MATLAB

|
The Language of Technical Computing

Computation

Visualization

|

Programming

Application Program Interface Reference
Version 5

¥ L4

How to Contact The MathWorks:

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web

ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Application Program Interface Reference
0 COPYRIGHT 1984 - 1998 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: December 1996 First printing
May 1997 Revised for 5.1 (online version)

January 1998 Revised for 5.2 (online version)
September 1998 Revised for 5.3 (online version)

API Notes
Themex Script 2
The MATLAB ATy . ..ot 5
Passing Pointersin Fortran 8

ddeadv 10
AAdEEXEC . . . oot e 12
ddeinit e 13
ddepoke 14
ddereq 15
ddeterm e 16
ddeunadv e 17

eNgClOSE . . . 19
engEvalString 20
ENGGELAITAY .. 21
engGetFull (Obsolete) i 22
engGetMatrix (Obsolete) 24
BNGOPEN . .o e 25
engOutputBuffer 27
ENGPULAITAY ... 28
engPutFull (Obsolete) 29
engPutMatrix (Obsolete) 30
engSetEvalCallback (Obsolete) 31
engSetEvalTimeout (Obsolete) 32
engWinlnit (Obsolete) 33

Contents

C MAT-File Routines

MatCloSe e 35
matDeleteArray 36
matDeleteMatrix (Obsolete) 37
MatGEetAITaY . .. 38
matGetArrayHeader oo 39
matGetDir e 40
MatGetFp e 41
matGetFull (Obsolete) 42
matGetMatrix (Obsolete) 43
matGetNextArrayc. it 44
matGetNextArrayHeader 45
matGetNextMatrix (Obsolete) 46
matGetString (Obsolete) 47
MAatOPEN . . .o 48
MatPULAITaY ... 49
matPutArrayAsGlobal 50
matPutFull (Obsolete) 51
matPutMatrix (Obsolete) 52
matPutString (Obsolete) 53

mexAddFlops 55
MeXATEXIT 56
meXCallMATLAB e 57
MeXErrMsgTXt 59
mexEvalString 60
mexFunction 61
mexFunctionName 63
MeEXGet . .. 64
MEXGELAITAY 65
mexGetArrayPtr 66
mexGetEps (Obsolete) i 67
mexGetFull (Obsolete) L 68
mexGetGlobal (Obsolete) 69
mexGetinf (Obsolete) L 70

Contents

mexGetMatrix (Obsolete) 71

mexGetMatrixPtr (Obsolete) 72
mexGetNaN (Obsolete) 73
mexIsFinite (Obsolete) 74
mexIsGlobal 75
mexlIsinf (Obsolete) 76
mexlsLocked 77
mexIsNaN (Obsolete) i .. 78
mexLock 79
mexMakeArrayPersistent o o 80
mexMakeMemoryPersistent oo 81
mexPrintf e 82
MEXPULAITAY 83
mexPutFull (Obsolete) 85
mexPutMatrix (Obsolete) 86
MEXSE ... 87
mexSetTrapFlag i 88
mexunlock 89
mexWarnMsgTXt 90

MXArrayToString e 92
MXASSEIT .. 93
MXASSEITS ... 94
mxCalcSingleSubscript 95
mxCalloc 99
mxChar e 101
MXClassID e 102
mxClearLogical 104
mxComplexity 105
mxCreateCellArray 106
mxCreateCellMatrix 107
mxCreateCharArray, 108
mxCreateCharMatrixFromStrings 109
mxCreateDoubleMatrix 110
mxCreateFull (Obsolete) 112
MXCreateNUMEriCAITayt 113
MXCreateSparse 115

mxCreateString 117

mxCreateStructArrayc.c i 118
mxCreateStructMatrix 120
MXDEStroYAIrray 121
mxDuplicateArray 122
MXFree .. e 123
mxFreeMatrix (Obsolete) 125
mxGetCell 126
mxGetClassID e 127
mxGetClassName 129
mxGetData 130
MXGetDIMEeNSIONS 131
mxGetElementSize 132
MXGetEpPS 133
mxGetField 134
mxGetFieldByNumber 136
mxGetFieldNameByNumber 138
mxGetFieldNumber 140
mxGetlmagData 142
mxGetInf 143
mxGetlr e 144
MXGetIC e 145
MXGetM . . . e 146
MXGetN ... e 147
mxGetName 148
mxGetNaN 149
mxGetNumberOfDimensions 150
mxGetNumberOfElements 151
mxGetNumberOfFields 152
MXGetNzZMaX 153
MXGEtPi ... 154
MXGetPr e 155
mxGetScalar 156
MXGetString e 158
mxIsCell 160
mxIsChar 161
MXISCIass 162
mxISComplex 164
mxlIsDouble 166
MXISEMPLY 167

Vv

Contents

MXISFINIte e 168

mxIsFromGlobalWs 169
mxIsFull (Obsolete) 170
mxIsInf ... e 171
mxISInt8 172
mxISINtl6 173
mxISINt32 e 174
mxlIsLogical 175
mxIsNaN 176
MXISNUMEriC e 177
mxIsSingle 178
MXISSPArSe 179
mxIsString (Obsolete) i 180
mxIsStruct 181
mxIsUINt8 e 182
mxISUINtI6 e 183
MxXISUINt32 184
mxMalloc 185
mxRealloc 187
mxSetAllocFCNs e 188
mxSetCell 190
mxSetClassName i 191
mxSetData 192
MXSetDIMENSIONS 193
mxSetField 194
mxSetFieldByNumber 196
mxSetlmagData 198
MXSetIr ... e 199
MXSELIC .. . 201
mxSetLogical 204
MXSEtM 205
MXSEtN . .. e 206
mxSetName e 207
MXSetNzMax e 208
MXSEtPI .. 209
MXSEtPY . e 210

Fortran Engine Routines

BNGCI0SE . . i 212

engEvalString 213
engGetFull 214
engGetMatrix e 216
BNOOPEN . . 217
engOutputBuffer 218
engPutFull 219
engPutMatrix 220

matClose 222
matDeleteMatrix0 223
matGetDir 224
matGetFull 225
matGetMatrix e 227
matGetNextMatrix 228
matGetString 229
MatOPEN 231
matPutFull 232
matPutMatrix e 234
matPutString 235

MeXALEXIt 237
mMexCallMATLAB e 238
MeXErrMsgTXt o 240
mexEvalString 241
mexFunction 242
MexXGetEPS 243
mexGetFull 244
mexGetGlobal 245
mexGetInf 246
mexGetMatrixX e 247
mexGetMatrixPtr 248
mexGetNaN e 249
mexIsFinite 250

Vi

Vii

Contents

mexIsInf 251

mexIsNaN 252
mexPrintf 253
mexPutFull 254
mexPUtMatrix 255
mexSetTrapFlag i 256

mMxCalloc 258
mxCopyCharacterToPtr 259
mxCopyComplex16ToPtr 260
mxCopylntegerdToPtr 261
mxCopyPtrToCharacter, 262
mxCopyPtrToComplex16 263
mxCopyPtrTolntegerd i 264
mxCopyPtrToPtrArray 265
mxCopyPtrToReal8 266
mxCopyReal8ToPtr 267
mxCreateFull 268
MXCreateSparse 269
mXCreateString e 270
MXEree ... 271
mxFreeMatriX e 272
MXGEtIr .. e 273
MXGELIC ...t 274
MXGetM .. . 275
MXGEtN ... 276
mxGetName 277
MXGEtNzZMAaX 278
MXGetPi e 279
MXGEtPT .. 280
mxGetScalar 281
MXGetString e 282
mxISComplex 283
mxlIsDouble 284
mxIsFull 285
MXISNUMEFIC e 286
MXISSPArse 287

MXSetIr ... e 289
MXSELIC ... e 290
MXSetM ... 291
MXSEtN . . 292
MxXSetName e 293
MXSEINZMAaX 294
MXSEtPi ... e 295
MXSEtPY .. e 296

viii

iX Contents

APl Notes

The mex Script

Purpose
Syntax

Arguments

Compiles a MEX-function from C or Fortran source code

MEX <options> <files>

All nonsource code filenames passed as arguments are passed to the linker

without being compiled.

These options are available on all platforms except where noted:

Option Function

—argcheck Perform argument checking on MATLAB API
functions (C functions only).

—C Compile only; do not link.

—D<name>[=<def>]

—D<name>

—f <file>

—F <file>

—F <file>

(UNIX) Define C preprocessor macro <name>
[as having value <def>.]

(Windows) Define C preprocessor macro <name>.

(UNIX and Windows) Use <file> as the options file;
<file> is a full pathname if it is not in current
directory. . (On Windows, not necessary if you use
the —setup option.)

(UNIX) Use <file> as the options file. <file> is
searched for in the following manner:

The file that occurs first in this list is used:

e _/<filename>
e $HOME/matlab/<filename>
e $TMW_ROOT/bin/<filename>

(Windows) Use <file> as the options file. (Not
necessary if you use the —setup option.) <file> is
searched for in the current directory first and then
in the same directory as mex.bat.

The mex Script

Option Function

—g Build an executable with debugging symbols
included.

—h[elp] Help; lists the switches and their functions.

—I<pathname> Include <pathname> in the compiler include search
path.

—1<file> (UNIX) Link against library 1ib<file>.

—L<pathname> (UNIX) Include <pathname> in the list of directories

to search for libraries.

<name>=<def> (UNIX) Override options file setting for variable
<name>.
-n No execute flag. Using this option causes the

commands that would be used to compile and link
the target to be displayed without executing them.

—output <name> Create an executable named <name>.
(An appropriate executable extension is
automatically appended.)

-0 Build an optimized executable.

—setup (Windows) Set up default options file. This switch
should be the only argument passed.

—U<name> (UNIX and Windows) Undefine C preprocessor
macro <name>.

-V4 Compile MATLAB 4 syntax MEX-file to run in the
MATLAB 5 environment.

-V Verbose; print all compiler and linker settings.

Description MEX <options> <files>compiles a MEX-function from C or Fortran source

code. All nonsource code filenames passed as arguments are passed to the
linker without being compiled.

The mex Script

MEX'’s execution is affected by both command-line arguments and an options
file. The options file contains all compiler-specific information necessary to
create a MEX-function. The default name for this options file, if none is
specified with the —f option, is mexopts.bat (Windows) and mexopts.sh
(UNIX).

Note: The MathWorks provides an option (setup) for the mex script that lets
you set up a default options file on Windows systems. See the Application
Program Interface Guide for additional information.

On UNIX, the options file is written in the Bourne shell script language. The
options file that occurs first in the following list is used:

. /mexopts.sh, $HOME/matlab/mexopts.sh, $MATLAB/bin/mexopts.sh.

Any variable specified in the options file can be overridden at the command line
by use of the <name>=<def> command-line argument. If <def> has spaces in it,
then it should be wrapped in single quotes (e.g., OPTFLAGS="'opt1 opt2'). The
definition can rely on other variables defined in the options file; in this case the
variable referenced should have a prepended $ (e.g., OPTFLAGS="'$O0PTFLAGS
opt2').

On Windows, the options file is written in the Perl script language. The options
file, mexopts.bat, is searched for in the current directory first, then the same
directory as mex.bat. No arguments can have an embedded equal sign (=); thus,
—DFO0O0 is valid, but -DFO0=BAR is not.

The MATLAB Array

Description The MATLAB language works with only a single object type: the MATLAB
array. All MATLAB variables, including scalars, vectors, matrices, strings, cell
arrays, structures, and objects are stored as MATLAB arrays. In C, the
MATLAB array is declared to be of type mxArray. The mxArray structure
contains, among other things:
® |ts type
¢ |ts dimensions
* The data associated with this array
¢ If numeric, whether the variable is real or complex
¢ |If sparse, its indices and nonzero maximum elements
¢ |f a structure or object, the number of fields and fieldnames

Data Storage

All MATLAB data is stored columnwise. This is how Fortran stores matrices;
MATLAB uses this convention because it was originally written in Fortran. For
example, given the matrix:

a=['house'; 'floor'; 'porch']
a:
house

floor
porch

its dimensions are:

size(a)
ans =
3 5

and its data is stored as:

[nltlpfof1fofufofr[s[ofc]e]r[n]

The MATLAB Array

Data Types in MATLAB

Complex Double-Precision Matrices

The most common data type in MATLAB is the complex double-precision,
nonsparse matrix. These matrices are of type double and have dimensions
m-by-n, where m is the number of rows and n is the number of columns. The data
is stored as two vectors of double-precision numbers — one contains the real
data and one contains the imaginary data. The pointers to this data are
referred to as pr (pointer to real data) and pi (pointer to imaginary data),
respectively. A real-only, double-precision matrix is one whose pi is NULL.

Numeric Matrices

MATLAB also supports other types of numeric matrices. These are
single-precision floating-point and 8-, 16-, and 32-bit integers, both signed and
unsigned. The data is stored in two vectors in the same manner as
double-precision matrices.

MATLAB Strings

MATLAB strings are of type char and are stored the same way as unsigned
16-bit integers except there is no imaginary data component. Each character in
the string is stored as 16-bit ASCII Unicode. Unlike C, MATLAB strings are
not null terminated.

Sparse Matrices
Sparse matrices have a different storage convention in MATLAB. The

parameters pr and pi are still arrays of double-precision numbers, but there
are three additional parameters, nzmax, ir, and jc:

® nzmax is an integer that contains the length of ir, pr, and, if it exists, pi. It
is the maximum possible number of nonzero elements in the sparse matrix.

® ir points to an integer array of length nzmax containing the row indices of the
corresponding elements in pr and pi.

® jc points to an integer array of length N+1 that contains column index
information. For j, intherange 0 < j < N-1, jc[j] istheindexin irand pr
(and pi if it exists) of the first nonzero entry in the jth column and
jc[j+1] — 1 index of the last nonzero entry. As a result, jc[N] is also equal
to nnz, the number of nonzero entries in the matrix. If nnz is less than nzmax,

The MATLAB Array

then more nonzero entries can be inserted in the array without allocating
additional storage.

Cell Arrays

Cell arrays are a collection of MATLAB arrays where each mxArray is referred
to asacell. This allows MATLAB arrays of different types to be stored together.
Cell arrays are stored in a similar manner to numeric matrices, except the data
portion contains a single vector of pointers to mxArrays. Members of this vector
are called cells. Each cell can be of any supported data type, even another cell
array.

Structures

A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n
is the number of fields in the structure. Members of the data vector are called
fields. Each field is associated with a name stored in the mxArray.

Obijects

Objects are stored and accessed the same way as structures. In MATLAB,
objects are named structures with registered methods. Outside MATLAB, an
object is a structure that contains storage for an additional classname that
identifies the name of the object.

Multidimensional Arrays

MATLAB arrays of any type can be multidimensional. A vector of integers is
stored where each element is the size of the corresponding dimension. The
storage of the data is the same as matrices.

Logical Arrays

Any noncomplex numeric or sparse array can be flagged as logical. The storage
for a logical array is the same as the storage for a nonlogical array.

Empty Arrays

MATLAB arrays of any type can be empty. An empty mxArray is one with at
least one dimension equal to zero. For example, a double-precision mxArray of
type double, where m and n equal O and pr is NULL, is an empty array.

Passing Pointers in Fortran

Description

The MATLAB API works with a unique data type, the mxArray. Because there
is no way to create a new data type in Fortran, MATLAB passes a special
identifier, called a pointer, to a Fortran program. You can get information
about an mxArray by passing this pointer to various API functions called
“Access Routines.” These access routines allow you to get a native Fortran data
type containing exactly the information you want, i.e., the size of the mxArray,
whether or not it is a string, or its data contents.

There are several implications when using pointers in Fortran:

1 The %VAL construct

If your Fortran compiler supports the %VAL construct, then there is one type
of pointer you can use without requiring an access routine, namely a pointer
to data (i.e., the pointer returned by mxGetPr or mxGetP1i). You can use %VAL
to pass this pointer’s contents to a subroutine, where it is declared as a
Fortran double-precision array.

If your Fortran compiler does not support the %VAL construct, you must use
the mxCopy__ routines (e.g., mxCopyPtrToReal8) to access the contents of the
pointer.

2 Variable declarations

To use pointers properly, you must declare them to be the correct size. On
DEC Alpha and 64-bit SGI machines, all pointers should be declared as
integer*8. On all other platforms, pointers should be declared as
integer*4.

If your Fortran compiler supports preprocessing with the C preprocessor,
you can use the preprocessing stage to map pointers to the appropriate
declaration. In UNIX, see the examples ending with .F in the examples
directory for a possible approach.

Note: Declaring a pointer to be the incorrect size can cause your program to
crash.

DDE Routines

ddeadv

Purpose
Syntax

Arguments

10

Set up advisory link between MATLAB and DDE server application
rc = ddeadv(channel, item, callback, upmtx, format, timeout)

rc
The return code: 0 indicates the function call failed, 1 indicates it succeeded.

channel
The channel assigned to the conversation, returned by ddeinit.

item
A string that specifies the DDE item name for the advisory link. Changing the
data identified by item at the server triggers the advisory link.

callback

A string that specifies the callback that is evaluated on update notification.
Changing item at the server causes callback to get passed to the eval function
to be evaluated.

upmtx

(optional) A string that specifies the name of a matrix that holds data sent with
update notification. If upmtx is included, changing item at the server causes
upmtx to be updated with the revised data.

Specifying an update matrix creates a hot link. Omitting upmtx or specifying it
as an empty string, creates a warm link. If upmtx exists in the workspace, its
contents get overwritten. If upmtx does not exist, it is created.

format
(optional) A two-element array that specifies the format of the data to be sent
on update.

The first element specifies the Windows clipboard format to use for the data.
MATLAB supports only Text format, which corresponds to a value of 1. The
second element specifies the type of the resultant matrix. Valid types are
NUMERIC (the default, which corresponds to a value of 0) and STRING (which
corresponds to a value of 1).

The default format array is [1 0].

timeout
(optional) A scalar that specifies the time-out limit for this operation. timeout
is specified in milliseconds (1000 milliseconds = 1 second).

ddeadv
|

If advisory link is not established within timeout milliseconds, the function
fails. The default value of timeout is three seconds.

Description ddeadv sets up an advisory link (described in the “DDE Advisory Links” section
of the Application Program Interface Guide) between MATLAB and a server
application.

When the data identified by the item argument changes, the string specified by
the callback argument is passed to the eval function and evaluated. If the
advisory link is a hot link, DDE modifies upmtx, the update matrix, to reflect
the data in item.

If item corresponds to a range of data values, a change to any value in the
range causes callback to be evaluated.

o°

Example Set up a hot link between a range of cells in Excel
% and the matrix 'x'.
% If successful, display the matrix.

rc = ddeadv(channel, 'rici:rb5c5', 'disp(x)', 'x');

11

ddeexec

Purpose
Syntax

Arguments

Description

Example

12

Send execution string to DDE server application
rc = ddeexec(channel, command, item, timeout)

rc
The return code: 0 indicates the function call failed, 1 indicates it succeeded.

channel
The channel assigned to the conversation, returned by ddeinit.

command
A string that specifies the command to be executed.

item

(optional) A string that specifies the DDE item name for execution. This
argument is not used for many applications. If your application requires this
argument, it provides additional information for command. Consult your server
documentation for more information.

timeout

(optional) A scalar that specifies the time-out limit for this operation. timeout
is specified in milliseconds (1000 milliseconds = 1 second). The default value of
timeout is three seconds.

ddeexec sends a string for execution to another application via an established
DDE conversation. Specify the string as the command argument.

% Given the channel assigned to a conversation,
% send a command to Excel.
rc = ddeexec(channel, '[formula.goto("ric1")]');

ddeinit

Purpose
Syntax

Arguments

Description

Example

Initiate DDE conversation between MATLAB and another application
channel = ddeinit(service, topic)
channel

The channel assigned to the conversation.

service
A string that specifies the service or application name for the conversation.

topic
A string that specifies the topic for the conversation.

ddeinit requires two arguments: a service or application name and a topic for
that service. The function returns a channel handle, which is used with other
MATLAB DDE functions.

For more information about services and topics, see the “DDE Concepts and
Terminology” section in the Application Program Interface Guide.

% Initiate a conversation with Microsoft Excel
% for the spreadsheet 'forecast.xls'.
channel = ddeinit('excel', 'forecast.xls');

13

ddepoke

Purpose
Syntax

Arguments

Description

Example

14

Send data from MATLAB to DDE server application
rc = ddepoke(channel, item, data, format, timeout)

rc
The return code: 0 indicates the function call failed, 1 indicates it succeeded.

channel
The channel assigned to the conversation, returned by ddeinit.

item
A string that specifies the DDE item for the data sent. item is the server data
entity that is to contain the data sent in the data argument.

data
A matrix that contains the data to be sent.

format
(optional) A scalar that specifies the Windows clipboard format of the data.
MATLAB supports only Text format, which corresponds to a value of 1.

timeout

(optional) A scalar that specifies the time-out limit for this operation. timeout
is specified in milliseconds (1000 milliseconds = 1 second). The default timeout
is three seconds.

ddepoke sends data to an application via an established DDE conversation.
ddepoke formats the data matrix as follows before sending it to the server
application:

e String matrices are converted, element by element, to characters and the
resulting character buffer is sent.

* Numeric matrices are sent as tab-delimited columns and carriage-return,
line-feed delimited rows of numbers. Only the real part of non-sparse
matrices are sent.

% Send a 5-by-5 identity matrix to Excel.
rc = ddepoke(channel, 'rici:r5c5', eye(5));

ddereq

Purpose
Syntax

Arguments

Description

Example

Request data from DDE server application
data = ddereq(channel, item, format, timeout)

data
A matrix that contains the requested data, empty if the function call failed.

channel
The channel assigned to the conversation, returned by ddeinit.

item
A string that specifies the server application’s DDE item name for the data
requested.

format
(optional) A two-element array that specifies the format of the data requested.

The first element indicates a Windows clipboard format to use for the request.
MATLAB supports only Text format, which corresponds to a value of 1.

The second element of the format array specifies the type of the resultant
matrix. The valid types are NUMERIC (the default, corresponding to a value of 0)
and STRING (corresponding to a value of 1).

The default format array is [1 0].

timeout

(optional) A scalar that specifies the time-out limit for this operation. timeout
is specified in milliseconds (1000 milliseconds = 1 second). The default timeout
is three seconds.

ddereq requests data from a server application via an established DDE
conversation. ddereq returns a matrix containing the requested data or an
empty matrix if the function is unsuccessful.

% Request a matrix of cells from Excel.
mymtx = ddereq(channel, 'ric1:r10c10');

15

ddeterm

Purpose
Syntax

Arguments

Description

Example

16

Terminate DDE conversation between MATLAB and server application
rc = ddeterm(channel)

rc
The return code: 0 indicates the function call failed, 1 indicates it succeeded.

channel
The channel assigned to the conversation, returned by ddeinit.

ddeterm takes one argument, the channel handle returned by the previous call
to ddeinit that established the DDE conversation.

% Terminate the DDE conversation.
rc = ddeterm(channel);

ddeunadv

Purpose
Syntax

Arguments

Description

Example

Release an advisory link between MATLAB and DDE server application
rc = ddeunadv(channel, item, format, timeout)

rc
The return code: 0 indicates the function call failed, 1 indicates it succeeded.

channel
The channel assigned to the conversation, returned by ddeinit.

item
A string that specifies the DDE item name associated with the advisory link.

format

(optional) A two-element array that specifies the format of the data for the
advisory link. If you specified a format argument on the ddeadv function call
that defined the advisory link, you must specify the same value on the
ddeunadv function call. See ddeadv for a description of the format array.

timeout

(optional) A scalar that specifies the time-out limit for this operation. timeout
is specified in milliseconds (1000 milliseconds = 1 second). The default value of
timeout is three seconds.

ddeunadv releases the advisory link between MATLAB and the server
application, established by an earlier ddeadv call. The channel, item, and
format must be the same as those specified in the call to ddeadv that initiated
the link. If you include the timeout argument but accept the default format,
you must specify format as an empty matrix.

% Release the hot link established in the ddeadv example.
rc = ddeunadv(channel, 'rictl:r5c5');

% Release a hot link with default format and a timeout value.
rc = ddeunadv(chan, ‘rict:r5c5’, [], 6000);

17

C Engine Routines

engClose

Purpose

C Syntax

Arguments

Description

Examples

Quit a MATLAB engine session

#include "engine.h"
int engClose(Engine *ep);

ep
Engine pointer.

This routine allows you to quit a MATLAB engine session.

engClose sends a quit command to the MATLAB engine session and closes the
connection. It returns 0 on success, and 1 otherwise. Possible failure includes
attempting to terminate a MATLAB engine session that was already
terminated.

(UNIX) See engdemo.c in the eng_mat subdirectory of the examples directory
for asample program that illustrates how to call the MATLAB engine functions
from a C program.

(Windows) See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB engine
functions from a C program for Windows.

19

engEvalString

Purpose

C Syntax

Arguments

Description

Examples

20

Evaluate expression in string

#include "engine.h"
int engEvalString(Engine *ep, const char *string);

ep

Engine pointer.
string

String to execute.

engEvalString evaluates the expression contained in string for the MATLAB
engine session, ep, previously started by engOpen. It returns a nonzero value if
the MATLAB session is no longer running, and zero otherwise.

On UNIX systems, engEvalString sends commands to MATLAB by writing
down a pipe connected to MATLAB's stdin. Any output resulting from the
command that ordinarily appears on the screen is read back from stdout into
the buffer defined by engOutputBuffer.

Under Windows on a PC, engEvalString communicates with MATLAB via
ActiveX.

(UNIX) See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine functions
from a C program.

(Windows) See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB engine
functions from a C program for Windows.

engGetArray

Purpose

C Syntax

Arguments

Description

Example

See Also

Copy a variable from a MATLAB engine’s workspace

#include "engine.h"
mxArray *engGetArray(Engine *ep, const char *name);

ep

Engine pointer.

name

Name of mxArray to get from engine.

This routine allows you to copy a variable out of the workspace.

engGetArray reads the named mxArray from the engine pointed to by ep and
returns a pointer to a newly allocated mxArray structure, or NULL if the attempt
fails. engGetArray will fail if:

* The named variable does not exist.
® In V4-compatible mode if the named variable is not a MATLAB 4 data type.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

(UNIX) See engdemo.c in the eng_mat subdirectory of the examples directory
for asample program that illustrates how to call the MATLAB engine functions
from a C program.

(Windows) See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB engine
functions from a C program for Windows.

engPutArray

21

engGetFull (Obsolete)

V4 Compatible

22

This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 engine applications, call

engGetArray followed by appropriate mxGet routines (mxGetM, mxGetN,
mxGetPr, mxGetPi)

For example,

int engGetFull(

Engine *ep, /* engine pointer */
char *name, /* full array name */
int *m, /* returned number of rows */
int *n, /* returned number of columns */
double **pr, /* returned pointer to real part */
double **pi /* returned pointer to imaginary part */
)
{
mxArray *pmat;

pmat = engGetArray(ep, name);

if (!pmat)
return(1);

if (!mxIsDouble(pmat)) {
mxDestroyArray(pmat) ;
return(1);

}

*m = mxGetM(pmat);
*n = mxGetN(pmat);
*pr = mxGetPr(pmat);
*pi = mxGetPi(pmat);

/* Set pr & pi in array struct to NULL so it can be cleared. */
mxSetPr(pmat, NULL);
mxSetPi(pmat, NULL);

mxDestroyArray(pmat) ;

engGetFull (Obsolete)

See Also

return(0);

}

engGetArray and examples in the eng_mat subdirectory of the examples
directory

23

engGetMatrix (Obsolete)

V4 Compatible

See Also

24

This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 engine applications, call
engGetArray

engGetArray, engPutArray, and examples in the eng_mat subdirectory of the
examples directory

engOpen

Purpose

C Syntax

Arguments

Returns

Description

Start a MATLAB engine session

#include "engine.h"
Engine *engOpen(const char *startcmd);

startcmd
String to start MATLAB process.

Note: On Windows, the startcmd string must be NULL.

A pointer to an Engine handle.

This routine allows you to start a MATLAB process for the purpose of using
MATLAB as a computational engine.

engOpen(startcmd) starts a MATLAB process using the command specified in
the string startcmd, establishes a connection, and returns a unigue engine
identifier, or NULL if the open fails.

On UNIX systems, if startcmd is NULL or the empty string, engOpen starts
MATLAB on the current host using the command matlab. If startcmd is a
hostname, engOpen starts MATLAB on the designated host by embedding the
specified hostname string into the larger string:

"rsh hostname \"/bin/csh —c 'setenv DISPLAY\
hostname:0; matlab'\""

If startcmd is any other string (has white space in it, or nonalphanumeric
characters), the string is executed literally to start MATLAB.

On UNIX systems, engOpen performs the following steps:

1 Creates two pipes.

2 Forks a new process and sets up the pipes to pass stdin and stdout from
MATLAB (parent) to two file descriptors in the engine program (child).

3 Executes a command to run MATLAB (rsh for remote execution).

25

engOpen

Examples

26

Under Windows on a PC, engOpen opens an ActiveX channel to MATLAB. This
starts the MATLAB that was registered during installation. If you did not
register during installation, on the command line you can enter the command:

matlab /regserver

See “MATLAB ActiveX Integration” in the Application Program Interface
Guide for additional details.

(UNIX) See engdemo.c in the eng_mat subdirectory of the examples directory
for asample program that illustrates how to call the MATLAB engine functions
from a C program.

(Windows) See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB engine
functions from a C program for Windows.

engOutputBuffer

Purpose

C Syntax

Arguments

Description

Example

Specify buffer for MATLAB output

#include "engine.h"
int engOutputBuffer(Engine *ep, char *p, int n);

ep
Engine pointer.

n
Length of buffer p.

p
Pointer to character buffer of length n.

engOutputBuffer defines a character buffer for engEvalString to return any
output that ordinarily appears on the screen.

The default behavior of engEvalString is to discard any standard output
caused by the command it is executing. engOutputBuffer(ep,p,n) tells any
subsequent calls to engEvalString to save the first n characters of output in
the character buffer pointed to by p.

(UNIX) See engdemo.c in the eng_mat subdirectory of the examples directory
for asample program that illustrates how to call the MATLAB engine functions
from a C program.

(Windows) See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB engine
functions from a C program for Windows.

27

engPutArray

Purpose

C Syntax

Arguments

Description

Example

28

Put variables into a MATLAB engine’s workspace

#include "engine.h"
int engPutArray(Engine *ep, const mxArray *mp);

ep
Engine pointer.

mp
mxArray pointer.

This routine allows you to put variables into a MATLAB engine’s workspace.

engPutArray writes mxArray mp to the engine ep. If the mxArray does not exist
in the workspace, it is created. If an mxArray with the same name already
exists in the workspace, the existing mxArray is replaced with the new mxArray.

engPutArray returns 0 if successful and 1 if an error occurs. In V4 compatibility
mode, engPutArray will fail if the mxArray mp is not a MATLAB 4 data type.

(UNIX) See engdemo.c in the eng_mat subdirectory of the examples directory
for asample program that illustrates how to call the MATLAB engine functions
from a C program.

(Windows) See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB engine
functions from a C program for Windows.

engPutFull (Obsolete)

V4 Compatible

See Also

This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 engine applications, call
mxCreateDoubleMatrix and engPutArray
For example,

int engPutFull(

Engine *ep, /* engine pointer */

char *name, /* full array name */

int m, /* number of rows */

int n, /* number of columns */

double *pr, /* pointer to real part */
double *pi /* pointer to imaginary part */
)

mxArray *pmat;

int retval;

pmat = mxCreateDoubleMatrix(0, O, mxCOMPLEX);

mxSetName (pmat, name);
mxSetM(pmat, m);
mxSetN(pmat, n);
mxSetPr(pmat, pr);
mxSetPi(pmat, pi);

retval = engPutArray(ep, pmat);

/* Set pr & pi in array struct to NULL so it can be cleared. */
mxSetPr(pmat, NULL);

mxSetPi(pmat, NULL);

mxDestroyArray(pmat) ;

return(retval);

engGetArray, mxCreateDoubleMatrix

29

engPutMatrix (Obsolete)

V4 Compatible

See Also

30

This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 engine applications, call
engPutArray

engPutArray

engSetEvalCallback (Obsolete)
|

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.

31

engSetEvalTimeout (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.

32

engWinlnit (Obsolete)
|

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program. This
function is not necessary in MATLAB 5 engine programs.

33

C MAT-File Routines

matClose

Purpose

C Syntax

Arguments

Description

Example

Closes a MAT-file

#include "mat.h"
int matClose(MATFile *mfp);

mfp
Pointer to MAT-file information.

matClose closes the MAT-file associated with mfp. It returns EOF for a write
error, and zero if successful.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples

directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

35

matDeleteArray

Purpose

C Syntax

Arguments

Description

Example

36

Delete named mxArray from MAT-file

#include "mat.h"
int matDeleteArray(MATFile *mfp, const char *name);

mfp
Pointer to MAT-file information.

name
Name of mxArray to delete.

matDeleteArray deletes the named mxArray from the MAT-file pointed to by
mfp. matDeleteArray returns O if successful, nonzero otherwise.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matDeleteMatrix (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 you should call
matDeleteArray

See Also matDeleteArray

37

matGetArray

Purpose

C Syntax

Arguments

Description

Example

38

Read mxArrays from MAT-files

#include "mat.h"
mxArray *matGetArray(MATFile *mfp, const char *name);

mfp
Pointer to MAT-file information.

name
Name of mxArray to get from MAT-file.

This routine allows you to copy an mxArray out of a MAT-file.

matGetArray reads the named mxArray from the MAT-file pointed to by mfp and
returns a pointer to a newly allocated mxArray structure, or NULL if the attempt
fails.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetArrayHeader

Purpose

C Syntax

Arguments

Description

Example

Load array header information only

#include "mat.h"
mxArray *matGetArrayHeader (MATFile *mfp, const char *name);

mfp
Pointer to MAT-file information.

name
Name of mxArray.

matGetArrayHeader loads only the array header information, including
everything except pr, pi, ir, and jc. It recursively creates the cells/structures
through their leaf elements, but does not include pr, pi, ir, and jc. If pr, pi,
ir, and jc are set to non-NULL when loaded with matGetArray,
matGetArrayHeader sets them to —1 instead. These headers are for
informational use only and should never be passed back to MATLAB or saved
to MATfiles.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples

directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

39

matGetDir

Purpose

C Syntax

Arguments

Description

Examples

40

Get directory of mxArrays in a MAT-file

#include "mat.h"
char **matGetDir (MATFile *mfp, int *num);

mfp
Pointer to MAT-file information.

num
Address of the variable to contain the number of mxArrays in the MAT-file.

This routine allows you to get a list of the names of the mxArrays contained
within a MAT-file.

matGetDir returns a pointer to an internal array containing pointers to the
NULL-terminated names of the mxArrays in the MAT-file pointed to by mfp. The
length of the internal array (number of mxArrays in the MAT-file) is placed into
num. The internal array is allocated using a single mxCalloc and must be freed
using mxFree when you are finished with it.

matGetDir returns NULL and sets num to a negative number if it fails. If num is
zero, mfp contains no arrays.

MATLAB variable names can be up to length mxMAXNAM, where mxMAXNAM is
defined in the file matrix.h.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetFp

Purpose

C Syntax

Arguments

Description

Example

Get file pointer to a MAT-file

#include "mat.h"
FILE *matGetFp(MATFile *mfp);

mfp
Pointer to MAT-file information.

matGetFp returns the C file handle to the MAT-file with handle mfp. This can
be useful for using standard C library routines like ferror() and feof () to
investigate error situations.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples

directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

41

matGetFull (Obsolete)

V4 Compatible

See Also

42

This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 you should call

matGetArray followed by the appropriate mxGet routines

For example,

int matGetFull(MATFile *fp, char *name, int *m, int *n,
double **pr, double **pi)
{
mxArray *parr;
/* Get the matrix. */
parr = matGetArray(fp, name);

if (parr == NULL)
return(1);

if (!mxIsDouble(parr)) {
mxDestroyArray(parr);
return(1);

}

/* Set up return args. */

*m = mxGetM(parr);

*n mxGetN(parr);

*pr mxGetPr(parr);

*pi = mxGetPi(parr);

/* Zero out pr & pi in array struct so the mxArray can be

destroyed. */
mxSetPr(parr, (void *)0);
mxSetPi(parr, (void *)0);

mxDestroyArray(parr);

return(0);

matGetArray

matGetMatrix (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 you should call
matGetArray

See Also matGetArray

43

matGetNextArray

Purpose

C Syntax

Arguments

Description

Example

44

Read next mxArray from MAT-file

#include "mat.h"
mxArray *matGetNextArray(MATFile *mfp);

mfp
Pointer to MAT-file information.

matGetNextArray allows you to step sequentially through a MAT-file and read
all the mxArrays in a single pass.

matGetNextArray reads the next mxArray from the MAT-file pointed to by mfp
and returns a pointer to a newly allocated mxArray structure. Use it
immediately after opening the MAT-file with matOpen and not in conjunction
with other MAT-file routines; otherwise, the concept of the next mxArray is
undefined.

matGetNextArray returns NULL when the end-of-file is reached or if there is an
error condition. Use feof and ferror from the Standard C Library to
determine status.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetNextArrayHeader

Purpose

C Syntax

Arguments

Description

Example

See Also

Load array header information only

#include "mat.h"
mxArray *matGetNextArrayHeader (MATFile *mfp);

mfp
Pointer to MAT-file information.

matGetNextArrayHeader loads only the array header information, including
everything except pr, pi, ir, and jc, from the file’s current file offset.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetNextArray, matGetArrayHeader

45

matGetNextMatrix (Obsolete)

V4 Compatible

See Also

46

This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 you should call
matGetNextArray

matGetNextArray

matGetString (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 you should call

#include "mat.h"

#include "matrix.h"

mxArray *matGetArray(MATFile *mfp, const char *name);

int mxGetString(const mxArray *array_ptr, char *buf, int buflen)

See Also matGetArray, mxGetString

a7

matOpen

Purpose

C Syntax

Arguments

Description

Example

48

Opens a MAT-file

#include "mat.h"
MATFile *matOpen(const char *filename, const char *mode);

filename
Name of file to open.

mfp
Pointer to MAT-file information.

mode
File opening mode.
This routine allows you to open MAT-files for reading and writing.

matOpen opens the named file and returns a file handle, or NULL if the open
fails. Legal values for mode are:

r Opens file for reading only; determines the current version of
the MAT-file by inspecting the files and preserves the current
version.

u Opens file for update, both reading and writing, but does not

create the file if the file does not exist (equivalent to the r+
mode of fopen); determines the current version of the MAT-file
by inspecting the files and preserves the current version.

w Opens file for writing only; deletes previous contents, if any.

w4 Creates a MATLAB 4 MAT-file, rather than the default
MATLAB 5 MAT-file.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matPutArray

Purpose

C Syntax

Arguments

Description

Example

Write mxArrays into MAT-files

#include "mat.h"
int matPutArray(MATFile *mfp, const mxArray *mp);

mfp
Pointer to MAT-file information.

mp
mxArray pointer.

This routine allows you to put an mxArray into a MAT-file.

matPutArray writes mxArray mp to the MAT-file mfp. If the mxArray does not
exist in the MAT-file, it is appended to the end. If an mxArray with the same
name already exists in the file, the existing mxArray is replaced with the new
mxArray by rewriting the file. The size of the new mxArray can be different than
the existing mxArray.

matPutArray returns O if successful and nonzero if an error occurs. Use feof
and ferror from the Standard C Library along with matGetFp to determine
status.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples

directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

49

matPutArrayAsGlobal

Purpose

C Syntax

Arguments

Description

Example

50

Put mxArrays into MAT-files

#include "mat.h"
int matPutArrayAsGlobal (MATFile *mfp, const mxArray *mp);

mfp
Pointer to MAT-file information.

mp
mxArray pointer.

This routine allows you to put an mxArray into a MAT-file.
matPutArrayAsGlobal is similar to matPutArray, except the array is loaded by
MATLAB into the global workspace and a reference to it is set in the local
workspace. If you write to a MATLAB 4 format file, matPutArrayAsGlobal will
not load it as global, and will act the same as matPutArray.

matPutArrayAsGlobal writes mxArray mp to the MAT-file mfp. If the mxArray
does not exist in the MAT-file, it is appended to the end. If an mxArray with the
same name already exists in the file, the existing mxArray is replaced with the
new mxArray by rewriting the file. The size of the new mxArray can be different
than the existing mxArray.

matPutArrayAsGlobal returns O if successful and nonzero if an error occurs.
Use feof and ferror from the Standard C Library with matGetFp to determine
status.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matPutFull (Obsolete)

V4 Compatible

See Also

This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 you should call

mxCreateDoubleMatrix and matPutArray

For example,

int matPutFull (MATFile*ph, char *name, int m, int n, double *pr,

{

double *pi)

int retval;
mxArray *parr;

/* Get empty array struct to place inputs into. */
parr = mxCreateDoubleMatrix(0, 0, 0);
if (parr == NULL)

return(1);

/* Place inputs into array struct. */
mxSetM(parr, m);

mxSetN(parr, n);

mxSetName (parr, name);

mxSetPr(parr, pr);

mxSetPi(parr, pi);

/* Use put to place array on file. */
retval = matPutArray(ph, parr);

/* Zero out pr & pi in array struct so the mxArray can be
destroyed. */

mxSetPr(parr, (void *)0);

mxSetPi(parr, (void *)0);

mxDestroyArray(parr);

return(retval);

mxCreateDoubleMatrix, matPutArray

51

matPutMatrix (Obsolete)

V4 Compatible

See Also

52

This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 you should call
matPutArray

matPutArray

matPutString (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program. To use
this function in existing code, use the —V4 option of the mex script.

In MATLAB 5 you should call

#include "matrix.h"

#include "mat.h"

mxArray *mxCreateString(char *str)

int matPutArray (MATFile *mfp, const mxArray *mp);
void mxDestroyArray(mxArray *array_ptr)

See Also matPutArray

53

C MEX-Functions

mexAddFlops

Purpose

C Syntax

Arguments

Description

Example

Update MATLAB's internal floating-point operations (flops) counter

#include "mex.h"
void mexAddFlops(int count);

count
Specified value.

The mexAddFlops function adds the number specified to MATLAB’s
internal floating-point operations (flops) counter. Use mexAddFlops when
you want MATLADB's internal counter to accurately reflect the number of
flops executed by your MEX-file.

See yprime.c in the mex subdirectory of the examples directory.

55

mexAtExit

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

56

Register a function to be called when the MEX-file is cleared or when
MATLAB terminates

#include "mex.h"
int mexAtExit(void (*ExitFcn)(void));

ExitFcn
Pointer to function you want to run on exit.

Always returns 0.

Use mexAtExit to register a C function to be called just before the
MEX-file is cleared or MATLAB is terminated. mexAtExit gives your
MEX-file a chance to perform tasks such as freeing persistent memory
and closing files. Typically, the named ExitFcn performs tasks like
closing streams or sockets.

Each MEX-file can register only one active exit function at a time. If you
call mexAtExit more than once, MATLAB uses the ExitFcn from the
more recent mexAtExit call as the exit function.

If a MEX-file is locked, all attempts to clear the MEX-file will fail.
Consequently, if a user attempts to clear a locked MEX-file, MATLAB
does not call the ExitFcn.

See mexatexit.c in the mex subdirectory of the examples directory.

mexLock, mexUnlock

mexCallMATLAB

Purpose

C Syntax

Arguments

Returns

Description

Call a MATLAB function, or a user-defined M-file or MEX-file

#include "mex.h"
int mexCallMATLAB(int nlhs, mxArray *plhs[], int nrhs,
mxArray *prhs[], const char *command_name);

nlhs
Number of desired output arguments. This value must be less than or

equal to 50.

plhs

Pointer to an array of mxArrays. The called command puts pointers to the
resultant mxArrays into plhs. Note that the called command allocates
dynamic memory to store the resultant mxArrays. By default, MATLAB
automatically deallocates this dynamic memory when you clear the
MEX-file. However, if heap space is at a premium, you may want to call
mxDestroyArray as soon as you are finished with the mxArrays that plhs
points to.

nrhs

Number of input arguments. This value must be less than or equal to 50.

prhs
Pointer to an array of input arguments.

command_name

Character string containing the name of the MATLAB built-in, operator,
M-file, or MEX-file that you are calling. If command_name is an operator,
just place the operator inside a pair of single quotes; for example, '+'.

0 if successful, and a nonzero value if unsuccessful.

Call mexCallMATLAB to invoke internal MATLAB numeric functions,
MATLAB operators, M-files, or other MEX-files. See mexFunction for a
complete description of the arguments.

By default, if command_name detects an error, MATLAB terminates the
MEX-file and returns control to the MATLAB prompt. If you want a

different error behavior, turn on the trap flag by calling mexSetTrapFlag.

57

mexCallMATLAB

Note that it is possible to generate an object of type mxUNKNOWN_CLASS
using mexCallMATLAB. For example, if you create an M-file that returns
two variables but only assigns one of them a value,

function [a,b]=foo[c]
a=2*c;

you'll get this warning message in MATLAB:

Warning: One or more output arguments not assigned during
call to 'foo'.

MATLAB assigns output b to an empty matrix. If you then call foo using
mexCallMATLAB, the unassigned output variable will now be of type
mxXUNKNOWN_CLASS.

Exumples See mexcallmatlab.c in the mex subdirectory of the examples directory.

For additional examples, see sincall.c in the refbook subdirectory of
the examples directory; see mexevalstring.c and mexsettrapflag.cin
the mex subdirectory of the examples directory; see
mxcreatecellmatrix.c and mxisclass.c in the mx subdirectory of the
examples directory.

See Also mexFunction, mexSetTrapFlag

58

mexErrMsgTxt

Purpose

C Syntax

Arguments

Description

Examples

See Also

Issue error message and return to the MATLAB prompt

#include "mex.h"
void mexErrMsgTxt(const char *error_msg);

error_msg
String containing the error message to be displayed.

Call mexErrMsgTxt to write an error message to the MATLAB window.
After the error message prints, MATLAB terminates the MEX-file and
returns control to the MATLAB prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgTxt does not invoke the function registered
through mexAtExit.

If your application called mxCalloc or one of the mxCreate routines to
allocate memory, mexErrMsgTxt automatically frees the allocated
memory.

See xtimesy.c in the refbook subdirectory of the examples directory.

For additional examples, see convec.c, findnz.c, fulltosparse.c,
phonebook.c, revord.c, and timestwo.c in the refbook subdirectory of
the examples directory.

mexWarnMsgTxt

59

mexEvalString

Purpose Execute a MATLAB command in the workspace of the caller

C Syntax #include "mex.h"
int mexEvalString(const char *command);

Arguments command
A string containing the MATLAB command to execute.

Returns 0 if successful, and a nonzero value if unsuccessful.
Description Call mexEvalString to invoke a MATLAB command in the workspace of
the caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands.
However, mexCallMATLAB provides a mechanism for returning results
(left-hand side arguments) back to the MEX-file; mexEvalString
provides no way for return values to be passed back to the MEX-file.

All arguments that appear to the right of an equals sign in the command
string must already be current variables of the caller’'s workspace.

Exumple See mexevalstring.c in the mex subdirectory of the examples directory.

See Also mexCallMATLAB

60

mexFunction

Purpose

C Syntax

Arguments

Description

Entry point to a C MEX-file

#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
const mxArray *prhs[]);

nlhs
MATLAB sets nlhs with the number of expected mxArrays.

plhs
MATLAB sets plhs to a pointer to an array of NULL pointers.

nrhs
MATLAB sets nrhs to the number of input mxArrays.

prhs

MATLAB sets prhs to a pointer to an array of input mxArrays. These
mxArrays are declared as constant; they are read only and should not be
modified by your MEX-file. Changing the data in these mxArrays may
produce undesired side effects.

mexFunction is not a routine you call. Rather, mexFunction is the generic
name of the function entry point that must exist in every C source
MEX-file. When you invoke a MEX-function, MATLAB finds and loads
the corresponding MEX-file of the same name. MATLAB then searches
for a symbol named mexFunction within the MEX-file. If it finds one, it
calls the MEX-function using the address of the mexFunction symbol. If
MATLAB cannot find a routine named mexFunction inside the MEX-file,
it issues an error message.

When you invoke a MEX-file, MATLAB automatically seeds nlhs, plhs,
nrhs, and prhs with the caller's information. In the syntax of the
MATLAB language, functions have the general form

[a,b,c,...] = fun(d,e,f,...)

where the .. denotes more items of the same format. The a,b,c... are
left-hand side arguments and the d,e, f. .. are right-hand side
arguments. The arguments nlhs and nrhs contain the number of
left-hand side and right-hand side arguments, respectively, with which
the MEX-function is called. prhs is a pointer to a length nrhs array of

61

mexFunction

pointers to the right-hand side mxArrays. plhs is a pointer to a length
nlhs array where your C function must put pointers for the returned
left-hand side mxArrays.

Example See mexfunction.c in the mex subdirectory of the examples directory.

62

mexFunctionName

Purpose

C Syntax

Arguments
Returns
Description

Example

Gives the name of the current MEX-function

#include "mex.h"
const char *mexFunctionName;

none
The name of the current MEX-function.
mexFunctionName returns the name of the current MEX-function.

See mexgetarray.c in the mex subdirectory of the examples directory.

63

mexGet

64

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

Get the value of the specified Handle Graphics® property

#include "mex.h"
const mxArray *mexGet(double handle, const char *property);

handle
Handle to a particular graphics object.

property
A Handle Graphics property.

The value of the specified property in the specified graphics object on
success. Returns NULL on failure. The return argument from mexGet is
declared as constant, meaning that it is read only and should not be
modified. Changing the data in these mxArrays may produce undesired
side effects.

Call mexGet to get the value of the property of a certain graphics object.
mexGet is the API equivalent of MATLADB's get function. To set a
graphics property value, call mexSet.

See mexget.c in the mex subdirectory of the examples directory.

mexSet

mexGetArray

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

Get a copy of a variable from another workspace

#include "mex.h"
mxArray *mexGetArray(const char *name, const char *workspace);

name
Name of the variable to copy into the MEX-file workspace.

workspace
Specifies where mexGetArray should search in order to find variable
name. The possible values are:

"base" Search for variable name in the current MATLAB
workspace.

"caller" Search for variable name in the workspace of whatever
entity (M-file, another MEX-file, MATLAB) called this
MEX-file.

"global" Search for variable name in the list of global variables.

If variable name exists but is not tagged as a global
variable, then mexGetArray returns NULL.

A copy of the mxArray on success. Returns NULL on failure. A common
cause of failure is specifying a name not currently in the workspace.
Perhaps the variable was in the workspace at one time but has since been
cleared.

Call mexGetArray to copy the specified variable name into your
MEX-file’s workspace. Once inside your MEX-file’'s workspace, your
MEX-file may examine or modify the variable’s data and characteristics.

The returned mxArray contains a copy of all the data and characteristics
that variable name had in the other workspace. mexGetArray initializes
the name field of the returned mxArray to the variable name.

See mexgetarray.c in the mex subdirectory of the examples directory.

mexGetArrayPtr, mexPutArray

65

mexGetArrayPtr

66

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

Get a read-only pointer to a variable from another workspace

#include "mex.h"
const mxArray *mexGetArrayPtr(const char *name,
const char *workspace);

name
Name of a variable in another workspace. (Note that this is a variable
name, not an mxArray pointer.)

workspace
Specifies which workspace you want mexGetArrayPtr to search. The
possible values are:

"base" Search the current variables of MATLAB.

"caller" Search the current variables of whatever entity
(M-file, another MEX-file, MATLAB workspace) called
this MEX-file.

"global" Search the current global variables of MATLAB only.

A read-only pointer mxArray called name on success. Returns NULL on
failure.

Call mexGetArrayPtr to get a read-only copy of the specified variable
name into your MEX-file’'s workspace. This command is useful for
examining an mxArray’s data and characteristics, but useless for
changing them. If you need to change data or characteristics, call
mexGetArray instead of mexGetArrayPtr. If you simply need to examine
data or characteristics, mexGetArrayPtr offers superior performance as
the caller need pass only a pointer to the array. By contrast, mexGetArray
passes back the entire array.

See mxislogical.c in the mx subdirectory of the examples directory.

mexGetArray

mexGetEps (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call
eps = mxGetEps();
instead of

eps = mexGetEps();

See Also mxGetEps

67

mexGetFull (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call

mexGetArray(array_ptr, "caller");
name = mxGetName(array_ptr);

m = mxGetM(array_ptr);

n = mxGetN(array_ptr);

pr = mxGetPr(array_ptr);

pi = mxGetPi(array_ptr);

instead of

mexGetFull(name, m, n, pr, pi);

See Also mexGetArray, mxGetName, mxGetPr, mxGetPi

68

mexGetGlobal (Obsolete)
|

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call
mexGetArrayPtr(name, "global");

instead of

mexGetGlobal (name);

See Also mexGetArray, mxGetName, mxGetPr, mxGetPi

69

mexGetinf (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call
eps = mxGetEps();
instead of

eps = mexGetEps();

See Also mxGetEps

70

mexGetMatrix (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call

mexGetArray(name, "caller");

instead of

mexGetMatrix(name);

See Also mexGetArray

71

mexGetMatrixPir (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call

mexGetArrayPtr(name, "caller");

instead of

mexGetMatrixPtr(name);

See Also mexGetArrayPtr

72

mexGetNaN (Obsolete)
|

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call
NaN = mxGetNaN();

instead of

NaN = mexGetNaN();

See Also mxGetNaN

73

meXxlIsFinite (Obsolete)

74

V4 Compatible

See Also

This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call

answer = mxIsFinite(value);

instead of

answer = mexIsFinite(value);

mxIsFinite

mexIsGlobal

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

True if mxArray has global scope

#include "matrix.h"
bool mexIsGlobal(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

True if the mxArray has global scope; otherwise, returns false.

Use mexIsGlobal to determine if the specified mxArray has global scope.

By default, mxArrays have local scope, meaning that changes made to the
mxArray inside a MEX-file or stand-alone application have no effect on a
variable of the same name in another workspace. However, if an mxArray
has global scope, then changes made to the mxArray inside a MEX-file or
stand-alone application can affect other workspaces.

The MATLAB global command gives global scope to a MATLAB
variable. For example, to make variable x global, just type

global x

The most common use of mexIsGlobal is to determine if an mxArray
stored inside a MAT-files is global.

See mxislogical.c in the mx subdirectory of the examples directory.

mexGetArray, mexGetArrayPtr, mexPutArray

75

mexlsinf (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call

answer = mxIsInf(value);

instead of

answer = mexIsInf(value);

See Also mxIsInf

76

mexlisLocked

Purpose

C Syntax

Returns

Description

Example

See Also

True if this MEX-file is locked

#include "mex.h"
bool mexIsLocked(void);

True if the MEX-file is locked; False if the file is unlocked.

Call mexIsLocked to determine if the MEX-file is locked. By default,
MEX-files are unlocked, meaning that users can clear a MEX-file at any
time. Calling mexLock locks a MEX-file, which makes it impossible for a
user to clear a MEX-file.

See mexlock.c in the mex subdirectory of the examples directory.

mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent
mexUnlock

77

mexIsNaN (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call

answer = mxIsNaN(value);

instead of

answer = mexIsNaN(value);

See Also mxIsInf

78

mexLock

Purpose

C Syntax

Description

Example

See Also

Lock a MEX-file so that it cannot be cleared from memory

#include "mex.h"
void mexLock(void);

By default, MEX-files are unlocked, meaning that a user can clear them
at any time. Call mexLock to prohibit a MEX-file from being cleared.

To unlock a MEX-file, call mexUnlock.

mexLock increments a lock count. If you call mexLock n times, you must
call mexUnlock n times to unlock your MEX-file.

See mexlock.c in the mex subdirectory of the examples directory.

mexIsLocked, mexMakeArrayPersistent, mexMakeMemoryPersistent
mexUnlock

79

mexMakeArrayPersistent

80

Purpose

C Syntax

Arguments

Description

See Also

Make an mxArray persist after the MEX-file completes

#include "mex.h"
void mexMakeArrayPersistent(mxArray *array_ptr);

array_ptr
Pointer to an mxArray created by an mxCreate routine.

By default, mxArrays allocated by mxCreate routines are not persistent.
MATLAB’s memory management facility automatically frees
nonpersistent mxArrays when the MEX-file finishes. If you want the
mxArray to persist through multiple invocations of the MEX-file, you
must call mexMakeArrayPersistent.

Note: If you create a persistent mxArray, you are responsible for
destroying it when the MEX-file is cleared. If you do not destroy the
mxArray, MATLAB will leak memory. See mexAtExit to see how to
register a function that gets called when the MEX-file is cleared; see
mexLock to see how to lock your MEX-file so that it is never cleared.

mexAtExit, mexLock, mexMakeMemoryPersistent, and the mxCreate
functions.

mexMakeMemoryPersistent

Purpose

C Syntax

Arguments

Description

See Also

Make memory allocated by MATLAB's memory allocation routines
(mxCalloc, mxMalloc, mxRealloc) persist after the MEX-file completes

#include "mex.h"
void mexMakeMemoryPersistent(void *ptr);

ptr
Pointer to the beginning of memory allocated by one of MATLAB's
memory allocation routines.

By default, memory allocated by MATLAB is nonpersistent, so it is freed
automatically when the MEX-file finishes. If you want the memory to
persist, you must call mexMakeMemoryPersistent.

Note: If you create persistent memory, you are responsible for freeing it
when the MEX-file is cleared. If you do not free the memory, MATLAB
will leak memory. To free memory, use mxFree. See mexAtExit to see how
to register a function that gets called when the MEX-file is cleared; see
mexLock to see how to lock your MEX-file so that it is never cleared.

mexAtExit, mexLock, mexMakeArrayPersistent, mxCalloc, mxFree,
mxMalloc, mxRealloc

81

mexPrintf

82

Purpose

C Syntax

Arguments

Description

Examples

See Also

ANSI C printf-style output routine

#include "mex.h"
int mexPrintf(const char *format, ...);

format,
ANSI C printf-style format string and optional arguments.

This routine prints a string on the screen and in the diary (if the diary is
in use). It provides a callback to the standard C printf routine already
linked inside MATLAB, and avoids linking the entire stdio library into
your MEX-file.

In a MEX-file, you must call mexPrintf instead of printf.

See mexfunction.c in the mex subdirectory of the examples directory.
For an additional example, see phonebook. ¢ in the refbook subdirectory
of the examples directory.

mexErrMsgTxt, mexWarnMsgTxt

mexPutArray

Purpose

C Syntax

Arguments

Returns

Description

Copy an mxArray from your MEX-file into another workspace

#include "mex.h"
int mexPutArray(mxArray *array_ptr, const char *workspace);

array_ptr
Pointer to an mxArray.

workspace
Specifies the scope of the array that you are copying. The possible values
are:

"base" Copy name to the current MATLAB workspace.

"caller" Copy name to the workspace of whatever entity (M-file,
another MEX-file, MATLAB workspace) actually
called this MEX-file.

"global” Copy name to the list of global variables.

0 on success; 1 on failure. A possible cause of failure is that array_ptr is
NULL. Another possibility is that array_ptr points to an mxArray that
does not have an associated name. (Call mxSetName to associate a hame
with array_ptr.)

Call mexPutArray to copy the specified mxArray from your MEX-file into
another workspace. mexPutArray makes the specified array accessible to
other entities, such as MATLAB, M-files or other MEX-files.

It is easy to confuse array_ptr with a variable name. You manipulate
variable names in the MATLAB workspace; you manipulate array_ptrs
in a MEX-file. When you call mexPutArray, you specify an array_ptr;
however, the recipient workspace appears to receive a variable name.
MATLAB determines the variable name by looking at the name field of
the received mxArray.

If a variable of the same name already exists in the specified workspace,
mexPutArray overwrites the previous contents of the variable with the

83

mexPutArray

contents of the new mxArray. For example, suppose the MATLAB
workspace defines variable Peaches as

Peaches
1 2 3 4

and you call mexPutArray to copy Peaches into the MATLAB workspace:

mxSetName (array_ptr, "Peaches")
mexPutArray(array_ptr, "base")

Then, the old value of Peaches disappears and is replaced by the value
passed in by mexPutArray.

Exumple See mexgetarray.c in the mex subdirectory of the examples directory.

See Also mexGetArray

84

meXxPutFull (Obsolete)

V4 Compatible

See Also

This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call

array_ptr = mxCreateDoubleMatrix (0, 0, mxREAL/mxCOMPLEX) ;
mxSetName (array_ptr, name);
mexPutArray (array_ptr, "caller");

instead of

mexPutFull(name, m, n, pr, pi)

mxSetM, mxSetN, mxSetPr, mxSetPi, mxSetName, mexPutArray

85

mexPutMatrix (Obsolete)

V4 Compatible This function is obsolete; it should not appear in a MATLAB 5 program.
To use this function in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files you should call

mexPutArray(array_ptr, "caller");

instead of

mexPutMatrix(matrix_ptr);

See Also mexPutArray

86

mexSet

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

Set the value of the specified Handle Graphics property

#include "mex.h"
int mexSet(double handle, const char *property,
mxArray *value);

handle
Handle to a particular graphics object.

property
A Handle Graphics property.

value
The new value to assign to the property.

0 on success; 1 on failure. Possible causes of failure include:

® Specifying a nonexistent property.

® Specifying an illegal value for that property. For example, specifying a

string value for a numerical property.

Call mexSet to set the value of the property of a certain graphics object.
mexSet is the APl equivalent of MATLAB's set function. To get the value

of a graphics property, call mexGet.

See mexget.c in the mex subdirectory of the examples directory.

mexGet

87

mexSetTrapFlag

Purpose

C Syntax

Arguments

Description

Example

See Also

88

Control response of mexCallMATLAB to errors

#include "mex.h"
void mexSetTrapFlag(int trap_flag);

trap_flag
Control flag. Currently, the only legal values are:

0 On error, control returns to the MATLAB prompt.

1 On error, control returns to your MEX-file.

Call mexSetTrapFlag to control MATLAB'’s response to errors in
mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an
error in a call to mexCallMATLAB, MATLAB automatically terminates the
MEX-file and returns control to the MATLAB prompt. Calling
mexSetTrapFlag with trap_flag set to O is equivalent to not calling
mexSetTrapFlag at all.

If you call mexSetTrapFlag and set the trap_flag to 1, then whenever
MATLAB detects an error in a call to mexCallMATLAB, MATLAB does not
automatically terminate the MEX-file. Rather, MATLAB returns control
to the line in the MEX-file immediately following the call to
mexCallMATLAB. The MEX-file is then responsible for taking an
appropriate response to the error.

See mexsettrapflag.c in the mex subdirectory of the examples directory.

mexAtExit, mexErrMsgTxt

mexUnlock

Purpose

C Syntax

Description

Example

See Also

Unlock this MEX-file so that it can be cleared from memory

#include "mex.h"
void mexUnlock(void);

By default, MEX-files are unlocked, meaning that a user can clear them
atany time. Calling mexLock locks a MEX-file so that it cannot be cleared.
Calling mexUnlock removes the lock so that a MEX-file can be cleared.

mexLock decrements a lock count. If you called mexLock n times, you must
call mexUnlock n times to unlock your MEX-file.

See mexlock.c in the mex subdirectory of the examples directory.

mexIsLocked, mexLock, mexMakeArrayPersistent,
mexMakeMemoryPersistent

89

mexWarnMsgTxt

90

Purpose

C Syntax

Arguments

Description

Examples

See Also

Issue warning message

#include "mex.h"
void mexWarnMsgTxt(const char *warning_msg);

warning_msg

String containing the warning message to be displayed.
mexWarnMsgTxt causes MATLAB to display the contents of error_msg.
Unlike mexErrMsgTxt, mexWarnMsgTxt does not cause the MEX-file to
terminate.

See yprime.c in the mex subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see fulltosparse.c and revord.c in the refbook
subdirectory of the examples directory; see mxisfinite.c and
mxsetnzmax.c in the mx subdirectory of the examples directory.

mexErrMsgTxt

C MX-Functions

mxArrayToString

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

92

Convert arrays to strings

#include "matrix.h"
char *mxArrayToString(const mxArray *array_ptr);

array_ptr
Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

A C-style string. Returns NULL on out of memory.

Call mxArrayToString to copy the character data of a string mxArray into a
C-style string. The copied C-style string starts at buf and contains no more
than buflen—1 characters. The C-style string is always terminated with a NULL
character.

If the string array contains several rows, they are copied, one column at a time,
into one long string array. This function is similar to mxGetString, except that:

It does not require the length of the string as an input.
¢ |t supports multibyte character sets.

mxArrayToString does not free the dynamic memory that the char pointer
points to. Consequently, you should typically free the string (using mxFree)
immediately after you have finished using it.

See mexatexit.c in the mex subdirectory of the examples directory.
For additional examples, see mxcreatecharmatrixfromstr.c and
mxislogical.c in the mx subdirectory of the examples directory.

mxCreateCharArray, mxCreateCharMatrixFromStrings, mxCreateString,
mxGetString

mxAssert

Purpose

C Syntax

Arguments

Description

Check assertion value for debugging purposes

#include "matrix.h"
void mxAssert(int expr, char *error_message);

expr
Value of assertion.

error_message
Description of why assertion failed.

Similar to the ANSI C assert() macro, mxAssert checks the value of an
assertion, and continues execution only if the assertion holds. If expr evaluates
to true, mxAssert does nothing. If expr is false, mxAssert prints an error to
the MATLAB command window consisting of the failed assertion’s expression,
the filename and line number where the failed assertion occurred, and the
error_message string. The error_message string allows you to specify a better
description of why the assertion failed. Use an empty string if you don't want
a description to follow the failed assertion message.

After a failed assertion, control returns to the MATLAB command line.

Note that the MEX script turns off these assertions when building optimized
MEX-functions, so you should use this for debugging purposes only.

Assertions are a way of maintaining internal consistency of logic. Use them to
keep yourself from misusing your own code and to prevent logical errors from
propagating before they are caught; do not use assertions to prevent users of

your code from misusing it.

Assertions can be taken out of your code by the C preprocessor. You can use
these checks during development and then remove them when the code works
properly, letting you use them for troubleshooting during development without
slowing down the final product.

93

mxAssertS

Purpose

C Syntax

Arguments

Description

94

Check assertion value for debugging purposes; doesn't print assertion’s text

#include "matrix.h"
void mxAssertS(int expr, char *error_message);

expr
Value of assertion.

error_message
Description of why assertion failed.

Similar to mxAssert, except mxAssertS does not print the text of the failed
assertion. mxAssertS checks the value of an assertion, and continues execution
only if the assertion holds. If expr evaluates to true, mxAssertS does nothing.
If expr is false, mxAssertS prints an error to the MATLAB command window
consisting of the filename and line number where the assertion failed and the
error_message string. The error_message string allows you to specify a better
description of why the assertion failed. Use an empty string if you don't want
a description to follow the failed assertion message.

After a failed assertion, control returns to the MATLAB command line.

Note that the mex script turns off these assertions when building optimized
MEX-functions, so you should use this for debugging purposes only.

mxCalcSingleSubscript

Purpose

C Syntax

Arguments

Returns

Description

Return the offset (index) from the first element to the desired element

#include <matrix.h>
int mxCalcSingleSubscript(const mxArray *array_ptr, int nsubs,
int *subs);

array_ptr
Pointer to an mxArray.

nsubs
The number of elements in the subs array. Typically, you set nsubs equal to the
number of dimensions in the mxArray that array_ptr points to.

subs

An array of integers. Each value in the array should specify that dimension’s
subscript. The value in subs[0] specifies the row subscript, and the value in
subs[1] specifies the column subscript. Note that mxCalcSingleSubscript
views 0 as the first element of an mxArray, but MATLAB sees 1 as the first
element of an mxArray. For example, in MATLAB, (1,1) denotes the starting
element of a two-dimensional mxArray; however, to express the starting
element of a two-dimensional mxArray in subs, you must set subs[0] to 0 and
subs[1] to 0.

The number of elements between the start of the mxArray and the specified
subscript. This returned number is called an “index”; many mx routines (for
example, mxGetField) require an index as an argument.

If subs describes the starting element of an mxArray, mxCalcSingleSubscript
returns 0. If subs describes the final element of an mxArray, then

mxCalcSingleSubscript returns N—1 (where N is the total number of elements).

Call mxCalcSingleSubscript to determine how many elements there are
between the beginning of the mxArray and a given element of that mxArray. For
example, given a subscript like (5,7), mxCalcSingleSubscript returns the
distance from the (0,0) element of the array to the (5,7) element. Remember
that the mxArray data type internally represents all data elements in a
one-dimensional array no matter how many dimensions the MATLAB mxArray
appears to have.

95

mxCalcSingleSubscript

96

MATLAB uses a column-major numbering scheme to represent data elements
internally. That means that MATLAB internally stores data elements from the
first column first, then data elements from the second column second, and so
on through the last column. For example, suppose you create a 4-by-2 variable.
It is helpful to visualize the data as shown below:

o|O0|®m| >
I| ||| m

Although in fact, MATLAB internally represents the data as the following:

A B C D E F G H
Index Index Index Index Index Index Index Index
0 1 2 3 4 5 6 7

Thus, the first column has indices 0 through 3 and the second column has
indices 4 through 7.

If an mxArray is N-dimensional, then MATLAB represents the data in N-major
order. For example, consider a three-dimensional array having dimensions
4-by-2-by-3. Although you can visualize the data as,

mxCalcSingleSubscript

e M

pe]
x|s|<|c

Page 2

o|lO|m| >
I| O T m

Page 1

MATLAB internally represents the data for this three-dimensional array in
the order shown below:

A/B|C|DIE|F|G/H|I |J|K|IL|M|N|O|P|Q|R|S|T|U|V|W|X

0(1(2|3|4|5|6|7|18|9|1]|1

=
[any
[EnN
=
[EnN
=
N
N
N

Thus, the indices of page 1 are lower than the indices of page 2. Within each
page, the indices of the first column are lower than the indices of the second
column. Within each column, the indices of the first row are lower than the

indices of the second row.

mxCalcSingleSubscript provides an efficient way to get an individual offset.
However, most applications do not need to get just a single offset. Rather, most
applications have to traverse each element of data in an array. In such cases,
avoid using mxCalcSingleSubscript. To traverse all elements of the array, it
is far more efficient to find the array’s starting address and then use pointer
auto-incrementing to access successive elements. For example, to find the
starting address of a numerical array, call nxGetPr or mxGetPi.

97

mxCalcSingleSubscript

Exclmple See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

98

mxCalloc

Purpose

C Syntax

Arguments

Returns

Description

Allocate dynamic memory using MATLAB'’s memory manager

#include "matrix.h"
#include <stdlib.h>
void *mxCalloc(size_t n, size_t size);

n
Number of elements to allocate. This must be a nonnegative number.

size
Number of bytes per element. (The C sizeof operator calculates the number of
bytes per element.)

A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxCalloc returns
NULL. If unsuccessful in a MEX-file, the MEX-file terminates and control
returns to the MATLAB prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.

MATLAB applications should always call mxCalloc rather than calloc to
allocate memory. Note that mxCalloc works differently in MEX-files than in
stand-alone MATLAB applications.

In MEX-files, mxCalloc automatically

¢ Allocates enough contiguous heap space to hold n elements.
¢ Initializes all n elements to 0.

® Registers the returned heap space with the MATLAB memory management
facility.

The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc. The MATLAB memory management facility
automatically frees (deallocates) all of a MEX-file's parcels when control
returns to the MATLAB prompt.

In stand-alone MATLAB applications, mxCalloc defaults to calling the ANSI C
calloc function. If this default behavior is unacceptable, you can write your
own memory allocation routine, and then register this routine with

99

mxCalloc

Examples

See Also

100

mxSetAllocFcns. Then, whenever mxCalloc is called, mxCalloc calls your
memory allocation routine instead of calloc.

By default, in a MEX-file, mxCalloc generates nonpersistent mxCalloc data. In
other words, the memory management facility automatically deallocates the
memory as soon as the MEX-file ends. If you want the memory to persist after
the MEX-file completes, call nexMakeMemoryPersistent after callingmxCalloc.
If you write a MEX-file with persistent memory, be sure to register amexAtExit
function to free allocated memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxCalloc, call mxFree.
mxFree deallocates the memory.

See explore.c in the mex subdirectory of the examples directory, and
phonebook.c and revord.c in the refbook subdirectory of the examples
directory.

For additional examples, see mxcalcsinglesubscript.c, mxsetallocfcns.c,
and mxsetdimensions.c in the mx subdirectory of the examples directory.

mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent, mxMalloc, mxSetAllocFcns

mxChar

Purpose
C Definition

Description

Examples

See Also

Data type that string mxArrays use to store their data elements
typedef Uint16 mxChar;

All string mxArrays store their data elements as mxChar rather than as char.
The MATLAB API defines an mxChar as a 16-bit unsigned integer.

See mxmalloc.c in the mx subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory and mxcreatecharmatrixfromstr.c in the mx subdirectory
of the examples directory.

mxCreateCharArray

101

mxClassID

Purpose

C Definition

Constants

102

Enumerated data type that identifies an mxArray’s class (category)

typedef enum {
mxCELL_CLASS = 1,
mxSTRUCT_CLASS,
mxOBJECT _CLASS,
mxCHAR_CLASS,
mxSPARSE_CLASS,
mxDOUBLE_CLASS,
mxSINGLE_CLASS,
mxINT8_CLASS,
mxUINT8_CLASS,
mxINT16_CLASS,
mxUINT16_CLASS,
mxINT32_ CLASS,
mxUINT32_CLASS,
mxINT64_CLASS, /* place holder - future enhancements */
mxUINT64 CLASS, /* place holder - future enhancements */
mXUNKNOWN_CLASS = —1
} mxClasslID;

mxCELL_CLASS
Identifies a cell mxArray.

mxSTRUCT_CLASS
Identifies a structure mxArray.

mxOBJECT _CLASS
Identifies a user-defined (nonstandard) mxArray.

mxCHAR_CLASS
Identifies a string mxArray; that is an mxArray whose data is represented as
mxCHAR’S.

mxSPARSE_CLASS
Identifies a sparse mxArray; that is, an mxArray that only stores its nonzero
elements.

mxClassID

Description

Example

See Also

mxDOUBLE_CLASS
Identifies a numeric mxArray whose data is stored as double-precision,
floating-point numbers.

mxSINGLE_CLASS
Identifies a numeric mxArray whose data is stored as single-precision,
floating-point numbers.

mxINT8_CLASS
Identifies a numeric mxArray whose data is stored as signed 8-bit integers.

mxUINT8_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 8-bit integers.

mxINT16_CLASS
Identifies a numeric mxArray whose data is stored as signed 16-bit integers.

mxUINT16_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 16-bit integers.

mxINT32_CLASS
Identifies a numeric mxArray whose data is stored as signed 32-bit integers.

mxUINT32_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 32-bit integers.

mxINT64 CLASS
Reserved for possible future use.

mxUINT64_CLASS
Reserved for possible future use.

mXUNKNOWN_CLASS = —1

The class cannot be determined. You cannot specify this category for an
mxArray; however, mxGetClassID can return this value if it cannot identify the
class.

Various mx calls require or return an mxClassID argument. mxClassID
identifies the way in which the mxArray represents its data elements.

See explore.c in the mex subdirectory of the examples directory.

mxCreateNumericArray

103

mxClearlogical

Purpose

C Syntax
Arguments

Description

Example

See Also

104

Clear the logical flag

#include "matrix.h"
void mxClearLogical(mxArray *array_ptr);

array_ptr
Pointer to an mxArray having a numeric class.

Use mxClearlLogical to turn off the mxArray’s logical flag. This flag tells
MATLAB that the mxArray’s data is to be treated as numeric data rather than
as Boolean data. If the logical flag is on, then MATLAB treats a 0 value as
meaning false and a nonzero value as meaning true.

Call mxSetLogical to turn on the mxArray’s logical flag. For additional
information on the use of logical variables in MATLAB, type help logical at
the MATLAB prompt.

See mxislogical.c in the mx subdirectory of the examples directory.

mxIsLogical, mxSetLogical

mxComplexity

Purpose
C Definition

Constants

Description

Example

See Also

Flag that specifies whether an mxArray has imaginary components
typedef enum mxComplexity {mxREAL=0, mxCOMPLEX};

mxREAL
Identifies an mxArray with no imaginary components.

mxCOMPLEX
Identifies an mxArray with imaginary components.

Various mx calls require an mxComplexity argument. You can set an mxComplex
argument to either mxREAL or mxCOMPLEX.

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

mxCreateNumericArray, mxCreateDoubleMatrix, mxCreateSparse

105

mxCreateCellArray

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

106

Create an unpopulated N-dimensional cell mxArray

#include "matrix.h"
mxArray *mxCreateCellArray(int ndim, const int *dims);

ndim
The desired number of dimensions in the created cell. For example, to create a
three-dimensional cell mxArray, set ndim to 3.

dims

The dimensions array. Each element in the dimensions array contains the size
of the mxArray in that dimension. For example, setting dims[0] to 5 and
dims[1] to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Causes of failure include:

¢ Insufficient free heap space.

¢ Specifying a value for ndim that is greater than the number of values in the
dims array.

Use mxCellArray to create a cell mxArray whose size is defined by ndim and
dims. For example, to establish a three-dimensional cell mxArray having
dimensions 4-by-8-by-7, set

ndim = 3;
dims[0] = 4; dims[1] = 8; dims[2] = 7;

The created cell mxArray is unpopulated; that is, mxCreateCellArray
initializes each cell to NULL. To put data into a cell, call mxSetCell.

See phonebook.c in the refbook subdirectory of the examples directory.

mxCreateCellMatrix, mxGetCell, mxSetCell, mxIsCell

mxCreateCellMatrix

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

Create an unpopulated two-dimensional cell mxArray

#include "matrix.h"
mxArray *mxCreateCellMatrix(int m, int n);

m
The desired number of rows.

n
The desired number of columns.

A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCellMatrix to be unsuccessful.

Use mxCreateCellMatrix to create an m-by-n two-dimensional cell mxArray.
The created cell mxArray is empty; that is, mxCreateCellMatrix initializes each
cell to NULL. To put data into cells, call mxSetCell.

mxCreateCellMatrix is identical to mxCreateCellArray except that
mxCreateCellMatrix can create two-dimensional mxArrays only, but
mxCreateCellArray can create mxArrays having any number of dimensions
greater than 1.

See mxcreatecellmatrix.c in the mx subdirectory of the examples directory.

mxCreateCellArray

107

mxCreateCharArray

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

108

Create an unpopulated N-dimensional string mxArray

#include "matrix.h"
mxArray *mxCreateCharArray(int ndim, const int *dims);

ndim

The desired number of dimensions in the string mxArray. You must specify a
positive number. If you specify 0, 1, or 2, mxCreateCharArray creates a
two-dimensional mxArray.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. The dims array must have at least ndim
elements.

A pointer to the created string mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCharArray to be unsuccessful.

Call mxCreateCharArray to create an unpopulated N-dimensional string
mxArray.

See mxcreatecharmatrixfromstr.c in the mx subdirectory of the examples
directory.

mxCreateCharMatrixFromStrings, mxCreateString

mxCreateCharMatrixFromStrings

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

Create a populated two-dimensional string mxArray

#include "matrix.h"
mxArray *mxCreateCharMatrixFromStrings(int m, const char **str);

m
The desired number of rows in the created string mxArray. The value you
specify for m should equal the number of strings in str.

str
A pointer to a list of strings. The str array must contain at least m strings.

A pointer to the created string mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharMatrixFromStrings
returns NULL. If unsuccessful in a MEX-file, the MEX-file terminates and
control returns to the MATLAB prompt. Insufficient free heap space is the
primary reason for mxCreateCharArray to be unsuccessful. Another possible
reason for failure is that str contains fewer than m strings.

Use mxCreateCharMatrixFromStrings to create a two-dimensional string
mxArray, where each row is initialized to a string from str. The created
mxArray has dimensions m-by-max, where max is the length of the longest
string in str.

Note that string mxArrays represent their data elements as mxChar rather than
as char.

See mxcreatecharmatrixfromstr.c in the mx subdirectory of the examples
directory.

mxCreateCharArray, mxCreateString, mxGetString

109

mxCreateDoubleMatrix

Purpose

C Syntax

Arguments

Returns

Description

Examples

110

Create an unpopulated two-dimensional, double-precision, floating-point
mxArray

#include "matrix.h"
mxArray *mxCreateDoubleMatrix(int m, int n,
mxComplexity ComplexFlag);

m
The desired number of rows.

n
The desired number of columns.

ComplexFlag

Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data has some imaginary
components, specify mxCOMPLEX.

A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateDoubleMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateDoubleMatrix is unsuccessful when there is not
enough free heap space to create the mxArray.

Use mxCreateDoubleMatrix to create an m-by-n mxArray.
mxCreateDoubleMatrix initializes each element in the pr array to 0. If you set
ComplexFlag to mxCOMPLEX, mxCreateDoubleMatrix also initializes each
element in the pi array to 0.

If you set ComplexFlag to mxREAL, mxCreateDoubleMatrix allocates enough
memory to hold m-by-n real elements. If you set ComplexFlag to mxCOMPLEX,
mxCreateDoubleMatrix allocates enough memory to hold m-by-n real elements
and m-by-n imaginary elements.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its associated real and complex elements.

See convec.c, findnz.c, sincall.c, timestwo.c, timestwoalt.c, and
xtimesy.c in the refbook subdirectory of the examples directory.

mxCreateDoubleMatrix

See Also mxCreateNumericArray, mxComplexity

111

mxCreateFull (Obsolete)

V4 Compatible This function is obsolete; MATLAB 5 does not support it. To use this function
in existing code, use the —v4 option of the mex script.

Call mxCreateDoubleMatrix instead of mxCreateFull.

See Also mxCreateDoubleMatrix

112

mxCreateNumericArray

Purpose

C Syntax

Arguments

Returns

Description

Create an unpopulated N-dimensional humeric mxArray

#include "matrix.h"
mxArray *mxCreateNumericArray(int ndim, const int *dims,
mxClassID class, mxComplexity ComplexFlag);

ndim
Number of dimensions. If you specify a value for ndims that is less than 2,
mxCreateNumericArray automatically sets the number of dimensions to 2.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

class

The way in which the numerical data is to be represented in memory. For
example, specifying mxINT16_CLASS causes each piece of numerical data in the
mxArray to be represented as a 16-bit signed integer. You can specify any class
except for mxNUMERIC_CLASS, mxSTRUCT_CLASS, mxCELL_CLASS, or
mxOBJECT_CLASS.

ComplexFlag

Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data will have some
imaginary components, specify mxCOMPLEX.

A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateNumericArray is unsuccessful when there is not
enough free heap space to create the mxArray.

Call mxCreateNumericArray to create an N-dimensional mxArray in which all
data elements have the numeric data type specified by class. After creating
the mxArray, mxCreateNumericArray initializes all its real data elements to 0.
If ComplexFlag equals mxCOMPLEX, mxCreateNumericArray also initializes all

113

mxCreateNumericArray

Examples

See Also

114

its imaginary data elements to 0. mxCreateNumericArray differs from
mxCreateDoubleMatrix in two important respects.

¢ All data elements in mxCreateDoubleMatrix are double-precision,
floating-point numbers. The data elements in mxCreateNumericArray could
be any numerical type, including different integer precisions.

* mxCreateDoubleMatrix can create two-dimensional arrays only;
mxCreateNumericArray can create arrays of two or more dimensions.

mxCreateNumericArray allocates dynamic memory to store the created
mxArray. When you finish with the created mxArray, call nxDestroyArray to
deallocate its memory.

See phonebook.c and doubleelement.c in the refbook subdirectory of the
examples directory. For an additional example, see mxisfinite.c in the mx
subdirectory of the examples directory.

mxClassID, mxCreateDoubleMatrix, mxCreateSparse, mxCreateString,
mxComplexity

mxCreateSparse

Purpose Create a two-dimensional unpopulated sparse mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateSparse(int m, int n, int nzmax,
mxComplexity ComplexFlag);

Arguments m
The desired number of rows.

n
The desired number of columns.

nzmax

The number of elements that mxCreateSparse should allocate to hold the pr,
ir, and, if ComplexFlag is mxCOMPLEX, pi arrays. Set the value of nzmax to be
greater than or equal to the number of nonzero elements you plan to put into
the mxArray, but make sure that nzmax is less than or equal to m*n.

ComplexFlag

Set this value to mxREAL or mxCOMPLEX. If the mxArray you are creating is to
contain imaginary data, then set ComplexFlag to mxCOMPLEX; otherwise, set
ComplexFlag to mxREAL.

Returns A pointer to the created sparse mxArray on success; returns NULL on failure. The
most likely reason for failure is insufficient free heap space. If that happens,
try reducing nzmax, m, or n.

Description Call mxCreateSparse to create an unpopulated sparse mxArray. The returned
sparse mxArray contains no sparse information and cannot be passed as an
argument to any MATLAB sparse functions. In order to make the returned
sparse mxArray useful, you must initialize the pr, ir, jc, and (if it exists) pi
array.

mxCreateSparse allocates space for

® A pr array of m-by-n elements.

® A pi array of m-by-n elements (but only if ComplexFlag is mxCOMPLEX).
® An ir array of nzmax elements.

® A jc array of m elements.

115

mxCreateSparse

When you finish using the sparse mxArray, call mxDestroyArray to reclaim all
its heap space.

Exclmple See fulltosparse.c in the refbook subdirectory of the examples directory.
See Also mxDestroyArray, mxSetNzmax, mxSetPr, mxSetPi, mxSetIr, mxSetdJc,
mxComplexity

116

mxCreateString

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Create a 1-by-n string mxArray initialized to the specified string

#include "matrix.h"
mxArray *mxCreateString(const char *str);

str
The C string that is to serve as the mxArray’s initial data.

A pointer to the created string mxArray, if successful; otherwise, returns NULL.
The most likely cause of failure is insufficient free heap space.

Use mxCreateString to create a string mxArray initialized to str. Many
MATLAB functions (for example, strcmp and upper) require string array
inputs.

Free the string mxArray when you are finished using it. To free a string
mxArray, call mxDestroyArray.

See revord.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatestructarray.c, mxisclass.c, and
mxsetallocfcns.c in the mx subdirectory of the examples directory.

mxCreateCharMatrixFromStrings, mxCreateCharArray

117

mxCreateStructArray

Purpose

C Syntax

Arguments

Returns

Description

Example

118

Create an unpopulated N-dimensional structure mxArray

#include "matrix.h"
mxArray *mxCreateStructArray(int ndim, const int *dims, int nfields,
const char **field_names);

ndim
Number of dimensions. If you set ndims to be less than 2,
mxCreateNumericArray creates a two-dimensional mxArray.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. Typically, the dims array should have ndim
elements.

nfields
The desired number of fields in each element.

field names
The desired list of field names.

A pointer to the created structure mxArray, if successful; otherwise, returns
NULL. The most likely cause of failure is insufficient heap space to hold the
returned mxArray.

Call mxCreateStructArray to create an unpopulated structure mxArray. Each
element of a structure mxArray contains the same number of fields (specified in
nfields). Each field has a name; the list of names is specified in field_names.
A structure mxArray in MATLAB is conceptually identical to an array of
structs in the C language.

Each field holds one mxArray pointer. mxCreateStructArray initializes each
field to NULL. Call mxSetField or mxSetFieldByNumber to place a non-NULL
mxArray pointer in a field.

When you finish using the returned structure mxArray, call mxDestroyArray to
reclaim its space.

See mxcreatestructarray.c in the mx subdirectory of the examples directory.

mxCreateStructArray

See Also mxCreateFull, mxDestroyArray, mxSetNzmax

119

mxCreateStructMatrix

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

120

Create an unpopulated two-dimensional structure mxArray

#include "matrix.h"
mxArray *mxCreateStructMatrix(int m, int n, int nfields,
const char **field_names);

m
The desired number of rows. This must be a positive integer.

n
The desired number of columns. This must be a positive integer.

nfields
The desired number of fields in each element.

field_names
The desired list of field names.

A pointer to the created structure mxArray, if successful; otherwise, returns
NULL. The most likely cause of failure is insufficient heap space to hold the
returned mxArray.

mxCreateStructMatrix and mxCreateStructArray are almost identical. The
only difference is that mxCreateStructMatrix can only create two-dimensional
mxArrays, while mxCreateStructArray can create mxArrays having two or
more dimensions.

See phonebook.c in the refbook subdirectory of the examples directory.

mxCreateStructArray, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetFieldNumber, mxIsStruct

mxDestroyArray

Purpose

C Syntax

Arguments

Description

Examples

See Also

Free dynamic memory allocated by an mxCreate routine

#include "matrix.h"
void mxDestroyArray(mxArray *array_ptr);

array_ptr
Pointer to the mxArray that you want to free.

mxDestroyArray deallocates the memory occupied by the specified mxArray.
mxDestroyArray not only deallocates the memory occupied by the mxArray’s
characteristics fields (such as m and n), but also deallocates all the mxArray’s
associated data arrays (such as pr, pi, ir, and/or jc). You should not call
mxDestroyArray on an mxArray you are returning on the left-hand side.

See sincall.c in the refbook subdirectory of the examples directory.

For additional examples, see mexcallmatlab.c and mexgetarray.c in the mex
subdirectory of the examples directory; see mxisclass.c and
mxsetallocfcns.c in the mx subdirectory of the examples directory.

mxCalloc, mxFree, mexMakeArrayPersistent, mexMakeMemoryPersistent

121

mxDuplicateArray

Purpose

C Syntax

Arguments

Description

Examples

122

Make a deep copy of an array

#include "matrix.h"
mxArray *mxDuplicateArray(const mxArray *in);

in
Pointer to the array’s copy.

mxDuplicateArray makes a deep copy of an array, and returns a pointer to the
copy. A deep copy refers to a copy in which all levels of data are copied. For
example, a deep copy of a cell array copies each cell, and the contents of the
each cell (if any), and so on.

See mexget.c in the mex subdirectory of the examples directory and
phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatecellmatrix.c, mxgetinf.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

mxFree

Purpose

C Syntax

Arguments

Description

Free dynamic memory allocated by mxCalloc

#include "matrix.h"
void mxFree(void *ptr);

ptr
Pointer to the beginning of any memory parcel allocated by mxCalloc.

To deallocate heap space, MATLAB applications should always call mxFree
rather than the ANSI C free function.

mxFree works differently in MEX-files than in stand-alone MATLAB
applications.

In MEX-files, mxFree automatically

¢ Calls the ANSI C free function, which deallocates the contiguous heap space
that begins at address ptr.

® Removes this memory parcel from the MATLAB memory management
facility’'s list of memory parcels.

The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc (and by the mxCreate calls). The MATLAB memory
management facility automatically frees (deallocates) all of a MEX-file's
parcels when control returns to the MATLAB prompt.

By default, when mxFree appears in stand-alone MATLAB applications,
mxFree simply calls the ANSI C free function. If this default behavior is
unacceptable, you can write your own memory deallocation routine and
register this routine with mxSetAllocFcns. Then, whenever mxFree is called,
mxFree calls your memory allocation routine instead of free.

In a MEX-file, your use of mxFree depends on whether the specified memory
parcel is persistent or nonpersistent. By default, memory parcels created by
mxCalloc are nonpersistent. However, if an application calls
mexMakeMemoryPersistent, then the specified memory parcel becomes
persistent.

The MATLAB memory management facility automatically frees all
nonpersistent memory whenever a MEX-file completes. Thus, even if you do
not call mxFree, MATLAB takes care of freeing the memory for you.

123

mxFree

Examples

See Also

124

Nevertheless, it is a good programming practice to deallocate memory just as
soon as you are through using it. Doing so generally makes the entire system
run more efficiently.

When a MEX-file completes, the MATLAB memory management facility does
not free persistent memory parcels. Therefore, the only way to free a persistent
memory parcel is to call mxFree. Typically, MEX-files call nexAtExit to register
a clean-up handler. Then, the clean-up handler calls mxFree.

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

For additional examples, see phonebook.c in the refbook subdirectory of the
examples directory; see explore.c and mexatexit.c in the mex subdirectory of
the examples directory; see mxcreatecharmatrixfromstr.c, mxisfinite.c,
mxmalloc.c, mxsetallocfcns.c, and mxsetdimensions.c in the mx
subdirectory of the examples directory.

mxCalloc, mxDestroyArray, mxMalloc, mexMakeArrayPersistent,
mexMakeMemoryPersistent

mxFreeMatrix (Obsolete)

V4 Compatible This function is obsolete; MATLAB 5 does not support it. To use this function
in existing code, use the —v4 option of the mex script.

Call mxDestroyArray instead of mxFreeMatrix.

See Also mxDestroyArray

125

mxGetCell

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

126

Get a cell's contents

#include "matrix.h"
mxArray *mxGetCell(const mxArray *array_ptr, int index);

array_ptr
Pointer to a cell mxArray.

index
The number of elements in the cell mxArray between the first element and the
desired one. See mxCalcSingleSubscript for details on calculating an index.

A pointer to the ith cell mxArray, if successful; otherwise, returns NULL.
Causes of failure include:

* The indexed cell array element has not been populated.

¢ Specifying an array_ptr that does not point to a cell mxArray.

® Specifying an index greater than the number of elements in the cell.
¢ Insufficient free heap space to hold the returned cell mxArray.

Call mxGetCell to get a pointer to the mxArray held in the indexed element of
the cell mxArray.

Note: Changing data contained within the cell may cause unpredictable
results.

See explore.c in the mex subdirectory of the examples directory.

mxCreateCellArray, mxIsCell, mxSetCell

mxGetClassID

Purpose

C Syntax

Arguments

Returns

Get (as an enumerated constant) an mxArray’s class

#include "matrix.h"
mxClassID mxGetClassID(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The class (category) of the mxArray that array_ptr points to. Classes are:

mxCELL_CLASS
Identifies a cell mxArray.

mxSTRUCT_CLASS
Identifies a structure mxArray.

mxOBJECT_CLASS
Identifies a user-defined (nonstandard) mxArray.

mxCHAR_CLASS
Identifies a string mxArray; that is an mxArray whose data is represented as
mxCHAR'’S.

mxSPARSE_CLASS
Identifies a sparse mxArray; that is, an mxArray that only stores its nonzero
elements.

mxDOUBLE_CLASS
Identifies a numeric mxArray whose data is stored as double-precision,
floating-point numbers.

mXSINGLE_CLASS
Identifies a numeric mxArray whose data is stored as single-precision,
floating-point numbers.

mxINT8_ CLASS
Identifies a numeric mxArray whose data is stored as signed 8-bit integers.

mxUINT8_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 8-bit integers.

mxINT16_CLASS

127

mxGetClassID

Description

Examples

See Also

128

Identifies a numeric mxArray whose data is stored as signed 16-bit integers.

mxUINT16_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 16-bit integers.

mxINT32_CLASS
Identifies a numeric mxArray whose data is stored as signed 32-bit integers.

mxUINT32_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 32-bit integers.

mxINT64_ CLASS
Reserved for possible future use.

mxUINT64_CLASS
Reserved for possible future use.

mXUNKNOWN_CLASS = —1

The class cannot be determined. You cannot specify this category for an
mxArray; however, mxGetClassID can return this value if it cannot identify the
class.

Use mxGetClassId to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if
array_ptr points to a sparse mxArray, then mxGetClassID returns
mxSPARSE_CLASS.

mxGetClassID is similar to mxGetClassName, except that the former returns the
class as an enumerated value and the latter returns the class as a string.

See phonebook.c in the refbook subdirectory of the examples directory and
explore.c in the mex subdirectory of the examples directory.

mxGetClassName

mxGetClassName

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get (as a string) an mxArray’s class

#include "matrix.h"
const char *mxGetClassName(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The class (as a string) of array_ptr.

Call mxGetClassName to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if
array_ptr points to a sparse mxArray, then mxGetClassName returns sparse.

mxGetClassID is similar to mxGetClassName, except that the former returns the
class as an enumerated value and the latter returns the class as a string.

See mexfunction.c in the mex subdirectory of the examples directory. For an
additional example, see mxisclass.c in the mx subdirectory of the examples

directory.

mxGetClassID

129

mxGetData

Purpose

C Syntax

Arguments

Description

Examples

See Also

130

Get pointer to data

#include "matrix.h"
void *mxGetData(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

Similar to mxGetPr, except mxGetData returns a void *. Use mxGetData on
numeric arrays with contents other than double.

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c and
mxisfinite.c in the mx subdirectory of the examples directory.

mxGetPr

mxGetDimensions

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get a pointer to the dimensions array

#include "matrix.h"
const int *mxGetDimensions(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The address of the first element in a dimension array. Each integer in the
dimensions array represents the number of elements in a particular
dimension. The array is not NULL-terminated.

Use mxGetDimensions to determine how many elements are in each dimension
of the mxArray that array_ptr points to. Call nxGetNumberOfDimensions to get
the number of dimensions in the mxArray.

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

For additional examples, see findnz.c and phonebook.c in the refbook
subdirectory of the examples directory; see explore.c in the mex subdirectory
of the examples directory; see mxgeteps.c and mxisfinite.c in the mx
subdirectory of the examples directory.

mxGetNumberOfDimensions

131

mxGetElementSize

Purpose

C Syntax
Arguments

Returns

Description

Examples

See Also

132

Get the number of bytes required to store each data element

#include "matrix.h"
int mxGetElementSize(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The number of bytes required to store one element of the specified mxArray, if
successful. Returns 0 on failure. The primary reason for failure is that
array_ptr points to an mxArray having an unrecognized class. If array_ptr
points to a cell mxArray or a structure mxArray, then mxGetElementSize
returns the size of a pointer (not the size of all the elements in each cell or
structure field).

Call mxGetElementSize to determine the number of bytes in each data element
of the mxArray. For example, if the mxClassID of an mxArray ismxINT16_CLASS,
then the mxArray stores each data element as a 16-bit (2 byte) signed integer.
Thus, mxGetElementSize returns 2.

mxGetElementSize is particularly helpful when using a non MATLAB routine
to manipulate data elements. For example, memcpy requires (for its third
argument) the size of the elements you intend to copy.

See doubleelement.c and phonebook.c in the refbook subdirectory of the
examples directory.

mxGetM, mxGetN

mxGetEps

Purpose

C Syntax

Returns

Description

Example

See Also

Get value of eps

#include "matrix.h"
double mxGetEps(void);

The value of the MATLAB eps variable.

Call mxGetEps to return the value of MATLAB's eps variable. This variable
holds the distance from 1.0 to the next largest floating-point number. As such,
it is a measure of floating-point accuracy. MATLAB’s PINV and RANK functions
use eps as a default tolerance.

See mxgeteps.c in the mx subdirectory of the examples directory.

mxGetInf, mxGetNaN

133

mxGetField

Purpose

C Syntax

Arguments

Returns

Description

134

Get a field value, given a field name and an index in a structure array

#include "matrix.h"
mxArray *mxGetField(const mxArray *array_ptr, int index,
const char *field_name);

array_ptr
Pointer to a structure mxArray.

index

The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N—1,
where N is the total number of elements in the structure mxArray.

field_name
The name of the field whose value you want to extract.

A pointer to the mxArray in the specified field at the specified field_name, on
success. Returns NULL otherwise. One possibility is that there is no value
assigned to the specified field. Another possibility is that there is a value, but
the call failed. Common causes of failure include:

® Specifying an array_ptr that does not point to a structure mxArray. To
determine if array_ptr points to a structure mxArray, call mxIsStruct.

® Specifying an out-of-range index to an element past the end of the mxArray.
For example, given a structure mxArray that contains 10 elements, you
cannot specify an index greater than 9.

¢ Specifying a nonexistent field name. Call mxGetFieldNameByNumber or
mxGetFieldNumber to get existing field names.

¢ Insufficient heap space to hold the returned mxArray.
Call mxGetField to get the value held in the specified element of the specified
field. In pseudo-C terminology, mxGetField returns the value at

array_ptr[index].field_name

mxGetFieldByIndex is similar to mxGetField. Both functions return the same
value. The only difference is in the way you specify the field.

mxGetField

See Also

mxGetFieldByIndex takes field num as its third argument, and mxGetField
takes field_name as its third argument.

Note: Changing data contained within the field may cause unpredictable
results.

Calling

mxGetField(pa, index, "field name");

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is zero if you have a one-by-one structure.

mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

135

mxGetFieldByNumber

Purpose

C Syntax

Arguments

Returns

Description

136

Get a field value, given a field number and an index in a structure array

#include "matrix.h"
mxArray *mxGetFieldByNumber(const mxArray *array_ptr, int index,
int field_number);

array_ptr
Pointer to a structure mxArray.

index

The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N—1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for more details on calculating an index.

field_number

The position of the field whose value you want to extract. The first field within
each element has a field number of 0, the second field has a field number of 1,
and so on. The last field has a field number of N—1, where N is the number of
fields.

A pointer to the mxArray in the specified field for the desired element, on
success. Returns NULL if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

¢ Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to is a structure mxArray.

® Specifying an index < 0 or >= the number of elements in the array.

¢ Specifying a nonexistent field number. Call mxGetFieldNameByNumber or
mxGetFieldNumber to determine existing field names.

Call mxGetFieldByNumber to get the value held in the specified field_number
at the indexed element.

Note: Changing data contained within the field may cause unpredictable
results.

mxGetFieldByNumber

Examples

See Also

Calling
mxGetField(pa, index, "field_name");
is equivalent to calling

field _num = mxGetFieldNumber(pa, "field name");
mxGetFieldByNumber(pa, index, field_num);

where index is zero if you have a one-by-one structure.

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory and explore.c in the mex subdirectory of the examples
directory.

mxGetField, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

137

mxGetFieldNameByNumber

Purpose

C Syntax

Arguments

Returns

Description

Examples

138

Get a field name, given a field number in a structure array

#include "matrix.h"
const char *mxGetFieldNameByNumber(const mxArray *array_ptr,
int field_number);

array_ptr
Pointer to a structure mxArray.

field_number

The position of the desired field. For instance, to get the name of the first field,
set field number to O; to get the name of the second field, set field number to
1; and so on.

A pointer to the nth field name, on success. Returns NULL on failure. Common
causes of failure include:

® Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to a structure mxArray.

¢ Specifying a value of field number greater than or equal to the number of
fields in the structure mxArray. (Remember that field number 0 symbolizes
the first field, so index N—1 symbolizes the last field.)

Call mxGetFieldNameByNumber to get the name of a field in the given structure
mxArray. A typical use of mxGetFieldNameByNumber is to call it inside a loop in
order to get the names of all the fields in a given mxArray.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field number O represents the field name name; field number 1
represents field name billing; field number 2 represents field name test. A
field number other than O, 1, or 2 causes mxGetFieldNameByNumber to return
NULL.

See phonebook.c in the refbook subdirectory of the examples directory.

mxGetFieldNameByNumber

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory and explore.c in the mex subdirectory of the examples

directory.

See Also mxGetField, mxIsStruct, mxSetField

139

mxGetFieldNumber

Purpose

C Syntax

Arguments

Returns

Description

140

Get a field number, given a field name in a structure array

#include "matrix.h"
int mxGetFieldNumber(const mxArray *array_ptr,
const char *field_name);

array_ptr
Pointer to a structure mxArray.

field_name
The name of a field in the structure mxArray.

The field number of the specified field_name, on success. The first field has a
field number of 0, the second field has a field number of 1, and so on. Returns
—1 on failure. Common causes of failure include:

® Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to a structure mxArray.

¢ Specifying the field name of a nonexistent field.

If you know the name of a field but do not know its field number, call
mxGetFieldNumber. Conversely, if you know the field number but do not know
its field name, call mxGetFieldNameByNumber.

For example, consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field name "name" has a field number of O; the field name "billing" has
afield number of 1; and the field name "test" has a field number of 2. If you
call mxGetFieldNumber and specify a field_name of anything other than
"name", "billing", or "test", then mxGetFieldNumber returns —1.

Calling

mxGetField(pa, index, "field_name");

mxGetFieldNumber

Example

See Also

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is zero if you have a one-by-one structure.
See mxcreatestructarray.c in the mx subdirectory of the examples directory.

mxGetField, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

141

mxGetimagData

Purpose

C Syntax

Arguments

Description

Example

See Also

142

Get pointer to imaginary data of an mxArray

#include "matrix.h"
void *mxGetImagData(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

Similar to mxGetP1i, exceptit returns a void *. Use mxGetImagData on numeric
arrays with contents other than double.

See mxisfinite.c in the mx subdirectory of the examples directory.

mxGetPi

mxGetinf

Purpose

C Syntax

Returns

Description

Example

See Also

Get the value of infinity

#include "matrix.h"
double mxGetInf(void);

The value of infinity on your system.

Call mxGetInf to return the value of the MATLAB internal inf variable. inf is
a permanent variable representing IEEE arithmetic positive infinity. The
value of inf is built into the system; you cannot modify it.

Operations that return infinity include:

¢ Division by 0. For example, 5/0 returns infinity.

® Operations resulting in overflow. For example, exp (10000) returns infinity
because the result is too large to be represented on your machine.

See mxgetinf.c in the mx subdirectory of the examples directory.

mxGetEps, mxGetNaN

143

mxGetlr

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

144

Get the ir array of a sparse matrix

#include "matrix.h"
int *mxGetIr(const mxArray *array_ptr);

array_ptr
Pointer to a sparse mxArray.

A pointer to the first element in the ir array, if successful. Otherwise, returns
NULL. Possible causes of failure include:

¢ Specifying a full (nonsparse) mxArray.
® Specifying a NULL array_ptr. (This usually means that an earlier call to
mxCreateSparse failed.)

Use mxGetIr to obtain the starting address of the ir array. The ir array is an
array of integers; the length of the ir array is typically nzmax values. For
example, if nzmax equals 100, then the ir array should contain 100 integers.

Each value in an ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetJc.

See fulltosparse.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxsetdimensions.c and mxsetnzmax.c in the mx
subdirectory of the examples directory.

mxGetdc, mxGetNzmax, mxSetIr, mxSetdc, mxSetNzmax

mxGetlJc

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get the jc array of a sparse matrix

#include "matrix.h"
int *mxGetdc(const mxArray *array_ptr);

array_ptr
Pointer to a sparse mxArray.

A pointer to the first element in the jc array, if successful; otherwise, returns
NULL. The most likely cause of failure is specifying an array_ptr that points to
a full (nonsparse) mxArray.

Use mxGetdc to obtain the starting address of the jc array. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array indirectly indicate columns
containing nonzero elements. For a detailed explanation of the jc array, see
mxSetdc.

See fulltosparse.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxgetnzmax.c, mxsetdimensions.c, and mxsetnzmax.c
in the mx subdirectory of the examples directory.

mxGetIr, mxSetIr, mxSetdc

145

mxGetM

Purpose

C Syntax
Arguments
Returns

Description

Examples

See Also

146

Get the number of rows

#include "matrix.h"
int mxGetM(const mxArray *array_ptr);

array_ptr
Pointer to an array.

The number of rows in the mxArray to which array_ptr points.

mxGetM returns the number of rows in the specified array. The term “rows”
always means the first dimension of the array no matter how many dimensions
the array has. For example, if array_ptr points to a four-dimensional array
having dimensions 8-by-9-by-5-by-3, then mxGetM returns 8.

See convec.c in the refbook subdirectory of the examples directory.

For additional examples, see fulltosparse.c, revord.c, timestwo.c, and
xtimesy.c in the refbook subdirectory of the examples directory; see
mxmalloc.c and mxsetdimensions.c in the mx subdirectory of the examples
directory; see mexget.c, mexlock.c, mexsettrapflag.c, and yprime.c in the
mex subdirectory of the examples directory.

mxGetN, mxSetM, mxSetN

mxGetN

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get the total number of columns in a two-dimensional mxArray or the total
number of elements in dimensions 2 through N for an m-by-n array.

#include "matrix.h"
int mxGetN(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The number of columns in the mxArray.

Call mxGetN to determine the number of columns in the specified mxArray.

Ifarray_ptrisan N-dimensional mxArray, mxGetN is the product of dimensions
2 through N. For example, if array_ptr points to a four-dimensional mxArray
having dimensions 13-by-5-by-4-by-6, then mxGetN returns the value 120
(5x4x6). If the specified mxArray has more than two dimensions and you need
to know exactly how many elements are in each dimension, then call
mxGetDimensions.

If array_ptr points to a sparse mxArray, mxGetN still returns the number of
columns, not the number of occupied columns.

See convec.c in the refbook subdirectory of the examples directory.

For additional examples, see fulltosparse.c, revord.c, timestwo.c, and
xtimesy.c in the refbook subdirectory of the examples directory; see
explore.c, mexget.c, mexlock.c, mexsettrapflag.c and yprime.c in the mex
subdirectory of the examples directory; see mxmalloc.c, mxsetdimensions.c,
mxgetnzmax.c, and mxsetnzmax.c in the mx subdirectory of the examples
directory.

mxGetM, mxGetNumberOfDimensions, mxSetM, mxSetN

147

mxGetName

Purpose

C Syntax
Arguments
Returns

Description

Examples

See Also

148

Get the name of the specified mxArray

#include "matrix.h"
const char *mxGetName(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

A pointer to the start of the name field. If the mxArray has no name, the first
element in the name field is \O.

Use mxGetName to determine the name of the mxArray that array_ptr points to.

The returned name is a NULL-terminated character string. MATLAB variable
names are stored in fixed-length character arrays of length mxMAXNAM+1, where
mxMAXNAM is defined in the file mxArray.h. Thus variable names can by any
length up to mxMAXNAM. The actual length is determined by the NULL terminator.

mxGetName passes back a pointer to an existing section of memory; therefore,
your application should not allocate space to hold the returned name string.
Do not attempt to deallocate or free the returned string.

See matdgns.c in the eng_mat subdirectory of the examples directory. For an
additional example, see explore.c in the mex subdirectory of the examples
directory.

mxSetName

mxGetNaN

Purpose

C Syntax

Returns

Description

Example

See Also

Get the value of NaN (Not-a-Number)

#include "matrix.h"
double mxGetNaN(void);

The value of NaN (Not-a-Number) on your system.
Call mxGetNaN to return the value of NaN for your system. NaN is the IEEE

arithmetic representation for Not-a-Number. Certain mathematical operations
return NaN as a result, for example:

®(0.0/0.0
® Inf—Inf

The value of Not-a-Number is built in to the system; you cannot modify it.
See mxgetinf.c in the mx subdirectory of the examples directory.

mxGetEps, mxGetInf

149

mxGetNumberOfDimensions

Purpose

C Syntax
Arguments
Returns

Description

Examples

See Also

150

Get the number of dimensions

#include "matrix.h"
int mxGetNumberOfDimensions(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The number of dimensions in the specified mxArray. The returned value is
always 2 or greater.

Use mxGetNumberOfDimensions to determine how many dimensions are in the
specified array. To determine how many elements are in each dimension, call
mxGetDimensions.

See explore.c in the mex subdirectory of the examples directory.

For additional examples, see findnz.c, fulltosparse.c, and phonebook.c in
the refbook subdirectory of the examples directory; see
mxcalcsinglesubscript.c, mxgeteps.c, and mxisfinite.c in the mx
subdirectory of the examples directory.

mxSetM, mxSetN

mxGetNumberOfElements

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get number of elements in an array

#include "matrix.h"
int mxGetNumberOfElements(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

Number of elements in the specified mxArray.

mxGetNumberOfElements tells you how many “pieces” an array has. Use
mxGetClassID to find out what the pieces are. These two functions provide the
highest-level information about an array.

See findnz.c and phonebook.c in the refbook subdirectory of the examples
directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c,
mxisfinite.c, and mxsetdimensions.c in the mx subdirectory of the examples
directory.

mxGetDimensions, mxGetM, mxGetN, mxGetClassID, mxGetClassName

151

mxGetNumberOfFields

Purpose

C Syntax
Arguments

Returns

Description

Examples

See Also

152

Get the number of fields in a structure mxArray

#include "matrix.h"
int mxGetNumberOfFields(const mxArray *array_ptr);

array_ptr
Pointer to a structure mxArray.

The number of fields, on success. Returns 0 on failure. The most common cause
of failure is that array_ptr is not a structure mxArray. Call mxIsStruct to
determine if array_ptr is a structure.

Call mxGetNumberOfFields to determine how many fields are in the specified
structure mxArray.

Once you know the number of fields in a structure, it is easy to loop through
every field in order to set or to get field values.

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory; see explore.c in the mex subdirectory of the examples
directory.

mxGetField, mxIsStruct, mxSetField

mxGetNzmax

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get the number of elements in the ir, pr, and (if it exists) pi arrays

#include "matrix.h"
int mxGetNzmax(const mxArray *array_ptr);

array_ptr
Pointer to a sparse mxArray.

The number of elements allocated to hold nonzero entries in the specified
sparse mxArray, on success. Returns an indeterminate value on error. The most
likely cause of failure is that array_ptr points to a full (nonsparse) mxArray.

Use mxGetNzmax to get the value of the nzmax field. The nzmax field holds an
integer value that signifies the number of elements in the ir, pr, and, if it
exists, the pi arrays. The value of nzmax is always greater than or equal to the
number of nonzero elements in a sparse mxArray. In addition, the value of
nzmax is always less than or equal to the number of rows times the number of
columns.

As you adjust the number of nonzero elements in a sparse mxArray, MATLAB
often adjusts the value of the nzmax field. MATLAB adjusts nzmax in order to
reduce the number of costly reallocations and in order to optimize its use of
heap space.

See mxgetnzmax.c and mxsetnzmax.c in the mx subdirectory of the examples
directory.

mxSetNzmax

153

mxGetPi

Purpose

C Syntax
Arguments
Returns

Description

Examples

See Also

154

Get an mxArray’s imaginary data elements

#include "matrix.h"
double *mxGetPi(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The imaginary data elements of the specified mxArray, on success. Returns
NULL if there is no imaginary data or if there is an error.

The pi field points to an array containing the imaginary data of the mxArray.
Call mxGetPi to get the contents of the pi field; that is, to get the starting
address of this imaginary data.

The best way to determine if an mxArray is purely real is to call mxIsComplex.
The imaginary parts of all input matrices to a MATLAB function are allocated
if any of the input matrices are complex.

See convec.c, findnz.c, and fulltosparse.c in the refbook subdirectory of
the examples directory.

For additional examples, see explore.c and mexcallmatlab.c in the mex
subdirectory of the examples directory; see mxcalcsinglesubscript.c,
mxgetinf.c, mxisfinite.c, and mxsetnzmax.c in the mx subdirectory of the
examples directory.

mxGetPr, mxSetPi, mxSetPr

mxGetPr

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get an mxArray’s real data elements

#include "matrix.h"
double *mxGetPr(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The address of the first element of the real data. Returns NULL if there is no real
data.

Call mxGetPr to determine the starting address of the real data in the mxArray
that array_ptr points to. Once you have the starting address, it is fairly easy
to access any other element in the mxArray.

See convec.c, doubleelement.c, findnz.c, fulltosparse.c, sincall.c,
timestwo.c, timestwoalt.c, and xtimesy.c in the refbook subdirectory of the

examples directory.

mxGetPi, mxSetPi, mxSetPr

155

mxGetScalar

Purpose

C Syntax
Arguments

Returns

Description

Examples

156

Get the real component of an mxArray’s first data element

#include "matrix.h"
double mxGetScalar(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray other than a cell mxArray or a structure mxArray.

The value of the first real (nonimaginary) element of the mxArray. Notice that
mxGetScalar returns a double. Therefore, if real elements in the mxArray are
stored as something other than doubles, mxGetScalar automatically converts
the scalar value into a double. To preserve the original data representation of
the scalar, you must cast the return value to the desired data type.

If array_ptr points to a structure mxArray or a cell mxArray, mxGetScalar
returns 0.0.

If array_ptr points to a sparse mxArray, mxGetScalar returns the value of the
first nonzero real element in the mxArray.

If array_ptr points to an empty mxArray, mxGetScalar returns an
indeterminate value.

Call mxGetScalar to get the value of the first real (nonimaginary) element of
the mxArray.

In most cases, you call mxGetScalar when array_ptr points to an mxArray
containing only one element (a scalar). However, array_ptr can point to an
mxArray containing many elements. If array_ptr points to an mxArray
containing multiple elements, mxGetScalar returns the value of the first real
element. If array_ptr points to a two-dimensional mxArray, mxGetScalar
returns the value of the (1,1) element; if array_ptr points to a
three-dimensional mxArray, mxGetScalar returns the value of the (1,1,1)
element; and so on.

See timestwoalt.c and xtimesy.c in the refbook subdirectory of the
examples directory.

mxGetScalar

For additional examples, see mxsetdimensions.c in the mx subdirectory of the
examples directory; see mexget.c, mexlock.c and mexsettrapflag.c in the
mex subdirectory of the examples directory.

See Also mxGetM, mxGetN

157

mxGetString

Purpose

C Syntax

Arguments

Returns

Description

158

Copy a string mxArray’s data into a C-style string

#include "matrix.h"
int mxGetString(const mxArray *array_ptr, char *buf, int buflen);

array_ptr
Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

buf

The starting location into which the string should be written. mxGetString
writes the character data into buf and then terminates the string with a NULL
character (in the manner of C strings). buf can either point to dynamic or static
memory.

buflen

Maximum number of characters to read into buf. Typically, you set buflen to
1 plus the number of elements in the string mxArray towhich array_ptr points.
(See the mxGetM and mxGetN reference pages to find out how to get the number
of elements.)

Note: Users of multibyte character sets should be aware that MATLAB packs
multibyte characters into an mxChar (16-bit unsigned integer). When
allocating space for the return string, to avoid possible truncation you should
set

buflen = (mxGetM(prhs[0] * mxGetN(prhs[0]) * sizeof(mxChar)) + 1

0 on success, and 1 on failure. Possible reasons for failure include:

¢ Specifying an mxArray that is not a string mxArray.

® Specifying buflen with less than the number of characters needed to store
the entire mxArray pointed to by array_ptr. If this is the case, 1 is returned
and the string is truncated.

Call mxGetString to copy the character data of a string mxArray into a C-style
string. The copied C-style string starts at buf and contains no more than

mxGetString

Examples

See Also

buflen—1 characters. The C-style string is always terminated with a NULL
character.

If the string array contains several rows, they are copied, one column at a time,
into one long string array.
See revord.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxmalloc.c and mxsetallocfcns.c in the mx
subdirectory of the examples directory.

mxCreateCharArray, mxCreateCharMatrixFromStrings, mxCreateString

159

mxIsCell

Purpose

C Syntax
Arguments
Returns

Description

See Also

160

True if a cell mxArray

#include "matrix.h"
bool mxIsCell(const mxArray *array_ptr);

array_ptr
Pointer to an array.

true ifarray_ptr points toan array having the class mxCELL_CLASS; otherwise,
returns false.
Use mxIsCell to determine if the specified array is a cell array.

Do not confuse a cell array with a cell element. Remember that a cell array
contains various cell elements, and that most cell elements are not cell arrays.

Calling mxIsCell is equivalent to calling

mxGetClassID(array_ptr) == mxCELL_CLASS

mxIsClass

mxIsChar

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

True if a string mxArray

#include "matrix.h"
bool mxIsChar(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true ifarray_ptr points to an array having the class mxCHAR_CLASS; otherwise,
returns false.

Use mxIsChar to determine if array_ptr points to string mxArray.
Calling mxIsChar is equivalent to calling

mxGetClassID(array_ptr) == mxCHAR_CLASS

See phonebook.c and revord.c in the refbook subdirectory of the examples
directory.

For additional examples, see mxcreatecharmatrixfromstr.c, mxislogical.c,
and mxmalloc.c in the mx subdirectory of the examples directory.

mxIsClass, mxGetClassID

161

mxIsClass

Purpose True if mxArray is a member of the specified class

C Syntax #include "matrix.h"
bool mxIsClass(const mxArray *array_ptr, const char *name);

Arguments array ptr
Pointer to an array.

name
The array category that you are testing. Specify name as a string (not as an
enumerated constant). You can specify any one of the following predefined

constants:

Value of Name Corresponding Class
"double” mxDOUBLE_CLASS
"sparse" mxSPARSE_CLASS
"char" mxCHAR_CLASS
“cell" mxCELL_CLASS
“struct"” mxSTRUCT_CLASS
“single" mxSINGLE_CLASS
"int8" mxINT8 CLASS
"uint8" mxXUINT8_CLASS
"int16" mxINT16_CLASS
"uint16" mXUINT16_CLASS
"int32" mxINT32_CLASS
"uint32" mxXUINT32_CLASS
<class_name> mxOBJECT_CLASS

where class_name is the name of a
specific MATLAB or custom object.

“unknown" mxUNKNOWN_CLASS

162

mxlIsClass

Returns

Description

Example

See Also

Or, you can specify one of your own class names.
For example,

mxIsClass("double");

is equivalent to calling

mxIsDouble(array_ptr);

which is equivalent to calling

strcmp (mxGetClassName (array_ptr), "double");

Note that it is most efficient to use the mxIsDouble form.

true if array_ptr points to an array having category name; otherwise, returns
false.

Each mxArray is tagged as being a certain type. Call mxIsClass to determine if
the specified mxArray has this type.

See mxisclass.c in the mx subdirectory of the examples directory.

mxIsEmpty, mxGetClassID, mxClassID

163

mxIsComplex

Purpose

C Syntax

Returns

Description

Examples

164

True if data is complex

#include "matrix.h"
bool mxIsComplex(const mxArray *array_ptr);

true if array_ptr is a numeric array containing complex data; otherwise,
returns false. If array_ptr points to a cell array or a structure array, then
mxIsComplex returns false.

Use mxIsComplex to determine whether or not an imaginary part is allocated
for an mxArray. The imaginary pointer pi is NULL if an mxArray is purely real
and does not have any imaginary data. If an mxArray is complex, pi points to
an array of numbers.

When a MEX-file is called, MATLAB automatically examines all the input
(right-hand side) arrays. If any input array is complex, then MATLAB
automatically allocates memory to hold imaginary data for all other input
arrays. For example, suppose you pass three input variables (apricot, banana,
and carambola) to a MEX-file named Jest:

apricot = 7;

banana = sqrt(-5:5);

carambola = magic(2);
Jest(apricot, banana, carambola);

banana is complex. Therefore, even though array apricot is purely real,
MATLAB automatically allocates space (one element) to hold an imaginary
value of apricot. MATLAB also automatically allocates space (four-elements)
to hold the nonexistent imaginary values of carambola.

In other words, MATLAB forces every input array to be real or every input
array to be complex.

See mxisfinite.c in the mx subdirectory of the examples directory.

For additional examples, see convec.c, phonebook.c, timestwo.c, and
xtimesy.c in the refbook subdirectory of the examples directory; see
explore.c, yprime.c, mexlock.c, and mexsettrapflag.c in the mex
subdirectory of the examples directory; see mxcalcsinglesubscript.c,
mxgeteps.c, and mxgetinf.c in the mx subdirectory of the examples directory.

mxIisComplex

See Also mxIsNumeric

165

mxlisDouble

Purpose True if mxArray represents its data as double-precision, floating-point numbers

C Syntax #include "matrix.h"
bool mxIsDouble(const mxArray *array_ptr);

Arguments array ptr
Pointer to an mxArray.

Returns true if the mxArray stores its data as double-precision, floating-point numbers;
otherwise, returns false.

Description Call mxIsDouble to determine whether or not the specified mxArray represents
its real and imaginary data as double-precision, floating-point numbers.

Older versions of MATLAB store all mxArray data as double-precision,
floating-point numbers. However, starting with MATLAB 5, MATLAB can
store real and imaginary data in a variety of numerical formats.

Calling mxIsDouble is equivalent to calling
mxGetClassID(array_ptr == mxDOUBLE_CLASS)
Examples See findnz.c, fulltosparse.c, timestwo.c, and xtimesy.c in the refbook
subdirectory of the examples directory.

For additional examples, see mexget.c, mexlock.c, mexsettrapflag.c, and
yprime.c in the mex subdirectory of the examples directory; see
mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c, and mxisfinite.c in
the mx subdirectory of the examples directory.

See Also mxIsClass, mxGetClassID

166

mxIsEmpty

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

True if mxArray is empty

#include "matrix.h"
bool mxIsEmpty(const mxArray *array_ptr);

array_ptr
Pointer to an array.

true if the mxArray is empty; otherwise, returns false.

Use mxIsEmpty to determine if an mxArray is empty. An mxArray is empty if the
size of any of its dimensions is 0.

Attempts to access empty mxArray cause undesirable behavior. To avoid
accessing empty arrays, test them by calling mxIsEmpty.

Note that mxIsEmpty is not the opposite of mxIsFull.
See mxisfinite.c in the mx subdirectory of the examples directory.

mxIsClass

167

mxIsFinite

Purpose True if value is finite

C Syntax #include "matrix.h"
bool mxIsFinite(double value);

Arguments value
The double-precision, floating-point number that you are testing.

Returns true if value is finite; otherwise, returns false.

Description Call mxIsFinite to determine whether or not value is finite. A number is finite
if it is not equal to Inf or NaN.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsInf, mxIsNaN

168

mxIsFromGlobalWs$s

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

True if the mxArray was copied from MATLAB's global workspace

#include "matrix.h"
bool mxIsFromGlobalWS(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array was copied out of the global workspace; otherwise, returns
false.

mxIsFromGlobalWs is useful for stand-alone MAT and engine programs.
mexIsGlobal tells you if the pointer you pass actually points into the global
workspace.

See matdgns.c and matcreat.c in the eng_mat subdirectory of the examples
directory.

mexIsGlobal

169

mxIsFull (Obsolete)

V4 Compatible This function is obsolete; MATLAB 5 does not support it. To use this function
in existing code, use the —v4 option of the mex script.

In MATLAB 5 MEX-files, you should call
if (!mxIsSparse(prhs[0]))
instead of

if (mxIsFull(prhs[0]))

See Also mxIsSparse

170

mxIsinf

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

True if value is infinite

#include "matrix.h"
bool mxIsInf(double value);

value
The double-precision, floating-point number that you are testing.

true if value is infinite; otherwise, returns false.

Call mxIsInf to determine whether or not value is equal to infinity. MATLAB
stores the value of infinity in a permanent variable named Inf, which
represents IEEE arithmetic positive infinity. The value of Inf is built into the
system; you cannot modify it.

Operations that return infinity include:

¢ Division by 0. For example, 5/0 returns infinity.

e Operations resulting in overflow. For example, exp (10000) returns infinity
because the result is too large to be represented on your machine.

If value equals NaN (Not-a-Number), then mxIsInf returns false. In other
words, NaN is not equal to infinity.

See mxisfinite.c in the mx subdirectory of the examples directory.

mxIsFinite, mxIsNaN

171

mxlIsint8

Purpose

C Syntax
Arguments
Returns

Description

See Also

172

True if mxArray represents its data as signed 8-bit integers

#include "matrix.h"
bool mxIsInt8(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array stores its data as signed 8-bit integers; otherwise, returns
false.

Use mxIsInt8 to determine whether or not the specified array represents its
real and imaginary data as 8-bit signed integers.
Calling mxIsInt8 is equivalent to calling

mxGetClassID(array_ptr) == mxINT8_CLASS

mxIsClass, mxGetClassID

mxlisint16

Purpose

C Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as signed 16-bit integers

#include "matrix.h"
bool mxIsInt16(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array stores its data as signed 16-bit integers; otherwise, returns
false.

Use mxIsInt16 to determine whether or not the specified array represents its
real and imaginary data as 16-bit signed integers.

Calling mxIsInt16 is equivalent to calling

mxGetClassID(array_ptr) == mxINT16_CLASS

mxIsClass, mxGetClassID

173

mxIsint32

Purpose

C Syntax
Arguments
Returns

Description

See Also

174

True if mxArray represents its data as signed 32-bit integers

#include "matrix.h"
bool mxIsInt32(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array stores its data as signed 32-bit integers; otherwise, returns
false.

Use mxIsInt32 to determine whether or not the specified array represents its
real and imaginary data as 32-bit signed integers.
Calling mxIsInt32 is equivalent to calling

mxGetClassID(array_ptr) == mxINT32_CLASS

mxIsClass, mxGetClassID

mxlIsLogical

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

True if mxArray is Boolean

#include "matrix.h"
bool mxIsLogical(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the mxArray’ s logical flag is on; otherwise, returns false. If an mxArray
does not hold numerical data (for instance, if array_ptr points to a structure
mxArray or a cell mxArray), then mxIsLogical automatically returns False.

Use mxIsLogical to determine whether MATLAB treats the data in the
mxArray as Boolean (logical) or numerical (not logical).

If an mxArray is logical, then MATLAB treats all zeros as meaning false and
all nonzero values as meaning true. For additional information on the use of
logical variables in MATLAB, type help logical at the MATLAB prompt.
See mxislogical.c in the mx subdirectory of the examples directory.

mxIsClass, mxSetLogical

175

mxIisNaN

Purpose

C Syntax
Arguments

Returns

Description

Examples

See Also

176

True if value is NaN (Not-a-Number)

#include "matrix.h"
bool mxIsNaN(double value);

value
The double-precision, floating-point number that you are testing.

true if value is NaN (Not-a-Number); otherwise, returns false.

Call mxIsNaN to determine whether or not value is equal to NaN. NaN is the IEEE
arithmetic representation for Not-a-Number. A NaN is obtained as a result of
mathematically undefined operations such as

® 0.0/0.0
® Inf—Inf

The system understands a family of bit patterns as being equivalent to NaN. In
other words, NaN is not a single value, rather it is a family of numbers that
MATLAB (and other IEEE-compliant applications) interpret as being equal to
Not-a-Number.

See mxisfinite.c in the mx subdirectory of the examples directory.

For additional examples, see findnz.c and fulltosparse.c in the refbook
subdirectory of the examples directory.

mxIsFinite, mxIsInf

mxIsNumeric

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

True if mxArray is numeric

#include "matrix.h"
bool mxIsNumeric(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array’s storage type is:

* mxDOUBLE_CLASS
* mxSPARSE_CLASS
* mxSINGLE_CLASS
* mxINT8_CLASS

* mxUINT8_CLASS
* mxINT16_CLASS
* mxUINT16_CLASS
* mxINT32_CLASS
* mxUINT32_CLASS

Returns false if the array’s storage type is:

* mXCELL_CLASS
* mXxCHAR_CLASS

* mXxOBJECT CLASS
* mxSTRUCT_CLASS
* mxUNKNOWN_CLASS

Call mxIsNumeric to determine if the specified array contains numeric data. If

the specified array is a cell, string, or a structure, then mxIsNumeric returns
false. Otherwise, mxIsNumeric returns true.

Call mxGetClassID to determine the exact storage type.
See phonebook.c in the refbook subdirectory of the examples directory.

mxGetClassID

177

mxIsSingle

Purpose

C Syntax
Arguments
Returns

Description

See Also

178

True if mxArray represents its data as single-precision, floating-point numbers

#include "matrix.h"
bool mxIsSingle(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array stores its data as single-precision, floating-point numbers;
otherwise, returns false.

Use mxIsSingle to determine whether or not the specified array represents its
real and imaginary data as single-precision, floating-point numbers.
Calling mxIsDouble is equivalent to calling

mxGetClassID(array ptr) == mxSINGLE_CLASS

mxIsClass, mxGetClassID

mxIsSparse

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

True if a sparse mxArray

#include "matrix.h"
bool mxIsSparse(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

1lifarray_ptr points to a sparse mxArray; otherwise, returns 0. A return value
of 0 means that array_ptr points to a full mxArray or that array_ptr does not
point to a legal mxArray.

Use mxIsSparse to determine if array_ptr points to a sparse mxArray. Many
routines (for example, mxGetIr and mxGetdJc) require a sparse mxArray as

input.

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxgetnzmax.c, mxsetdimensions.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

mxGetIr, mxGetdc, mxIsFull

179

mxIsString (Obsolete)

V4 Compatible This function is obsolete; MATLAB 5 does not support it. To use this function
in existing code, use the —v4 option of the mex script.

Use mxIsChar rather than mxIsString.

See Also mxChar, mxIsChar

180

mxlIsStruct

Purpose

C Syntax
Arguments
Returns

Description

Example

See Also

True if a structure mxArray

#include "matrix.h"
bool mxIsStruct(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if array_ptr points to a structure array; otherwise, returns false.

Use mxIsStruct todetermineifarray ptr pointstoastructure mxArray. Many
routines (for example, mxGetFieldName and mxSetField) require a structure
mxArray as an argument.

See phonebook.c in the refbook subdirectory of the examples directory.

mxCreateStructArray, mxCreateStructMatrix, mxGetNumberOfFields,
mxGetField, mxSetField

181

mxIsUint8

Purpose

C Syntax
Arguments
Returns

Description

See Also

182

True if mxArray represents its data as unsigned 8-bit integers

#include "matrix.h"
bool mxIsInt8(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the mxArray stores its data as unsigned 8-bit integers; otherwise,
returns false.

Use mxIsInt8 to determine whether or not the specified mxArray represents its
real and imaginary data as 8-bit unsigned integers.
Calling mxIsuint8 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT8_CLASS

mxGetClassID, mxIsClass, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUinti16
mxIsUint32

mxIsUint16

Purpose

C Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as unsigned 16-bit integers

#include "matrix.h"
bool mxIsUint16(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the mxArray stores its data as unsigned 16-bit integers; otherwise,
returns false.

Use mxIsUint16 to determine whether or not the specified mxArray represents
its real and imaginary data as 16-bit unsigned integers.
Calling mxIsuint16 is equivalent to calling

mxGetClassID(array ptr) == mxUINT16_CLASS

mxGetClassID, mxIsClass, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUinti16
mxIsUint32

183

mxIsUint32

Purpose

C Syntax
Arguments
Returns

Description

See Also

184

True if mxArray represents its data as unsigned 32-bit integers

#include "matrix.h"
bool mxIsUint32(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the mxArray stores its data as unsigned 32-bit integers; otherwise,
returns false.

Use mxIsUint32 to determine whether or not the specified mxArray represents
its real and imaginary data as 32-bit unsigned integers.
Calling mxIsuint32 is equivalent to calling

mxGetClassID(array ptr) == mxUINT32_ CLASS

mxIsClass, mxGetClassID, mxIsUint16, mxIsUint8, mxIsInt32, mxIsInt16
mxIsInt8

mxMalloc

Purpose

C Syntax

Arguments

Returns

Description

Allocate dynamic memory using MATLAB'’s memory manager

#include "matrix.h"
#include <stdlib.h>
void *mxMalloc(size_t n);

n
Number of bytes to allocate.

A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxMalloc returns
NULL. If unsuccessful in a MEX-file, the MEX-file terminates and control
returns to the MATLAB prompt.

mxMalloc is unsuccessful when there is insufficient free heap space.

MATLAB applications should always call mxMalloc rather than malloc to
allocate memory. Note that mxMalloc works differently in MEX-files than in
stand-alone MATLAB applications.

In MEX-files, mxMalloc automatically

¢ Allocates enough contiguous heap space to hold n bytes.

® Registers the returned heap space with the MATLAB memory management
facility.

The MATLAB memory management facility maintains a list of all memory
allocated by mxMalloc. The MATLAB memory management facility
automatically frees (deallocates) all of a MEX-file's parcels when control
returns to the MATLAB prompt.

In stand-alone MATLAB applications, mxMalloc defaults to calling the ANSI C
malloc function. If this default behavior is unacceptable, you can write your
own memory allocation routine, and then register this routine with
mxSetAllocFcns. Then, whenever mxMalloc is called, mxMalloc calls your
memory allocation routine instead of malloc.

By default, in a MEX-file, mxMalloc generates nonpersistent mxMalloc data. In
other words, the memory management facility automatically deallocates the
memory as soon as the MEX-file ends. If you want the memory to persist after

185

mxMalloc

Examples

See Also

186

the MEX-file completes, call nexMakeMemoryPersistent after callingmxMalloc.
If you write a MEX-file with persistent memory, be sure to register amexAtExit
function to free allocated memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxMalloc, call mxFree.
mxFree deallocates the memory.

See mxmalloc.c in the mx subdirectory of the examples directory. For an
additional example, see mxsetdimensions.c in the mx subdirectory of the
examples directory.

mxCalloc, mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent, mxSetAllocFcns

mxRealloc

Purpose

C Syntax

Arguments

Description

Example

See Also

Reallocate memory

#include "matrix.h"
#include <stdlib.h>
void *mxRealloc(void *ptr, size_t size);

ptr
Pointer to a block of memory allocated by mxCalloc, or by a previous call to
mxRealloc

size_ t
New size of allocated memory, in bytes.

mxRealloc reallocates the memory routine for the managed list. If mxRealloc
fails to allocate a block, you must free the block since the ANSI definition of
realloc states that the block remains allocated. mxRealloc returns NULL in
this case, and in subsequent calls to mxRealloc of the form:

x = mxRealloc(x, size);

Note: This will cause memory leaks if mxRealloc fails and returns NULL.

See mxsetnzmax.c in the mx subdirectory of the examples directory.

mxCalloc, mxFree, mxMalloc, mxSetAllocFcns

187

mxSetAllocFcns

Purpose

C Syntax

Arguments

188

Register your own memory allocation and deallocation functions in a
stand-alone engine or MAT application

#include "matrix.h"

#include <stdlib.h>

void mxSetAllocFcns(calloc_proc callocfcn, free_proc freefcn,
realloc_proc reallocfcn, malloc_proc mallocfcn);

callocfcn

The name of the function that mxCalloc uses to perform memory allocation
operations. The function you specify is ordinarily a wrapper around the ANSI
C calloc function. The callocfcn you write must have the prototype:

void * callocfcn(size_t nmemb, size_ t size);

nmemb The number of contiguous elements that you want the matrix
library to allocate on your behalf.

size The size of each element. To get the size, you typically use the
sizeof operator or the mxGetElementSize routine.

The callocfcn you specify must create memory in which all allocated memory
has been initialized to zero.

freefcn
The name of the function that mxFree uses to perform memory deallocation
(freeing) operations. The freefcn you write must have the prototype:

void freefcn(void *ptr);

ptr Pointer to beginning of the memory parcel to deallocate.

The freefcn you specify must contain code to determine if ptr is NULL. If ptr
is NULL, then your freefcn must not attempt to deallocate it.

mxSetAllocFcns

Description

Example

See Also

reallocfcn
The name of the function that mxRealloc uses to perform memory reallocation
operations. The reallocfcn you write must have the prototype:

void * reallocfcn(void *ptr, size t size);
ptr Pointer to beginning of the memory parcel to reallocate.

size The size of each element. To get the size, you typically use the
sizeof operator or the mxGetElementSize routine.

mallocfcn

The name of the function that API functions call in place of malloc to perform
memory reallocation operations. The mallocfcn you write must have the
prototype:

void * mallocfcn(size_t n);

n The number of bytes to allocate.

The mallocfcn you specify doesn’'t need to initialize the memory it allocates.
Call mxSetAllocFcns to establish your own memory allocation and deallocation
routines in a stand-alone (nonMEX) application.

Itisillegal to call mxSetAllocFcns from a MEX-file; doing so causes a compiler
error.

In a stand-alone application, if you do not call mxSetAllocFcns, then

® mxCalloc simply calls the ANSI C calloc routine.

* mxFree calls a free function, which calls the ANSI C free routine if a NULL
pointer is not passed.

* mxRealloc simply calls the ANSI C realloc routine.

Writing your own callocfcn, mallocfcn, freefcn, and reallocfcn allows you
to customize memory allocation and deallocation.

See mxsetallocfcns.c in the mx subdirectory of the examples directory.

mxCalloc, mxFree, mxMalloc, mxRealloc

189

mxSetCell

Purpose

C Syntax

Arguments

Description

Examples

See Also

190

Set the value of one cell

#include "matrix.h"
void mxSetCell(mxArray *array_ptr, int index, mxArray *value);

array_ptr
Pointer to a cell mxArray.

index

Index from the beginning of the mxArray. Specify the number of elements
between the first cell of the mxArray and the cell you want to set. The easiest
way to calculate index is to call mxCalcSingleSubscript.

value
The new value of the cell. You can put any kind of mxArray into a cell. In fact,
you can even put another cell mxArray into a cell.

Call mxSetCell to put the designated value into a particular cell of a cell
mxArray. Use mxSetCell to assign new values to unpopulated cells or to
overwrite the value of an existing cell.

If the specified cell is already occupied, then mxSetCell assigns the new value.
However, the old cell value remains in memory until you call mxDestroyArray.

Note: Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB will cause unpredictable results.

See phonebook.c in the refbook subdirectory of the examples directory. For an
additional example, see mxcreatecellmatrix.c in the mx subdirectory of the
examples directory.

mxCreateCellArray, mxCreateCellMatrix, mxGetCell, mxIsCell

mxSetClassName

Purpose

C Syntax

Arguments

Returns

Description

See Also

Convert a MATLAB structure array to a MATLAB object array by specifying a
class name to associate with the object

#include "matrix.h"
int mxSetClassName (mxArray *array_ptr, const char *classname);

array_ptr
Pointer to an mxArray of class mxSTRUCT_CLASS.
classname
The object class to which to convert array_ptr.

0 if successful; nonzero otherwise.

mxSetClassName converts a structure array to an object array, to be saved
subsequently to a MAT-file. The object is not registered or validated by
MATLAB until it is loaded via the LOAD command. If the specified classname is
an undefined class within MATLAB, LOAD converts the object back to a simple
structure array.

mxIsClass, mxGetClassID

191

mxSetData

Purpose Set pointer to data

C Syntax #include "matrix.h"
void mxSetData(mxArray *array_ptr, void *data_ptr);

Arguments array ptr
Pointer to an mxArray.

data_ptr
Pointer to data.

Description mxSetData is similar to mxSetPr, except it returns a void *. Use this on
numeric arrays with contents other than double.

See Also mxSetPr

192

mxSetDimensions

Purpose

C Syntax

Arguments

Returns

Description

Example

See Also

Modify the number of dimensions and/or the size of each dimension

#include "matrix.h"
int mxSetDimensions(mxArray *array_ptr, const int *dims, int ndims);

array_ptr
Pointer to an mxArray.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

ndims
The desired number of dimensions.

0 on success, and 1 on failure. mxSetDimensions allocates heap space to hold
the input size array. So it is possible (though extremely unlikely) that
increasing the number of dimensions can cause the system to run out of heap
space.

Call mxSetDimensions to reshape an existing mxArray. mxSetDimensions is
similar to mxSetM and mxSetN; however, mxSetDimensions provides greater
control for reshaping mxArrays that have more than two-dimensions.

mxSetDimensions does not allocate or deallocate any space for the pr or pi
arrays. Consequently, if your call to mxSetDimensions increases the number of
elements in the mxArray, then you must enlarge the pr (and pi, if it exists)
arrays accordingly.

If your call to mxSetDimensions reduces the number of elements in the
mxArray, then you can optionally reduce the size of the pr and pi arrays.

See mxsetdimensions.c in the mx subdirectory of the examples directory.

mxGetNumberOfDimensions, mxSetM, mxSetN

193

mxSetField

Purpose

C Syntax

Arguments

Description

194

Set a field value of a structure array, given a field name and an index

#include "matrix.h"
void mxSetField(mxArray *array_ptr, int index,
const char *field_name, mxArray *value);

array_ptr
Pointer to a structure mxArray. Call mxIsStruct to determine if array_ptr
points to a structure mxArray.

index

The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for details on calculating an index.

field_name

The name of the field whose value you are assigning. Call
mxGetFieldNameByNumber or mxGetFieldNumber to determine existing field
names.

value
Pointer to the mxArray you are assigning.

Use mxSetField to assign a value to the specified element of the specified field.
In pseudo-C terminology, mxSetField performs the assignment

array_ptr[index].field_name = value;

If there is already a value at the given position, the value pointer you specified
overwrites the old value pointer. However, mxSetField does not free the
dynamic memory that the old value pointer pointed to. Consequently, you
should free this old mxArray immediately before or after calling mxSetField.

Note: Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB will cause unpredictable results.

mxSetField

Example

See Also

Calling
mxSetField(pa, index, "field_name", new_value_pa);
is equivalent to calling

field _num = mxGetFieldNumber(pa, "field name");
mxSetFieldByNumber(pa, index, field_num, new_value_pa);

See mxcreatestructarray.c in the mx subdirectory of the examples directory.
mxCreateStructArray, mxCreateStructMatrix, mxGetField,

mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetFieldByNumber

195

mxSetFieldByNumber

Purpose

C Syntax

Arguments

Description

196

Set a field value in a structure array, given a field number and an index

#include "matrix.h"
void mxSetFieldByNumber (mxArray *array_ptr, int index,
int field_number, mxArray *value);

array_ptr
Pointer to a structure mxArray. Call mxIsStruct to determine if array_ptr
points to a structure mxArray.

index

The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for details on calculating an index.

field_number

The position of the field whose value you want to extract. The first field within
each element has a field_number of O, the second field has a field_number of
1, and so on. The last field has a field_number of N—1, where N is the number
of fields.

value
The value you are assigning.

Note: Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB will cause unpredictable results.

Use mxSetFieldByNumber to assign a value to the specified element of the
specified field. mxSetFieldByNumber is almost identical to mxSetField;
however, the former takes a field number as its third argument and the latter
takes a field name as its third argument.

Calling

mxSetField(pa, index, "field name", new_value_pa);

mxSetFieldByNumber

Examples

See Also

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxSetFieldByNumber(pa, index, field_num, new_value_pa);

See mxcreatestructarray.c in the mx subdirectory of the examples directory.
For an additional example, see phonebook. ¢ in the refbook subdirectory of the
examples directory.

mxCreateStructArray, mxCreateStructMatrix, mxGetField,

mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField

197

mxSetimagData

Purpose

C Syntax

Arguments

Description

Example

See Also

198

Set imaginary data pointer for an mxArray

#include "matrix.h"
void mxSetImagData(mxArray *array_ptr, void *pi);

array_ptr
Pointer to an mxArray.

pi

Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory leaks and other memory errors may result.

mxSetImagData is similar to mxSetPi, except it returns a void *. Use this on
numeric arrays with contents other than double.

See mxisfinite.c in the mx subdirectory of the examples directory.

mxSetPi

mxSetir

Purpose

C Syntax

Arguments

Description

Set the ir array of a sparse mxArray

#include "matrix.h"
void mxSetIr(mxArray *array_ptr, int *ir);

array_ptr

Pointer to a sparse mxArray.

ir

Pointer to the ir array. The ir array must be sorted in column-major order.

Use mxSetIr to specify the ir array of a sparse mxArray. The ir array is an
array of integers; the length of the ir array should equal the value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found. See mxSetdJc for more details on
jc.)

For example, suppose you create a 7-by-3 sparse mxArray named Sparrow
containing six nonzero elements by typing

Sparrow=zeros(7,3);
Sparrow(2,1)=
Sparrow(5,1
Sparrow(3
Sparrow(2
Sparrow(5
Sparrow(e 3
Sparrow=spars

(
13
)=1;
2)=1;
3)=2;
3)=1;
)=1;
rse(Sparrow);

The pr array holds the real data for the sparse matrix, which in Sparrow is the
five 1s and the one 2. If there is any nonzero imaginary data, then itisin a pi
array.

199

mxSetir

Subscript ir pr jc Comments

(2,1) 1 1 0 Column 1; ir is 1 because row is 2.
(5,1) 4 1 2 Column 1; ir is 4 because row is 5.
(3,2) 2 1 3 Column 2; ir is 2 because row is 3.
(2,3) 1 2 6 Column 3; ir is 1 because row is 2.
(5,3) 4 1 Column 3; ir is 4 because row is 5.
(6,3) 5 1 Column 3; ir is 5 because row is 6.

Notice how each element of the ir array is always 1 less than the row of the
corresponding nonzero element. For instance, the first nonzero element is in
row 2; therefore, the first element in ir is 1 (that is, 2—-1). The second nonzero
element is in row 5; therefore, the second element in ir is 4 (5-1).

The ir array must be in column-major order. That means that the ir array
must define the row positions in column 1 (if any) first, then the row positions
in column 2 (if any) second, and so on through column N. Within each column,
row position 1 must appear prior to row position 2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir array that
is already sorted.

Examples See mxsetnzmax.c in the mx subdirectory of the examples directory. For an
additional example, see explore.c in the mex subdirectory of the examples
directory.

See Also mxCreateSparse, mxGetIr, mxGetJc, mxSetdc

200

mxSetJc

Purpose

C Syntax

Arguments

Description

Set the jc array of a sparse mxArray

#include "matrix.h"
void mxSetdc(mxArray *array_ptr, int *jc);

array_ptr

Pointer to a sparse mxArray.
jc

Pointer to the jc array.

Use mxSetdJc to specify a new jc array for a sparse mxArray. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array have the meanings:

® jc[j] istheindex in ir, pr (and pi if it exists) of the first nonzero entry in
the jth column.

® jc[j+1]-1 is the index of the last nonzero entry in the jth column.

® jc[number of columns + 1] is equal to nnz, which is the number of nonzero
entries in the entire spare mxArray.

The number of nonzero elements in any column (denoted as column C) is
jc[C] — jc[C-1];

For example, consider a 7-by-3 sparse mxArray named Sparrow containing six
nonzero elements, created by typing

Sparrow(2,1
Sparrow(5,1

Sparrow(3,2

Sparrow(2,3)=2;
Sparrow(5,3)=1;
Sparrow(6,3)=1;
Sparrow=sparse(Sparrow) ;

H
13
13

H

SpaPPOW=ZePOS (7,3))
=1:

—_~ e~~~

)
)
)
)
)
)
r

201

mxSetlJc

The contents of the ir, jc, and pr arrays are:

Subscript ir pr jc Comment

(2,1) 11 0 Column 1 contains two entries, at ir[0],ir[1]

(5,1) 4 1 2 Column 2 contains one entry, at ir[2]

(3,2) 2 1 3 Column3containsthreeentries,atir[3],ir[4],
ir[5]

(2,3) 1 2 6 There are six nonzero elements.

(5,3) 4 1

(6,3) 5 1

As an example of a much sparser mxArray, consider an 8,000 element sparse
mxArray named Spacious containing only three nonzero elements. The ir, pr,
and jc arrays contain:

Subscript ir pr jc Comment

(73,2) 72 A1 0 Column 1 contains zero entries
(50,3) 49 A 0 Column 2 contains one entry, at ir[0]
(64,5) 63 1 1 Column 3 contains one entry, at ir[1]

2 Column 4 contains zero entries.
2 Column 5 contains one entry, at ir[3]
3 Column 6 contains zero entries.
3 Column 7 contains zero entries.
3 Column 8 contains zero entries.

3 There are three nonzero elements.

202

mxSetJc

Examples See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see explore.c in the mex subdirectory of the examples
directory.

See Also mxGetIr, mxGetJc, mxSetIr

203

mxSetlogical

Purpose

C Syntax
Arguments

Description

Example

See Also

204

Set the logical flag

#include "matrix.h"
void mxSetLogical(mxArray *array_ptr);

array_ptr
Pointer to an mxArray having a numeric class.

Use mxSetLogical to turn on an mxArray’s logical flag. This flag tells
MATLAB that the array’s data is to be treated as Boolean. If the logical flag is
on, then MATLAB treats a 0 value as meaning false and a nonzero value as
meaning true. For additional information on the use of logical variables in
MATLAB, type help logical at the MATLAB prompt.

See mxislogical.c in the mx subdirectory of the examples directory.

mxClearLogical, mxIsLogical

mxSetM

Purpose

C Syntax

Arguments

Description

Examples

See Also

Set the number of rows

#include "matrix.h"
void mxSetM(mxArray *array_ptr, int m);

m
The desired number of rows.

array_ptr
Pointer to an mxArray.

Call mxSetM to set the number of rows in the specified mxArray. The term “rows”
means the first dimension of an mxArray, regardless of the number of
dimensions. Call mxSetN to set the number of columns.

You typically use mxSetM to change the shape of an existing mxArray. Note that
mxSetM does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetM and mxSetN increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays. Call mxRealloc to enlarge them.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the array, then you do can optionally reduce the sizes of the pr, pi, ir, and/or
jc arrays in order to use heap space more efficiently.

See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see sincall.c in the refbook subdirectory of the
examples directory.

mxGetM, mxGetN, mxSetN

205

mxSetN

Purpose

C Syntax

Arguments

Description

Example

See Also

206

Set the number of columns

#include "matrix.h"
void mxSetN(mxArray *array_ptr, int n);

array_ptr
Pointer to an mxArray.

n
The desired number of columns.

Call mxSetN to set the number of columns in the specified mxArray. The term
“columns” always means the second dimension of a matrix. Calling mxSetN
forces an mxArray to have two dimensions. For example, if array_ptr points to
an mxArray having three dimensions, calling mxSetN reduces the mxArray to
two dimensions.

You typically use mxSetN to change the shape of an existing mxArray. Note that
mxSetN does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetN and mxSetM increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the size of the pr, pi, ir, or jc arrays
in order to reduce heap space usage. However, reducing the size is not
mandatory.

See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see sincall.c in the refbook subdirectory of the

examples directory.

mxGetM, mxGetN, mxSetM

mxSetName

Purpose

C Syntax

Arguments

Description

Example

See Also

Set the name of an mxArray

#include "matrix.h"
void mxSetName(mxArray *array_ptr, const char *name);

array_ptr
Pointer to an mxArray.

name

The name you are assigning to the mxArray. The specified name can be up to
mxMAXNAM characters, where mxMAXNAM is a constant defined in the matrix.h
header file. If you specify a name longer than mxMAXNAM—1 characters, then
mxSetName assigns only the first nxMAXNAM—1 characters to the name.

Call mxSetName to establish a name for an mxArray or to change an existing
name.

mxSetName assigns the characters in name to a fixed-width section of memory.
Do not deallocate this memory.

See mexgetarray.c in the mex subdirectory of the examples directory.

mxGetName

207

mxSetNzmax

Purpose

C Syntax

Arguments

Description

Example

See Also

208

Set the storage space for nonzero elements

#include "matrix.h"
void mxSetNzmax(mxArray *array_ptr, int nzmax);

array_ptr
Pointer to a sparse mxArray.

nzmax

The number of elements that mxCreateSparse should allocate to hold the
arrays pointed to by ir, pr, and pi (if it exists). Set nzmax greater than or equal
to the number of nonzero elements in the mxArray, but set it to be less than or
equal to the number of rows times the number of columns. If you specify an
nzmax value of 0, mxSetNzmax sets the value of nzmax to 1.

Use mxSetNzmax to assign a new value to the nzmax field of the specified sparse
mxArray. The nzmax field holds the maximum possible number of nonzero
elements in the sparse mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must be equal
to nzmax. Therefore, after calling mxSetNzmax, you must change the size of the
ir, pr, and pi arrays. To change the size of one of these arrays:

1 Call mxCalloc, setting n to the new value of nzmax.

2 Call the ANSI C routine memcpy to copy the contents of the old array to the
new area allocated in Step 1.

3 Call mxFree to free the memory occupied by the old array.

4 Call the appropriate mxSet routine (mxSetIr, mxSetPr, or mxSetPi) to
establish the new memory area as the current one.

How big should nzmax be? One thought is that you set nzmax equal to or slightly
greater than the number of nonzero elements in a sparse mxArray. This
approach conserves precious heap space. Another technique is to make nzmax
equal to the total number of elements in an mxArray. This approach eliminates
(or, at least reduces) expensive reallocations.

See mxsetnzmax.c in the mx subdirectory of the examples directory.

mxGetNzmax

mxSetPi

Purpose

C Syntax

Arguments

Description

Examples

See Also

Set new imaginary data for an mxArray

#include "matrix.h"
void mxSetPi(mxArray *array_ptr, double *pi);

array_ptr
Pointer to a full (nonsparse) mxArray.

pi

Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory leaks and other memory errors may result.

Use mxSetPi to set the imaginary data of the specified mxArray.

Most mxCreate functions optionally allocate heap space to hold imaginary data.
If you tell an mxCreate function to allocate heap space (for example, by setting
the ComplexFlag to mxComplex or by setting pi to a non-NULL value), then you
do not ordinarily use mxSetPi to initialize the created mxArray’s imaginary
elements. Rather, you call mxSetPi to replace the initial imaginary values with
new ones.

See mxisfinite.c and mxsetnzmax.c in the mx subdirectory of the examples
directory.

mxSetImagData, mxGetPi, mxGetPr, mxSetPr

209

mxSetPr

Purpose

C Syntax

Arguments

Description

Example

See Also

210

Set new real data for an mxArray

#include "matrix.h"
void mxSetPr(mxArray *array_ptr, double *pr);

array_ptr
Pointer to a full (nonsparse) mxArray.

pr
Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pr points to static memory,
then memory leaks and other memory errors may result.

Use mxSetPr to set the real data of the specified mxArray.

All mxCreate calls allocate heap space to hold real data. Therefore, you do not
ordinarily use mxSetPr to initialize the real elements of a freshly-created
mxArray. Rather, you call mxSetPr to replace the initial real values with new
ones.

See mxsetnzmax.c in the mx subdirectory of the examples directory.

mxGetPr, mxGetPi, mxSetPi

Fortran Engine Routines

engClose

Purpose

Fortran Syntax
Arguments

Description

Example

212

Quit a MATLAB engine session

integer*4 function engClose(ep)
integer*4 ep

ep
Engine pointer.

This routine allows you to quit a MATLAB engine session.

engClose sends a quit command to the MATLAB engine session and closes the
connection. It returns 0 on success, and 1 otherwise. Possible failure includes
attempting to terminate a MATLAB engine session that was already
terminated.

See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

engEvalString

Purpose

Fortran Syntax

Arguments

Description

Example

Evaluate expression in character array

integer*4 function engEvalString(ep, command)
integer*4 ep
character*(*) command

ep
Engine pointer.

command
character array to execute.

engEvalString evaluates the expression contained in command for the
MATLAB engine session, ep, previously started by engOpen. It returns a
nonzero value if the MATLAB session is no longer running, and zero otherwise.

On UNIX systems, engEvalString sends commands to MATLAB by writing
down a pipe connected to MATLAB's stdin. Any output resulting from the
command that ordinarily appears on the screen is read back from stdout into
the buffer defined by engOutputBuffer.

See fengdemo.f in the eng_mat subdirectory of the examples directory for a

sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

213

engGetFull

Purpose

Fortran Syntax

Arguments

Description

214

Read full mxArrays from an engine

integer*4 function engGetFull(ep, name, m, n, pr, pi)
integer*4 ep, m, n, pr, pi
character*(*) name

ep
Engine pointer.

name
Name of mxArray to get or put into engine’s workspace.

m
Row dimension.

n
Column dimension.

pr
Pointer to real part.

pi
Pointer to imaginary part.

Most MATLAB applications work only with full (nonsparse) mxArrays. This
routine provides an easy way to copy a full mxArray from a MATLAB engine
process. It offers an alternative to engGetMatrix, which does not require use of
the mxArray structure.

engGetFull reads the named mxArray from the engine pointed to by ep and
places the row dimensions, column dimensions, real array pointer, and
imaginary array pointer into the locations specified by m, n, pr, and pi,
respectively.

engGetFull returns O if successful, and 1 otherwise.

engGetFull allocates memory for the real and imaginary arrays using
mxCalloc; use mxFree to return it when you are done.

engGetFull

If the mxArray is purely real, the imaginary pointer is given 0.

Note: This routine will become obsolete in a future version. Use
engGetMatrix, mxGetPr, mxGetPi, mxGetM, and mxGetN instead.

215

engGetMatrix

Purpose

Fortran Syntax

Arguments

Description

Example

216

Read mxArrays from a MATLAB engine’s workspace

integer*4 function engGetMatrix(ep, name)
integer*4 ep
character*(*) name

ep
Engine pointer.

name
Name of mxArray to get from engine.

This routine allows you to copy an mxArray out of a MATLAB engine’s
workspace.

engGetMatrix reads the named mxArray from the engine pointed to by ep and
returns a pointer to a newly allocated mxArray structure, or 0O if the attempt
fails.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

On UNIX systems, engGetMatrix issues the command save stdio name to
MATLAB, causing MATLAB to write the named mxArray down its stdout pipe,
which is in turn caught and decoded by engGetMatrix.

See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

engOpen

Purpose

Fortran Syntax

Arguments

Description

Example

Start a MATLAB engine session

integer*4 function engOpen(startcmd)
integer*4 ep
character*(*) startcmd

ep
Engine pointer.

startcmd
Character array to start MATLAB process.

This routine allows you to start a MATLAB process to use MATLAB as a
computational engine.

engOpen(startcmd) starts a MATLAB process using the command specified in
startcmd, establishes a connection, and returns a unique engine identifier, or
0 if the open fails.

On the UNIX system, if startcmd is empty, engOpen starts MATLAB on the
current host using the command matlab. If startcmd is a hostname, engOpen
starts MATLAB on the designated host by embedding the specified hostname
string into the larger string:

"rsh hostname \"/bin/csh —c 'setenv DISPLAY\
hostname:0; matlab'\""

If startcmd is anything else (has white space in it, or nonalphanumeric
characters), it is executed literally to start MATLAB.

engOpen performs the following steps:

1 Creates two pipes.

2 Forks a new process and sets up the pipes to pass stdin and stdout from
the child to two file descriptors in the parent.

3 Executes a command to run MATLAB (rsh for remote execution).

See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

217

engOutputBuffer

Purpose

Fortran Syntax

Arguments

Description

Example

218

Specify buffer for MATLAB output

integer*4 function engOutputBuffer(ep, p)
integer*4 ep
character*n p

ep
Engine pointer.

p
Character buffer of length n, where n is the length of buffer p.

engOutputBuffer defines a character buffer for engEvalString to return any
output that would appear on the screen.

The default behavior of engEvalString is to discard any standard output
caused by the command it is executing. engOutputBuffer(ep, p) tells any
subsequent calls to engEvalString to save the first n characters of output in
the character buffer p.

See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

engPutFull

Purpose

Fortran Syntax

Arguments

Description

Write full mxArrays into the workspace of an engine

integer*4 function engPutFull(ep, name, m, n, pr, pi)
integer*4 ep, m, n, pr, pi
character*(*) name

ep
Engine pointer.

name
Name of mxArray to put into engine’'s workspace.

m
Row dimension.

n
Column dimension.

pr
Pointer to real part.

pi
Pointer to imaginary part.

Most MATLAB applications work only with full (nonsparse) mxArrays. This

routine provides an easy way to write a full mxArray into a MATLAB engine
process. It offers an alternative to engPutMatrix, which does not require use
of the mxArray structure.

engPutFull writes the mxArray with dimensions m-by-n, real data pr, and
imaginary data pi into the workspace of engine ep with the specified name.

If the mxArray does not exist in the engine’'s workspace, it is created. If an
mxArray with the same name already exists in the workspace, the existing
mxArray is replaced with the new mxArray.

Note: This routine will become obsolete in a future version. Use
engPutMatrix, mxSetPr, mxSetPi, mxSetM, and mxSetN instead.

219

engPutMatrix

Purpose

Fortran Syntax

Arguments

Description

Example

220

Write mxArrays into a MATLAB engine’s workspace

integer*4 function engPutMatrix(ep, mp)
integer*4 mp, ep

ep
Engine pointer.

mp
mxArray pointer.

This routine allows you to write an mxArray into a MATLAB engine’s
workspace.

engPutMatrix writes mxArray mp to the engine ep. If the mxArray does not exist
in the workspace, it is created. If an mxArray with the same name already
exists in the workspace, the existing mxArray is replaced with the new mxArray.

engPutMatrix returns O if successful and 1 if an error occurs.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

On UNIX systems, engPutMatrix issues the command load stdio name to
MATLAB and sends the data down the stdin pipe.

See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

Fortran MAT-File
Routines

matClose

Purpose Closes a MAT-file

Fortran Syntax integer*4 function matClose(mfp)
integer*4 mfp

Arguments mfp
Pointer to MAT-file information.

Description matClose closes the MAT-file associated with mfp. It returns —1 for a write
error, and O if successful.

Exumples See matdemo1.f and matdemo2.f in the eng_mat subdirectory of the examples

directory for sample programs that illustrate how to use this MAT-file routine
in a Fortran program.

222

matDeleteMatrix

Purpose

Fortran Syntax

Arguments

Description

Example

Delete named mxArray from MAT-file

subroutine matDeleteMatrix(mfp, name)
integer*4 mfp
character*(*) name

mfp
Pointer to MAT-file information.

name
Name of mxArray to delete.

matDeleteMatrix deletes the named mxArray from the MAT-file pointed to by
mfp. The file is rewritten to accomplish this task. matDeleteMatrix returns O if
successful, and nonzero if an error occurs.

See matdemoi.f in the eng_mat subdirectory of the examples directory for a

sample program that illustrates how to use this MAT-file routine in a Fortran
program.

223

matGetDir

Purpose Get directory of mxArrays in a MAT-file

Fortran Syntax integer*4 function matGetDir(mfp, num)
integer*4 mfp, num

Arguments mfp
Pointer to MAT-file information.

num
Address of the variable to contain the number of mxArrays in the MAT-file.

Description This routine allows you to get a list of the names of the mxArrays contained
within a MAT-file.

matGetDir returns a pointer to an internal array containing pointers to the
names of the mxArrays in the MAT-file pointed to by mfp. The length of the
internal array (number of mxArrays in the MAT-file) is placed into num. The
internal array is allocated using a single mxCalloc. Use mxFree to free the
array when you are finished with it.

matGetDir returns O and sets num to a negative number if it fails. If num is zero,
mfp contains no mxArrays.

MATLAB variable names can be up to length 32.

Example See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this MAT-file routine in a Fortran
program.

224

matGetFull

Purpose

Fortran Syntax

Arguments

Description

Reads full mxArrays from MAT-files

integer*4 function matGetFull(mfp, name, m, n, pr, pi)
integer*4 mfp, m, n, pr, pi
character*(*) name

mfp
Pointer to MAT-file information.

name
Name of mxArray to get or put to MAT -file.

m
Row dimension.

n
Column dimension.

pr
Pointer to real part.

pi
Pointer to imaginary part.

Most MATLAB applications work only with full (nonsparse) mxArrays. This
routine provides an easy way to copy a full mxArray out of a MAT-file. It offers
an alternative to matGetMatrix, which does not require use of the mxArray
structure.

matGetFull reads the named mxArray from the MAT-file pointed to by mfp and
places the row dimensions, column dimensions, real array pointer, and
imaginary array pointer into the locations specified by m, n, pr, and pi,
respectively.

matGetFull returns O if successful, and 1 if the named variable can’t be found,
the named variable is not a full mxArray, or there is a file read error.

matGetFull allocates memory for the real and imaginary arrays using
mxCalloc; use mxFree to return the memory when you are done.

225

matGetFull

If the mxArray is pure real, the imaginary pointer is O.

Note: This routine will become obsolete in a future version. Use
matGetMatrix, mxGetPr, mxGetPi, mxGetM, and mxGetN instead.

226

matGetMatrix

Purpose

Fortran Syntax

Arguments

Description

Example

Reads mxArrays from MAT-files

integer*4 function matGetMatrix(mfp, name)
integer*4 mfp
character*(*) name

mfp

Pointer to MAT-file information.

name

Name of mxArray to get from MAT-file.

This routine allows you to copy an mxArray out of a MAT-file.

matGetMatrix reads the named mxArray from the MAT-file pointed to by mfp
and returns a pointer to a newly allocated mxArray structure, or O if the
attempt fails.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

See matdemo1.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this MAT-file routine in a Fortran
program.

227

matGetNextMatrix

Purpose

Fortran Syntax
Arguments

Description

Example

228

Get next mxArray from MAT-file

integer*4 function matGetNextMatrix(mfp)
integer*4 mfp

mfp
Pointer to MAT-file information.

This routine allows you to step sequentially through a MAT-file and read all
the mxArrays in a single pass.

matGetNextMatrix reads the next mxArray from the MAT-file pointed to by mfp
and returns a pointer to a newly allocated mxArray structure. Use it
immediately after opening the MAT-file with matOpen and not in conjunction
with other MAT-file routines; otherwise, the concept of the next mxArray is
undefined.

matGetNextMatrix returns O when the end-of-file is reached or if there is an
error condition.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this MAT-file routine in a Fortran
program.

matGetString

Purpose

Fortran Syntax

Arguments

Description

Example

Copy character mxArrays from MAT-files

integer*4 function matGetString(mfp, name, str, strlen)
integer*4 mfp, strlen
character*(*) name, str

mfp
Pointer to MAT-file information.

name
Name of mxArray to get from MAT-file.

str
character array to read from MAT-file.

strlen
Length of the character array.

matGetString reads the character mxArray with the specified name into str
from the MAT-file mfp. It returns zero if successful, and a nonzero value if an
error occurs.

matGetString copies the character array from mxArray name on file mfp into
the character array str.

Only up to strlen characters are copied, so ordinarily strlen is set to the
dimension of the character array to prevent writing past the end of the array.
If the character mxArray contains several rows, they are copied, one column at
a time, into one long character array.

matGetString returns O if the copy is successful, and 1 if the copy has failed
because the mxArray is not a character mxArray, 2 if the length of the
character array exceeds strlen, and 3 if there is a file read error.

program main
integer matOpen, matClose, matPutString
integer mfp, stat

mfp = matOpen('foo.mat', 'w')

stat = matPutString(mfp,'A', 'Hello, world")
stat = matClose(mfp)

229

matGetString

stop
end

Then you can go to MATLAB and enter:

load foo
A
A =
Hello, world

230

matOpen

Purpose

Fortran Syntax

Arguments

Description

Examples

Opens a MAT-file

integer*4 function matOpen(filename, mode)
integer*4 mfp
character*(*) filename, mode

filename
Name of file to open.

mode
File opening mode.

mfp
Pointer to MAT-file information.
This routine allows you to open MAT-files for reading and writing.

matOpen opens the named file and returns a file handle, or O if the open fails.
Legal values for mode are:

r Opens file for reading only; determines the current version of
the MAT-file by inspecting the files and preserves the current
version.

u Opens file for update, both reading and writing, but does not

create the file if the file does not exist (equivalent to the r+
mode of fopen); determines the current version of the MAT-file
by inspecting the files and preserves the current version.

w Opens file for writing only; deletes previous contents, if any.

w4 Creates a MATLAB 4 MAT-file, rather than the default
MATLAB 5 MAT-file.

See matdemo1.f and matdemo2.f in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a Fortran program.

231

matPutFull

Purpose

Fortran Syntax

Arguments

Description

232

Writes full mxArrays into MAT-files

integer*4 function matPutFull(mfp, name, m, n, pr, pi)
integer*4 mfp, m, n, pr, pi
character*(*) name

mfp
Pointer to MAT-file information.

name
Name of mxArray to write to MAT-file.

m
Row dimension.

n
Column dimension.

pr
Pointer to real part.

pi
Pointer to imaginary part.

Most MATLAB applications work only with full (nonsparse) mxArrays. This
routine provides an easy way to write a full mxArray into a MAT-file. It offers
an alternative to matPutMatrix, which does not require use of the mxArray
structure.

matPutFull writes the mxArray with dimensions m-by-n, real data pr, and
imaginary data pi onto the MAT-file mfp with the specified name.

If the mxArray does not exist on the MAT-file, it is appended to the end. If an
mxArray with the same name already exists in the file, the existing mxArray is
replaced with the new mxArray by rewriting the file.

Note: This routine will become obsolete in a future version. Use
matPutMatrix, mxSetPr, mxSetPi, mxSetM, and mxSetN instead.

matPutFull

Examples Read the mxArray A from one MAT-file and write it out to another.

program main

integer matOpen,matClose,matPutFull,matGetFull
integer mf1, mf2, stat

integer m, n, pr, pi

mf1 = matOpen('foo.mat','r")

mf2 = matOpen('foo2.mat','w")

stat matGetFull(mf1,'A' ,m,n,pr,pi)

stat = matPutFull(mf2,'A',m,n,pr,pi)

stat = matClose(mf1)

stat = matClose(mf2)
c

stop

end

Write a simple real mxArray into a MAT-file. Name the mxArray A and the
MAT-file foo.mat.

integer matOpen, matClose, matPutFull
integer mfp, stat

double precision Areal(6)

data Areal / 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 /

c
mfp = matOpen('foo.mat','w')
stat = matPutFull(mfp,'A',3,2,Areal,0)
stat = matClose(mfp)

c
stop
end

To test, run the second example; then go to MATLAB and enter:

load foo

A

A =
1 4
2 5
3 6

233

matPutMatrix

Purpose

Fortran Syntax

Arguments

Description

Example

234

Writes mxArrays into MAT-files

integer*4 function matPutMatrix(mfp, mp)
integer*4 mp, mfp

mfp
Pointer to MAT-file information.

mp
mxArray pointer.

This routine allows you to put an mxArray into a MAT-file.

matPutMatrix writes mxArray mp to the MAT-file mfp. If the mxArray does not
exist in the MAT-file, it is appended to the end. If an mxArray with the same
name already exists in the file, the existing mxArray is replaced with the new
mxArray by rewriting the file. The size of the new mxArray can be different than
the existing mxArray.

matPutMatrix returns O if successful and nonzero if an error occurs.
Be careful in your code to free the mxArray created by this routine when you are
finished with it.

See matdemo1.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this MAT-file routine in a Fortran
program.

matPutString

Purpose

Fortran Syntax

Arguments

Description

Example

Write character mxArrays into MAT-files

integer*4 function matPutString(mfp, name, str)
integer*4 mfp
character*(*) name, str

mfp
Pointer to MAT-file information.

name
Name of mxArray to write to MAT-file.

str
character array to write to MAT-file.

matPutString writes the mxArray with the specified name and str to the
MAT-file mfp. It returns O if successful, and 1 if an error occurs.

If the mxArray does not exist on the MAT-file, it is appended to the end. If an
mxArray with the same name already exists in the file, the existing mxArray is
replaced with the new mxArray by rewriting the file.

program main
integer matOpen, matClose, matPutString
integer mfp, stat

c
mfp = matOpen('foo.mat', 'w')
stat = matPutString(mfp,'A', 'Hello, world')
stat = matClose(mfp)

c
stop
end

Then you can go to MATLAB and enter:

load foo
A
A =
Hello, world

235

Fortran MEX-Functions

mexAtExit

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Register a subroutine to be called when the MEX-file is cleared or when
MATLAB terminates

integer*4 function mexAtExit(ExitFcn)
subroutine ExitFcn()

ExitFcn
The exit function.

Always returns O.

Use mexAtExit to register a subroutine to be called just before the MEX-file is
cleared or MATLAB is terminated. mexAtExit gives your MEX-file a chance to
perform an orderly shutdown of anything under its control.

Each MEX-file can register only one active exit subroutine at a time. If you call
mexAtExit more than once, MATLAB uses the ExitFcn from the more recent
mexAtExit call as the exit function.

If a MEX-file is locked, all attempts to clear the MEX-file will fail.
Consequently, if a user attempts to clear a locked MEX-file, MATLAB does not
call the ExitFcn.

You must declare the ExitFcn as external in the Fortran routine that calls
mexAtExit if it is not within the scope of the file.

mexSetTrapFlag

237

mexCallMATLAB

Purpose

Fortran Syntax

Arguments

Returns

Description

238

Call a MATLAB function or operator, a user-defined M-file, or other MEX-file

integer*4 function mexCallMATLAB(nlhs, plhs, nrhs, prhs, name)
integer*4 nlhs, nrhs, plhs(*), prhs(*)

character*(*) name

On the Alpha and SGI164 platforms, use:

integer*8 function mexCallMATLAB(nlhs, plhs, nrhs, prhs, name)
integer*4 nlhs, nrhs

integer*8 plhs(*), prhs(*)

character*(*) name

nlhs
Number of desired output arguments. This value must be less than or equal to
50.

plhs

Array of mxArray pointers that can be used to access the returned data from the
function call. Once the data is accessed, you can then call mxFree to free the
mxArray pointer. By default, MATLAB frees the pointer and any associated
dynamic memory it allocates when you return from the mexFunction call.

nrhs
Number of input arguments. This value must be less than or equal to 50.

prhs
Array of pointers to input data.

name
Character array containing the name of the MATLAB function, operator,
M-file, or MEX-file that you are calling. If name is an operator, place the
operator inside a pair of single quotes; for example, '+".

0 if successful, and a nonzero value if unsuccessful and mexSetTrapFlag was
previously called.

Call mexCallMATLAB to invoke internal MATLAB functions, MATLAB
operators, M-files, or other MEX-files.

mexCallMATLAB

By default, if name detects an error, MATLAB terminates the MEX-file and
returns control to the MATLAB prompt. If you want a different error behavior,
turn on the trap flag by calling mexSetTrapFlag.

See Also mexFunction, mexSetTrapFlag

239

mexErrMsgTxt

Purpose

Fortran Syntax

Arguments

Description

240

Issue error message and return to the MATLAB prompt

subroutine mexErrMsgTxt(error_msg)
character*(*) error_msg

error_msg
Character array containing the error message to be displayed.

Call mexErrMsgTxt to write an error message to the MATLAB window. After
the error message prints, MATLAB terminates the MEX-file and returns
control to the MATLAB prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory. Consequently,
mexErrMsgTxt does not invoke any registered exit routine to allocate memory.

If your application calls mxCalloc or one of the mxCreate routines to create
mxArray pointers, mexErrMsgTxt automatically frees any associated memory
allocated by these calls.

mexEvalString

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Execute a MATLAB command in the workspace of the caller

integer*4 function mexEvalString(command)
character*(*) command

command
A character array containing the MATLAB command to execute.

0 if successful, and a nonzero value if unsuccessful.
Call mexEvalString to invoke a MATLAB command in the workspace of the

caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands.
However, mexCallMATLAB provides a mechanism for returning results
(left-hand side arguments) back to the MEX-file; mexEvalString provides no
way for return values to be passed back to the MEX-file.

All arguments that appear to the right of an equals sign in the command array
must already be current variables of the caller's workspace.

mexCallMATLAB

241

mexFunction

Purpose

Fortran Syntax

Arguments

Description

242

MATLAB entry point to a Fortran MEX-file

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
integer*4 nlhs, nrhs, plhs(*), prhs(*)

nlhs
The number of expected outputs.

plhs
Array of pointers to expected outputs.

nrhs
The number of inputs.

prhs
Array of pointers to input data. The input data is read only and should not be
altered by your mexFunction.

mexFunction is not a routine you call. Rather, mexFunction is the name of a
subroutine you must write in every MEX-file. When you invoke a MEX-file,
MATLAB searches for a subroutine named mexFunction inside the MEX-file.
If it finds one, then the first executable line in mexFunction becomes the
starting point of the MEX-file. If MATLAB cannot find a subroutine named
mexFunction inside the MEX-file, MATLAB issues an error message.

When you invoke a MEX-file, MATLAB automatically loads nlhs, plhs, nrhs,
and prhs with the caller’s information. In the syntax of the MATLAB language,
functions have the general form

[a,b,c,..] = fun(d,e,f,..)

where the .. denotes more items of the same format. The a, b, c.. are left-hand
side arguments and the d, e, f... are right-hand side arguments. The arguments
nlhs and nrhs contain the number of left-hand side and right-hand side
arguments, respectively, with which the MEX-function is called. prhs is an
array of mxArray pointers whose length is nrhs. plhs is a pointer to an array
whose length is nlhs, where your function must set pointers for the returned
left-hand side mxArrays.

mexGetEps

Purpose
Fortran Syntax
Arguments
Returns

Description

See Also

Get the value of eps

real*8 function mexGetEps()

none

The value of MATLAB's eps variable.

The eps variable holds the distance between 1.0 and the next largest
floating-point number. It is a measure of floating-point accuracy. MATLAB's

PINV and RANK functions use eps as a default tolerance.

mexGetInf, mexGetNaN

243

mexGetFull

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

244

Routine to get component parts of a double-precision mxArray into a Fortran
workspace

integer*4 function mexGetFull(name, m, n, pr, pi)
integer*4 m, n, pr, pi
character*(*) name

name
Name of mxArray to get from workspace.

m
Row dimension.

n
Column dimension.

pr
Pointer to real part.

pi
Pointer to imaginary part.

0 if successful, and 1 otherwise.

mexGetFull provides a way to copy data from a double-precision mxArray from
the caller's workspace. It is an alternative to mexGetMatrix, which does not
require use of the mxArray structure.

mexGetFull reads the named mxArray from the caller’'s workspace and places
the row dimensions, column dimensions, real array pointer, and imaginary
array pointer into the locations specified by m, n, pr, and pi, respectively. You
can then use mxCopyPtrToReal8 to copy the data from the pointer into the
Fortran workspace.

mexGetFull allocates memory for the real and imaginary arrays using
mxCalloc; use mxFree to return it when you are done.

If the mxArray is purely real, the imaginary pointer is given 0.

mxGetName, mxGetPr, mxGetPi

mexGetGlobal

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get a pointer to an mxArray from MATLAB's global workspace

integer*4 function mexGetGlobal(name)
character*(*) name

name
Name of mxArray to get from workspace.

Pointer to global mxArray if successful, or O if it doesn't exist.

mexGetGlobal gets an mxArray from MATLAB's global workspace instead of
from the caller's workspace.

mxGetName, mxGetPr, mxGetPi

245

mexGetinf

Purpose
Fortran Syntax
Arguments
Returns

Description

See Also

246

Get the value of infinity

real*8 function mexGetInf ()
none

The value of infinity on your system.

Call mexGetInf to return the value of the MATLAB internal Inf variable. Inf
is a permanent variable representing IEEE arithmetic positive infinity. The
value of Inf is built in to the system; you cannot modify it.

Operations that return infinity include:

¢ Division by 0. For example, 5/0 returns infinity.

® Operations resulting in overflow. For example, exp (100000) returns infinity
because the result is too large to be represented on your machine.

mexGetEps, mexGetNaN

mexGetMatrix

Purpose

Fortran Syntax

Returns

Arguments

Description

Copies an mxArray from the caller’s workspace

integer*4 function mexGetMatrix(name)
character*(*) name

A pointer to a newly allocated mxArray if successful, 0 otherwise.

name
Name of mxArray to get from workspace.

mexGetMatrix reads the named mxArray from the caller’'s workspace, and
returns a pointer to a newly allocated mxArray or 0 if the attempt fails.

247

mexGetMatrixPir

Purpose

Fortran Syntax

Returns

Arguments

Description

248

Get the pointer to an mxArray in the caller’'s workspace

integer*4 function mexGetMatrixPtr(name)
character*(*) name

A pointer to an mxArray owned by MATLAB.

name
Name of mxArray to get from caller’'s workspace.

mexGetMatrixPtr returns a pointer to the mxArray with the specified name in
the workspace local to the calling function. It allows you to read or modify
variables in the MATLAB workspace directly from a MEX-file.

Do not free or reallocate the memory associated with any part of an mxArray
obtained with the mexGetMatrixPtr function, including the real part,
imaginary part, and sparse structure. mxArrays obtained with this function are
managed by MATLAB's own internal mechanisms and MATLAB will crash
immediately if you change them.

mexGetMatrixPtr is meant to be used to read values from an mxArray in the
workspace or to change those values, provided the mxArray remains the same
size, complexity, and sparsity.

To get the pointer of a global variable that is not defined as global by the calling
function, first declare it global with a call of the form
mexEvalString("global varname").

mexGetNaN

Purpose
Fortran Syntax
Arguments
Returns

Description

See Also

Get the value of NaN (Not-a-Number)

real*8 function mexGetNan()

none

MATLAB'’s value of NaN (Not-a-Number).

Call mexGetNaN to return the value of NaN for MATLAB. NaN is the IEEE

arithmetic representation for Not-a-Number. Certain mathematical operations
return NaN as a result, for example:

®(0.0/0.0
® Inf-Inf

mexGetEps, mexGetInf

249

mexIsFinite

Purpose Determine whether or not a value is finite

Fortran Syntax integer*4 function mexIsFinite(value)
real*8 value

Arguments value
The double-precision, floating-point number you are testing.

Returns true if value is finite; otherwise, returns false.

Description Call mexIsFinite to determine whether or not value is finite. A number is
finite if it is not equal to Inf or NaN.

See Also mexIsInf, mexIsNaN

250

mexlisinf

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Determine whether or not a value is infinite

integer*4 function mexIsInf(value)
real*8 value

value
The double-precision, floating-point number you are testing.

true if value is infinite; otherwise, returns false.

Call mexIsInf to determine whether or not value is equal to infinity. MATLAB
stores the value of infinity in a permanent variable named Inf, which
represents IEEE arithmetic positive infinity. The value of Inf is built in to the
system; you cannot modify it.

Operations that return infinity include:

¢ Division by 0. For example, 5/0 returns infinity.

e Operations resulting in overflow. For example, exp (10000) returns infinity
because the result is too large to be represented on your machine.

If value equals NaN (Not-a-Number), then mexIsInf returns false. In other
words, NaN is not equal to infinity.

mexIsFinite, mexIsNaN

251

mexisNaN

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

252

Determine whether or not a value is NaN (Not-a-Number)

integer*4 function mexIsNaN(value)
real*8 value

value
The double-precision, floating-point number you are testing.

true if value is NaN (Not-a-Number); otherwise, returns false.

Call mexIsNaN to determine whether or not value is equal to NaN, the IEEE
arithmetic representation for Not-a-Number. A NaN is obtained as a result of
mathematically undefined operations such as:

® 0.0/0.0
® Inf—Inf

mexIsFinite, mexIsInf, mexGetInf

mexPrintf

Purpose

Fortran Syntax

Arguments

Description

See Also

Print a character array

subroutine mexPrintf (message)
character*(*) message

message
Character array containing message to be displayed.

Note: If you want the literal % in your message, you must use %% in your
message string since % has special meaning to mexPrintf. Failing to do so will
cause unpredictable results.

mexPrintf prints a character array on the screen and in the diary (if the diary
is in use). It provides a callback to the standard C printf routine already
linked inside MATLAB.

Note: Optional arguments to mexPrintf are not supported in Fortran.

mexErrMsgTxt

253

mexPutFull

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

254

Routine to create an mxArray from its component parts into a Fortran
workspace

integer*4 function mexPutFull(name, m, n, pr, pi)
integer*4 m, n, pr, pi
character*(*) name

name
Name of mxArray to put into workspace.

m
Row dimension.

n
Column dimension.

pr
Pointer to real part.

pi
Pointer to imaginary part.

0 if successful, and 1 otherwise.

Most MATLAB applications work only with full (nonsparse) mxArrays.
mexPutFull provides an easy way to write a full mxArray into a MEX-file's
caller's workspace. It is an alternative to mexPutMatrix, which requires use of
the mxArray structure.

mexPutFull writes the mxArray with dimensions m-by-n, real data pr, and
imaginary data pi into the calling workspace with the specified name. If an
mxArray with the same name already exists in the workspace, the existing
mxArray is replaced with the new one.

mxSetName

mexPutMatrix

Purpose

Fortran Syntax

Arguments

Returns

Description

Writes an mxArray to the caller’'s workspace

integer*4 function mexPutMatrix(mp)
integer*4 mp

mp
Pointer to mxArray.

0 if successful, and 1 if an error occurs.
mexPutMatrix writes mxArray mp to the caller's workspace. If the mxArray does
not exist in the workspace, it is created. If an mxArray with the same name

already exists in the workspace, the existing mxArray is replaced with the new
one.

255

mexSetTrapFlag

Purpose

Fortran Syntax

Arguments

Description

See Also

256

Control response of mexCallMATLAB to errors

subroutine mexSetTrapFlag(trap_flag)
integer*4 trap_flag

trap_flag
Control flag. Currently, the only legal values are:

0 On error, control returns to the MATLAB prompt.

1 On error, control returns to your MEX-file.

Call mexSetTrapFlag to control MATLAB's response to errors in
mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an error in
a call to mexCallMATLAB, MATLAB automatically terminates the MEX-file and
returns control to the MATLAB prompt. Calling mexSetTrapFlag with
trap_flag set to 0 is equivalent to not calling mexSetTrapFlag at all.

If you call mexSetTrapFlag and set the trap_flag to 1, then whenever
MATLAB detects an error in a call to mexCallMATLAB, MATLAB does not
automatically terminate the MEX-file. Rather, MATLAB returns control to the
line in the MEX-file immediately following the call to mexCallMATLAB. The
MEX-file is then responsible for taking an appropriate response to the error.

mexAtExit, mexErrMsgTxt

Fortran MX-Functions

mxCalloc

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

258

Allocate dynamic memory using MATLAB'’s memory manager

integer*4 function mxCalloc(n, size)
integer*4 n, size

n
Number of elements to allocate. This must be a nonnegative number.

size
Number of bytes per element.

A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxCalloc returns O.
If unsuccessful in a MEX-file, the MEX-file terminates and control returns to
the MATLAB prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.

The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc (and by the mxCreate calls). The MATLAB memory
management facility automatically frees (deallocates) all of a MEX-file's
parcels when control returns to the MATLAB prompt.

By default, in a MEX-file, mxCalloc generates nonpersistent mxCalloc data. In
other words, the memory management facility automatically deallocates the
memory as soon as the MEX-file ends. When you finish using the memory
allocated by mxCalloc, call mxFree. mxFree deallocates the memory.

mxCalloc works differently in MEX-files than in stand-alone MATLAB

applications. In MEX-files, mxCalloc automatically

* Allocates enough contiguous heap space to hold n elements.

¢ Initializes all n elements to O.

® Registers the returned heap space with the MATLAB memory management
facility.

In stand-alone MATLAB applications, MATLAB’s memory manager is not
used.

mxFree

mxCopyCharacterToPtr

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy character values from a Fortran array to a pointer array

subroutine mxCopyCharacterToPtr(y, px, n)
character*(*) y
integer*4 px, n

y
character Fortran array.

px
Pointer to character or name array.

n
Number of elements to copy.

mxCopyCharacterToPtr copies n character values from the Fortran character
array y into the MATLAB string array pointed to by px. This subroutine is
essential for copying character data between MATLAB's pointer arrays and
ordinary Fortran character arrays.

mxCopyPtrToCharacter

259

mxCopyComplex16ToPir

Purpose Copy COMPLEX*16 values from a Fortran array to a pointer array

Fortran Syni‘ax subroutine mxCopyComplex16ToPtr(y, pr, pi, n)
complex*16 y(n)
integer*4 pr, pi, n

Arguments y
COMPLEX*16 Fortran array.

pr
Pointer to pr array.

pi
Pointer to pi array.

n
Number of elements to copy.

Description mxCopyComplex16ToPtr copies n COMPLEX*16 values from the Fortran
COMPLEX*16 array y into the MATLAB arrays pointed to by pr and pi. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToComplex16

260

mxCopyinteger4ToPtr

Purpose Copy INTEGER*4 values from a Fortran array to a pointer array

Fortran Syntax subroutine mxCopyInteger4ToPtr(y, px, n)
integer*4 y(n)
integer*4 px, n

Arguments y
INTEGER*4 Fortran array.

n
Number of elements to copy.

pX
Pointer to ir or jc array.

Description mxCopyInteger4ToPtr copies n INTEGER*4 values from the Fortran INTEGER*4
array y into the MATLAB array pointed to by px, either an ir or jc array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note: This function can only be used with sparse matrices.

See Also mxCopyPtrToInteger4

261

mxCopyPtrToCharacter

Purpose

Fortran Syntax

Arguments

Description

See Also

262

Copy character values from a pointer array to a Fortran array

subroutine mxCopyPtrToCharacter(px, y, n)
character*(*) y
integer*4 px, n

pPX
Pointer to character or name array.

y
character Fortran array.

n
Number of elements to copy.

mxCopyPtrToCharacter copies n character values from the MATLAB array
pointed to by px into the Fortran character array y. This subroutine is
essential for copying character data from MATLAB'’s pointer arrays into
ordinary Fortran character arrays.

mxCopyCharacterToPtr

mxCopyPtrToComplex16

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy COMPLEX*16 values from a pointer array to a Fortran array

subroutine mxCopyPtrToComplexi6(pr, pi, y, n)
complex*16 y(n)
integer*4 pr, pi, n

pr
Pointer to pr array.

pi
Pointer to pi array.

y
COMPLEX*16 Fortran array.

n
Number of elements to copy.

mxCopyPtrToComplex16 copies n COMPLEX*16 values from the MATLAB arrays
pointed to by pr and pi into the Fortran COMPLEX*16 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

mxCopyComplex16ToPtr

263

mxCopyPirTolnteger4

Purpose

Fortran Syntax

Arguments

Description

See Also

264

Copy INTEGER*4 values from a pointer array to a Fortran array

subroutine mxCopyPtrToInteger4(px, y, n)
integer*4 y(n)
integer*4 px, n

pPX
Pointer to ir or jc array.

y
INTEGER*4 Fortran array.

n
Number of elements to copy.

mxCopyPtrToInteger4 copies n INTEGER*4 values from the MATLAB array
pointed to by px, either an ir or jc array, into the Fortran INTEGER*4 arrayy.
This subroutine is essential for use with Fortran compilers that do not support
the %VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note: This function can only be used with sparse matrices.

mxCopyInteger4ToPtr

mxCopyPtrToPtrArray

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy pointer to a Fortran array

subroutine mxCopyPtrToInteger4(px, y, n)
integer*4 y(n)
integer*4 px, n

pPX
Pointer to ir or jc array.

y
INTEGER*4 Fortran array.

n
Number of elements to copy.

mxCopyPtrToPtrArray copies a pointer to a Fortran array. This subroutine is
essential for use with Fortran compilers that do not support the %VAL construct
in order to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

mxCopyInteger4ToPtr

265

mxCopyPtrToReal8

Purpose

Fortran Syntax

Arguments

Description

See Also

266

Copy REAL*8 values from a pointer array to a Fortran array

subroutine mxCopyPtrToReal8(px, y, n)
real*8 y(n)
integer*4 px, n

pPX
Pointer to pr or pi array.

y
REAL*8 Fortran array.

n
Number of elements to copy.

mxCopyPtrToReal8 copies n REAL*8 values from the MATLAB array pointed to
by px, either a pr or pi array, into the Fortran REAL*8 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

mxCopyReal8ToPtr

mxCopyReal8ToPir
|

Purpose Copy REAL*8 values from a Fortran array to a pointer array

Fortran Syntax subroutine mxCopyReal8ToPtr(y, px, n)
real*8 y(n)
integer*4 px, n

Arguments y
REAL*8 Fortran array.

px
Pointer to pr or pi array.

n
Number of elements to copy.

Description mxCopyReal8ToPtr(y,px,n) copies n REAL*8 values from the Fortran REAL*8
array y into the MATLAB array pointed to by px, either a pr or pi array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToReal8

267

mxCreateFull

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

268

Create an unpopulated two-dimensional mxArray

integer*4 function mxCreateFull(m, n, ComplexFlag)
integer*4 m, n, ComplexFlag

m
The desired number of rows.

n
The desired number of columns.

ComplexFlag
Specify REAL = 0 if the data has no imaginary components; specify
COMPLEX = 1 if the data has some imaginary components.

An unpopulated, m-by-n mxArray if successful, O otherwise.

Use mxCreateFull to create an unpopulated mxArray of size m-by-n.
mxCreateFull initializes each element in the pr array to 0. If you set
ComplexFlag to 1, mxCreateFull also initializes each element in the pi array
to 0.

If you specify REAL = 0, mxCreateFull allocates enough memory to hold m-by-n
real elements. If you specify COMPLEX = 1, mxCreateFull allocates enough
memory to hold m-by-n real elements and m-by-n imaginary elements.

Call mxFreeMatrix when you finish using the mxArray. mxFreeMatrix
deallocates the mxArray and its associated real and complex elements.

mxCreateSparse, mxFreeMatrix

mxCreateSparse

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Create a two-dimensional unpopulated sparse mxArray

integer*4 function mxCreateSparse(m, n, nzmax, ComplexFlag)
integer*4 m, n, nzmax, ComplexFlag

m
The desired number of rows.

n
The desired number of columns.

nzmax

The number of elements that mxCreateSparse should allocate to hold the pr,
ir,and, if COMPLEX = 1, pi arrays. Set the value of nzmax to be greater than or
equal to the number of nonzero elements you plan to put into the mxArray, but
make sure that nzmax is less than or equal to m*n.

ComplexFlag
Specify REAL = 0 if the data has no imaginary components; specify
COMPLEX = 1 if the data has some imaginary components.

An unpopulated, sparse mxArray if successful, O otherwise.

Call mxCreateSparse to create an unpopulated sparse mxArray. The returned
sparse mxArray contains no sparse information and cannot be passed as an
argument to any MATLAB sparse functions. In order to make the returned
sparse mxArray useful, you must initialize the pr, ir, jc, and (if it exists) pi
array.

mxCreateSparse allocates space for

® A pr array of m-by-n elements.

® A pi array of m-by-n elements (but only if ComplexFlag is COMPLEX = 1).
® An ir array of nzmax elements.

® A jc array of m elements.

When you finish using the sparse mxArray, call nxFreeMatrix to reclaim all its
heap space.

mxFreeMatrix, mxSetNzmax, mxSetPr, mxSetIr, mxSetdc

269

mxCreateString

Purpose

Fortran Syntax
Arguments

Returns

Description

270

Create a 1-by-n character array initialized to the specified string

integer*4 function mxCreateString(str)
character*(*) str

str
The string that is to serve as the mxArray’s initial data.

A character array initialized to str if successful, 0 otherwise.

Use mxCreateString to create a character mxArray initialized to str. Many
MATLAB functions (for example, strcmp and upper) require character
mxArray inputs.

Free the character mxArray when you are finished using it. To free a
character mxArray, call nxFreeMatrix.

mxFree

Purpose

Fortran Syntax

Arguments

Description

See Also

Free dynamic memory allocated by mxCalloc

subroutine mxFree(ptr)
integer*4 ptr

ptr
Pointer to the beginning of any memory parcel allocated by mxCalloc.

mxFree deallocates heap space. mxFree frees memory using MATLAB’s own
memory management facility. This ensures correct memory management in
error and abort (Ctrl-C) conditions.

mxFree works differently in MEX-files than in stand-alone MATLAB
applications. With MEX-files, mxFree returns to the heap any memory
allocated using mxCalloc. If you do not free memory with this command,
MATLAB frees it automatically on return from the MEX-file. In stand-alone
MATLAB applications, you have to explicitly free memory, and MATLAB
memory management is not used.

In a MEX-file, your use of mxFree depends on whether the specified memory
parcel is persistent or nonpersistent. By default, memory parcels created by
mxCalloc are nonpersistent.

The MATLAB memory management facility automatically frees all
nonpersistent memory whenever a MEX-file completes. Thus, even if you do
not call mxFree, MATLAB takes care of freeing the memory for you.
Nevertheless, it is a good programming practice to deallocate memory just as
soon as you are through using it. Doing so generally makes the entire system
run more efficiently.

When a MEX-file completes, the MATLAB memory management facility does
not free persistent memory parcels. Therefore, the only way to free a persistent
memory parcel is to call mxFree. Typically, MEX-files call nexAtExit to register
a clean-up handler. Then, the clean-up handler calls mxFree.

mxCalloc, mxFreeMatrix

271

mxFreeMatrix

Purpose Free dynamic memory allocated by mxCreateFull and mxCreateSparse

Fortran Syntax subroutine mxFreeMatrix(pm)
integer*4 pm

Arguments pm
Pointer to the beginning of the mxArray.

Description mxFreeMatrix returns an mxArray to the heap for reuse, freeing any arrays
(pr, pi, ir, or jc) allocated within the mxArray.

See Also mxCalloc, mxFree

272

mxGetir

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get the ir array

integer*4 function mxGetIr(pm)
integer*4 pm

pm
Pointer to a sparse mxArray.

A pointer to the first element in the ir array, if successful. Otherwise, returns
0. Possible causes of failure include:

¢ Specifying a full (nonsparse) mxArray.
® An earlier call to mxCreateSparse failed.

Use mxGetIr to obtain the starting address of the ir array. The ir array is an
array of integers; the length of the ir array is typically nzmax values. For
example, if nzmax equals 100, then the ir array should contain 100 integers.

Each value in an ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetJc.

mxGetJc, mxGetNzmax, mxSetIr, mxSetdc, mxSetNzmax

273

mxGetlJc

Purpose

Fortran Syntax
Arguments

Returns

Description

See Also

274

Get the jc array

integer*4 function mxGetdc(pm)
integer*4 pm

pm
Pointer to a sparse mxArray.

A pointer to the first element in the jc array, if successful; otherwise, returns
0. The most likely cause of failure is specifying a pointer that points to a full
(nonsparse) mxArray.

Use mxGetdc to obtain the starting address of the jc array. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array indirectly indicate columns
containing nonzero elements. For a detailed explanation of the jc array, see
mxSetdc.

mxGetIr, mxSetIr, mxSetdc

mxGetM

Purpose

Fortran Syntax

Arguments

Returns
Description

See Also

Get the number of rows

integer*4 function mxGetM(pm)
integer*4 pm

pm
Pointer to an array.

The number of rows in the mxArray to which pm points.
mxGetM returns the number of rows in the specified array.

mxGetN, mxSetM, mxSetN

275

mxGetN

Purpose Get the total number of columns

Fortran Syntax integer*4 function mxGetN(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The number of columns in the mxArray.

Description Call mxGetN to determine the number of columns in the specified mxArray.

If pm points to a sparse mxArray, mxGetN still returns the number of columns,
not the number of occupied columns.

See Also mxGetM, mxSetM, mxSetN

276

mxGetName

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get the name of the specified mxArray

character*32 function mxGetName (pm)
integer*4 pm

pm
Pointer to an mxArray.

A pointer to the start of the name field. If the mxArray has no name, mxGetName
returns O.

Use mxGetName to determine the name of the mxArray that pm points to. The
returned mxArray name is a character array with maximum length 32.

mxSetName

277

mxGetNzmax

Purpose

Fortran Syntax
Arguments

Returns

Description

See Also

278

Get the number of elements in the ir, pr, and (if it exists) pi arrays

integer*4 function mxGetNzmax(pm)
integer*4 pm

pm
Pointer to a sparse mxArray.

The number of elements allocated to hold nonzero entries in the specified
sparse mxArray, on success. Returns an indeterminate value on error. The most
likely cause of failure is that pm points to a full (nonsparse) mxArray.

Use mxGetNzmax to get the value of the nzmax field. The nzmax field holds an
integer value that signifies the number of elements in the ir, pr, and, if it
exists, the pi arrays. The value of nzmax is always greater than or equal to the
number of nonzero elements in a sparse mxArray. In addition, the value of
nzmax is always less than or equal to the number of rows times the number of
columns.

As you adjust the number of nonzero elements in a sparse mxArray, MATLAB
often adjusts the value of the nzmax field. MATLAB adjusts nzmax in order to
reduce the number of costly reallocations and in order to optimize its use of
heap space.

mxSetNzmax

mxGetPi

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get an mxArray’s imaginary data elements

integer*4 function mxGetPi(pm)
integer*4 pm

pm
Pointer to an mxArray.

The imaginary data elements of the specified mxArray, on success. Returns O if
there is no imaginary data or if there is an error.

The pi field points to an array containing the imaginary data of the mxArray.
Call mxGetPi to get the contents of the pi field; that is, to get the starting
address of this imaginary data.

The best way to determine if an mxArray is purely real is to call mxIsComplex.

The imaginary parts of all input mxArrays to a MATLAB function are allocated
if any of the input mxArrays is complex.

If you use mxGetPr or mxGetPi, note that mxFreeMatrix frees pr and pi using
mxFree, so pr and pi should only be set to memory allocated with mxCalloc.

mxGetPr, mxSetPi, mxSetPr

279

mxGetPr

Purpose

Fortran Syntax
Arguments
Returns

Description

See Also

280

Get an mxArray’s real data elements

integer*4 function mxGetPr(pm)
integer*4 pm

pm
Pointer to an mxArray.

The address of the first element of the real data. Returns O if there is no real
data.

Call mxGetPr to determine the starting address of the real data in the mxArray
that pm points to. Once you have the starting address, it is fairly easy to access
any other element in the mxArray.

If you use mxGetPr or mxGetPi, note that mxFreeMatrix frees pr and pi using
mxFree, so pr and pi should only be set to memory allocated with mxCalloc.

mxGetPi, mxSetPi, mxSetPr

mxGetScalar

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get the real component of an mxArray’s first data element

real*8 function mxGetScalar(pm)
integer*4 pm

pm
Pointer to an mxArray.

The value of the first real (nonimaginary) element of the mxArray. If the
mxArray is larger than 1-by-1, mxGetScalar returns the value of the (1,1)
element.

If pm points to a sparse mxArray, mxGetScalar returns the value of the first
nonzero real element in the mxArray.

If pm points to an empty mxArray, mxGetScalar returns an indeterminate value.

Call mxGetScalar to get the value of the first real (nonimaginary) element of
the mxArray.

In most cases, you call mxGetScalar when pm points to an mxArray containing
only one element (a scalar). However, pm can point to an mxArray containing
many elements. If pm points to an mxArray containing multiple elements,
mxGetScalar returns the value of the first real element. If pm points to a
two-dimensional mxArray, mxGetScalar returns the value of the (1,1)
element.

mxGetM, mxGetN

281

mxGetString

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

282

Create a character array from an mxArray

integer*4 function mxGetString(pm, str, strlen)
integer*4 pm, strlen
character*(*) str

pm
Pointer to an mxArray.

str
Fortran character array.

strlen
Number of characters to retrieve from the mxArray.

0 on success, 1 otherwise.

Call mxGetString to copy a character array from an mxArray. mxGetString
copies and converts the character array from the mxArray pm into the
character array str. Storage space for character array str must be allocated
previously.

Only up to strlen characters are copied, so ordinarily, strlen is set to the
dimension of the character array to prevent writing past the end of the array.
Check the length of the character array in advance using mxGetM and mxGetN.
If the character array contains several rows, they are copied, one column at a
time, into one long character array.

mxCalloc

mxIisComplex

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Inquire if an mxArray is complex

integer*4 function mxIsComplex(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if complex, O otherwise.

Use mxIsComplex to determine whether or not an imaginary part is allocated
for an mxArray. The imaginary pointer pi is O if an mxArray is purely real and
does not have any imaginary data. If an mxArray is complex, pi points to an
array of numbers.

When a MEX-file is called, MATLAB automatically examines all the input
(right-hand side) arrays. If any input array is complex, then MATLAB
automatically allocates memory to hold imaginary data for all other input
arrays. For example, suppose you pass three input variables (apricot, banana,
and carambola) to a MEX-file named Jest:

apricot = 7;

banana = sqrt(-5:5);

carambola = magic(2);
Jest(apricot, banana, carambola);

banana is complex. Therefore, even though array apricot is purely real,
MATLAB automatically allocates space (one element) to hold an imaginary
value of apricot. MATLAB also automatically allocates space (four elements)
to hold the nonexistent imaginary values of carambola.

In other words, MATLAB forces every input array to be real or every input
array to be complex.

mxIsNumeric

283

mxlisDouble

Purpose

Fortran Syntax

Arguments

Returns

Description

284

Inquire if an mxArray is of type double

integer*4 function mxIsDouble(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if true, O if false. If mxIsDouble returns O, the array has no Fortran access
functions and your Fortran program cannot use it.

Call mxIsDouble to determine whether or not the specified mxArray represents
its real and imaginary data as double-precision, floating-point numbers.

Older versions of MATLAB store all mxArray data as double-precision,
floating-point numbers. However, starting with MATLAB 5, MATLAB can
store real and imaginary data in a variety of numerical formats.

mxIsFull

Purpose Inquire if an mxArray is full

Fortran Syntax integer*4 function mxIsFull(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if the mxArray is full, 0 if it is sparse.

Description Call mxIsFull to determine if an mxArray is stored in full form or sparse form.

285

mxIsNumeric

Purpose Inquire if an mxArray contains numeric data

Fortran Syntax integer*4 function mxIsNumeric(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if the mxArray contains numeric data, O otherwise.

Description Call mxIsNumeric to inquire whether or not the mxArray contains a character
array.

See Also mxIsString

286

mxIsSparse

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Inquire if an mxArray is sparse

integer*4 function mxIsSparse(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if the mxArray is sparse, O otherwise.
Use mxIsSparse to determine if an mxArray is stored in sparse form. Many

routines (for example, mxGetIr and mxGetdc) require a sparse mxArray as
input.

There are no corresponding set routines. Use mxCreateSparse to create sparse
mxArrays.

mxGetIr, mxGetdc, mxIsFull

287

mxIsString

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

288

Inquire if an mxArray contains a character array

integer*4 function mxIsString(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if the mxArray contains a character array, 0 otherwise.

Call mxIsString to inquire whether or not the mxArray contains a character
array. The DisplayMode flag tells MATLAB whether to display the mxArray in
numeric form or to interpret the elements as ASCII values and to display the
mxArray as a character array, if the semicolon is omitted from a MATLAB
statement.

Use mxGetString and mxCreateString to extract and insert character arrays
into mxArrays.

mxCreateString, mxGetString

mxSetir

Purpose

Fortran Syntax

Arguments

Description

See Also

Set the ir array of a sparse mxArray

subroutine mxSetIr(pm, ir)
integer*4 pm,ir

pm

Pointer to a sparse mxArray.

ir

Pointer to the ir array. The ir array must be sorted in column-major order.

Use mxSetIr to specify the ir array of a sparse mxArray. The ir array is an
array of integers; the length of the ir array should equal the value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found. See mxSetdJc for more details on
jc.)

The ir array must be in column-major order. That means that the ir array
must define the row positions in column 1 (if any) first, then the row positions
in column 2 (if any) second, and so on through column N. Within each column,
row position 1 must appear prior to row position 2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir array that
is already sorted.

mxCreateSparse, mxGetIr, mxGetdc, mxSetdc

289

mxSetlJc

Purpose Set the jc array of a sparse mxArray

Fortran Syntax subroutine mxSetJc(pm, jc)
integer*4 pm, jc

Arguments pm
Pointer to a sparse mxArray.
jc
Pointer to the jc array.
Description Use mxSetdJc to specify a new jc array for a sparse mxArray. The jc array is an

integer array having n+1 elements where n is the number of columns in the
sparse mxArray.

See Also mxGetIr, mxGetdc, mxSetIr

290

mxSetM

Purpose

Fortran Syntax

Arguments

Description

See Also

Set the number of rows

subroutine mxSetM(pm, m)
integer*4 pm, m

pm
Pointer to an mxArray.

m
The desired number of rows.

Call mxSetM to set the number of rows in the specified mxArray. Call mxSetN to
set the number of columns.

You can use mxSetM to change the shape of an existing mxArray. Note that
mxSetM does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetM and mxSetN increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the array, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently.

mxGetM, mxGetN, mxSetN

291

mxSetN

Purpose

Fortran Syntax

Arguments

Description

See Also

292

Set the number of columns

subroutine mxSetN(pm, n)
integer*4 pm, n

pm
Pointer to an mxArray.

n
The desired number of columns.

Call mxSetN to set the number of columns in the specified mxArray. Call mxSetM
to set the number of rows in the specified mxArray.

You typically use mxSetN to change the shape of an existing mxArray. Note that
mxSetN does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetN and mxSetM increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently. However, reducing the size
is not mandatory.

mxGetM, mxGetN, mxSetM

mxSetName

Purpose

Fortran Syntax

Arguments

Description

See Also

Set the name of an mxArray

subroutine mxSetName(pm, name)
integer*4 pm
character*(32) name

pm
Pointer to an mxArray.

name

The name you are assigning to the mxArray. The specified name can be up to 32
characters. If you specify a name longer than 32 characters, mxSetName assigns
only the first 32 characters to the name.

Call mxSetName to establish a name for an mxArray or to change an existing
name.

mxSetName assigns the characters in name to a fixed-width section of memory.
Do not deallocate this memory.

mxGetName

293

mxSetNzmax

Purpose

Fortran Syntax

Arguments

Description

See Also

294

Set the storage space for nonzero elements

subroutine mxSetNzmax(pm, nzmax)
integer*4 pm, nzmax

pm
Pointer to a sparse mxArray.

nzmax

The number of elements that mxCreateSparse should allocate to hold the
arrays pointed to by ir, pr, and pi (if it exists). Set nzmax greater than or equal
to the number of nonzero elements in the mxArray, but set it to be less than or
equal to the number of rows times the number of columns. If you specify an
nzmax value of 0, mxSetNzmax sets the value of nzmax to 1.

Use mxSetNzmax to assign a new value to the nzmax field of the specified sparse
mxArray. The nzmax field holds the maximum possible number of nonzero
elements in the sparse mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must be equal
to nzmax. Therefore, after calling mxSetNzmax, you must change the size of the
ir, pr, and pi arrays.

How big should nzmax be? One thought is that you set nzmax equal to or slightly
greater than the number of nonzero elements in a sparse mxArray. This
approach conserves precious heap space. Another technique is to make nzmax
equal to the total number of elements in an mxArray. This approach eliminates
(or, at least reduces) expensive reallocations.

mxGetNzmax

mxSetPi

Purpose

Fortran Syntax

Arguments

Description

See Also

Set new imaginary data for an mxArray

subroutine mxSetPi(pm, pi)
integer*4 pm, pi

pm

Pointer to a full (nonsparse) mxArray.

pi

Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory.

Use mxSetPi to set the imaginary data of the specified mxArray.

Most mxCreate functions optionally allocate heap space to hold imaginary data.
If you tell an mxCreate function to allocate heap space (for example, by setting
the ComplexFlag to COMPLEX = 1 or by setting pi to a nonzero value), then you
do not ordinarily use mxSetPi to initialize the created mxArray’s imaginary
elements. Rather, you call mxSetPi to replace the initial imaginary values with
new ones.

mxGetPi, mxGetPr, mxSetPr

295

mxSetPr

Purpose

Fortran Syntax

Arguments

Description

See Also

296

Set new real data for an mxArray

subroutine mxSetPr(pm, pr)
integer*4 pm, pr

pm
Pointer to a full (nonsparse) mxArray.

pr

Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory.

Use mxSetPr to set the real data of the specified mxArray.

All mxCreate calls allocate heap space to hold real data. Therefore, you do not
ordinarily use mxSetPr to initialize the real elements of a freshly created
mxArray. Rather, you call mxSetPr to replace the initial real values with new
ones.

mxGetPr, mxGetPi, mxSetPi

	API Notes
	The mex Script
	The MATLAB Array
	Passing Pointers in Fortran

	DDE Routines
	ddeadv
	ddeexec
	ddeinit
	ddepoke
	ddereq
	ddeterm
	ddeunadv

	C Engine Routines
	engClose
	engEvalString
	engGetArray
	engGetFull (Obsolete)
	engGetMatrix (Obsolete)
	engOpen
	engOutputBuffer
	engPutArray
	engPutFull (Obsolete)
	engPutMatrix (Obsolete)
	engSetEvalCallback (Obsolete)
	engSetEvalTimeout (Obsolete)
	engWinInit (Obsolete)

	C MAT-File Routines
	matClose
	matDeleteArray
	matDeleteMatrix (Obsolete)
	matGetArray
	matGetArrayHeader
	matGetDir
	matGetFp
	matGetFull (Obsolete)
	matGetMatrix (Obsolete)
	matGetNextArray
	matGetNextArrayHeader
	matGetNextMatrix (Obsolete)
	matGetString (Obsolete)
	matOpen
	matPutArray
	matPutArrayAsGlobal
	matPutFull (Obsolete)
	matPutMatrix (Obsolete)
	matPutString (Obsolete)

	C MEX-Functions
	mexAddFlops
	mexAtExit
	mexCallMATLAB
	mexErrMsgTxt
	mexEvalString
	mexFunction
	mexFunctionName
	mexGet
	mexGetArray
	mexGetArrayPtr
	mexGetEps (Obsolete)
	mexGetFull (Obsolete)
	mexGetGlobal (Obsolete)
	mexGetInf (Obsolete)
	mexGetMatrix (Obsolete)
	mexGetMatrixPtr (Obsolete)
	mexGetNaN (Obsolete)
	mexIsFinite (Obsolete)
	mexIsGlobal
	mexIsInf (Obsolete)
	mexIsLocked
	mexIsNaN (Obsolete)
	mexLock
	mexMakeArrayPersistent
	mexMakeMemoryPersistent
	mexPrintf
	mexPutArray
	mexPutFull (Obsolete)
	mexPutMatrix (Obsolete)
	mexSet
	mexSetTrapFlag
	mexUnlock
	mexWarnMsgTxt

	C MX-Functions
	mxArrayToString
	mxAssert
	mxAssertS
	mxCalcSingleSubscript
	mxCalloc
	mxChar
	mxClassID
	mxClearLogical
	mxComplexity
	mxCreateCellArray
	mxCreateCellMatrix
	mxCreateCharArray
	mxCreateCharMatrixFromStrings
	mxCreateDoubleMatrix
	mxCreateFull (Obsolete)
	mxCreateNumericArray
	mxCreateSparse
	mxCreateString
	mxCreateStructArray
	mxCreateStructMatrix
	mxDestroyArray
	mxDuplicateArray
	mxFree
	mxFreeMatrix (Obsolete)
	mxGetCell
	mxGetClassID
	mxGetClassName
	mxGetData
	mxGetDimensions
	mxGetElementSize
	mxGetEps
	mxGetField
	mxGetFieldByNumber
	mxGetFieldNameByNumber
	mxGetFieldNumber
	mxGetImagData
	mxGetInf
	mxGetIr
	mxGetJc
	mxGetM
	mxGetN
	mxGetName
	mxGetNaN
	mxGetNumberOfDimensions
	mxGetNumberOfElements
	mxGetNumberOfFields
	mxGetNzmax
	mxGetPi
	mxGetPr
	mxGetScalar
	mxGetString
	mxIsCell
	mxIsChar
	mxIsClass
	mxIsComplex
	mxIsDouble
	mxIsEmpty
	mxIsFinite
	mxIsFromGlobalWS
	mxIsFull (Obsolete)
	mxIsInf
	mxIsInt8
	mxIsInt16
	mxIsInt32
	mxIsLogical
	mxIsNaN
	mxIsNumeric
	mxIsSingle
	mxIsSparse
	mxIsString (Obsolete)
	mxIsStruct
	mxIsUint8
	mxIsUint16
	mxIsUint32
	mxMalloc
	mxRealloc
	mxSetAllocFcns
	mxSetCell
	mxSetClassName
	mxSetData
	mxSetDimensions
	mxSetField
	mxSetFieldByNumber
	mxSetImagData
	mxSetIr
	mxSetJc
	mxSetLogical
	mxSetM
	mxSetN
	mxSetName
	mxSetNzmax
	mxSetPi
	mxSetPr

	Fortran Engine Routines
	engClose
	engEvalString
	engGetFull
	engGetMatrix
	engOpen
	engOutputBuffer
	engPutFull
	engPutMatrix

	Fortran MAT-File Routines
	matClose
	matDeleteMatrix
	matGetDir
	matGetFull
	matGetMatrix
	matGetNextMatrix
	matGetString
	matOpen
	matPutFull
	matPutMatrix
	matPutString

	Fortran MEX-Functions
	mexAtExit
	mexCallMATLAB
	mexErrMsgTxt
	mexEvalString
	mexFunction
	mexGetEps
	mexGetFull
	mexGetGlobal
	mexGetInf
	mexGetMatrix
	mexGetMatrixPtr
	mexGetNaN
	mexIsFinite
	mexIsInf
	mexIsNaN
	mexPrintf
	mexPutFull
	mexPutMatrix
	mexSetTrapFlag

	Fortran MX-Functions
	mxCalloc
	mxCopyCharacterToPtr
	mxCopyComplex16ToPtr
	mxCopyInteger4ToPtr
	mxCopyPtrToCharacter
	mxCopyPtrToComplex16
	mxCopyPtrToInteger4
	mxCopyPtrToPtrArray
	mxCopyPtrToReal8
	mxCopyReal8ToPtr
	mxCreateFull
	mxCreateSparse
	mxCreateString
	mxFree
	mxFreeMatrix
	mxGetIr
	mxGetJc
	mxGetM
	mxGetN
	mxGetName
	mxGetNzmax
	mxGetPi
	mxGetPr
	mxGetScalar
	mxGetString
	mxIsComplex
	mxIsDouble
	mxIsFull
	mxIsNumeric
	mxIsSparse
	mxIsString
	mxSetIr
	mxSetJc
	mxSetM
	mxSetN
	mxSetName
	mxSetNzmax
	mxSetPi
	mxSetPr

