2
a standard Galerkin finite element method is obtained based on linear and quadratic
elements repectively.

2.3.2 Spectral element treatment of elliptic equations: 1-D example.

Consider the one-dimensional Helmholtz problem:
Find u defined over Ω = [−1, 1] such that:

− d

dx
(η
du

dx
) + λ2u = f in Ω (62)

u(−1) = u(1) = 0 (63)

where λ is a real number and η(x) is a function defined over Ω, bounded and positive.
The starting point of the spectral element discretization is the Galerkin formulation of
(62)-(63) which reads: Find u ∈ H10 (Ω) such that

∀v ∈ H10 (Ω), a(u, v) = (f, v) (64)
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where the continuous bilinear form a is defined as

a(u, v) =
∫
Ω

η
du

dx

dv

dx
dx+ λ2

∫
Ω

u(x)v(x)dx (65)

Further, the domain Ω is divided in K non-overlapping subdomains Ωk. Since u, v ∈
H1(Ω) the integrals in (64) can be decomposed as sums of the same integrals over Ωk, k =
1, K

K∑
k=1

[
∫
Ωk

p
du

dx
(x)

dv

dx
(x)dx+ λ2

∫
Ωk

u(x)v(x)dx] =
K∑
k=1

∫
Ωk

f(x)v(x)dx (66)

In order to complete the discretization one has to choose an approximation space for u:
Xh ⊂ H10 and a quadrature for the evaluation of the integrals in (66). Similar to the
case of pseudospectral approximation discussed above the basis of Xh is formed of the
elemental Lagrangian interpolants through the Gauss-Lobatto points in Ωk extended with
0 outside the k-th element. Thus, the restriction of the solution u on Ωk is approximated
with ΠhN,ku:

ΠhN,ku =
N∑
j=0

ukjφ
k
j in Ωk (67)

with φkj defined similarly to the one in (59) but for the interval Ωk. Substitution of (67)
into (66) and and choosing v = φki , i = 0, ..., N ; k = 1, ..., K one finally arrives at a linear
system of equations with respect to ukj :

K∑
k=1

N∑
j=o

Ck
iju

k
j =

K∑
k=1

fki , i = 0, N (68)

where

Ck
ij =

∫
Ωk

(η
dφki
dx

dφkj
dx
+ λ2φki φ

k
j )dx (69)

fki =
∫
Ωk

fφki dx (70)

Here some comments on the choice of the basis of the approximation space Xh are in
order. Note that the global interpolant:

uh =
K∑
k=1

N∑
j=0

ukjφ
k
j (71)

has to be in H1(Ω) which requires its continuity over the elemental boundaries. The
choice of Gauss-Lobatto Lagrangian interpolants as a local basis allows us to impose
very easy this requirement by just setting uk0 = uk−1N and ukN = uk+10 , k = 2, ..., K − 1.
Moreover, in that way the elements are coupled only at the elemental boundaries resulting
in a simple implementation and a relatively sparse matrix. The eventual use of Gauss
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Lagrangian interpolants would either couple all nodes of all the elements or would result
in a discontinuous approximation.
The integrals in (69)-(70) have to be evaluated by means of a numerical quadrature. First,
we use an affine mapping Λk

−1 of each element Ωk into the standard interval [−1, 1]:
x = Λk(ξ). An integral of the type:

∫
Ωk

r(x)dx is than transformed to:
1∫
−1
r(ξ)Jkdξ where

Jk is the determinant of the Jacobian of the transform Λk. This transform facilitates
the implementation of the method. Moreover, in 2- and 3-D case it allows the usage
of complex-shaped isoparametric elements and thus handling of complicated geometries.
The choice of a quadrature formula is determined by the requirement that the integration
error has to be of the same order or smaller than the approximation error. The quantities
to be integrated are polynomials of order 2N − 2 in the case of the stiffness matrix and
2N in the case of the mass matrix. This suggests a Gauss type formula associated with
the Legendre polynomials because such a formula based on N + 1 nodes is exact for
polynomials of order 2N +1. It is very attractive to use a Gauss quadrature based on the
Legendre-Gauss-Lobatto points in [−1, 1]. This choice combined with the basic functions
introduced above would result in a diagonal mass matrix which will prove important in
the context of iterative or time-dependent procedures latter on. Moreover, in 2-D and 3-D
case it allows a dramatic decrease of the number of operations and storage requirements for
the construction of the stiffness matrix as well. The disadvantage is that this quadrature
is exact only for polynomials of order 2N−1. Maday and Patera (1989) proved , however,
that if u, f and p are analytical functions this quadrature preserves the most attractive
property of the spectral methods - their exponential convergence. If a Legendre-Gauss-
Lobatto quadrature is applied the elements of the matrix given by (69) become:

Ck
ij =

N∑
l=0

wlJkη(xl)
dφi

dξ
(ξl)

dφj

dξ
(ξl) +

N∑
l=0

wlJkλ
2φi(ξl)φj(ξl) (72)

where wl and ξl are respectively the Legendre-Gauss-Lobatto weights and points in [−1, 1]
(see 2.1.7) and xl are the points in Ωk corresponding to ξl after the transform Λk is used.
Note that the superscript k of the basic functions is skipped here because after the affine
mapping they become independent of the element. It is clear now that since the basic
functions are chosen to be the Lagrangian interpolants through ξi, i = 0, ..., N they satisfy:
φi(ξj) = δij . This simplifies considerably the second term on the right-hand side of (72)
corresponding to the mass matrix of the problem and it becomes: λ2Mk

ij = wiJkλ
2δij . In

the same manner the right-hand side finally becomes: fki =M
k
iif(xi).

2.3.3 Spectral element method in more dimensions

The extension of the method described in the previous section towards two- and three-
dimensional problems is straightforward. Just the more-dimensional basic functions are
constructed as a tensor product of the one-dimensional ones:

Ψlmn = φlφmφn, for l,m, n = 0, ..., N (73)

The Legendre-Gauss-Lobatto quadrature is also a tensor-product extension of the one-
dimensional quadrature with weights: wlmn = wlwmwn, l, m, n = 0, ..., N and nodes:
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ξlmn = (ξl, ξm, ξn), l, m, n = 0, ..., N . The final algebraic system then reads:

K∑
k=1

N∑
p,q,r=0

Ck
stvpqru

k
pqr =

K∑
k=1

N∑
p,q,r=0

Mk
stvpqrf

k
pqr (74)

for s, t, v = 0, ..., N . A direct computation of the residual on the left-hand side of (74)
would require O(N6) operations since one must sum over p, q, r = 0, ..., N for s, t, v =
0, ..., N . The storage requirement is of the same order since the matrix C is, in general,
full. Using, however, (73) and the fact that φi(ξj) = δij the number of operations for
evaluation of a stiffness matrix is reduced to O(N4) and the storage requirement O(N3).
The mass matrix is again diagonal. The estimation for the storage requirement is valid
only if an iterative method is used to invert the matrix requiring calculation only of
residual vectors. If a direct method is applied (Gauss elimination, for example) the
storage requirement increases a lot, depending on the storage strategy used. The choice
between a direct or iterative solver for the linear system depends mainly on the number of
degrees of freedom involved and the type of the available computer and will be discussed
in the section concerning the solution of the Navier-Stokes equations.
Now we can demonstrate the exponential convergence of the spectral element method on
a 2-D example possessing an analytical solution. We consider the Helmholtz equation on
a domain Ω = [0, 1]× [0, 2]:

∇2T − 2T = 0 in Ω (75)

T |∂Ω = ex+y (76)

The solution of this boundary value problem is: T = ex+y. Ω is divided into 2 square
elements and the problem is solved using increasing orders of the approximation. The
result for the maximum pointwise error of the spectral element solution is given in fig. 4.
A clear exponential convergence is obtained which is to be expected since the solution is
an analytical function.

2.4 Solution methods for the algebraic system of equations

2.4.1 Direct methods

All direct methods for linear systems of equations are some variations of the Gaussian
elimination technique. It is based on the fact that each non-singular matrix A can be
written (after pivoting eventually) as: A = LU where L is a lower triangular matrix with
a unit main diagonal and U is an upper triangular matrix (see Strang (1976)). If Au = f
is the system to be solved then it can be decomposed into:

Uu = y (77)

Ly = f (78)

(78) can be solved directly since L is a lower triangular matrix and then (77) can be
solved starting from the bottom. Further, if A is symmetric the decomposition reads:
A = LDLT where D is a diagonal matrix. If, in addition, A is also positive definite then:

A = GGT (79)
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Figure 4: Maximum pointwise error in the spectral element solution of (76) as a function
of the number of points in one direction

with G being a lower triangular matrix - the so called Cholesky decomposition. Thus, in
that case, if A is not time (or iteration) dependent, only one lower triangular matrix is
needed to be stored after the decomposition (79) is performed once. As it will be seen in
the next section this can be exploited in many cases when convection-diffusion or Navier-
Stokes equations are to be solved. This concerns, however, mainly 2-D problems because in
the 3-D case the storage requirement of the spectral (element) Cholesky decomposition is
unacceptable for most problems of practical interest. That is why some iterative methods
with less storage requirements have to be used.

2.4.2 Iterative methods

A basic iterative scheme (Richardson iteration) is given by:

Choose initial guess u0 (80)

uk = uk−1 + α(f − Suk−1) (81)

Here α is a relaxation parameter. An optimal value for it is given by:

αopt =
2

|λmin|+ |λmax| (82)

with λmin and λmax being the minimum and maximum eigenvalues of the matrix A. It
can be proven that the number of iterations to achieve certain accuracy is proportional
to the conditioning number of the matrix defined by: c(A) = λmax

λmin
. In the case of spectral

approximations it increases (see Canuto et al., 1988) as O(N4) with N being the max-
imum number of nodes in each spatial direction. In the case of spectral element method
it is experimentally found to be O(KeN

3) with Ke - the number of elements used. As a
consequence of the extremely ill-conditioning, the iterative scheme converges very slow.
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The only way to avoid that difficulty is to improve the conditioning of the spectral (ele-
ment) matrix. That is usually done by multiplying the linear system with the invert of a
matrix (called preconditioner) having eigenvalues close to those of A. There are different
ways to construct such a preconditioner. Most of them, however, are based on the idea to
use the invert of the matrix F resulting of some kind of finite difference or finite element
discretization of the partial differential equation on a grid consisting of the nodes of the
spectral or spectral element mesh (see fig. 5). Such a matrix is called spectrally equivalent
to A. Since it is based on the same points it can be expected to have eigenvalues closed
to those of A. Further, the iterative algorithm can be applied to the resulting system:

Figure 5: Spectral and corresponding finite element mesh.

F−1A = F−1f (83)

It reads:

Fu0 = f (84)

Fuk = Fuk−1 + α(f − AUk−1) (85)

An example of the distribution of the eigenvalues of the non-preconditioned and pre-
conditioned spectral element matrix resulting from the Poisson equation with Neumann
boundary conditions in [−1, 1]3 is given in fig. 6. The decrease of the conditioning num-
ber due to the preconditioning is dramatic, and what is more important, it increases very
slowly with the increase of the element order in the preconditioned case (see table 1).
The Richardson iteration has a convergence rate of order of c(A). In case that the matrix
A is symmetric and positive definite a substantial improvement can be achieved if a
conjugate gradient or conjugate residual iteration technique is used. Their convergence

rate is of order
√
c(A). For an extensive description of these methods the reader is referred

to Canuto et al. (1988).

2.5 Upwinding and other stabilization methods
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Figure 6: Block diagram of the eigenvalue density within certain range of the unpre-
conditioned (left) and preconditioned (right) SEM matrix using 1 element of 7-th order;
Poisson equation with Neumann boundary conditions.

Table 1: Condition number for spectral elements of several orders

type order of element
3 5 7

unpreconditioned 5862 42769 149000
preconditioned 4.88 5.19 5.57

2.5.1 Classical (finite difference) upwinding

As an example, the following classical differential equation is considered:


−∂
2u

∂x2
+ α

∂u

∂x
= 0 in Ω = (0, 1)

u(0) = 0

u(1) = 1

(86)

with the Peclet number α > 0 and exact solution the monotonously increasing function:

u(x) =
1− eαx
1− eα (87)

If we choose a second order difference approximation and a central difference approxima-
tion for the first derivative a discrete version of (86) is:




−uj−1 − 2uj + uj+1
h2

+ α
uj+1 − uj−1
2h

= 0 j = 1, ..., N − 1

u0 = 0

uN = 1

(88)

23



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

o o o o o o o o

o

o

o

* * * * * * * *
*

*

*

x

c(
x)

1D convection-diffusion Pe=32, h=0.1

---

-o-

-*-

exact

central

upwind

Figure 7: Exact and approximated solution for the 1D convection-diffusion equation with
α = 32 and ∆x = 0.1.

The exact solution of this tri-diagonal system is given by:

ui =
1− δi
1− δN with δ =

1 + 1
2
hα

1− 1
2
hα

(89)

If δ ≥ 0 or equivalently for h < 2/α the solution is monotonously increasing like the exact
solution. For δ < 0 and hereby h > 2/α , however, the solution ui behaves oscillatory
(see figure 7). Note that the condition h < 2/α is nothing more than the requirement for
diagonal dominance of the matrix to be inverted.
An often applied method to overcome the oscillatory behaviour of the solution is the use
of a backward difference operator instead of the central difference operator:



−uj−1 − 2uj + uj+1
h2

+ α
uj − uj−1

h
= 0 j = 1, ..., N − 1

u0 = 0
uN = 1

(90)

Now the resulting matrix is diagonal dominant for all h > 0 and no oscillations of the
solution will occur. If, however, Taylor expansions are substituted in (90), we obtain for
each collocation point xj :

− ∂2u

∂x2
|xj + α

∂u

∂x
|xj −

hα

2

∂2u

∂x2
|xj = O(h2) (91)

In other words extra diffusion with magnitude (hα/2) is added to obtain a stable solution.
The method then is only first order accurate and contains a mesh-depended diffusion. In
the next sections this idea of adding extra diffusion is applied to Galerkin methods yielding
the very popular streamline upwind methods described by Brooks and Hughes (1982) and
Johnson (1987).
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2.5.2 Streamline upwind (SU) stabilization

Consider the convection diffusion equation:

Lu = v · ∇u−∇ · η∇u = f in Ω (92)

with homogeneous Dirichlet conditions on the boundary of Ω. A standard Galerkin for-
mulation of this problem is given by:

B(u, w)Ω − L(w)Ω = 0 (93)

with:

B(u, w)Ω =
∫
Ω

((v · ∇u)w + η∇u · ∇w)dΩ

L(w)Ω =
∫
Ω

fwdΩ

(94)

The same stability problems as described in the previous section can occur also if a
Galerkin finite element method is used on too coarse grids. In order to overcome it
Brooks and Hughes (1982) proposed to modify the weighting function according to:

w̃ = w + αv · ∇w (95)

in which α is a parameter that still has to be determined. In this way the information
from upstream direction is weighted stronger (streamline upwinding). If this modified
weighting is only applied to the convection term we obtain the streamline upwinding
(SU) formulation:

B(u, w)Ω − L(w)ω +
∫
Ω

α(v · ∇u)(v · ∇w)dΩ = 0 (96)

In fact an extra term is added which adds extra diffusion in streamwise direction.

2.5.3 Streamline upwind Petrov Galerkin (SUPG) stabilization

A better way to use the modified weighting functions would be to apply them on the entire
differential equation. This, however, introduces third order derivatives in the diffusion part
of the equations and consequently demands more than C0 continuity of the basisfunctions
which is disadvantageous for domain decomposition methods like finite or spectral element
methods. This can be avoided by introducing the modified weighting function on element
level:

B(u, w)Ω = L(w)ω +
∑
e

∫
Ωe

α(Lu− f)(v · ∇w)dΩ (97)

Note that, in contradiction to the SU-formulation, the SUPG formulation is consistent
since it involves the residual of the differential equation.
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2.5.4 Galerkin least square (GLS) stabilization

Another, but based on the same idea, way to obtain stabilization is to modify the weighting
functions according to:

w̃ = w + αLw (98)

In that case we obtain a Galerkin least squares (GLS) method:

B(u, w)Ω = L(w)ω +
∑
e

∫
Ωe

α(Lu− f)(Lw − f)dΩ (99)

Disadvantage of these stabilization methods is that they introduce an extra parameter α
which still has to be determined. Optimal values are given by (Johnson, 1987) but can not
always be obtained easily. In the next section we will see that for time-dependent convec-
tion diffusion equations similar stabilizing terms can be obtained more naturally. For spec-
tral and higher order spectral element methods it can be shown (Timmermans et al., 1995)
that the advantage of SUPG stabilization diminishes with increasing order of approxim-
ation.

2.6 Application of SEM to linear elasticity problems

The equilibrium between the stresses in the material and the external loading is expressed
by:

∂ρu

∂t
−∇σ = F (100)

with σ being the stress tensor, F - a body force acting on an unit volume of the material
and u - the displacement vector.
In order to express the stresses in displacements it is necessary to define a strain-displacement
relation and the constitutive equations of the material, which define a relation between
strains and stresses. A commonly used strain-displacement relation is:

ε = Bu (101)

where B represents the transpose of the divergence operator and ε is the strain tensor.
The constitutive equations in case of linear elasticity read:

σ = Dε (102)

where D denotes the so-called elasticity matrix.
In 2D Cartesian coordinates the stress and strain tensors read:

σ = [σx,σy, τxy]
T (103)

ε = [
∂ux
∂x

,
∂uy
∂y

,
∂ux
∂y
+
∂uy
∂x
]T (104)

In case of plain stress-isotropic material the elasticity matrix reads:

D =
E

1− ν2



1 ν 0
ν 1 0
0 0 1−n

2
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where E denotes the Young’s modulus and ν - the Poisson’s ratio.
In most of the linear elasticity problems the resulting equations for the displacements are
of elliptic type and thus are suitable for a spectral element treatment.
Some problems with the performance of SEM can be expected in the geometrically non-
linear case. Than the deformation of the domain has to be taken into account which
involves necessity of high order Jacobians during the computation of the mass matrix. If
N -points GLL quadrature is used it is accurate for polynomials of 2N − 1 degree. The
elements of the mass matrix are of 2N degree if the Jacobian is constant and thus the
accuracy of its computation decreases rapidly with increasing the degree of the Jacobian.
The empirical results show that it is not advisable to involve Jacobians of degree larger
than 2 i.e. the sides of the spectral elements have to be at most second order curves.
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3 Temporal discretization of partial differential equa-

tions

3.1 Introduction

In this section some time integration methods are reviewed using the unsteady convection
diffusion equation to illustrate them. Consider the convection and diffusion of a scalar
function u for a divergence free velocity field v:

∂u(x, t)

∂t
+ (v · ∇)u(x, t)− (∇ · η∇)u(x, t) = s in Ω

u(x, 0) = u0(x)

(105)

with η a diffusion constant and s some given source function. Note that for u = v this
equation yields the non-linear convection diffusion equation known as Burger’s equation
which has a strong resemblance to the full Navier-Stokes equation for given pressure fields.
After spatial discretization a semi-discrete version of (105) is:

Mu̇(t) +N(v)u(t) +Du(t) = s

u(0) = u0
(106)

where u(t) is the spatial approximation to u(x, t), N(v) a discrete (eventually linearized)
convection operator and D a discrete diffusion operator. M is the mass matrix which in
finite difference methods is equal to the identity matrix.
If we combine the convection and diffusion operator and make use of the fact that the
mass matrix can be inverted we obtain:

u̇(t) = Au(t) + f

u(0) = u0
(107)

with A(N ×N) = −M−1(N+D) and f =M−1s. If we assume that A is non-defect, i.e.
has N linear independent eigenvectors, a non-singular matrix B with complex coefficients
exists defined by:

AB = BΛ (108)

with Λ = diag(λ1, ..., λN) and λi the eigenvalues of A.
The differential equation (and also its semi-discretized version is called to be stable when
a finite error ε0 in the initial condition u0 results in a finite error ε(t) in u(t) for any t. If
u(t) is the solution of (107) for the initial condition u(0) = u0 and ũ(t) the solution for
initial condition ũ(0) = u0 + ε0, then if ε = ũ− u we have:

ε̇ = Aε

ε(0) = ε0
(109)
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Since B is non-singular a variable η can be defined such that η = B−1ε and the following
equation holds:

η̇ = Λη

η(0) = B−1ε0 = η0
(110)

The solution of this set is:

ηi = η
0
i e
λit (111)

The differential equation is stable if for all i, ηi is a non-increasing function in time, hence
if:

Re[λi] ≤ 0 for all i = 1, ..., N (112)

In other words, all eigenvalues of A must be non-positive. As will be shown in the next
sections, time integration of the semi-discrete set of equations (106) will generally lead to
the form:

ηn+1 = Gηn (113)

withG the multiplication matrix of the error η. Stability of the time discretization scheme
will require that ||G|| ≤ 1. The multiplication matrix G depends on the eigenvalues of
A and hereby on the order of approximation N .

Eigenvalues of the diffusion and convection operator In Canuto et al. (1988) it
is shown that for spectral methods the eigenvalues of the diffusion operator are negative
and real and satisfy λ = O(N4), with N being the order of approximation. For spectral
elements empirically a growth of O(neN3) (ne being the number of elements) is found,
whereas for low order finite elements and finite difference methods the eigenvalues of the
diffusion operator globally grow with the number of collocation points like O(N2). For the
convective operator (yielding a non-symmetric set of discrete equations) the eigenvalues
will have an imaginary part. The real parts are strictly negative and both the real and
imaginary part of the largest eigenvalues grow like O(N2) for spectral methods. Roughly
spoken, the eigenvalues are located as indicated in figure 8.

3.2 Standard implicit time integration methods

Implicit time integration methods are methods that contain a matrix vector evaluation of
the unknowns at the new time level (n + 1). As a consequence they demand to solve an
algebraic system at each time step. Although this seems to be very costly, the superior
stability properties of implicit methods make them useful for many applications. The two
most important families of implicit methods are given below.
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Figure 8: Location of eigenvalues of convection and diffusion operators

Table 2: Adams-Moulton schemes

k β1 β2 β3
1 Euler Implicit EI 1 - -
2 Crank-Nicolson CN 1/2 1/2 -
3 Adams-Moulton AM3 5/12 8/12 −1/12

3.2.1 Adams-Moulton time integration schemes

A set of implicit methods are the Adams-Moulton methods defined by:

Mun+1 =Mun +∆t
k∑
i=1

βiA
n+2−iun+2−i (114)

The stability areas can easily be computed by substitution of un+1 = Gun in (114). This
will result in an polynomial equation for G which can be solved as a function of the
eigenvalue and the time step (i.e. λ∆t). Plots that are given are contour values of ||G||
at level ||G|| = 1.
As can be seen from figure 9 the Euler implicit and Crank-Nicolson schemes are uncondi-
tionally stable whereas the AM3-scheme is only conditionally stable. This means that the
time step ∆t must be chosen small enough to ensure that λ∆t is located in the stability
region of the method for all eigenvalues of the system. The region for which the methods
are stable are indicated with the arrows. Both the Euler implicit and Crank-Nicolson
schemes (or variants of them) are widely used due to there good stability properties.

3.2.2 Backward differencing time integration schemes

A second set of implicit methods are the backward-differencing methods defined by:

(β0M+∆tA)u
n+1 =

k∑
i=1

βiMu
n+1−i (115)
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Figure 9: Stability areas of Adams-Moulton and backward-differencing schemes

Table 3: Backward-Differencing schemes

k β0 β1 β2 β3
1 Euler Implicit EI 1 1 - -
2 Backward Differencing BD2 3/2 2 −1/2 -
3 Backward Differencing BD3 11/6 3 −3/2 1/3

The stability areas again can be computed by substitution of uk+1 = Guk in the left hand
side of (114).
Note that the backward differencing schemes are stable outside the regions defined by
the closed contours. As can be seen from the figure only the Euler implicit (=BD1)
scheme is unconditionally stable. All the other backward differencing schemes have a
small region near the imaginary axis for which they are unstable. Using the information
given in figure 8 it can be expected that higher order backward differencing can be used for
diffusion equations but may give stability problems if convective forces become dominant.

3.3 Standard explicit time integration methods

In explicit time integration methods (two important sets are given below) the elliptic
part of the equation is only evaluated at previous time levels and no matrix inversion or
only a trivial matrix inversion of the mass matrix is required. As a consequence the time
marching can be performed very efficiently. However, the severe restrictions imposed by
the stability properties of explicit methods often cancel this advantage completely. Note
that methods that are explicit in combination with a finite difference or finite volume space
discretization (diagonal mass matrix) can hardly be called explicit in case of a Galerkin
space discretization method since the inversion of the (non-diagonal) mass matrix is still
required. In many cases lumping of the mass matrix (for instance by applying Gauss-
Lobatto integration) is used. Especially for low order methods this, however, will result
in a unacceptable loss of accuracy.
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3.3.1 Adams-Bashforth time integration schemes

A first set of explicit methods are given by the Adams-Bashforth schemes, which can be
written as:

Mun+1 =Mun +∆t
k∑
i=1

βiA
n+1−iun+1−i (116)

Table 4: Adams-Bashforth schemes

k β1 β2 β3
1 Euler Explicit EI 1 - -
2 Adams-Bashforth AB2 3/2 −1/2 -
3 Adams-Bashforth AB3 23/12 −16/12 5/12

The stability areas again can easily be computed by substitution of uk+1 = Guk in (114).
All Adams-Bashforth schemes are conditionally stable and only third and higher order
versions include a part of the imaginary axis. This makes Adams-Bashforth schemes
almost exclusively appropriate for convection dominated problems. Often, in convection
diffusion problems, third or higher order Adams-Bashforth methods are used to linearize
(in time) the convection operator and are combined with implicit methods for the diffusion
operator (see also section 3.5).
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Figure 10: Stability areas of Adams-Bashforth and Runge-Kutta schemes

3.3.2 Runge-Kutta time integration schemes

Another set of explicit time integration methods are formed by the explicit Runge-Kutta
time discretizations. An important class of Runge-Kutta schemes are given by:


Mun+

1
k =Mun + ∆t

k
Anun

Mun+
1
k−i =Mun + ∆t

k−iA
n+ 1

k−i−1un+
1

k−i−1 i = 1, ..., k − 1
(117)
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Note that for k = 1 the Runge-Kutta method reduces to an Euler explicit method. The
absolute stability areas are given in figure 10. As distinct from the Adams-Bashforth
schemes, the stability regions expand with increasing order. Also here only third and
higher order schemes include a part of the imaginary axis.

3.4 Taylor-Galerkin methods

In the previous subsections classical time discretization methods for sets of ordinary dif-
ferential equations were applied to the semi-space-discretized equations. This procedure
is often referred to as the method of lines. In this section we will apply first a time discret-
ization and after that the space discretization. It will be shown that in case of convection
diffusion equations this can lead to favorable stability properties. Consider the general
non-linear form of the convection diffusion equation:

∂u

∂t
= Du−∇ · s(u) (118)

Here Du can contain diffusive but also other terms.

3.4.1 Explicit Taylor-Galerkin schemes

Point of departure is the Taylor expansion:

un+1 = un +∆t
∂u

∂t
|tn + 1

2
∆t2

∂2u

∂t2
|tn +O(∆t3) (119)

Substitution of the original differential equation (118) yields:

un+1 − un
∆t

= Du|tn −∇ · s(u)|tn +
∆t

2

∂

∂t
(Du−∇ · s(u))tn +O(∆t2)

= Du|tn +
∆t

2

∂

∂t
Du|tn −∇ · s(u)|tn −

∆t

2
∇ ·

(
∂s(u)

∂u

∂u

∂t

)
tn

(120)

And thus:

un+1 − un
∆t

= 1
2
(Du|tn+Du|tn+1)−∇·s(u)|tn− 12∆t∇·

(
∂s

∂u
(Du−∇ · s(u))

)
tn

(121)

Also higher order methods can be derived by subsequent substitution of the original dif-
ferential equation. Mostly this will lead to relative complex and not always better schemes
(Donea and Quartapelle, 1992). For the linear convection-diffusion equation s(u) = vu
and using ∇ · v = 0 this reduces to:

un+1 − un
∆t

= 1
2
(Du|tn +Du|tn+1)− v · ∇u|tn − 1

2
∆tv · ∇(Du− v · ∇u)tn (122)

Note that we have a Crank-Nicolson based discretization of the diffusion term and an
explicit discretization of the convection term. Moreover, the last term has the properties
of a diffusion force and will stabilize the scheme. A disadvantage is that the combination
∇Du contains third order space derivatives and demands high order regularity of the
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space discretization methods that will be applied. For pure convection, however, only
second order space derivatives are involved and an extra diffusion is introduced according
to:

1
2
∆tv2∇2u (123)

this strongly resembles the terms that are introduced in streamline upwinding techniques.
Only here the coefficient 1

2
∆t naturally follows from the discretization scheme.

3.4.2 Implicit Taylor-Galerkin schemes

Point of departure is the Taylor expansion:

un+1 = un −∆t∂u
∂t
|tn+1 + 1

2
∆t2

∂2u

∂t2
|tn+1 −O(∆t3) (124)

Substitution in the differential equation yields:
And thus similar as in the explicit Taylor-Galerkin method we have:

un+1 − un
∆t

= 1
2
(Du|tn +Du|tn+1)− v · ∇u|tn+1 + 1

2
∆tv · ∇(Du− v · ∇u)tn+1 (125)

Due to the diffusion introduced by this scheme and the implicit treatment of the convec-
tion term, superior stability properties are obtained for convection dominated problems
without unacceptable loss of accuracy (Donea and Quartapelle, 1992).

3.5 Operator splitting

From the previous sections we learned that diffusion dominated differential equations will
give rise to eigenvalues along the negative real axis of the complex λ∆t-plane. They are
proportional to the invert of the Reynolds number. Consequently, if an explicit time
integration is performed the restriction on the time step becomes unacceptable even for
relatively large Reynolds numbers. An alternative option is to use some implicit methods
although at each time step a matrix has to be inverted. If the diffusion operator is
time-independent and the LU-decomposition of the matrix (see section 4) can be stored
then the system can be efficiently solved by means of a direct method. In many cases
the convective part of the differential equation introduces time dependence of the matrix
involved (for instance for time-dependent velocity fields) and the fully implicit methods
become very inefficient. A way to avoid this is to use a combination of explicit and implicit
time integration for the different operators involved. More general, it is possible to apply
an operator splitting technique (Maday et al., 1990) that enables any combination of time
integration schemes for the different operators the original equation contains.
As an example we will treat the unsteady convection-diffusion problems by an operator
splitting technique in which the problem is decomposed in a pure convection problem and
a pure diffusion problem (Timmermans et al., 1994). Both problems are then solved by
suitable time-integrations with different time-steps, if necessary.
Thereto the convection-diffusion problem is rewritten as follows

∂c

∂t
= D(c) + C(c) + f , (126)
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where D(c) = (∇ · η∇)c is the diffusion operator and C(c) = −(u · ∇)c is the convection
operator. Following the idea of Maday et al., equation (126) is written in terms of an
integrating factor in C

∂

∂t

(
Q(t∗,t)C c(t)

)
= Q(t∗,t)C (D(c) + f), (127)

with t∗ an arbitrary fixed time. The integrating factor Q(t∗,t)C is defined by the initial-value
problem:

∂

∂t
Q(t∗,t)C = −Q(t∗ ,t)C C(c), Q(t∗,t∗)C = I, (128)

where I is the identity operator. Equation (127) is integrated by a suitable time-
integration for the diffusion operator D(c). A useful class of A(α)-stable time-integration
methods is given by the backward differences formulae. These schemes are accurate for all
components around the origin in the stability diagram and absolutely stable away from
the origin in the left imaginary plane. Thus, it is possible to use high-order backward
differences schemes without the severe constraints on the time-step that are needed for
general high-order multistep schemes like the Adams−Moulton methods, which are not
A(α)-stable for any order higher than 2.
Application of a backward differences scheme to equation (127) gives the following semi-
discrete system

γ0c
n+1 −

k∑
i=1

βiQ(t
n+1−i,tn+1)
C cn+1−i

∆t
= D(cn+1) + fn+1, (129)

where e.g. the superscript n+1 denotes the approximation at time tn+1 = (n+1)∆t with
∆t the time-step. For consistency it is required that

γ0 =
k∑
i=1

βi. (130)

The coefficients of the first-order scheme (k = 1), which is in fact a backward Euler
scheme, are γ0 = 1, β1 = 1. For the second-order scheme (k = 2) they read γ0 =

3
2
, β1 =

2, β2 = −12 .
To evaluate the terms Q(tn+1,tn+1−i)C cn+1−i(i = 1, 2, . . .) the following associated initial
value problem is solved


∂c̃(s)

∂s
= C(c̃)(s), 0 < s < i∆t,

c̃(0) = cn+1−i,
(131)

from which it then follows that

Q(tn+1−i,tn+1)C cn+1−i = c̃(i∆t). (132)

Problem (131), accounting for the convection part, can be solved using a suitable (and
preferably explicit) scheme with a time-step ∆s which can be taken different from ∆t.
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Note that the integrating factorQ(tn+1,tn+1−i)C is in fact never constructed explicitly; rather,
the ‘action’ of the integrating factor is evaluated through solution of the associated con-
vection problem (131).

Remark

An alternative approach for the diffusion step is to use the θ-method or the trapezoidal
method. The semi-discrete equation for the diffusion operator then becomes

cn+1 −Q(tn+1,tn)C cn

∆t
= θ(D(cn+1) + fn+1) + (1− θ)Q(tn+1,tn)C (D(cn) + fn). (133)

The terms Q(tn+1,tn)C cn and Q(tn+1,tn)C (D(cn)+ fn) are calculated according to a convection
problem similar to (131).
For θ = 1

2
this scheme results in a second-order accurate Crank-Nicolson method. This

scheme is commonly used for diffusion problems. In Navier−Stokes calculations it is fre-
quently applied to the viscous and pressure terms. Although the Crank−Nicolson scheme
is A(α)-stable for such terms, it has the disadvantage that it damps high frequency com-
ponents very weakly, whereas these components in reality decay very rapidly. In cases
where this is undesirable, a possible strategy is to use θ = 1

2
+ δ∆t, where δ is a small

positive constant. This method damps all components of the solution and is formally
second-order in time.

3.6 Application of SEM to convection and convection diffusion
problems

Here some test problems solved by means of the spectral element method will be presented.
The time integration is performed by means of Euler explicit Taylor-Galerkin (EETG)
scheme, Crank-Nicolson scheme and and a 2-step version of the EETG scheme given by:

uk+1/2 = uk +
∆t

2
Ck+1/2uk (134)

uk+1 = uk +∆tCk+1uk+1/2 (135)

for the equation:

∂u

∂t
= C(t)u (136)

This scheme can be regarded also as a 2-step Runge-Kutta scheme. In case of convection-
diffusion problems the operator-splitting approach is used. The results are originally
provided in (Timmermans and van de Vosse, 1993) and (Timmermans et al., 1994)

3.6.1 One-dimensional linear convection

Consider a one-dimensional test case the convection of a Gaussian hill described by:

c(x, t) = e
−(x− x0 − ut)

2

2σ2 . (137)
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Figure 11: Convection of a Gaussian hill; exact solution and two-step EETG approxima-
tion for ne = 16, n = 4 with 256 time-steps

The initial hill (t = 0) is centered around x0 = 0.15 and has a standard deviation of
σ = 0.04. The hill is convected with constant velocity u = 1 and t ∈ [0, 0.6] according to
the equation:

∂c

∂t
= −(u · ∇)c in Ω = [0, 1] (138)

For this problem the Taylor−Galerkin schemes for linear convection are compared with
a Crank−Nicolson time-integration. The spatial discretization is a spectral element one
using ne = 16 elements of degree of approximation n = 2, 4 and 8. The discrete maximum
error ε = ‖c − ch‖∞,gl for these cases is given in table 5. Here ch denotes the approxim-
ate solution and the subscript ∞, gl means that the maximum error is evaluated in the
Gauss−Lobatto points of the spectral element approximation. The exact solution and
the approximation for ne = 16, n = 4 for 256 time-steps is shown in fig. 11.
Note also that the solution becomes much more accurate if the degree of approximation
increases. The Crank−Nicolson scheme is only slightly more accurate. All schemes show
second-order accuracy if the degree of the approximation is large enough. Taking into
account that the explicit Taylor−Galerkin schemes require far less processing time, it is
obvious that it is in fact preferable for this problem.

3.6.2 One-dimensional non-linear convection

Consider the one-dimensional non-linear Burgers equation with zero diffusion:

∂u

∂t
= −(u · ∇)u inΩ, (139)
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Table 5: Discrete maximum error ‖c−ch‖∞,gl for the convection of a Gaussian hill; ne = 16
elements with varying degree of approximation n

method n number of time-steps
128 256 512 1024

2 0.20 100 0.21 100 0.21 100 0.21 100

two-step EETG 4 0.44 10−1 0.10 10−1 0.90 10−2 0.91 10−2

8 unstable unstable 0.30 10−2 0.74 10−3

2 0.16 100 0.19 100 0.20 100 0.21 100

one-step EETG 4 0.47 10−1 0.10 10−1 0.77 10−2 0.84 10−2

8 unstable 0.12 10−1 0.30 10−2 0.74 10−3

2 0.22 100 0.22 100 0.21 100 0.21 100

Crank−Nicolson 4 0.30 10−1 0.13 10−1 0.93 10−2 0.92 10−2

8 0.24 10−1 0.59 10−2 0.15 10−2 0.37 10−3

in the domain Ω = (0, 4) and t ∈ [0, 2]. The initial condition is given by

u(x, 0) = g(x) =



a− b cos(2πx), 0 ≤ x ≤ 1,
a− b, elsewhere,

(140)

with a = 1, b = 0.01. The boundary conditions are given by

u(0, t) = u(4, t) = a− b. (141)

The exact solution to this problem is given by Whitham (1974)

u(x, t) = g(y), x = y + u(g(y))t. (142)

For this initial solution no shock arises in the given time-segment.
This non-linear problem is solved with the explicit two-step EETG scheme and compared
to a time-linearized Crank−Nicolson scheme. Since the boundary conditions are non-
homogeneous, for this case the two-step scheme is easier to implement than the one-step
EETG scheme which involves the evaluation of a boundary integral. The spectral element
method uses the same number of elements and degree of approximation as in the linear
case. Since the solution only varies over an interval of 0.02, the numerical solution is
verified with respect to the following relative error

ε =
‖u− uh‖∞, gl

0.02
. (143)

The results for the relative error of the three different spectral element discretizations are
shown in table 6.
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Table 6: Relative discrete maximum error ‖u − uh‖∞,gl/0.02 for the Burgers problem;
ne = 16 elements of with varying degree of approximation n

method n number of time-steps
128 256 512 1024

2 0.92 10−1 0.99 10−1 0.10 100 0.10 100

two-step EETG 4 0.21 10−1 0.14 10−1 0.11 10−1 0.11 10−1

8 unstable unstable 0.33 10−2 0.16 10−2

2 0.11 100 0.10 100 0.10 100 0.10 100

Crank−Nicolson 4 0.22 10−1 0.15 10−1 0.12 10−1 0.12 10−1

8 0.15 10−1 0.57 10−2 0.29 10−2 0.18 10−2

For non-linear convection the results are quite the same as for the linear convection prob-
lem, although no second-order accuracy is achieved due to the non-linearity. The two-step
EETG scheme is quite comparable in accuracy to the Crank−Nicolson scheme. Again,
for an increasing degree of approximation the solution becomes much more accurate; but
then also more time-steps are needed to obtain a stable numerical scheme. However, as
was already stated in the linear convection case, due to the efficiency of the two-step
scheme it is more suited for this problem than the Crank−Nicolson method.

3.6.3 One-dimensional unsteady strongly non-linear convection problem

Consider in this section the strongly non-linear convection problem as described by:

∂c

∂t
+ u(c)

∂c

∂x
= 0 in[0, 2] (144)

c(0) = c(2) = 0.5 (145)

u(c) = 5c4 (146)

with an initial condition:

c(x, 0) =

{
1− 0.5cos(2πx) if x ∈ [0, 1]
0.5 elsewhere

(147)

which describes the convection of a shock. For this non-linear problem implicit time-
integration proves to be necessary. However, in this case, the stabilization of the second-
order Taylor-Galerkin methods must also be applied. The most stable scheme appears to
be the IETG scheme. Application to this particular problem using again a linearization
in time of the implicit non-linear advective term gives(

M+∆tN(cn)− ∆t
2

2
STG(c

n)

)
cn+1 =Mcn, (148)
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where STG(c
n) denotes the diffusion matrix S with coefficient η = u(cn)2.

In fig. 12 (left-top) a spectral element solution (ne = 32, n = 4) for the strong non-linear
advection problem is given using the IETG method with 128 time steps. It is clearly seen
that the shock has not traveled far enough. Obviously the explicit time-linearization of
u(c) is not accurate enough. Significantly better results are obtained if a simple Picard
iteration at each time step is performed. Fig. 12 (right-top) shows that the shock now is
transported quite accurate. As can be seen in fig. 12 even better results can be obtained
using higher-order approximations (ne = 32, n = 8 (left-bottom), ne = 32, n = 16 (right-
bottom)).

3.6.4 Two-dimensional linear convection

In more dimensions the choice of the time-integration becomes more and more important
with respect to efficiency. From the previous sections it appears that the two-step EETG
scheme is the most suitable for large more-dimensional problems. In order to check the
performance of the two-step scheme, consider the unsteady rotation of a Gaussian hill
described by the convection equation in two dimensions with domainΩ = (−1, 1)×(−1, 1)
and t ∈ [0, 0.5]. The time-dependent velocity is given by

u(x, t) = [−π2 sin(2πt)x2, π2 sin(2πt)x1]T . (149)

The initial solution is given by

c(x, t) = 0.01
4

(
(x1+

1
2
)2+x22

)
. (150)

It represents a smooth Gaussian hill with height equal to 1 and with radius equal to 1
4

centered at (−1
2
, 0). At t = 0.5 the hill is rotated halfway without diffusion, and therefore

without loss of shape.
The problem is solved using the two-step EETG scheme. Two types of convergence are
examined. To check the p-convergence the number of elements is kept fixed at ne = 4;
the degree of approximation is varying (n = 4, 8, 12, 16). To check the h-convergence
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Figure 12: Time-linearized IETG spectral element approximation of a shock using 128
time steps with ne = 32. Left-top: n = 4 no Picard iteration. Right-top: n = 4 Picard
iteration. Left-bottom: n = 8 Picard iteration. Right-bottom: n = 16 Picard iteration.

Table 7: Discrete maximum error ‖c− ch‖∞,gl for the rotation of a Gaussian hill; number
of elements ne = 4 fixed with varying degree of approximation n

time-steps n = 4 n = 8 n = 12 n = 16

256 0.33 100 0.67 10−1 0.17 10−1 unstable
512 0.33 100 0.67 10−1 0.29 10−2 0.29 10−2

1024 0.33 100 0.67 10−1 0.29 10−2 0.33 10−3

the degree of approximation is kept fixed at n = 2 and the number of elements varies
(ne = 16, 64, 144, 256). The total number of degrees of freedom in the corresponding
discretizations is the same. The results for the discrete maximum error ε = ‖c− ch‖∞,gl
for the first discretization are given in table 7; for the second discretization they are found
in table 7.
It is evident that the two-step scheme performs very well for this problem. The results
of table 7 show that the Gaussian hill is convected very accurately if the degree of the
approximation increases (p-convergence). From table 8 it can be deduced that also h-
convergence is obtained; the solutions obtained by increasing the degree of approximation
however, are much more accurate. In fig. 13 (left) the solution for n = 8 is shown. There
are still some ‘wiggles’ visible in this solution. Fig. 13 (right) shows the solution for
n = 16, which is convected in an extremely accurate way.
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Figure 13: Unsteady rotation of a Gaussian hill; two-step EETG approximation using
1024 time-steps for ne = 4, n = 8 (left) and for ne = 4, n = 16 (right)

Table 8: Discrete maximum error ‖c− ch‖∞,gl for the rotation of a Gaussian hill; degree
of approximation n = 2 fixed with varying number of elements ne

time-steps ne = 16 ne = 64 ne = 144 ne = 256

256 0.53 100 0.18 100 0.77 10−1 0.34 10−1

512 0.53 100 0.19 100 0.82 10−1 0.37 10−1

1024 0.53 100 0.19 100 0.82 10−1 0.38 10−1
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Figure 14: Convection and diffusion of a Gaussian hill; exact solution and two-step
EETG/second-order backward differences approximation for ne = 16, n = 4 with 4 diffu-
sion steps containing 64 convection steps each

3.6.5 1-D convection-diffusion of a Gaussian hill

In order to test the performance of the operator splitting approach, in this section a one-
dimensional convection-diffusion problem is solved using an implicit time-integration for
the diffusion step and the explicit two-step EETG scheme for the convection step.
Consider as a test case for the operator splitting scheme the problem of a Gaussian hill in
one dimension traveling with a constant velocity u = 1 and spreading isotropically with
a viscosity η = 0.005. The exact solution has the form

c(x, t) =
σ(0)

σ(t)
e
−(x− x0 − ut)

2

2σ(t)2 , (151)

where σ(t) =
√
σ(0) + 2ηt. The initial hill (t = 0) is centered around x0 = 0.15 and has

a standard deviation of σ(0) = 0.04. The hill is convected with constant velocity u = 1
and t ∈ [0, 0.3].
This problem is solved using the splitting scheme described above for both a first- and a
second-order backward differences (BDF) scheme and for a Crank-Nicolson scheme (CN-
new). The number of time-steps for the convection step is equal to 64. The spectral
element discretization uses ne = 16 elements with degree of approximation n = 4. The
discrete maximum error ε = ‖c− ch‖∞,gl is given in table 9. Fig. 14 shows the exact solu-
tion and the approximation for ne = 16, n = 4 using a second-order backward differences
scheme with 4 diffusion time-steps.
The performance of the operator splitting scheme is quite good. Only very few expensive
diffusion steps are needed to obtain accurate solutions. It can also be seen that the back-
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Table 9: Discrete maximum error ‖c−ch‖∞,gl for the convection and diffusion of a Gaussian
hill; ne = 16 elements of degree n = 4; 64 two-step EETG convection steps per diffusion
step

diffusion steps BDF 1st-order BDF 2nd-order CN-new CN-classical

2 0.42 10−1 0.24 10−1 0.58 10−2 0.23 100

4 0.22 10−1 0.39 10−2 0.16 10−2 0.26 100

8 0.11 10−1 0.87 10−3 0.42 10−3 0.11 100

16 0.58 10−2 0.31 10−3 0.24 10−3 0.43 10−1

32 0.30 10−2 0.17 10−3 0.17 10−3 0.20 10−1

ward differences schemes and the Crank−Nicolson scheme achieve the theoretical order of
accuracy for sufficient diffusion steps. The performance of the ‘classical’ Crank−Nicolson
approach is very bad compared to the other results. For the small number of diffusion
steps that are needed to obtain accuracy for the other schemes, the solution is not very
accurate. The large number of convection steps in each diffusion cycle does not require
much extra processing time, since each convection step is solved explicitly.

3.7 Application of SEM to wave equation

Consider the following model problem:

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = 0 in R×]0, T [, (152)

u(x, 0) = u0(x),
∂u

∂t
(x, o) = u(x) in R (153)

which describes the propagation of a 1D wave over the real axis R.
Its Galerkin formulation reads:

d2

dt2

∫
R

uvdx+
∫
R

∂u

∂x

∂v

∂x
dx = 0 ∀v ∈ H1(R) (154)

Further, a spectral element discretization can be applied to (154) resulting in a ordinary
differential equation (in time) for the values of the solution in the collocation points. The
algorithm is exactly the same as the one for the second order elliptic equation described
in section 2.3.1.
The easiest way for time discretization is to use a standard second-order finite difference
scheme for d

dt
:

∂2uh(t
n)

∂t2
=
un+1h − 2unh + un−1h

∆t2
+O(∆t2) (155)

If this accuracy in time is not satisfactory some more sophisticated approaches can be
applied to derive higher-order stable schemes in a way similar to the Taylor-Galerkin
schemes described in section 3.4.
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4 Numerical solution of the Navier-Stokes equations

4.1 Introduction

In this section the spatial and temporal discretization of the incompressible Navier-Stokes
equations is considered. They form a set of coupled equations for both velocity and
pressure. The pressure is an implicit variable which instantaneously ’adjusts itself’ in
such a way that the velocity remains divergence free. As the coupled set of equations
for velocity and pressure forms a saddle-point problem (Girault and Raviart, 1986) the
approximation spaces for the velocity has to be taken different from that for the pressure
in order to obtain a unique pressure solution. For the instationary Navier-Stokes equations
the situation is different if pressure-correction or projection methods that decouple the
momentum and continuity equation are chosen.

4.2 Solution methods for the stationary Navier-Stokes equa-
tions

4.2.1 Weak formulation

The stationary Navier-Stokes equations for incompressible flow are given by:

ρ(v · ∇)v −∇ · σ = ρf

∇ · v = 0
(156)

The boundary conditions can have the form:

v = g0 on Γ0

σ · n = g1 on Γ1

(157)

Also combinations of these two types of boundary conditions in different directions are
possible but give rise to complex writing and therefore will not be considered here. A
weak form of (156) can be derived by introducing weighting functions for the momentum
and continuity equations w ∈ L2(Ω) and q ∈ L2(Ω). The pressure is determined up to a
constant which can be fixed by the choice q ∈ Q with:

Q =
{
q ∈ L2(Ω)|

∫
Ω
qdΩ = 0

}
(158)

Then the weak form reads:


∫
Ω

[ρ(v · ∇)v −∇ · σ] ·wdΩ =
∫
Ω

ρf ·wdΩ

∫
Ω

(∇ · v)qdΩ = 0
(159)
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If we choose the weighting function w to be in H1(Ω) (see appendix A.1) we can integrate
by parts the second term in (159) and obtain 4:



∫
Ω

[ρw · (v · ∇)v + σ : (∇w)] dΩ =
∫
Ω

ρf ·wdΩ+
∫
Γ

(σ · n) ·wdΓ

∫
Ω

(∇ · v)qdΩ = 0
(160)

After substitution of the constitutive equation for Newtonian flow ( σ = −pI + ηγ̇ ) the
following weak form is obtained:



∫
Ω

[ρw · (v · ∇)v + ηγ̇ (v) : γ̇ (w)− p∇ ·w] dΩ =
∫
Ω

ρf ·wdΩ+
∫
Γ

(σ · n) ·wdΓ

∫
Ω

(∇ · v)qdΩ = 0
(161)

Here γ̇ (u) = 1
2
[∇u+ (∇u)c]. With the aid of the space of trial solutions:

V = {v|v ∈ H1(Ω),v = g0 on Γ0} (162)

and the space of weigthing functions defined as:

W = {w|w ∈ H10(Ω),w = 0 on Γ0} (163)

the weak formulation of the set of equations and boundary conidtions given by (156) and
(157) reads:

Find v ∈ V and p ∈ Q such that:

N (v,v,w) +D(v,w) + L(w, p) = `(w) ∀w∈W

L(v, q) = 0 ∀q∈Q
(164)

with:

N (u,v,w) =
∫
Ω

ρ[(u · ∇)v] ·wdΩ (165)

D(v,w) =
∫
Ω

ηγ̇ (v) : γ̇ (w)dΩ (166)

L(v, q) = −
∫
Ω

(∇ · v)qdΩ (167)

`(w) =
∫
Ω

(f ·w)qdΩ+
∫
Γ1

(g1 ·w)qdΓ (168)

4 Here the tensor identity for symmetric tensors σ given by: (σ : ∇w) = ∇ · (σ ·w) −w · (∇ · σ) is
used.
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4.2.2 Brezzi-Babus̆ka stability condition

Let we introduce the weakly divergence-free vector space:

V0 = {v ∈ V|L(v, q) = 0, ∀q∈Q} (169)

and chooseW0 ≡ V0. Then the weak form (164) without the contibution of the convec-
tion terms reduces to:

Find v ∈ V0 such that:
D(v,w) = `(w) ∀w∈W0 (170)

Using the Lax-Millgram theorem it can be proved that the Stokes equation (170) has a
unique solution 5. Then the pressure follows from:

Find p ∈ Q such that:
L(w, p) = `(w)−D(v,w) ∀v∈V (171)

This equation only has a unique solution for the pressure if the following condition holds:

∃β>0 sup
v∈V
L(v, q)
||v||V ≥ β||q||Q ∀q∈Q (172)

This condition is called the Brezzi-Babus̆ka condition but was originally derived by Ladyzhenskaya (1969)
The interpretation of this condition is not easy but it will be clear that it restricts the
choice of the spaces V and Q in the sense that not any combination will satisfy (172).
This is illustrated by the following. Assume that the velocity approximation is taken in
the space Vh given by:

Vh =
{
v ∈ H1(Ω),v ∈ Pk(Ω)

}
(173)

with Pk(Ω) the space of polynomials in Ω of order ≤ k. Assume also that the pressure is
taken in the space Qh

x given by:

Qh
x =

{
q ∈ L2(Ω), q ∈ Pk(Ω),

∫
Ω
qdΩ = 0

}
(174)

If the set (vh, ph) ∈ Vh × Qh
x is a solution of the weak form (164), then also the sets

(vh, ph + px) are solutions as long as px ∈ Xh with:

Xh =
{
q ∈ Qh

x,L(v, q) = 0, ∀vh∈V h
}

(175)

The space Xh ⊂ Qh
x contains all spurious pressure modes. The Brezzi-Babus̆ka condition

can be seen as a condition needed to ensure that the space Qh ⊂ Qh
x is such that it

does not contain spurious pressure modes, i.e. Qh ∩ Xh = ∅. This is clear from (172)
since for all qh ∈ Xh the left hand side is zero by virtue of L(v, q) = 0 while the right
hand side is a possitive real. In practice the Brezzi-Babus̆ka condition implies that the

5For the Navier-Stokes equations no such proof can be given and indeed non-unique solutions can
exist (see also chapter 4)
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pressure approximation must be taken one or two orders lower than the velocity approx-
imation. Note that in domain decomposition methods like finite and spectral element
methods the velocity must be continuous over the domain boundaries since it must be
taken in H1. The pressure however may be discontinuous over the domain boundaries.
An overview of admissible finite element spaces Vh and Qh is given by Fortin (1981) and
Fortin and Fortin (1985).

4.2.3 Integrated method

In this section, for the sake of simplicity, we assume that only homogenious Dirichlet
boundary conditions are imposed. The non-homogenious case can also be treated but
this involves some complications. If one of the space discretization methods described in
section 2 is applied to the weak formulation given in (164) the following algebraic system
of equations will be obtained:


N(vh)vh +Dvh + LTph = f

Lvh = 0
(176)

In case that Galerkin method is used the approximate solutions for velocity and pressure
are expended over a finite basis:

vh =
N∑
i=1

vhi φi (177)

ph =
M∑
i=1

phi ψi (178)

with φi ∈ H1(Ω),φi|Γ = 0 and linearly independent and ψi ∈ L2(Ω). Furthermore, if we
introduce the finite-dimensional spaces Vh

φ consisting of all the linear combinations of

{φi}Ni=1 and Qh
ψ consisting of all the linear combinations of {ψi}Mi=1 the discrete Galerkin

analog of (164) reads:

Find vh ∈ Vh

φ and p
h ∈ Qh

ψ such that:

N (vh,vh,φi) +D(vh,φi) + L(φi, ph) = `(φi) i = 1, .., N

L(vh, ψj) = 0 j = 1, ...,M
(179)

The expressions for N(vh), D, L and f then follow straight forward by substitution of
the functions vh, ph, φi and ψi in equations (165) to (168). From here we will drop the
superscript h in situations that it is clear whether the discrete version vh or the continuous
version v is meant. There are two main problems involved in solving the set of equations
given in (176). First, the set of equations is non-linear because of the convective term
N(v). Secondly, the set of conditions is difficult to solve due to the fact that the matrix
contains zeros on the main diagonal as there are no pressure unknowns in the continuity
equation. The sequel of this section will deal with those two problems.
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4.2.4 Linearization of the convective terms

Linearization is performed by using an iterative procedure with:

Picard 0: N(vn+1)vn+1 = N(vn)vn

Picard 1: N(vn+1)vn+1 = N(vn)vn+1

Picard 2: N(vn+1)vn+1 = N(vn+1)vn

Newton-Raphson: N(vn+1)vn+1 = J(vn)vn+1 −N(vn)vn

(180)

Here J(vn) is the Jacobian:

J(vn) =
d

dv
N(vn)vn (181)

Since the convective term is only quadratic in v the Jacobian gets the simple form
(van de Vosse et al., 1989):

J(vn) = N(vn)vn+1 +N(vn+1)vn (182)

The Picard iteration schemes have a relatively large convergence region but a slow (or
no) rate of convergence in contrast with the Newton-Raphson iteration which shows fast
convergence but with a relatively small convergence region. In practice a few Picard
iterations can be used to move the initial guess (mostly the solution of the Stokes equations
or a solution with a lower Reynolds number) into the convergence region of the Newton-
Raphson method.
The set of linearized equations to be solved each iteration can be written as:


A(vn)vn+1 + LTpn+1 = f(vn)

Lvn+1 = 0
(183)

which still is difficult to solve due to the zero elements on the main diagonal. Partial
pivoting or special numbering of the unknowns will demolish the band structure of the
matrix and hereby is inefficient with respect to computing time and memory usage. In
the next two sections different ways of decoupling the set of equations will be described
briefly.

4.2.5 Penalty function method

An often used way to decouple the system of equations is provided by the penalty function
method. Here the continuity equation is perturbed with a small term proportional to the
pressure:

∇ · v = −εp (184)

This will yield a discrete system of the form:

A(v)v + LTp = f

Lv = εMpp
(185)
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or equivalently the decoupled system:

[A(v) +
1

ε
LTM−1p L]v = f

p =
1

ε
M−1p Lv

(186)

Since the the pressure mass-matrixMp must be inverted, the penalty function method can
only be applied efficiently in combination with a discontinuous pressure approximation.
In that case Mp can be inverted element-by-element. Due to the small parameter ε
the system is ill-conditioned and mostly direct matrix solvers have to be used for the
velocity equation. The pressure can be computed in a post-processing step from the
second equation of (186).

4.2.6 Uzawa methods

Another way of decoupling the momentum and mass equations is provided by the Uzawa
algorithm (see Fortin and Glowinski, 1983). This is an iterative procedure where the
initial pressure is guessed and the velocity and pressure at iteration n+ 1 are computed
from: 


Avn+1 = f + LTpn

pn+1 = pn − βLvn+1
(187)

It can be proved that the solution of this iterations scheme converges to the solution of
the original equations for 0 < β < 2/max(λi), with λi the eigenvalues of A

−1LTL.
Better convergence properties can be established by the addition of a kind of penalty term
(Fortin and Glowinski, 1983):


(A+ γLTL)vn+1 = f + LTpn

pn+1 = pn − βLvn+1
(188)

This is referred to as the Powell-Hestenes method and can be seen as a iterative penalty
function method. Advantage of this scheme compared to the penalty function method is
that the parameter γ is not very large so that the condition of the matrices involved is
not altered too much.
Maday and Patera (1989) obtained a decoupling of the set of equations (183) by writing:


v = −A−1[LTp− f ]

Lv = 0
(189)

Multiplication of the first equation with L and substitution of the second equation yields:

Lv = −LA−1[LTp− f ] = 0 (190)

and thus an equation for the pressure:

LA−1LTp = LA−1f (191)

Once the pressure is solved using for instance an iterative solver for (191), the velocity
can be computed from:

Av = −LTp+ f (192)
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4.3 Solution methods for the instationary Navier-Stokes equa-
tions

Consider the instationary Navier-Stokes equations for incompressible flow given by:

ρ
∂v

∂t
+ ρ(v · ∇)v −∇ · σ = ρf

∇ · v = 0
(193)

together with the boundary conditions given in (157) and initial conditions for the velocity
and the pressure. Application of the space discretization method as prescribed in the
previous section will yield a set of equations similar to (183):


Mv̇ +N(v)v +Dv + LTp = f(v)

Lv = 0
(194)

with M is the mass-matrix. Not all the temporal discretization schemes described in
section 3 can be applied directly to this system. As fully explicit treatment is not possible
because then the pressure unknowns disappear from the system and the incompressibility
constraint is not satisfied anymore, all time discretizations schemes directly applied to
(194) will need some kind of an implicit treatment (see section 4.3.1) of the pressure
unless in some way a correction of the solution with the aid of the incompressibility
constraint can be performed (see section 4.3.2).

4.3.1 Time integration methods

Both Adams-Moulton and Backward-differencing methods could be used to discretize
the space-discretized Navier-Stokes equations given by (194). The backward-difference
schemes are only conditionally stable because they have a small part of the imaginary
axis for which the multiplication matrix is larger then 1. This area increases with higher
order. The Adams-Moulton schemes are unconditionally stable only for the first (EI)
and second (CN) order ones. An unconditionally stable time integration scheme for the
complete (unsplitted) set of equations (194) can be constructed by a combination of the
EI and CN method. Such a combination is provided by the θ-method:



M
vn+1 − vn
∆t

+ θ[N(vn+1) +D]vn+1 + θLTpn+1 =

θfn+1(v) + (1− θ)fn(v)− (1− θ)[N(vn) +D]vn − (1− θ)LTpn

Lvn+1 = 0

(195)

For θ = 1 this scheme is equivalent to an Euler implicit scheme which is first order
accurate in time and for θ = 0.5 this scheme is a Crank- Nicolson scheme which is second
order accurate. The pressure can be eliminated by using a penalty function method,
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the nonlinear convective terms can be linearized in time by using one step of a Newton-
Raphson iteration:



M
vn+1 − vn
∆t

+ θ[J(vn) +D+
1

ε
LM−1LT ]vn+1 =

θfn+1(v) + (1− θ)fn(v)− θ[N(vn) +D+ 1
ε
LM−1LT ]vn − θN(vn)vn

pn+1 =
1

ε
M−1Lvn+1

(196)

For large negative eigenvalues the Crank-Nicolson method has a multiplication factor
equal to -1. As a consequence, small perturbations in the solution will damp only very
slowly and will show an oscillatory behaviour in time. Although the amplitude of the
oscillation may be very small, this will impose huge oscillations in the pressure because of
the penalty parameter ε. Better results with respect to this can be obtained by the Euler
implicit method, however, then also oscillatory behaviour of physical origin (like vortex
shedding and flow instability) will be damped. A way to overcome this difficulty is to
substitute:

vn+θ = θvn+1 + (1− θ)vn (197)

and eliminate vn+1. This will give a simple two-step alternative:


1a: M
vn+θ − vn

θ∆t
+ [J(vn) +D+

1

ε
LM−1LT ]vn+θ = fn+θ(v) +N(vn)vn

1b: pn+θ =
1

ε
M−1Lvn+θ

2: vn+1 =
1

θ

(
vn+θ − (1− θ)vn

)
(198)

This is an Euler implicit step to time t+ θ∆t followed by a simple extrapolation to t+∆t
(see equation 197). The order of the method is equal to the order of the one-step version.
In figure 15 the above is illustrated clearly. The vortex shedding downstream a cylinder
is computed using both the EI and CN method for a Reynolds number based on the
diameter of the cylinder equal to 100. The EI method damps the oscillations and finally
yields a steady solution (top figure left) while the CN method is able to find a nice periodic
shedding of the vortices (top figure right). The one-step and two-step method show the
same result for the velocity (van de Vosse, 1987) but a clear difference in the pressure
approximation (bottom figures left). Note that in the two-step method the pressure is
evaluated at the time levels t + θ∆t and not at t + ∆t. In the one-step method each
modification in the time step induces new spurious pressure oscillations while the two-
step method behaves relatively stable.

4.3.2 Pressure correction and projection methods

The pressure correction method has been introduced by Chorin (1968) in a finite difference
context. He first derived an intermediate velocity v∗ by neglecting the pressure terms
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Figure 15: Vortex shedding downstream a cylinder at ReD = 100. left top: vertical
velocity at 10 diameters downstream the cylinder for the Euler implicit (left) and Crank-
Nicolson (left and right) method. left bottom: pressure at 10 diameters downstream
the cylinder for the one-step (left) and two-step (right) Crank-Nicolson method. right:
streamline patterns during one shedding cycle. (From van de Vosse, 1987)

in the discrete momentum equations. Since the pressure unknowns are removed, this
intermediate velocity can not satisfy the incompressibility constraint. By subtracting the
equation for the intermediate velocity from the original momentum equation and applying
the divergence operator on the result of this subtraction, the new pressure can be derived
from a discrete Poisson equation if the difference between the discrete diffusion operator
applied to the intermediate velocity and the new velocity is neglected. This new pressure
then can be used to update the velocity. In this way Chorin obtained a first order accurate
in time method for unsteady Navier-Stokes equations. Later van Kan (1986) improved
this scheme by not neglecting the pressure but making use of the pressure at the previous
time step. In combination with a Crank-Nicolson time integration he was able to proof
second order convergence in time. The same procedure can be applied more generally to
the space and time discretized equations that follow from a Galerkin method:


M
vn+1 − vn
∆t

+A(vn+1,vn, ...) + LTpn+1 = f

Lvn+1 = 0

(199)
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The intermediate velocity v∗ can be computed from the first equation of:


M
v∗ − vn
∆t

+A(v∗,vn, ...) = f − LTpn

M
vn+1 − vn
∆t

+A(vn+1,vn, ...) + LTpn+1 = f

Lvn+1 = 0

(200)

Subtraction of the first from the second equation yields after neglecting ofA(vn+1,vn, ...)−
A(v∗,vn, ...) the second equation in:



M
v∗ − vn
∆t

+A(v∗,vn, ...) = f − LTpn

M
vn+1 − v∗
∆t

= −LT (pn+1 − pn)

Lvn+1 = 0

(201)

Applying the discrete divergence operator L on the second equation yields:


M
v∗ − vn
∆t

+A(v∗,vn, ...) = f − LTpn −→ v∗

LM−1LT (pn+1 − pn) = 1
∆t
Lv∗ −→ pn+1

vn+1 = v∗ −∆tM−1LT (pn+1 − pn) −→ vn+1

(202)

Note that in this method the inverse of the mass-matrix is involved. Normally a lumped
mass matrix is used to overcome this disadvantage. The procedure described above is
a form of a discrete pressure correction scheme also described by Hawken et al. (1990)
and successfully used by Perktold and Peter (1990) for the simulation of pulsatile flow in
three-dimensional bifurcation models. The decomposition or projection of the equations
is performed on the discrete set of equations.
Also methods are developed where the projection is performed on the continuous strong
form of the equations, yielding a set of decoupled equations that do not have the form of
a saddle-point problem anymore and thus avoid the need to satisfy the Brezzi-Babus̆ka
condition (see e.g. Timmermans et al., 1995). More details on projection methods using
the strong form of the equations as a point of departure are given in the papers by
Gresho (1990Gresho and Chan (1990).

4.4 Solution of the Boussinesq equations

In order to model many non-isothermal flows of practical interest, it is usually sufficient
to assume that the density and viscosity of the flow are all temperature independent
except for the density in the source term of the momentum equations, which results in
the so-called Boussinesq equations:

∂v

∂t
+ (v · ∇)v = −∇p +RPrTg+ Pr∇2v (203)
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∇ · v = 0 (204)

∂T

∂t
+ (v · ∇)T = ∇2T (205)

where R = (gβ∆Tl3 )/(κν), P r = ν/κ are the commonly used Rayleigh and Prandtl
numbers and g = (0, 1)T . Here, g is the acceleration of gravity, β is the thermal expansion
coefficient, l is the characteristic length, ∆T is the characteristic temperature difference,
κ is the thermal diffusivity and ν is the kinematic viscosity of the fluid.
This system of equations resembles a lot the Navier-Stokes equations except for the buoy-
ancy term in the right-hand side of the momentum equations and the energy equation
added to the system. This, however, involves a coupling between the momentum and
energy equations which makes the solution of the whole system more difficult than in the
case of the Navier-Stokes equations. The most strightforward way to avoid this coupling
is to use some extrapolation for either the temperature or the velocity on the correspond-
ing time levels. The following two options are available. The first one is to calculate the
velocity according to (203) with a source term R.Pr.T n and then to interpolate its value
for tn < t < tn+1. For many flows of practical interest, however, this term is dominant
in the momentum equations because the Rayleigh number is very high. That is why the
second option seems to be better: first calculate the temperature with an explicit second
order extrapolation for the velocity at tn+1:

vn+1 = (1 + 1/∆t)vn − 1/∆tvn−1 (206)

Then the velocity/ pressure problem (203)-(204) can be solved with an implicit source
term using the methods described in the previous section.

4.5 Some numerical results of the SEM application to Navier-
Stokes and Boussinesq problems

4.5.1 Vortex shedding behind a cylinder

A frequently used example for testing the performance of unsteady solvers is the von
Karman vortex shedding behind a circular cylinder. At Re ≥ 40 the flow around a
circular cylinder becomes essentially unsteady undergoing its first bifurcation towards
a periodical regime - so called von Karman vortex shedding (see fig. 17). This flow
is simulated using the mesh in 16 consisting of 68 elements of 8 order (see fig. 16)
at Reynolds number Re = 100. The approximate projection scheme combined with the
convection splitting described above are used for time integration. The Strouhal number of
the computed vortex shedding is 0.1709. This value compares well with the measurements
of Braza et al. (1986) who report an average value of 0.17. Engelman and Jamnia (1990)
have employed the traditional finite element method to model the same flow. The reported
value of the Strouhal number is 0.1724. The number of nodes they used is 14000 compared
to the 4352 nodes in the SEM mesh.
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Figure 16: Spectral element mesh for the flow past a cylinder

Figure 17: Flow past a cylinder at Re = 100; instantaneous steamlines picture.
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4.5.2 Differentially heated cavity

Another frequently used example is the Boussinesq flow in a differentially heated cavity.
de Vahl Davis (1983) provided a benchmark solution for the flow in a square cavity with
a hot left wall and a cold right wall. The top and the bottom walls are kept adiabatic.
The Prandtl number is 0.71. The results (see fig. 18 and 19) on a mesh of 4× 4 elements
of 8 order are compared with the benchmark solution at mesh size tending to 0 in table
10. Results at four different values of the Rayleigh number R are reported. At Rayleigh
number R = 2 × 108 the flow undergoes a bifurcation towards a periodic regime. The
frequency of the oscillations reported by Paolucci and Chenowith (1989) is 630.3. They
have used a second order finite difference method to simulate the flow. The spectral
element calculations yield a value of 604 which is 4.1% lower.
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Figure 18: Streamlines (left) and isotherms (right) for the buoyancy-driven flow in an
enclosed cavity at R = 103. Modified pressure correction/operator splitting scheme using
4 × 4 elements of degree N = 8.

1

2

3

4

5 6

7

8

9
10

1

2

3

4

5

6

7

8

9

10

11

Figure 19: Streamlines (left) and isotherms (right) for the buoyancy-driven flow in an
enclosed cavity at R = 106. Modified pressure correction/operator splitting scheme using
4 × 4 elements of degree N = 8.
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Table 10: Buoyancy-driven flow in an enclosed cavity. Present results (P) compared
with the benchmark numerical solution (B) and the deviation (D) for R = 103 through
R = 106. Modified pressure correction/operator splitting scheme using 4 × 4 elements of
degree N = 8.
∗ These results were obtained using 16 × 16 finite elements of degree N = 2.

variable source R = 103 R = 104 R = 105 R = 106 R = 106∗

u1,max B 3.649 16.178 34.73 64.63 64.63

P 3.630 16.171 34.15 63.02 68.17

D (%) −0.5 0.0 −1.6 −2.3 +5.5

x2(u1) B 0.813 0.823 0.855 0.850 0.850

P 0.830 0.830 0.875 0.830 0.844

u2,max B 3.697 19.617 68.59 219.39 219.39

P 3.693 19.604 66.85 219.69 211.98

D (%) −0.1 −0.1 −2.5 +0.1 −3.3
x1(u2) B 0.178 0.119 0.066 0.0379 0.0379

P 0.170 0.125 0.079 0.0404 0.0313

Numax B 1.505 3.528 7.717 17.925 17.925

P 1.507 3.531 7.717 17.350 14.169

D (%) +0.1 +0.1 0.0 −3.2 −20.95
x2(Nu) B 0.092 0.143 0.081 0.0378 0.0378

P 0.080 0.125 0.080 0.0404 0.0625

Numin B 0.692 0.586 0.729 0.989 0.989

P 0.692 0.586 0.726 0.972 0.989

D (%) 0.0 0.0 −0.3 −1.7 0.0

x2(Nu) B 1.0 1.0 1.0 1.0 1.0

P 1.0 1.0 1.0 1.0 1.0
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A Linear vector analysis

A.1 Vector spaces

In order to discuss the concept of weighted residual formulations of partial differential
equations, without claiming to be complete, first some basic theory concerning linear
vector spaces will be given. Most of the theory is extensively described in Reddy and
Rasmussen (1982).

Linear vector spaces

Definition 1: linear vector space
A linear vector space V is a set of elements (vectors) u, v, w, ... satisfying the fol-
lowing properties:

1. For each pair of vectors u ∈ V and v ∈ V there exists a unique vector u+ v =
w ∈ V . Moreover the following properties must hold for vector addition:
a) u+ v = v + u

b) (u+ v) + w = u+ (v + w)

c) ∃θ∈V such that u+ θ = u
d) ∃−u∈V such that u+ (−u) = θ

2. For each vector u ∈ V and real number α ∈ IR there exists a unique vector w =
αu ∈ V . Moreover the following properties must hold for scalar multiplication:
a) α(βu) = (αβ)u ∀β∈IR
b) (α + β)u = αu+ βu ∀β∈IR
c) α(u+ v) = αu+ αv ∀v∈V
d) 1u = u

Example 1: linear vector space

1. V = IR3 is a linear vector space with elements v represented by v = (v1, v2, v3)
with vector addition:

v +w = (v1 + w1, v2 + w2, v3 + w3)

and scalar multiplication:

αv = (αv1, αv2, αv3)

2. V = Cm([a, b]), m ≥ 0 is a linear vector space of m times differential functions
u : [a, b]→ IR with vector addition:

(u+ v)(x) = u(x) + v(x)

and scalar multiplication:

(αu)(x) = αu(x)
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Banach spaces

Definition 2: norm
Given a linear vector space V in which a function n(u) : V → IR is defined. The
function n(u) := ‖u‖V is called a norm in V if:
a) ‖u+ v‖V ≤ ‖u‖V + ‖v‖V
b) ‖αu‖V = |α|‖u‖V
c) ‖u‖V ≥ 0
d) ‖u‖V = 0⇔ u = 0

Definition 3: Cauchy sequence
A Cauchy sequence in V with norm ‖ · ‖V is a sequence of elements {u1, u2, ...} for
which:

∀ε>0∃N(ε)>0∀k,m>N(ε)‖uk − um‖V < ε

Definition 4: convergent sequence
A sequence is called convergent in V with norm ‖ · ‖V if:

∃u∈V lim
k→∞
‖uk − u‖V = 0

Definition 5: complete space
A vector space V is called complete if each Cauchy sequence converges in V .

Definition 6: Banach space
A linear vector space is called a Banach space if it is equipped with a norm for which
the space is complete.

Example 2: Banach space

1. V = IR3 is a Banach space for the norm:

‖u‖2 =
√
u21 + u

2
2 + u

2
3

2. V = Lp(a, b), p ≥ 1 is a Banach space of piecewise continuous functions u :
(a, b)→ IR with norm :

‖u‖Lp(a,b) =
(∫ b

a
|u(x)|pdx

) 1
p
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Hilbert spaces

Definition 7: inner product
Given a linear vector space V in which a function i(u, v) : V × V → IR is defined.
The function i(u, v) := (u, v)V is called a inner product in V if:

a) (u, v)V = (v, u)V

b) (αu, v)V = α(u, v)V

c) (u+ v, w)V = (u, w)V + (v, w)V

d) (u, u)V ≥ 0
d) (u, u)V = 0⇔ u = 0

Note that
√
(u, u)V is a proper norm in V .

Definition 8: Hilbert space
A Hilbert space is a linear vector space equipped with an inner product (·, ·)V and
for which the space is complete with respect to a norm defined as:

‖ · ‖V =
√
(·, ·)V

Example 3: Hilbert space

1. V = IR3 is a Hilbert space for the inner product:

(u · v) = u1v1 + u2v2 + u3v3
and norm:

‖u‖2 =
√
u21 + u

2
2 + u

2
3

2. V = L2(a, b) is a Hilbert space of piecewise continuous functions u : (a, b)→ IR

with inner product:

(u, v)L2(a,b) =
∫ b

a
uvdx

and norm :

‖u‖L2(a,b) =
(∫ b

a
u2dx

) 1
2

An often used property of the inner product is the Cauchy-Schwarz inequality.

Theorem 1: Cauchy-Schwarz

|(u, v)V | ≤ ‖u‖V · ‖v‖V
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Proof.
From the properties of the inner product for all u ∈ V , v ∈ V and α ∈ IR it follows
that:

0 ≤ (u− αv, u− αv)V = (u, u)V − 2α(u, v)V + α2(v, v)V

This is a non-negative quadratic form in α so:

4(u, v)2V − 4(v, v)(u, u)V ≤ 0

and thus:

|(u, v)V | ≤ ‖u‖V · ‖v‖V

Sobolev spaces

Definition 9: Sobolev spaces
A Sobolev space of order m is a space of square integrable functions that possesses
m derivatives that are representable as square integrable functions:

Hm(a, b) =

{
u ∈ L2(a, b) | ∂

ku

∂xk
∈ L2(a, b), 1 ≤ k ≤ m

}

Hm(a, b) is endowed with the inner product:

(u, v)Hm(a,b) =
m∑
k=0

∫ b

a

∂ku

∂xk
∂kv

∂xk
dx

and norm:

‖u‖Hm(a,b) =
√
(u, u)Hm(a,b)

The following properties can be derived:

Hm+1(a, b) ⊂ Hm(a, b) ⊂ . . . ⊂ H0(a, b) ≡ L2(a, b)

Cm([a, b]) ⊂ Hm(a, b)

Hm(a, b) ⊂ Cm−1([a, b])
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A.2 Linear and bi-linear forms

Definition 10: linear form
Let V be a Hilbert space. The form l(u) : V → IR, is called a linear form if ∀u,v∈V :

l(αu+ βv) = αl(u) + βl(v)

Definition 11: linear continuous form
Let V be a Hilbert space. The form l(u) : V → IR, is called a linear continuous
form if ∀u∈V :

|l(u)| ≤ C‖u‖V
In other words, since |l(u) − l(v)| = |l(u − v)| ≤ C‖u − v‖V and hence ∀ε>0 with
|l(u) − l(v)|V < ε, a δ can be found such that ‖u − v‖ < δ. So a linear form is
continuous if it is bounded.

Definition 12: bilinear form
Let V be a Hilbert space. The form a(u, v) : V × V → IR, is called a bilinear form
if ∀u,v,w∈V :

a(αu+ βv, w) = αa(u, w) + βa(v, w)

and

a(u, γv + δw) = γa(u, v) + δa(u, w)

Definition 13: bilinear continuous form
Let V be a Hilbert space. The form a(u, v) : V × V → IR, is called a bilinear
continuous form if ∀u,v∈V :

|a(u, v)| ≤ β‖u‖V ‖v‖V
Definition 14: positive-definite form

Let V be a Hilbert space. The form a(u, v) : V ×V → IR, is called a positive-definite,
or V-coercive, or V-elliptic form if ∀u∈V,α>0:

|a(u, u)| ≥ α‖u‖2V

The Lax-Milgram theorem

Theorem 2: Lax-Milgram
Let V be a Hilbert space and let a(u, v) : V × V → IR be a linear continuous V-
coercive form on V . Then for each continuous linear form l(v) : V → IR there exists
a unique solution u ∈ V to the problem:

a(u, v) = l(v) ∀v∈V
Moreover this solution is stable in the sense that the following estimate holds:

‖u‖V ≤ β

α
‖f‖V

showing that the solution u depends continuously on the data f .
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Lemma of Céa

Let L be a linear continuous positive-definite differential operator, i.e.:
|(Lu, v)V | ≤ β‖u‖V ‖v‖V

|(Lu, u)V | ≥ α‖u‖2V

A standard Galerkin discrete weighted residual formulation of the differential equation
Lu = f then is given by:

Lemma 1: Lemma of Céa
The error of the Galerkin approximation behaves like the error of the best approx-
imation in the norm for which stability is proven using the Lax-Milgram theorem.

Proof.
Since V h ⊂ V we also have

(Lu, wh)V = (f, wh)V ∀wh∈V h

and hereby:

(L(uh − u), wh)V = 0 ∀wh∈V h

Since this must hold for all wh ∈ V h this must also hold for wh = uh− vh and thus:

(L(uh − u), uh − vh)V = 0 ∀vh∈V h

or alternatively:

(L(uh − u), uh − u+ u− vh)V = 0 ∀vh∈V h

yielding:

(L(uh − u), uh − u)v = (L(uh − u), vh − u)V ∀vh∈V h

Using the properties of the differential operator we finally obtain:

‖uh − u‖V ≤ β

α
‖u− vh‖V ∀vh∈V h

or equivalently:

‖uh − u‖V ≤ β

α
inf

vh∈V h
‖u− vh‖V (207)
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B Vector and tensor integrals

B.1 Leibnitz formulae

If Ω is a moving region with boundary Γ and uΓ the velocity of the moving boundary,
then:

d

dt

∫
Ω(t)

sdΩ =
∫
Ω(t)

∂s

∂t
dΩ +

∫
Γ(t)

s(uΓ · n)dΓ = 0 (208)

B.2 Gauss-Ostrogradskii divergence theorem

If Ω is a closed region with boundary Γ then:∫
Ω

(∇ · u)dΩ =
∫
Γ

(u · n)dΓ (209)

∫
Ω

(a(∇ · u) + (u · ∇)a)dΩ =
∫
Γ

a(u · n)dΓ (210)

∫
Ω

(∇ · τ c)dΩ =
∫
Γ

(τ · n)dΓ (211)
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