MATLAB

The Language of Technical Computing

Computation
—

Visualization
1

Programming
—

The

_ MATH
MATLAB Function Reference W‘BE S

(Volume 1: Language)

Version 5

@@DDD

How to Contact The MathWorks:

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

24 Prime Park Way
Natick, MA 01760-1500

http://www._mathworks.com Web

ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support

suggest@mathworks . com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB Function Reference
0 COPYRIGHT 1984 - 1999 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing (for MATLAB 5)
June 1997 Revised for 5.1 (online version)
October 1997 Revised for 5.2 (online version)

January 1999 Revised for Release 11 (online version)

Command Summary

1|

General Purpose Commandscooiiiiiiiiiinnnn. 1-2
Operators and Special Characterscoovnnn 1-3
Logical Functions 1-4
Language Constructs and Debugging 1-4
Elementary Matrices and Matrix Manipulation 1-6
Specialized MatriCes ...t 1-8
Elementary Math Functions 1-8
Specialized Math Functions ... 1-9
Coordinate System CONVerSioNcooeieennnnnnns 1-9
Matrix Functions - Numerical Linear Algebra 1-10
Data Analysis and Fourier Transform Functions........... 1-11
Polynomial and Interpolation Functions 1-13
Function Functions — Nonlinear Numerical Methods 1-13
Sparse Matrix Functions ..., 1-14
Sound Processing FUnNctionscoiiiiiiinn. 1-15
Character String Functions ..., 1-16
Low-Level File /O Functions 1-17

Contents

Bitwise FUNCLIONS 1-18

Structure FUNCLIONS 1-18
Object FUNCLIONS e 1-18
Cell Array FUNCLIONS 1-18
Multidimensional Array Functions 1-19
Plotting and Data Visualization 1-19
Graphical User Interface Creation 1-25

Reference

2|

List of Commands

Al

Function Namest e A-2

ii Contents

Command Summary

This chapter lists MATLAB commands by functional area.

General Purpose Commands

1-2

Managing Commands and Functions

addpath
doc
docopt
help
helpdesk
helpwin
lasterr
lastwarn
lookfor
partialpath
path
pathtool
profile
profreport
rmpath
type

ver
version
web

what
whatsnew
which

Add directories to MATLAB's search path

Display HTML documentation in Web browser

Display location of help file directory for UNIX platforms
Online help for MATLAB functions and M-files

Display Help Desk page in Web browser, giving access to extensive help

Display Help Window, providing access to help for all commands
Last error message

Last warning message

Keyword search through all help entries

Partial pathname

Control MATLAB'’s directory search path

Start Path Browser, a GUI for viewing and modifying MATLAB'’s path
Start the M-file profiler, a utility for debugging and optimizing code
Generate a profile report

Remove directories from MATLAB’s search path

List file

Display version information for MATLAB, Simulink, and toolboxes
MATLAB version number

Point Web browser at file or Web site

Directory listing of M-files, MAT-files, and MEX-files

Display README files for MATLAB and toolboxes

Locate functions and files

Managing Variables and the Workspace

clear
disp
length
load
mlock
munlock
openvar
pack

save
saveas
size

who, whos
workspace

Remove items from memory

Display text or array

Length of vector

Retrieve variables from disk

Prevent M-file clearing

Allow M-file clearing

Open workspace variable in Array Editor, for graphical editing
Consolidate workspace memory

Save workspace variables on disk

Save figure or model using specified format

Array dimensions

List directory of variables in memory

Display the Workspace Browser, a GUI for managing the workspace

Controlling the Command Window

clc
echo
format
home
more

Clear command window

Echo M-files during execution

Control the output display format

Send the cursor home

Control paged output for the command window

Working with Files and the Operating Environment

cd
copyfile
delete
diary

dir

edit
fileparts
fullfile
inmem

Is
matlabroot
mkdir
open

pwd
tempdir
tempname
1

Change working directory

Copy file

Delete files and graphics objects
Save session in a disk file

Directory listing

Edit an M-file

Filename parts

Build full filename from parts
Functions in memory

List directory on UNIX

Root directory of MATLAB installation
Make directory

Open files based on extension
Display current directory

Return the name of the system’s temporary directory
Unique name for temporary file
Execute operating system command

Starting and Quitting MATLAB

matlabrc
quit
startup

MATLAB startup M-file
Terminate MATLAB
MATLAB startup M-file

Operators and Special Characters

Plus

Minus

Matrix multiplication
Array multiplication
Matrix power

Array power

Kronecker tensor product

1-3

N 7

./ and .\

L e Y P W
el \/

Logical Functions

all

any
exist
find

is*

isa
logical
mislocked

Backslash or left division
Slash or right division
Array division, right and left
Colon

Parentheses

Brackets

Curly braces

Decimal point
Continuation

Comma

Semicolon

Comment

Exclamation point
Transpose and quote
Nonconjugated transpose
Assignment

Equality

Relational operators
Logical AND

Logical Or

LogicalNOT

Logical EXCLUSIVE OR

Test to determine if all elements are nonzero
Test for any nonzeros

Check if a variable or file exists

Find indices and values of nonzero elements
Detect state

Detect an object of a given class

Convert numeric values to logical

True if M-file cannot be cleared

Language Constructs and Debugging

1-4

MATLAB as a Programming Language

builtin
eval
evalc

Execute builtin function from overloaded method
Interpret strings containing MATLAB expressions
Evaluate MATLAB expression with capture

evalin Evaluate expression in workspace

feval Function evaluation

function Function M-files

global Define global variables

nargchk Check number of input arguments
persistent Define persistent variable

script Script M-files

Control Flow

break Terminate execution dfor loop orwhi le loop

case Case switch

catch Begin catch block

else Conditionally execute statements

elseif Conditionally execute statements

end Terminatefor, while, switch, try, andif statements or indicate last
index

error Display error messages

for Repeat statements a specific number of times

if Conditionally execute statements

otherwise Default part oswitch statement

return Return to the invoking function

switch Switch among several cases based on expression

try Begintry block

warning Display warning message

while Repeat statements an indefinite number of times

Interactive Input

input Request user input

keyboard Invoke the keyboard in an M-file

menu Generate a menu of choices for user input
pause Halt execution temporarily

ODbject-Oriented Programming

class Create object or return class of object
double Convert to double precision
inferiorto Inferior class relationship

inline Construct an inline object

int8, Intl6, int32
Convert to signed integer
isa Detect an object of a given class

1-5

loadobj Extends thdoad function for user objects
saveobj Save filter for objects
single Convert to single precision
superiorto Superior class relationship
uint8, uintl6, uint32
Convert to unsigned integer

Debugging

dbclear Clear breakpoints

dbcont Resume execution

dbdown Change local workspace context
dbmex Enable MEX-file debugging

dbquit Quit debug mode

dbstack Display function call stack
dbstatus List all breakpoints

dbstep Execute one or more lines from a breakpoint
dbstop Set breakpoints in an M-file function
dbtype List M-file with line numbers

dbup Change local workspace context

Elementary Matrices and Matrix Manipulation

1-6

Elementary Matrices and Arrays

blkdiag Construct a block diagonal matrix from input arguments
eye Identity matrix

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced vectors

ones Create an array of all ones

rand Uniformly distributed random numbers and arrays

randn Normally distributed random numbers and arrays

zeros Create an array of all zeros

= (colon) Regularly spaced vector

Special Variables and Constants

ans The most recent answer

computer Identify the computer on which MATLAB is running
eps Floating-point relative accuracy

flops Count floating-point operations

i Imaginary unit

Inf
inputname

J
NaN

Infinity

Input argument name
Imaginary unit
Not-a-Number

nargin, nargout

pi
realmax
realmin
varargin,
varargout

Number of function arguments

Ratio of a circle’s circumference to its diameter,
Largest positive floating-point number

Smallest positive floating-point number

Pass or return variable numbers of arguments

Time and Dates

calendar
clock
cputime
date
datenum
datestr
datevec
eomday
etime
now

tic, toc
weekday

Calendar

Current time as a date vector
Elapsed CPU time
Current date string
Serial date number
Date string format
Date components
End of month
Elapsed time

Current date and time
Stopwatch timer

Day of the week

Matrix Manipulation

cat
diag
fliplr
flipud
repmat
reshape
rot90
tril
triu

: (colon)

Concatenate arrays

Diagonal matrices and diagonals of a matrix
Flip matrices left-right

Flip matrices up-down

Replicate and tile an array

Reshape array

Rotate matrix 90 degrees

Lower triangular part of a matrix

Upper triangular part of a matrix

Index into array, rearrange array

1-7

Specialized Matrices

compan Companion matrix

gallery Test matrices

hadamard Hadamard matrix

hankel Hankel matrix

hilb Hilbert matrix

invhilb Inverse of the Hilbert matrix
magic Magic square

pascal Pascal matrix

toeplitz Toeplitz matrix

wi lkinson Wilkinson’s eigenvalue test matrix

Elementary Math Functions

abs Absolute value and complex magnitude

acos, acosh Inverse cosine and inverse hyperbolic cosine

acot, acoth Inverse cotangent and inverse hyperbolic cotangent
acsc, acsch Inverse cosecant and inverse hyperbolic cosecant
angle Phase angle

asec, asech Inverse secant and inverse hyperbolic secant
asin, asinh Inverse sine and inverse hyperbolic sine

atan, atanh Inverse tangent and inverse hyperbolic tangent

atan2 Four-quadrant inverse tangent

ceil Round toward infinity

complex Construct complex data from real and imaginary components

conj Complex conjugate

cos, cosh Cosine and hyperbolic cosine

cot, coth Cotangent and hyperbolic cotangent

csc, csch Cosecant and hyperbolic cosecant

exp Exponential

fix Round towards zero

floor Round towards minus infinity

gcd Greatest common divisor

imag Imaginary part of a complex number

Icm Least common multiple

log Natural logarithm

log2 Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

logl0 Common (base 10) logarithm

mod Modulus (signed remainder after division)

nchoosek Binomial coefficient or all combinations

1-8

real Real part of complex number

rem Remainder after division

round Round to nearest integer

sec, sech Secant and hyperbolic secant
sign Signum function

sin, sinh Sine and hyperbolic sine

sgrt Square root

tan, tanh Tangent and hyperbolic tangent

Specialized Math Functions

airy Airy functions
besselh Bessel functions of the third kind (Hankel functions)
bessel i, besselk
Modified Bessel functions
besselj, bessely
Bessel functions
beta, betainc, betaln
Beta functions
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of the first and second kind
erf, erfc, erfcx, erfinv
Error functions
expint Exponential integral
factorial Factorial function
gamma, gammainc, gammaln
Gamma functions

legendre Associated Legendre functions
pow2 Base 2 power and scale floating-point numbers
rat, rats Rational fraction approximation

Coordinate System Conversion

cart2pol Transform Cartesian coordinates to polar or cylindrical
cart2sph Transform Cartesian coordinates to spherical
pol2cart Transform polar or cylindrical coordinates to Cartesian
sph2cart Transform spherical coordinates to Cartesian

1-9

Matrix Functions - Numerical Linear Algebra

1-10

Matrix Analysis

cond
condeig
det
norm
null
orth
rank
rcond

Condition number with respect to inversion
Condition number with respect to eigenvalues
Matrix determinant

Vector and matrix norms

Null space of a matrix

Range space of a matrix

Rank of a matrix7

Matrix reciprocal condition number estimate

rref, rrefmovie

subspace
trace

Reduced row echelon form
Angle between two subspaces
Sum of diagonal elements

Linear Equations

chol

inv

Iscov

lu
Isgnonneg
pinv

qr

Cholesky factorization

Matrix inverse

Least squares solution in the presence of known covariance
LU matrix factorization

Nonnegative least squares

Moore-Penrose pseudoinverse of a matrix
Orthogonal-triangular decomposition

Eigenvalues and Singular Values

balance
cdf2rdf
eig
gsvd
hess
poly

qz
rsf2csf
schur
svd

Improve accuracy of computed eigenvalues

Convert complex diagonal form to real block diagonal form
Eigenvalues and eigenvectors

Generalized singular value decomposition

Hessenberg form of a matrix

Polynomial with specified roots

QZ factorization for generalized eigenvalues

Convert real Schur form to complex Schur form

Schur decomposition

Singular value decomposition

Matrix Functions

expm

Matrix exponential

funm
logm
sqrtm

Evaluate functions of a matrix
Matrix logarithm?7
Matrix square root

Low Level Functions

grdelete
grinsert

Delete column from QR factorization
Insert column in QR factorization

Data Analysis and Fourier Transform Functions

Basic Operations

convhull
cumprod
cumsum
cumtrapz
delaunay
dsearch
factor
inpolygon
max

mean
median
min
perms
polyarea
primes
prod
sort
sortrows
std

sum
trapz
tsearch
var
voronoi

Convex hull

Cumulative product

Cumulative sum

Cumulative trapezoidal numerical integration
Delaunay triangulation

Search for nearest point

Prime factors

Detect points inside a polygonal region
Maximum elements of an array
Average or mean value of arrays
Median value of arrays

Minimum elements of an array

All possible permutations

Area of polygon

Generate list of prime numbers
Product of array elements

Sort elements in ascending order

Sort rows in ascending order

Standard deviation

Sum of array elements

Trapezoidal numerical integration
Search for enclosing Delaunay triangle
Variance

Voronoi diagram

Finite Differences

del2
diff

Discrete Laplacian
Differences and approximate derivatives

1-11

1-12

gradient

Numerical gradient

Correlation

corrcoef
cov

Correlation coefficients
Covariance matrix

Filtering and Convolution

conv
conv2

deconv
filter

filter2

Convolution and polynomial multiplication

Two-dimensional convolution

Deconvolution and polynomial division

Filter data with an infinite impulse response (lIR) or finite impulse re-
sponse (FIR) filter

Two-dimensional digital filtering

Fourier Transforms

abs
angle
cplxpair
fft

re2
fftshift
ifft
ifft2
ifftn
ifftshift
nextpow?2
unwrap

Absolute value and complex magnitude

Phase angle

Sort complex numbers into complex conjugate pairs
One-dimensional fast Fourier transform
Two-dimensional fast Fourier transform

Shift DC component of fast Fourier transform to center of spectrum
Inverse one-dimensional fast Fourier transform
Inverse two-dimensional fast Fourier transform
Inverse multidimensional fast Fourier transform
Inverse FFT shift

Next power of two

Correct phase angles

Vector Functions

cross
intersect
ismember
setdiff
setxor
union
unique

Vector cross product

Set intersection of two vectors

Detect members of a set

Return the set difference of two vector
Set exclusive or of two vectors

Set union of two vectors

Unique elements of a vector

Polynomial and Interpolation Functions

Polynomials

conv Convolution and polynomial multiplication

deconv Deconvolution and polynomial division

poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Convert between partial fraction expansion and polynomial coefficients
roots Polynomial roots

Data Interpolation

griddata Data gridding

interpl One-dimensional data interpolation (table lookup)

interp2 Two-dimensional data interpolation (table lookup)

interp3 Three-dimensional data interpolation (table lookup)

interpft One-dimensional interpolation using the FFT method

interpn Multidimensional data interpolation (table lookup)

meshgrid Generate X and Y matrices for three-dimensional plots

ndgrid Generate arrays for multidimensional functions and interpolation
spline Cubic spline interpolation

Function Functions — Nonlinear Numerical Methods

dblquad Numerical double integration

fminbnd Minimize a function of one variable
fminsearch Minimize a function of several variables
fzero Zero of a function of one variable

ode45, ode23, odel13, odel5s, ode23s, ode23t, ode23tb
Solve differential equations

odefile Define a differential equation problem for ODE solvers
odeget Extract properties from options structure created wilisset
odeset Create or alter options structure for input to ODE solvers
quad, quad8 Numerical evaluation of integrals

vectorize Vectorize expression

1-13

Sparse Matrix Functions

1-14

Elementary Sparse Matrices

spdiags
speye
sprand
sprandn
sprandsym

Extract and create sparse band and diagonal matrices
Sparse identity matrix

Sparse uniformly distributed random matrix

Sparse normally distributed random matrix

Sparse symmetric random matrix

Full to Sparse Conversion

find
full
sparse

spconvert

Working with Nonzero Entries of Sparse Matrices

nnz
nonzeros
nzmax
spalloc
spfun
spones

Find indices and values of nonzero elements
Convert sparse matrix to full matrix

Create sparse matrix

Import matrix from sparse matrix external format

Number of nonzero matrix elements

Nonzero matrix elements

Amount of storage allocated for nonzero matrix elements
Allocate space for sparse matrix

Apply function to nonzero sparse matrix elements
Replace nonzero sparse matrix elements with ones

Visualizing Sparse Matrices

spy

Visualize sparsity pattern

Reordering Algorithms

colmmd
colperm
dmperm
randperm
symmmd
symrcm

Sparse column minimum degree permutation
Sparse column permutation based on nonzero count
Dulmage-Mendelsohn decomposition

Random permutation

Sparse symmetric minimum degree ordering

Sparse reverse Cuthill-McKee ordering

Norm, Condition Number, and Rank

condest
normest

1-norm matrix condition number estimate
2-norm estimate

Sparse Systems of Linear Equations

bicg BiConjugate Gradients method

bicgstab BiConjugate Gradients Stabilized method

cgs Conjugate Gradients Squared method

cholinc Sparse Incomplete Cholesky and Cholesky-Infinity factorizations
cholupdate Rank 1 update to Cholesky factorization

gmres Generalized Minimum Residual method (with restarts)
luinc Incomplete LU matrix factorizations

pcg Preconditioned Conjugate Gradients method

amr Quasi-Minimal Residual method

qr Orthogonal-triangular decomposition

grdelete Delete column from QR factorization

grinsert Insert column in QR factorization

grupdate Rank 1 update to QR factorization

Sparse Eigenvalues and Singular Values

eigs Find eigenvalues and eigenvectors
svds Find singular values

Miscellaneous
spparms Set parameters for sparse matrix routines

Sound Processing Functions

General Sound Functions

lin2mu Convert linear audio signal to mu-law
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound

soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions

auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

.WAV Sound Functions

wavread Read Microsoft WAVE (.wav) sound file
wavwrite Write Microsoft WAVE (.wav) sound file

1-15

Character String Functions

1-16

General

abs
eval
real
strings

Absolute value and complex magnitude

Interpret strings containing MATLAB expressions
Real part of complex number

MATLAB string handling

String Manipulation

deblank
findstr
lower
strcat
strcmp
strcmpi
strjust
strmatch
strncmp
strrep
strtok
strvcat
symvar
texlabel
upper

Strip trailing blanks from the end of a string
Find one string within another

Convert string to lower case

String concatenation

Compare strings

Compare strings ignoring case

Justify a character array

Find possible matches for a string

Compare the firsh characters of two strings
String search and replace

First token in string

Vertical concatenation of strings

Determine symbolic variables in an expression
Produce the TeX format from a character string
Convert string to upper case

String to Number Conversion

char
int2str
mat2str
num2str
sprintf
sscanf
str2double
str2num

Create character array (string)

Integer to string conversion

Convert a matrix into a string

Number to string conversion

Write formatted data to a string

Read string under format control
Convert string to double-precision value
String to humber conversion

Radix Conversion

bin2dec
dec2bin
dec2hex

Binary to decimal number conversion
Decimal to binary number conversion
Decimal to hexadecimal humber conversion

hex2dec IEEE hexadecimal to decimal number conversion
hex2num Hexadecimal to double number conversion

Low-Level File I/70O Functions

File Opening and Closing

fclose Close one or more open files
fopen Open a file or obtain information about open files

Unformatted 1/0

fread Read binary data from file
fwrite Write binary data to a file

Formatted I/0

fgetl Return the next line of a file as a string without line terminator(s)
fgets Return the next line of a file as a string with line terminator(s)
fprintf Write formatted data to file

fscanf Read formatted data from file

File Positioning

feof Test for end-of-file

ferror Query MATLAB about errors in file input or output
frewind Rewind an open file

fseek Set file position indicator

ftell Get file position indicator

String Conversion

sprintf Write formatted data to a string
sscanf Read string under format control

Specialized File 1/0

dImread Read an ASCII delimited file into a matrix
dimwrite Write a matrix to an ASCII delimited file
hdf HDF interface

imfinfo Return information about a graphics file
imread Read image from graphics file

1-17

imwrite
textread
wklread
wkilwrite

Bitwise Functions

bitand
bitcmp
bitor
bitmax
bitset
bitshift
bitget
bitxor

Structure Functions

Ffieldnames
getfield
rmfield
setfield
struct
struct2cell

Object Functions

class
isa

Cell Array Functions

1-18

cell
cellfun
cellstr
cell2struct
celldisp
cellplot
num2cell

Write an image to a graphics file
Read formatted data from text file

Read a Lotus123 WK1 spreadsheet file into a matrix
Write a matrix to a Lotus123 WK1 spreadsheet file

Bit-wise AND

Complement bits

Bit-wise OR

Maximum floating-point integer
Set bit

Bit-wise shift

Get bit

Bit-wise XOR

Field names of a structure

Get field of structure array
Remove structure fields

Set field of structure array
Create structure array

Structure to cell array conversion

Create object or return class of object
Detect an object of a given class

Create cell array

Apply a function to each element in a cell array
Create cell array of strings from character array
Cell array to structure array conversion

Display cell array contents

Graphically display the structure of cell arrays
Convert a numeric array into a cell array

Multidimensional Array Functions

cat
flipdim
ind2sub
ipermute
ndgrid
ndims
permute
reshape
shiftdim
squeeze
sub2ind

Concatenate arrays

Flip array along a specified dimension

Subscripts from linear index

Inverse permute the dimensions of a multidimensional array
Generate arrays for multidimensional functions and interpolation
Number of array dimensions

Rearrange the dimensions of a multidimensional array
Reshape array

Shift dimensions

Remove singleton dimensions

Single index from subscripts

Plotting and Data Visualization

Basic Plots and Graphs

bar

barh
hist
hold
loglog
pie

plot
polar
semi logx
semi logy
subplot

Vertical bar chart
Horizontal bar chart
Plot histograms

Hold current graph

Plot using log-log scales
Pie plot

Plot vectors or matrices.
Polar coordinate plot
Semi-log scale plot
Semi-log scale plot
Create axes in tiled positions

Three-Dimensional Plotting

bar3
bar3h
comet3
cylinder
fill3
plot3
quiver3
slice
sphere
stem3

Vertical 3-D bar chart

Horizontal 3-D bar chart

3-D comet plot

Generate cylinder

Draw filled 3-D polygons in 3-space
Plot lines and points in 3-D space
3-D quiver (or velocity) plot
Volumetric slice plot

Generate sphere

Plot discrete surface data

1-19

1-20

waterfall

Waterfall plot

Plot Anhnotation and Grids

clabel
datetick
grid
gtext
legend
plotyy
title
xlabel
ylabel
zlabel

Add contour labels to a contour plot

Date formatted tick labels

Grid lines for 2-D and 3-D plots

Place text on a 2-D graph using a mouse

Graph legend for lines and patches

Plot graphs with Y tick labels on the left and right
Titles for 2-D and 3-D plots

X-axis labels for 2-D and 3-D plots

Y-axis labels for 2-D and 3-D plots

Z-axis labels for 3-D plots

Surface, Mesh, and Contour Plots

contour
contourc
contourf
hidden
meshc
mesh
peaks
surf
surface
surfc
surfl
trimesh
trisurf

Contour (level curves) plot
Contour computation

Filled contour plot

Mesh hidden line removal mode
Combination mesh/contourplot
3-D mesh with reference plane
A sample function of two variables
3-D shaded surface graph
Create surface low-level objects
Combination surf/contourplot
3-D shaded surface with lighting
Triangular mesh plot

Triangular surface plot

Volume Visualization

coneplot
contourslice
isocaps
isonormals
isosurface
reducepatch
reducevolume
shrinkfaces
smooth3
stream2

Plot velocity vectors as cones in 3-D vector field
Draw contours in volume slice plane

Compute isosurface end-cap geometry
Compute normals of isosurface vertices

Extract isosurface data from volume data
Reduce the number of patch faces

Reduce number of elements in volume data set
Reduce the size of patch faces

Smooth 3-D data

Compute 2-D stream line data

stream3
streamline
surf2patch
subvolume

Compute 3-D stream line data

Draw stream lines from 2- or 3-D vector data
Convert srface data to patch data

Extract subset of volume data set

Domain Generation

griddata
meshgrid

Data gridding and surface fitting
Generation of X and Y arrays for 3-D plots

Specialized Plotting

area
box

comet
compass
errorbar
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
feather
fill
fplot
pareto
pie3
plotmatrix
pcolor
rose
quiver
ribbon
stairs
scatter
scatter3
stem
convhull
delaunay
dsearch

Area plot

Axis box for 2-D and 3-D plots

Comet plot

Compass plot

Plot graph with error bars

Easy to use contour plotter

Easy to use filled contour plotter

Easy to use 3-D mesh plotter

Easy to use combination mesh/contour plotter
Easy to use function plotter

Easy to use 3-D parametric curve plotter
Easy to use polar coordinate plotter
Easy to use 3-D colored surface plotter
Easy to use combination surface/contour plotter
Feather plot

Draw filled 2-D polygons

Plot a function

Pareto char

3-D pie plot

Scatter plot matrix

Pseudocolor (checkerboard) plot

Plot rose or angle histogram

Quiver (or velocity) plot

Ribbon plot

Stairstep graph

Scatter plot

3-D scatter plot

Plot discrete sequence data

Convex hull

Delaunay triangulation

Search Delaunay triangulation for nearest point

1-21

1-22

inpolygon True for points inside a polygonal region

polyarea Area of polygon
tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram

View Control

camdolly Move camera position and target
camlookat View specific objects

camorbit Orbit about camera target

campan Rotate camera target about camera position
campos Set or get camera position

camproj Set or get projection type

camroll Rotate camera about viewing axis
camtarget Set or get camera target

camup Set or get camera up-vector

camva Set or get camera view angle

camzoom Zoom camera in or out

daspect Set or get data aspect ratio

pbaspect Set or get plot box aspect ratio

view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices
xhim Set or get the curremtaxis limits

ylim Set or get the curregtaxis limits

zlim Set or get the curremtaxis limits
Lighting

camlight Cerate or position Light

diffuse Diffuse reflectance

lighting Lighting mode

lightingangle Position light in sphereical coordinates
material Material reflectance mode

specular Specular reflectance

Color Operations

brighten Brighten or darken color map
bwcontr Contrasting black and/or color
caxis Pseudocolor axis scaling
colorbar Display color bar (color scale)
colorcube Enhanced color-cube color map
colordef Set up color defaults

colormap Set the color look-up table

graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion

rgbplot Plot color map

shading Color shading mode

spinmap Spin the colormap

surfnorm 3-D surface normals

whitebg Change axes background color for plots
Colormaps

autumn Shades of red and yellow color map

bone Gray-scale with a tinge of blue color map
contrast Gray color map to enhance image contrast

cool Shades of cyan and magenta color map

copper Linear copper-tone color map

flag Alternating red, white, blue, and black color map
gray Linear gray-scale color map

hot Black-red-yellow-white color map

hsv Hue-saturation-value (HSV) color map

jet Variant of HSV

lines Line color colormap

prism Colormap of prism colors

spring Shades of magenta and yellow color map
summer Shades of green and yellow colormap

winter Shades of blue and green color map
Printing

orient Hardcopy paper orientation

print Print graph or save graph to file

printopt Configure local printer defaults

saveas Save figure to graphic file

Handle Graphics, General

copyobj
findobj
gcho
gco
get
rotate

Make a copy of a graphics object and its children
Find objects with specified property values

Return object whose callback is currently executing
Return handle of current object

Get object properties

Rotate objects about specified origin and direction

1-23

1-24

ishandle True for graphics objects
set Set object properties

Handle Graphics, Object Creation

axes Create Axes object

figure Create Figure (graph) windows

image Create Image (2-D matrix)

light Create Light object (illuminates Patch and Surface)
line Create Line object (3-D polylines)

patch Create Patch object (polygons)

rectangle Create Rectangle object (2-D rectangle)

surface Create Surface (quadrilaterals)

text Create Text object (character strings)

uicontext Create context menu (popup associated with object)

Handle Graphics, Figure Windows

capture Screen capture of the current figure

clc Clear figure window

clf Clear figure

clg Clear figure (graph window)

close Close specified window

gcf Get current figure handle

newplot Graphics M-file preamble fatextPlot property
refresh Refresh figure

saveas Save figure or model to desired output format

Handle Graphics, Axes

axis Plot axis scaling and appearance
cla Clear Axes
gca Get current Axes handle

Object Manipulation

propedit Edit all properties of any selected object

reset Reset axis or figure

rotate3d Interactively rotate the view of a 3-D plot
selectmoveresize Interactively select, move, or resize objects
shg Show graph window

Interactive User Input

ginput Graphical input from a mouse or cursor
zoom Zoom in and out on a 2-D plot

Region of Interest

dragrect Drag XOR rectangles with mouse
drawnow Complete any pending drawing
rbbox Rubberband box

Graphical User Interface Creation

Dialog Boxes

dialog Create a dialog box

errordlg Create error dialog box

helpdlg Display help dialog box

inputdlg Create input dialog box

listdlg Create list selection dialog box

msgbox Create message dialog box

pagedlg Display page layout dialog box

printdlg Display print dialog box

questdlg Create question dialog box

uigetfile Display dialog box to retrieve name of file for reading
uiputfile Display dialog box to retrieve name of file for writing
uisetcolor Interactively set @olorSpec using a dialog box
uisetfont Interactively set a font using a dialog box

warndlg Create warning dialog box

User Interface Objects

menu Generate a menu of choices for user input
menuedit Menu editor

uicontextmenu Create context menu

uicontrol Create user interface control

uimenu Create user interface menu

Other Functions

dragrect Drag rectangles with mouse
findfigs Display off-screen visible figure windows
gcbo Return handle of object whose callback is executing

1-25

1-26

rbbox Create rubberband box for area selection
selectmoveresize Select, move, resize, or copy Axes and Uicontrol graphics objects

textwrap Return wrapped string matrix for given Uicontrol
uiresume Used withuiwait, controls program execution
uiwait Used withui resume, controls program execution
waitbar Display wait bar

waitforbuttonpress Wait for key/buttonpress over figure

Reference

This chapter describes all MATLAB operators, commands,
and functions in alphabetical order.

2-2

Arithmetic Operators + - */\ ™'

Purpose Matrix and array arithmetic
Syntax A+B
A-B
AB A.[B
A/B A./B
A\B A_\B
A™B A."B
A~ A"
Description MATLAB has two different types of arithmetic operations. Matrix arithmetic
operations are defined by the rules of linear algebra. Array arithmetic
+ operations are carried out element-by-element. The period character (.)

distinguishes the array operations from the matrix operations. However, since
the matrix and array operations are the same for addition and subtraction, the
character pairs .+ and .— are not used.

/ + Addition or unary plus. A+B adds A and B. A and B must have the same

\ size, unless one is a scalar. A scalar can be added to a matrix of any
size.

N

— Subtraction or unary minus. A-B subtracts B from A. A and B must have
the same size, unless one is a scalar. A scalar can be subtracted from a
matrix of any size.

Matrix multiplication. C = AB is the linear algebraic product of the
matrices A and B. More precisely,

n

C@i, i) = > A, K)B(K J)

k=1

For nonscalar A and B, the number of columns of A must equal the
number of rows of B. A scalar can multiply a matrix of any size.

2-3

Arithmetic Operators + - * /\ ™'

2-4

Array multiplication. A. (B is the element-by-element product of the
arrays A and B. A and B must have the same size, unless one of them is a
scalar.

Slash or matrix right division. B/A is roughly the same as BLinv(A).
More precisely, B/A = (A"\B")". See \.

Array right division. A_/B is the matrix with elements A(i, j)/B(i,j).
A and B must have the same size, unless one of them is a scalar.

Backslash or matrix left division. If A is a square matrix, A\B is roughly
the same as inv(A)(B, except it is computed in a different way. If A is
an n-by-n matrix and B is a column vector with n components, or a
matrix with several such columns, then X = A\B is the solution to the
equation AX = B computed by Gaussian elimination (see “Algorithm”
for details). A warning message prints if A is badly scaled or nearly
singular.

If A is an m-by-n matrix with m ~= nand B is a column vector with m
components, or a matrix with several such columns, then X = A\B is the
solution in the least squares sense to the under- or overdetermined
system of equations AX = B. The effective rank, k, of A, is determined
from the QR decomposition with pivoting (see “Algorithm” for details).
A solution X is computed which has at most k nonzero components per
column. If k < n, this is usually not the same solution as pinv(A)B,
which is the least squares solution with the smallest norm, | | X]|.

Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A
and B must have the same size, unless one of them is a scalar.

Matrix power. X~p is X to the power p, if p is a scalar. If p is an integer,
the power is computed by repeated multiplication. If the integer is
negative, X is inverted first. For other values of p, the calculation
involves eigenvalues and eigenvectors, such that if [V,D] = eig(X),
then X~p = VID.™p/V.

If x is a scalar and P is a matrix, x~P is x raised to the matrix power P
using eigenvalues and eigenvectors. X~P, where X and P are both
matrices, is an error.

Array power. A.”B is the matrix with elements A(i,) to the B(i,j)
power. A and B must have the same size, unless one of them is a scalar.

Arithmetic Operators + - */\ ™'

Remarks

Examples

- Matrix transpose. A" is the linear algebraic transpose of A. For complex
matrices, this is the complex conjugate transpose.

this does not involve conjugation.

Array transpose. A. " is the array transpose of A. For complex matrices,

The arithmetic operators have M-file function equivalents, as shown:

Binary addition

Unary plus

Binary subtraction
Unary minus

Matrix multiplication
Array-wise multiplication
Matrix right division
Array-wise right division
Matrix left division
Array-wise left division
Matrix power
Array-wise power
Complex transpose

Matrix transpose

A+B
+A
A-B
—A
A*B
A_*B
A/B
A./B
A\B
A_\B
A"B
A_"B
A"
A"

plus(A,B)
uplus(A)
minus(A,B)
uminus(A)
mtimes(A,B)
times(A,B)
mrdivide(A,B)
rdivide(A,B)
mldivide(A,B)
Idivide(A,B)
mpower (A,B)
power(A,B)
ctranspose(A)

transpose(A)

Here are two vectors, and the results of various matrix and array operations on

them, printed with format rat.

Matrix Operations

Array Operations

X

W N P

y

A OO0 b

2-5

Arithmetic Operators + - * /\ ™'

2-6

Matrix Operations

Array Operations

Xty

X + 2

x Oy

X" 0y
X0y "

X[

x\y

2\X

x/y

x/2

XNy

ahrw © NG

Error

32

IN

5 6
10 12
12 15 18

(o4}

x=y

x" .0y
x.Oy"

Error

Error

A ob_DN

5/2

N

2/3

174
2/5
172

1/2

372

32
729

Arithmetic Operators + - */\ ™'

Matrix Operations Array Operations
XN2 Error X."N2 1
4
9
2”% Error 2.7 2
4
8
x+iby) " 1-—4i 2-5i 3 - 6i
x+iy).-" 1 + 4i 2 + 5i 3 + 6i
Algorithm The specific algorithm used for solving the simultaneous linear equations
denoted by X = A\B and X = B/A depends upon the structure of the coefficient
matrix A.

= |f Ais a triangular matrix, or a permutation of a triangular matrix, then X
can be computed quickly by a permuted backsubstitution algorithm. The
check for triangularity is done for full matrices by testing for zero elements
and for sparse matrices by accessing the sparse data structure. Most
nontriangular matrices are detected almost immediately, so this check
requires a negligible amount of time.

= If A is symmetric, or Hermitian, and has positive diagonal elements, then a
Cholesky factorization is attempted (see chol). If A is sparse, a symmetric
minimum degree preordering is applied (see symmmd and spparms). If A is
found to be positive definite, the Cholesky factorization attempt is successful
and requires less than half the time of a general factorization. Nonpositive
definite matrices are usually detected almost immediately, so this check also
requires little time. If successful, the Cholesky factorization is

A = R"[R

where R is upper triangular. The solution X is computed by solving two
triangular systems,

X = R\(R"\B)

= If Alis square, but not a permutation of a triangular matrix, or is not Hermitian with pos-
itive elements, or the Cholesky factorization fails, then a general triangular factorization
is computed by Gaussian elimination with partial pivoting §sgelf A is sparse, a non-

2-7

Arithmetic Operators + - * /\ ™'

symmetric minimum degree preordering is applied ¢edemd andspparms). This re-
sults in

A= LU
where L is a permutation of a lower triangular matrix and U is an upper

triangular matrix. Then X is computed by solving two permuted triangular
systems.

X = U\(L\B)

= If Ais not square and is full, then Householder reflections are used to compute an orthog-
onal-triangular factorization.

AP = QIR

where P is a permutation, Q is orthogonal and R is upper triangular (see gr).
The least squares solution X is computed with

X = PO(R\(Q"B)
= If A'is not square and is sparse, then the augmented matrix is formed by:

S = [cOI A; A" 0]

The default for the residual scaling factocis= max(max(abs(A)))/1000 (see
spparms). The least squares solutigrand the residu&# = B-A[X are computed by

S O[R/c; X] = [B; 0]

with minimum degree preordering and sparse Gaussian elimination with
numerical pivoting.

The various matrix factorizations are computed by MATLAB implementations
of the algorithms employed by LINPACK routines ZGECO, ZGEFA and ZGESL for
square matrices and ZQRDC and ZQRSL for rectangular matrices. See the
LINPACK Users’ Guide for details.
Diagnostics From matrix division, if a square A is singular:
Matrix is singular to working precision.
From element-wise division, if the divisor has zero elements:

Divide by zero.

2-8

Arithmetic Operators + - */\ ™'

See Also

References

On machines without IEEE arithmetic, like the VAX, the above two operations
generate the error messages shown. On machines with IEEE arithmetic, only
warning messages are generated. The matrix division returns a matrix with
each element set to Inf; the element-wise division produces NaNs or Infs where
appropriate.

If the inverse was found, but is not reliable:

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = Xxx

From matrix division, if a nonsquare A is rank deficient:

Warning: Rank deficient, rank = xxx tol = xxx
det, inv, lu, orth, permute, ipermute, qr, rref

[1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.

2-9

Relational Operators < > <= >= == ~=

Purpose

Syntax

Description

Examples

2-10

Relational operations

A<B
A>B
A<=B
A>=B
A==8B
A~=B8B

The relational operators are <, <, >, 2, ==, and ~=. Relational operators perform
element-by-element comparisons between two arrays. They return an array of
the same size, with elements set to logical true (1) where the relation is true,
and elements set to logical false (0) where it is not.

The operators <, <, >, and = use only the real part of their operands for the
comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors of
dissimilar length to be compared.

If one of the operands is a scalar and the other a matrix, the scalar expands to
the size of the matrix. For example, the two pairs of statements:

X=5; X>=[123;456; 78 10]
X = 5nes(3,3); X >= [1 2 3; 45 6; 7 8 10]

produce the same result:

ans =
1 1 1
1 1 0
0 0 0

Relational Operators < > <= >= == ~=

See Also all, any, find, strcmp

The logical operators &, |, ~

2-11

Logical Operators & | ~

Purpose Logical operations
Syntax A&B
Al B
~A
Description The symbols &, |, and ~ are the logical operators AND, OR, and NOT. They work

element-wise on arrays, with 0 representing logical false (F), and anything
nonzero representing logical true (T). The & operator does a logical AND, the]
operator does a logical or, and ~A complements the elements of A. The function
xor (A, B) implements the exclusive OR operation. Truth tables for these
operators and functions follow.

Inputs and or xor NOT
A B A&B AlB xor(A,B) ~A
0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

The precedence for the logical operators with respect to each other is:

1 not has the highest precedence.
2 and and or have equal precedence, and are evaluated from left to right.

Remarks The logical operators have M-file function equivalents, as shown:
and A&B and(A,B)
or AlB or(A,B)
not ~A not(A)

Precedence of & and |

MATLADB’s left to right execution precedence causes a]bé&c to be equivalent to
(a]b)&c. However, in most programming languages, a|b&c is equivalent to

2-12

Logical Operators & | ~

Examples

See Also

a] (b&c), that is, & takes precedence over |. To ensure compatibility with
future versions of MATLAB, you should use parentheses to explicity specify the
intended precedence of statements containing combinations of & and |.

Here are two examples that illustrate the precedence of the logical operators to
each other:

1]1]0&0=0

0&0]1=1
all, any, find, logical, xor

The relational operators: <, <=, >, >=, ==, ~=1

3

2-13

Special Characters[] () {}="....,; %!

Purpose Special characters
Syntax L1CO48=". ... 5:%!
Description

[1 Brackets are used to form vectors and matrices. [6.9 9.64 sqrt(-1)]
is a vector with three elements separated by blanks. [6.9, 9.64, i]
is the same thing. [1+j 2—j 3] and [1 +j 2 —j 3] are not the same.
The first has three elements, the second has five.

[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends the

first row.

Vectors and matrices can be used inside [] brackets. [A B;C] is
allowed if the number of rows of A equals the number of rows of B and
the number of columns of A plus the number of columns of B equals the
number of columns of C. This rule generalizes in a hopefully obvious
way to allow fairly complicated constructions.

A = [] stores an empty matrix in A. A(m,:) = [] deletes row m of A.
A(:,n) = [] deletes column nof A. A(n) = [] reshapes A into a
column vector and deletes the third element.

[A1,A2,A3...] = function assigns function output to multiple

variables.
For the use of [and] on the left of an “="
statements, see lu, eig, svd, and so on.

{ } Curly braces are used in cell array assignment statements. For

example.,

A(2,1) = {[1 2 3; 4 5 6]}, 0r A{2,2} = ("str"). See help paren

for more information about { }.

2-14

in multiple assignment

Special Characters[] () {}="....,; %!

Parentheses are used to indicate precedence in arithmetic expressions
in the usual way. They are used to enclose arguments of functions in
the usual way. They are also used to enclose subscripts of vectors and
matrices in a manner somewhat more general than usual. If X and vV
are vectors, then X(V) is [X(V(1)), X(V(2)), --., X(V(n))]. The
components of V must be integers to be used as subscripts. An error
occurs if any such subscript is less than 1 or greater than the size of X.
Some examples are

« X(3) is the third element of X.
< X([1 2 3]) is the first three elements of X.
See help paren for more information about ().

If X has n components, X(n:—1:1) reverses them. The same indirect
subscripting works in matrices. If V has m components and W has n
components, then A(V,W) is the m-by-n matrix formed from the
elements of A whose subscripts are the elements of V and W. For
example, A([1,51,:) = A([5,11,:) interchanges rows 1 and 5 of A.
Used in assignment statements. B = A stores the elements of A in B.
== is the relational equals operator. See the Relational Operators
page.

Matrix transpose. X" is the complex conjugate transpose of X. X. " is
the nonconjugate transpose.

Quotation mark. "any text" is a vector whose components are the
ASCII codes for the characters. A quotation mark within the text is
indicated by two quotation marks.

Decimal point. 3147100, 3.14 and .314el are all the same.
Element-by-element operations. These are obtained using .00, .», ./,
or _\. See the Arithmetic Operators page.

Field access. A. (Field) and A(i) .field, when A is a structure, access
the contents of field.

Parent directory. See cd.

Continuation. Three or more points at the end of a line indicate
continuation.

2-15

Special Characters[] () {}="....,; %!

Remarks

See Also

2-16

%

Comma. Used to separate matrix subscripts and function arguments.
Used to separate statements in multistatement lines. For
multi-statement lines, the comma can be replaced by a semicolon to
suppress printing.

Semicolon. Used inside brackets to end rows. Used after an expression
or statement to suppress printing or to separate statements.

Percent. The percent symbol denotes a comment; it indicates a logical
end of line. Any following text is ignored. MATLAB displays the first
contiguous comment lines in a M-file in response to a help command.

Exclamation point. Indicates that the rest of the input line is issued as
a command to the operating system.

Some uses of special characters have M-file function equivalents, as shown:

Horizontal concatenation [A,B,C...] horzcat(A,B,C...)

Vertical concatenation [A;B;C...] vertcat(A,B,C...)

Subscript reference ACi,j.k..J) subsref(A,S). See help
subsref.

Subscript assignment A(i,J.K...)= B subsasgn(A,S,B). See help
subsasgn.

The arithmetic operators +, —, *, /, \, ™, '

The relational operators: <, <=, >, >=, ==, ~=

The logical operators &, |, ~

Colon

Purpose Create vectors, array subscripting, and for loop iterations

Description The colon is one of the most useful operators in MATLAB. It can create vectors,
subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced vectors:

j:k isthesameas [j,j+1,--., K]

J:k isempty if j > k

jrizk isthesame as [j,j+i,j+2i, ...,K]

joizk isemptyifi>0andj>korifi<0Oandj<k

where i,j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick out selected
rows, columns, and elements of vectors, matrices, and higher-dimensional

arrays:

AC:,1) is the j-th column of A

A(i,:) is the i-th row of A

AC,) is the equivalent two-dimensional array. For matrices this is
the same as A.

AQ:k) isAG). AGHD), ..., A

AC L.k isAC(:,.1), ACG,LJ+D),--.,AC LK)

AC, LK) is the kth page of three-dimensional array A.

A(l,].k, D) is a vector in four-dimensional array A. The vector includes
A(ILJ.k,1), A(i,],k,2), ACi,j,k,3), and so on.

AC) is all the elements of A, regarded as a single column. On the
left side of an assignment statement, A(:) fills A, preserving
its shape from before. In this case, the right side must contain
the same number of elements as A.

2-17

Colon :

Examples Using the colon with integers,
D =1:4
results in

D =
1 2 3 4

Using two colons to create a vector with arbitrary real increments between the
elements,

E =0:.1:.5
results in

E =
0 0.1000 0.2000 0.3000 0.4000 0.5000

The command
A(:,:,2) = pascal(3)
generates a three-dimensional array whose first page is all zeros.

A(:,:,D) =

0 0 0
0 0 0
0 0 0
A(:,:,2) =
1 1 1
1 2 3
1 3 6
See Also for, linspace, logspace, reshape

2-18

abs

Purpose
Syntax

Description

Examples

See Also

Absolute value and complex magnitude
Y = abs(X)

abs(X) returns the absolute value, | X|, for each element of X.
If X is complex, abs(X) returns the complex modulus (magnitude):
abs(X) = sqrt(real(X) -2 + imag(Xx)-"2)

abs(-5)

=5
abs(3+41) =

5

angle, sign, unwrap

2-19

acos, acosh

Purpose Inverse cosine and inverse hyperbolic cosine
Syntax Y = acos(X)
Y = acosh(X)
Description The acos and acosh functions operate element-wise on arrays. The functions’

domains and ranges include complex values. All angles are in radians.

Y = acos(X) returns the inverse cosine (arccosine) for each element of X. For
real elements of X in the domain [-1, 1], acos(X) is real and in the range [0, 11] .
For real elements of X outside the domain [-1, 1], acos(X) is complex.

Y = acosh(X) returns the inverse hyperbolic cosine for each element of X.

Examples Graph the inverse cosine function over the domain -1 < x <1, and the inverse
hyperbolic cosine function over the domain 1 < x <TL.
X = =1:.05:1; plot(x,acos(x))
X = 1:pi/40:pi; plot(x,acosh(x))

35 T T T T T T T T T 2

y=acosh(x)

=)

L L L L L L L L L L L L
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1 15 2 25 3 a3

x ol

NI
|

Algorithm cos1(z) = i |og[z +i(1-22)
1
cosh-1(z) = |og[z +(z 2—1)2}

See Also cos, cosh

2-20

acot, acoth

Purpose Inverse cotangent and inverse hyperbolic cotangent
Syntax Y = acot(X)
Y = acoth(X)
Description The acot and acoth functions operate element-wise on arrays. The functions’

domains and ranges include complex values. All angles are in radians.

Y

acot(X) returns the inverse cotangent (arccotangent) for each element of X.

Y = acoth(X) returns the inverse hyperbolic cotangent for each element of X.

Examples Graph the inverse cotangent over the domains —-2t< x <0 and 0 <x < 2T, and
the inverse hyperbolic cotangent over the domains —-30<x<-1 and
1<x<30.

x1 = =2[pi:pi/30:-0.1; x2 = 0.1:pi/30:2[pi;
plot(x1l,acot(x1l),x2,acot(x2))

x1 = -30:0.1:-1.1; x2 =1.1:0.1:30;
plot(x1l,acoth(x1),x2,acoth(x2))

ity T T T T T T T 2

0.51

-acot(x)

Y-
=)
y=acoth(x)
o

-05

0
X1 %2 x1.x2

Algorithm cot-1(2) = tan_l%m

O
“1(,) = 0
coth™(z) = tanh 50

2-21

acot, acoth

See Also cot, coth

2-22

acsc, acsch

Purpose

Syntax

Description

Examples

Algorithm

y=acsc(x)

-0.5

Inverse cosecant and inverse hyperbolic cosecant

Y
Y

acsc(X)
acsch(X)

The acsc and acsch functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = acsc(X) returns the inverse cosecant (arccosecant) for each element of X.

Y = acsch(X) returns the inverse hyperbolic cosecant for each element of X.

Graph the inverse cosecant over the domains -10<x<-1 and 1 <x<10, and
the inverse hyperbolic cosecant over the domains -20<x<-1 and 1<x<20.

x1 = -10:0.01:-1.01; x2 = 1.01:0.01:10;
plot(x1l,acsc(x1l),x2,acsc(x2))

X1l = —20:0.01:-1; x2 = 1:0.01:20;
plot(x1,acsch(xl),x2,acsch(x2))

[

15

o
=)

=3
)

(3
IS

0.5

o
N

y=acsch(x)
s o
> N o
T

S
o

S
®

15 I I I I I I I I I 1 I I I I I I I
-10 -8 -6 -4 -2 0 2 4 6 8 10 - -15 -10 -5 0 5 10 15 20

N
(=)

Xx1,x2 x1,x2

_ I Iy
csc1(z) = sin 1%D

() = sinh-1E0
csch™(z) = sinh 00

2-23

acsc, acsch

See Also csc, csch

2-24

addpath

Purpose

Syntax

Description

Examples

See Also

Add directories to MATLAB's search path

addpath("directory*®)
addpath("dirl", "dir2","*dir3",...)
addpath(...,"—flag")

addpath("directory™) prepends the specified directory to MATLAB's current
search path.

addpath("dirl®, dir2","dir3",...) prepends all the specified directories
to the path.

addpath(...,"—Fflag") either prepends or appends the specified directories
to the path depending the value of flag:

0 or begin Prepend specified directories
lorend Append specified directories
path

MATLABPATH

c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

addpath("c:\matlab\myfiles")

path
MATLABPATH
c:\matlab\myfiles
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

path, rmpath

2-25

airy

Purpose

Syntax

Definition

Description

2-26

Airy functions

W = airy(2)
W = airy(k,2)
[W,ierr] = airy(k,2)

The Airy functions form a pair of linearly independent solutions to:

2
dW_zw =0
dz?2

The relationship between the Airy and modified Bessel functions is:

Ai(Z) = E[A/Z/ﬂ Kq,3(Q)
Bi(Z) = vZ/3 [1_4,5(0) + 11,5(0)]

where,

_2,3/2
¢=3

W = airy(2) returns the Airy function, Ai(z), for each element of the complex
array Z.

W = airy(k,Z2) returns different results depending on the value of k:

Kk Returns

0 The same result as airy(2).

1 The derivative, Ai'(Z).

2 The Airy function of the second kind, Bi(Z).
3 The derivative, Bi'(Z) .

airy

[w,ierr] = airy(k,Z2) also returns an array of error flags.

ierr = 1 Illegal arguments.
ierr = 2 Overflow. Return Inf.
ierr = 3 Some loss of accuracy in argument reduction.
ierr = 4 Unacceptable loss of accuracy, Z too large.
ierr = 5 No convergence. Return NaN.
See Also besseli, besselj, besselk, bessely
References [1] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex

Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-27

all

2-28

Purpose

Syntax

Description

Examples

Test to determine if all elements are nonzero

B = all(A)
B = all(A,dim)
B = all(A) tests whether all the elements along various dimensions of an

array are nonzero or logical true (1).

If Ais avector, al 1 (A) returns logical true (1) if all of the elements are nonzero,
and returns logical false (0) if one or more elements are zero.

If A is a matrix, al 1 (A) treats the columns of A as vectors, returning a row
vector of 1s and 0s.

If A is a multidimensional array, al 1 (A) treats the values along the first
non-singleton dimension as vectors, returning a logical condition for each
vector.

B = all(A,dim) tests along the dimension of A specified by scalar dim.

R BRI

o]

A all(a,) all(A2)

Given,

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0O O 1 1 1 1 0

The all function reduces such a vector of logical conditions to a single
condition. In this case, al 1 (B) yields 0.

This makes all particularly useful in if statements,

if all(A < 0.5)
do something
end

all

where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the al I function twice to a matrix, as in al1(al 1 (A)), always reduces
it to a scalar condition.

all(all(eye(d)))
ans =
0
See Also any
The logical operators &, |, ~
The relational operators <, <=, >, >=, ==, ~=
The colon operator :
Other functions that collapse an array’s dimensions include:

max, mean, median, min, prod, std, sum, trapz

2-29

angle

2-30

Purpose
Syntax

Description

Examples

Algorithm

See Also

Phase angle
P = angle(2)
P =

complex array Z. The angles lie between +11.

For complex z, the magnitude and phase angle are given by

R = abs(2) % magnitude
theta = angle(Z) % phase angle

and the statement

Z = R.[exp(iltheta)

converts back to the original complex z.

7 =

1.0000 — 1.0000§ 2.0000 + 1.0000i
1.0000 + 2.0000F 2.0000 — 2.0000#
1.0000 — 3.0000i 2.0000 + 3.0000i
1.0000 + 4.0000i 2.0000 — 4.0000i
P = angle(®)

P =

—0.7854 0.4636 —-0.3218

3.0000 — 1.0000i
3.0000 + 2.0000i
3.0000 — 3.0000i
3.0000 + 4.0000i

0.2450

1.1071 -0.7854 0.5880 —-0.4636

—1.2490 0.9828 -0.7854

0.6435

1.3258 -1.1071 0.9273 -0.7854

angle can be expressed as:

angle(z) = imag(log(z)) = atan2(imag(z),real(z2))

abs, unwrap

4.0000
4.0000
4.0000
4.0000

angle(2) returns the phase angles, in radians, for each element of

1.0000i
2.0000i
3.0000i
4_0000i

ans

Purpose The most recent answer
Syntax ans
Description The ans variable is created automatically when no output argument is
specified.
Examples The statement
2+2

is the same as

ans = 2+2

2-31

any

Purpose

Syntax

Description

Examples

2-32

Test for any nonzeros

B = any(A)
B = any(A,dim)
B = any(A) tests whether any of the elements along various dimensions of an

array are nonzero or logical true (1).

If A is a vector, any(A) returns logical true (1) if any of the elements of A are
nonzero, and returns logical false (0) if all the elements are zero.

If A is a matrix, any(A) treats the columns of A as vectors, returning a row
vector of 1s and 0s.

If A is a multidimensional array, any(A) treats the values along the first
non-singleton dimension as vectors, returning a logical condition for each
vector.

B = any(A,dim) tests along the dimension of A specified by scalar dim.

AL (To[1]

0/0/0

o]

A any(A,1) any(A,2)

Given,

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0O O 1 1 1 1 O

The any function reduces such a vector of logical conditions to a single
condition. In this case, any(B) yields 1.

This makes any particularly useful in if statements,

if any(A < 0.5)
do something
end

any

where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the any function twice to a matrix, as in any(any(A)), always reduces
it to a scalar condition.

any(any(eye(3)))
ans =
1
See Also all
The logical operators &,] ,~
The relational operators <, <=, >, >=, ==, ~=
The colon operator :
Other functions that collapse an array’s dimensions include:

max, mean, median, min, prod, std, sum, trapz

2-33

asec, asech

Purpose Inverse secant and inverse hyperbolic secant
Syntax Y = asec(X)
Y = asech(X)
Description The asec and asech functions operate element-wise on arrays. The functions’

domains and ranges include complex values. All angles are in radians.

Y = asec(X) returns the inverse secant (arcsecant) for each element of X.
Y = asech(X) returns the inverse hyperbolic secant for each element of X.
Examples Graph the inverse secant over the domains 1 <x<5 and -5<x<-1, and the

inverse hyperbolic secant over the domain 0 <x<1.

X1 = -5:0.01:-1; x2 = 1:0.01:5;
plot(x1l,asec(x1l),x2,asec(x2))
X = 0.01:0.001:1; plot(x,asech(x))

35

N
&

o o o
R o & e

o
N

y=acsch(x)
S o
= 0 o

S
o

.08

&Ho
A
b
&
N
o

Algorithm sec™!(z) = COS‘I%%

1(,) = Eiein
sech™(z) = cosh 050

See Also sec, sech

2-34

asin, asinh

Purpose Inverse sine and inverse hyperbolic sine
Syntax Y = asin(X)
Y = asinh(X)
Description The asin and asinh functions operate element-wise on arrays. The functions’

domains and ranges include complex values. All angles are in radians.

Y = asin(X) returns the inverse sine (arcsine) for each element of X. For real
elements of X in the domain [-1, 1], asin(X) isin the range [-TV/2,TV/2] . For
real elements of x outside the range [-1, 1], asin(X) is complex.

Y = asinh(X) returns the inverse hyperbolic sine for each element of X.
Examples Graph the inverse sine function over the domain -1 <x<1, and the inverse
hyperbolic sine function over the domain -5 < x<5.

X = =1:.01:1; plot(x,asin(x))
X = =5:.01:5; plot(x,asinh(x))

0.5

-asin(x)

y=asinh(x)
)

y:
. =3
]
T

e
o
T

N
T

K
S
o

E I I I I I I I I I I I I I I I I I I
-1 -08 06 -04 -02 0 0.2 0.4 0.6 0.8 1 -5 -4 -3 -2 -1 0 1 2 3 4 5
X X

]

NI

Algorithm sin1(z) = i Iog[iz +(1-22)
1

sinh1(z) = Iog[z +(z 2+1)1

See Also sin, sinh

2-35

assignin

Purpose
Syntax

Description

Remarks

Examples

2-36

Assign a value to a workspace variable
assignin(ws, "var- ,val)

assignin(ws, "var",val) assigns the value val to the variable var in the
workspace ws. var is created if it doesn’t exist. ws can have a value of "base” or
“cal ler" to denote the MATLAB base workspace or the workspace of the caller
function.

The assignin function is particularly useful for these tasks:

= Exporting data from a function to the MATLAB workspace

= Within a function, changing the value of a variable that is defined in the
workspace of the caller function (such as a variable in the function argument
list)

The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

This example creates a dialog box for the image display function, prompting a
user for an image name and a colormap name. The assignin function is used
to export the user—entered values to the MATLAB workspace variables imfile
and cmap.

prompt = {"Enter image name:","Enter colormap name:"};
title = "Image display - assignin example®;

lines = 1;

def = {"my_image”, "hsv"};

answer = inputdlg(prompt,title,lines,def);
assignin("base”, "imfile" ,answer{l});
assignin(“base”, "cmap” ,answer{2});

assignin

[Image display - assignin example E

Enter image name:

I my_image

Enter colormap name:
I hav

Cancel | Ok, |

See Also evalin

2-37

atan, atanh

Purpose Inverse tangent and inverse hyperbolic tangent
Syntax Y = atan(X)
Y = atanh(X)
Description The atan and atanh functions operate element-wise on arrays. The functions’

domains and ranges include complex values. All angles are in radians.

Y = atan(X) returns the inverse tangent (arctangent) for each element of X.

For real elements of X, atan(X) is in the range [-TV/2,T/2] .

Y = atanh(X) returns the inverse hyperbolic tangent for each element of X.

Examples Graph the inverse tangent function over the domain —20 < x <20, and the
inverse hyperbolic tangent function over the domain -1 <x<1.

X
X

—20:0.01:20; plot(x,atan(x))
—0.99:0.01:0.99; plot(x,atanh(x))

y=atan(x)
y=atanh(x)

. A7) = L ogdt20
Algorithm tan™(z) = s logr—g

1y =1 1+2zpg
tanh=(z) 2Iogﬂl_le

See Also atan2, tan, tanh

2-38

atan?2

Purpose
Syntax

Description

Examples

See Also

Four-quadrant inverse tangent

P atan2(Y,X)

P = atan2(Y,X) returns an array P the same size as X and Y containing the
element-by-element, four-quadrant inverse tangent (arctangent) of the real
parts of Y and X. Any imaginary parts are ignored.

Elements of P lie in the closed interval [—pi,pi], where pi is MATLAB's
floating- point representation of 1. The specific quadrant is determined by
sign(Y) and sign(X):

Ty

w2

-T2

This contrasts with the result of atan(Y/X), which is limited to the interval
[-Tv2, /2] , or the right side of this diagram.

Any complex number z = x+iy is converted to polar coordinates with

r = abs(2)
theta = atan2(imag(z),real(z))

To convert back to the original complex number:
z = r [exp(i Ctheta)

This is a common operation, so MATLAB provides a function, angle(z), that
simply computes atan2(imag(z) ,real (z)).

atan, atanh, tan, tanh

2-39

auread

Purpose

Syntax

Description

See Also

2-40

Read NeXT/SUN (.au) sound file

y = auread("aufile”)
[v,Fs,bits] = auread("aufile®)
[--.-1 = auread("aufile®,N)

-1 = auread(Caufile”,[N1,N2])
= auread("aufile”,"size")

[--
siz

Supports multi-channel data in the following formats:

< 8-bit mu-law

= 8-, 16-, and 32-bit linear

= floating-point

y = auread("aufile”) loads a sound file specified by the string aufile,

returning the sampled data iny. The .au extension is appended if no extension
is given. Amplitude values are in the range [-1,+1].

[y,Fs,bits] = auread("aufile") returns the sample rate (Fs) in Hertz and
the number of bits per sample (bits) used to encode the data in the file.

[---1 = auread("aufile”,N) returns only the first N samples from each
channel in the file.

[---1 = auread("aufile”,[N1 N2]) returns only samples N1 through N2
from each channel in the file.

siz = auread("aufile”, "size") returns the size of the audio data contained
in the file in place of the actual audio data, returning the vector siz =
[samples channels].

auwrite, wavread

auwrite

Purpose

Syntax

Description

See Also

Write NeXT/SUN (.au) sound file

auwrite(y, "aufile®)

auwrite(y,Fs, "aufile®)
auwrite(y,Fs,N, "aufile™)
auwrite(y,Fs,N, "method", "aufile")

auwr i te supports multi-channel data for 8-bit mu-law, and 8- and 16-bit linear
formats.

auwrite(y, "aufile™) writes a sound file specified by the string aufile. The
data should be arranged with one channel per column. Amplitude values
outside the range [-1,+1] are clipped prior to writing.

auwrite(y,Fs, "aufile") specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N, "aufile™) selects the number of bits in the encoder.
Allowable settingsare N = 8and N = 16.

auwrite(y,Fs,N, "method", "aufile") allows selection of the encoding
method, which can be either mu or 1inear. Note that mu-law files must be 8-bit.
By default, method = "mu-”.

auread, wavwrite

2-41

balance

Purpose

Syntax

Description

Remarks

2-42

Improve accuracy of computed eigenvalues

[D,B] = balance(A)
B = balance(A)

[D,B] = balance(A) returns a diagonal matrix D whose elements are integer
powers of two, and a balanced matrix B so that B = D\A[D. If A is symmetric,
then B == A and D is the identity matrix.

B = balance(A) returns just the balanced matrix B.

Nonsymmetric matrices can have poorly conditioned eigenvalues. Small
perturbations in the matrix, such as roundoff errors, can lead to large
perturbations in the eigenvalues. The quantity which relates the size of the
matrix perturbation to the size of the eigenvalue perturbation is the condition
number of the eigenvector matrix,

cond(V) = norm(V)Chorm(inv(V))
where
[V.D] = eig(A)
(The condition number of A itself is irrelevant to the eigenvalue problem.)

Balancing is an attempt to concentrate any ill conditioning of the eigenvector
matrix into a diagonal scaling. Balancing usually cannot turn a nonsymmetric
matrix into a symmetric matrix; it only attempts to make the norm of each row
equal to the norm of the corresponding column. Furthermore, the diagonal
scale factors are limited to powers of two so they do not introduce any roundoff
error.

MATLAB's eigenvalue function, eig(A), automatically balances A before
computing its eigenvalues. Turn off the balancing with eig(A, "nobalance").

balance

Examples This example shows the basic idea. The matrix A has large elements in the
upper right and small elements in the lower left. It is far from being symmetric.

A =1 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 O

0.0001 0.0100 1.0000

0.0000 0.0001 0.0100

0.0000 0.0000 0.0001

Balancing produces a diagonal D matrix with elements that are powers of two
and a balanced matrix B that is closer to symmetric than A.

[D,B] = balance(A)

D =
1.0e+03 O
2.0480 0 0
0 0.0320 0
0 0 0.0003
B =

1.0000 1.5625 1.2207
0.6400 1.0000 0.7812
0.8192 1.2800 1.0000

To see the effect on eigenvectors, first compute the eigenvectors of A.

[V.E]l = eig(A); V
V =
—1.0000 0.9999 —-1.0000
0.0050 0.0100 0.0034
0.0000 0.0001 0.0001

Note that all three vectors have the first component the largest. This indicates
V is badly conditioned; in fact cond(V) is 1.7484e+05. Next, look at the
eigenvectors of B.

[V.E] = eig(B); V

V =

-0.8873 0.6933 0.8919
0.2839 0.4437 -0.3264
0.3634 0.5679 -0.3129

2-43

balance

Algorithm

Limitations

Diagnostics

See Also

References

2-44

Now the eigenvectors are well behaved and cond(V) is 31.9814. The ill
conditioning is concentrated in the scaling matrix; cond(D) is 8192.

This example is small and not really badly scaled, so the computed eigenvalues
of A and B agree within roundoff error; balancing has little effect on the
computed results.

balance is built into the MATLAB interpreter. It uses the algorithm in [1]
originally published in Algol, but popularized by the Fortran routines BALANC
and BALBAK from EISPACK.

Successive similarity transformations via diagonal matrices are applied to A to
produce B. The transformations are accumulated in the transformation matrix
D

The eig function automatically uses balancing to prepare its input matrix.
Balancing can destroy the properties of certain matrices; use it with some care.
If a matrix contains small elements that are due to roundoff error, balancing

may scale them up to make them as significant as the other elements of the
original matrix.

If A is not a square matrix:

Matrix must be square.
condeig, eig, hess, schur
[1] Parlett, B. N. and C. Reinsch, “Balancing a Matrix for Calculation of

Eigenvalues and Eigenvectors,” Handbook for Auto. Comp., Vol. I, Linear
Algebra, 1971,pp. 315-326.

base2dec

Purpose
Syntax

Description

Examples

See Also

Base to decimal number conversion

o
1l

base2dec("strn” ,base)

d = base2dec("strn",base) converts the string number strn of the specified
base into its decimal (base 10) equivalent. base must be an integer between 2
and 36. If "strn" is a character array, each row is interpreted as a string in the
specified base.

The expression base2dec("212",3) converts 2125 to decimal, returning 23.

dec2base

2-45

besselh

Purpose

Syntax

Definitions

Description

2-46

Bessel functions of the third kind (Hankel functions)

besselh(nu,K,2)
besselh(nu,z)
besselh(nu,1,Z,1)
besselh(nu,2,Z,1)
[H,ierr] = besselh(...)

I T T T
I n

The differential equation

2
2dy dy 22 . _
z?+z—dz+(z vi)y =0

where v is a nonnegative constant, is called Bessel’s equation, and its solutions
are known as Bessel functions. J, (z) and J_,,(z) form a fundamental set of
solutions of Bessel's equation for noninteger v. Y, (z)is a second solution of
Bessel's equation—linearly independent of J,,(z)— defined by:

_ J,(z)cos(vm) —J_,(2)

Yy(2) sin(vT)

The relationship between the Hankel and Bessel functions is:

HMY2) = 3,2+ i Y,(2)

H = besselh(nu,K,2) for K =1 or 2 computes the Hankel functions

Hf,l)(z) or H\(,z)(z) for each element of the complex array z. If nu and Z are
arrays of the same size, the result is also that size. If either input is a scalar, it
is expanded to the other input's size. If one input is a row vector and the other
is a column vector, the result is a two-dimensional table of function values.

H = besselh(nu,Z) usesK =1.
H = besselh(nu,1,Z,1) scales H"(2) by exp(-ilZ).
H = besselh(nu,2,Z,1) scales H!?)(z) by exp(+ilZ).

besselh

[H,ierr] = besselh(...) also returns an array of error flags:

ierr
ierr
ierr
ierr

ierr

1
2
3
4
5

Illegal arguments.

Overflow. Return Inf.

Some loss of accuracy in argument reduction.
Unacceptable loss of accuracy, Z or nu too large.

No convergence. Return NaN.

2-47

besseli, besselk

Purpose

Syntax

Definitions

Description

2-48

Modified Bessel functions

I = besseli(nu,2) Modified Bessel function of the 1st kind
K = besselk(nu,Z) Modified Bessel function of the 2nd kind
I = besseli(nu,Z,1)
K = besselk(nu,Z,1)

[1,ierr] = besseli(...)
[K,ierr] = besselk(...)

The differential equation

2
223?32/ +z%3—2/—(22+v2)y =0

where v is a real constant, is called the modified Bessel's equation, and its
solutions are known as modified Bessel functions.

1,(z) and I_,(z) form a fundamental set of solutions of the modified Bessel’s
equation for noninteger v. K, (z) is a second solution, independent of 1,(z).

I,(z)and K,,(z) are defined by:

2 k
z 0
L@=538 § o

— . whereTl(a) is the gamma function
K=0 KiT(v+k+1) (@) g

LN I_\)(Z) - I\)(Z)

Kv(2) = B0 —sinem

I = besseli(nu,Z) computes modified Bessel functions of the first kind,
I,(z), foreachelementofthe array Z. The order nu need not be an integer, but
must be real. The argument zZ can be complex. The result is real where Z is
positive.

If nuand zZ are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

besseli, besselk

Examples

K = besselk(nu,Z) computes modified Bessel functions of the second kind,
K, (z), for each element of the complex array Z.

besseli(nu,Z,1) computes besseli(nu,2).lexp(-real (2)).

K

besselk(nu,Z,1) computes besselk(nu,Z) .lexp(real (2)).

[1,ierr] = besseli(...) and [K,ierr] = besselk(...) also return an
array of error flags.

ierr = 1 Illegal arguments.

ierr = 2 Overflow. Return Inf.

ierr = 3 Some loss of accuracy in argument reduction.
ierr = 4 Unacceptable loss of accuracy, Z or nu too large.
ierr = 5 No convergence. Return NaN.

format long
z = (0:0.2:1D)";

besseli(1,2z)

ans =
0
0.10050083402813
0.20402675573357
0.31370402560492
0.43286480262064
0.56515910399249

besselk(1,z)

ans =
Inf
4.77597254322047
2.18435442473269
1.30283493976350
0.86178163447218
0.60190723019723

2-49

besseli, besselk

Algorithm

See Also

References

2-50

besseli(3:9,(0:.2,10)",1) generates the entire table on page 423 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

besselk(3:9,(0:.2:10)",1) generates part of the table on page 424 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

The besseli and besselk functions use a Fortran MEX-file to call a library
developed by D. E. Amos [3] [4].

airy, besselj, bessely

[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

besselj, bessely

Purpose

Syntax

Definition

Description

Bessel functions

J = besselj(nu,2) Bessel function of the 1st kind
Y = bessely(nu,Z) Bessel function of the 2nd kind
J = besselj(nu,Z,1)
Y = bessely(nu,Z,1)

[J.,ierr] = besselj(nu,2)
[Y,ierr] = bessely(nu,Zz2)

The differential equation

2
2dy dy , (,2_v2)y =
zd?+zdz+(z vi)y =0

where v is a real constant, is called Bessel's equation, and its solutions are
known as Bessel functions.

J,(z) and J_,(z) form a fundamental set of solutions of Bessel's equation for
noninteger v. J, (z) is defined by:

2 k
oY 0z g
O
where I'(a) is the gamma function

Y, (z)is a second solution of Bessel’s equation that is linearly independent of
J,(z) and defined by:

_ Jy(z)cos(vm) —JI_(2)
Yo(2) = sin(v)

J = besselj(nu,Z) computes Bessel functions of the firstkind, J,,(z), for each
element of the complex array Z. The order nu need not be an integer, but must
be real. The argument Z can be complex. The result is real where Z is positive.

2-51

besselj, bessely

Remarks

2-52

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

Y = bessely(nu,Z) computes Bessel functions of the second kind, Y, (z), for
real, nonnegative order nu and argument Z.

J = besselj(nu,Z,1) computes besselj(nu,2).lexp(—imag(2)).

Y

bessely(nu,Z,1) computes bessely(nu,Z) .exp(-imag(2)).

[J.ierr] = besselj(nu,2) and [Y,ierr] = bessely(nu,Z) also return an
array of error flags.

jierr = 1 lllegal arguments.

ierr = 2 Overflow. Return Inf.

ierr = 3 Some loss of accuracy in argument reduction.
ierr = 4 Unacceptable loss of accuracy, Z or nu too large.
ierr = 5 No convergence. Return NaN.

The Bessel functions are related to the Hankel functions, also called Bessel
functions of the third kind:

HMY2) = 3,2+ i Y, (2)
HP(2) = 3,(2)- i Y, (2)

where J,,(z) is besselj, and Y (z) is bessely. The Hankel functions also form
a fundamental set of solutions to Bessel's equation (see besselh).

besselj, bessely

Examples

Algorithm

See Also

References

format long
z = (0:0.2:1)";

besselj(1,2)

ans =
0]
0.09950083263924
0.19602657795532
0.28670098806392
0.36884204609417
0.44005058574493

bessely(1,z)

ans =
-Inf
-3.32382498811185
-1.78087204427005
-1.26039134717739
-0.97814417668336
-0.78121282130029

besselj(3:9,(0:.2,10)") generates the entire table on page 398 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

bessely(3:9,(0:.2,10)") generates the entire table on page 399 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

The besselj and bessely functions use a Fortran MEX-file to call a library
developed by D. E. Amos [3] [4].

airy, besseli, besselk

[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

2-53

besselj, bessely

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SANDB85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-54

beta, betainc, betaln

Purpose

Syntax

Definition

Description

Beta functions

B = beta(z,W)
I = betainc(X,Z,W)
L = betaln(Z,W)

The beta function is:
1 r(z)r(w)
B = -1¢1 _ -1 = =7 \ J
(z,w) IOtZ (1-t)w dt Pz w)

where I'(z) is the gamma function. The incomplete beta function is:

I(z,w) = ﬁj’:tz—l(l—t)w—l dt

B = beta(zZ,W) computes the beta function for corresponding elements of the
complex arrays Z and W. The arrays must be the same size (or either can be
scalar).

I = betainc(X,Z,W) computes the incomplete beta function. The elements of
X must be in the closed interval [0,1].

L = betaln(Z,W) computes the natural logarithm of the beta function,
log(beta(z,W)), without computing beta(z,W). Since the beta function can
range over very large or very small values, its logarithm is sometimes more
useful.

2-55

beta, betainc, betaln

Examples

Algorithm

2-56

format rat
beta((0:10)",3)

ans =

1/0
173
1712
1/30
1/60
1/105
17168
1/252
1/360
17495
1/660

In this case, with integer arguments,

beta(n,3)
= (1) 1IRI/(n+2)!
= 2/(nO(n+1)0O(n+2))

is the ratio of fairly small integers and the rational format is able to recover the
exact result.

For x = 510, betaln(x,x) = —708.8616, which, on a computer with IEEE
arithmetic, is slightly less than log(realmin). Here beta(x,x) would
underflow (or be denormal).

beta(z,w) = exp(gammaln(z)+gammaln(w)—gammaln(z+w))
betaln(z,w) = gammaln(z)+gammaln(w)—gammaln(z+w)

bicg

Purpose

Syntax

Description

BiConjugate Gradients method

x = bicg(A,b)

bicg(A,b,tol)

bicg(A,b,tol ,maxit)

bicg(A,b,tol,maxit,M)

bicg(A,b,tol,maxit,M1,M2)

bicg(A,b,tol ,maxit,M1,M2,x0)

X = bicg(A,b,tol ,maxit,M1,M2,x0)

[x,flag] = bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = bicg(A,b,tol ,maxit,M1,M2,x0)
[x,flag,relres,iter] = bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = bicg(A,b,tol,maxit,M1,M2,x0)

x = bicg(A,b) attempts to solve the system of linear equations A*x = b for x.
The coefficient matrix A must be square and the column vector b must have
length n, where A is n-by-n. When A is not explicitly available as a matrix, you
can express A as an operator afun where afun(x) returns the matrix-vector
product A*x and afun(x, "transp™) returns A**x . This operator can be the
name of an M-file or an inline object. In this case n is taken to be the length of
the column vector b.

bicg will start iterating from an initial estimate that, by default, is an all zero
vector of length n. Iterates are produced until the method either converges,
fails, or has computed the maximum number of iterations. Convergence is
achieved when an iterate x has relative residual norm(b—-A*x)/norm(b) less
than or equal to the tolerance of the method. The default tolerance is 1e—6. The
default maximum number of iterations is the minimum of n and 20. No
preconditioning is used.

bicg(A,b,tol) specifies the tolerance of the method, tol.

bicg(A,b,tol,maxit) additionally specifies the maximum number of
iterations, maxit.

bicg(A,b,tol ,maxit,M) and bicg(A,b,tol ,maxit,M1,M2) use left
preconditioner M or M = M1*M2 and effectively solve the system

inv(M)*A*x = inv(M)*b for x. You can replace the matrix M with a function
mfun such that mfun(x) returns either M\x or M*\x, depending upon the last

2-57

bicg

2-58

argument. If M1 or M2 is given as the empty matrix ([1), it is considered to be
the identity matrix, equivalent to no preconditioning at all. Since systems of
equations of the form M*y = r are solved using backslash within bicg, itis

wise to factor preconditioners into their LU factors first. For example, replace
bicg(A,b,tol ,maxit,M) with:

[M1,M2] = Tu(M);
bicg(A,b,tol ,maxit,M1,M2).

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial estimate x0. If x0 is given
as the empty matrix ([]), the default all zero vector is used.

x = bicg(A,b,tol,maxit,M1,M2,x0) returns asolution x. If bicg converged, a
message to that effect is displayed. If bicg failed to converge after the
maximum number of iterations or halted for any reason, a warning message is
printed displaying the relative residual norm(b—-A*x)/norm(b) and the
iteration number at which the method stopped or failed.

[x,flag] = bicg(A,b,tol,maxit,M1,M2,x0) returns a solution x and a flag
that describes the convergence of bicg.

Flag Convergence

0 bicg converged to the desired tolerance tol within maxit
iterations without failing for any reason.

1 bicg iterated maxit times but did not converge.

2 One of the systems of equations of the form M*y = r
involving the preconditioner was ill-conditioned and did not
return a useable result when solved by \ (backslash).

3 The method stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during bicg became

too small or too large to continue computing.

bicg

Examples

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = bicg(A,b,tol,maxit,M1,M2,x0) also returns the
relative residual norm(b—-A*x)/norm(b). If flag is 0, then relres < tol.

[x,flag,relres,iter] = bicg(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed. This always satisfies 0 < iter <
maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norms at each iteration, starting from
resvec(l) = norm(b—A*x0). If flag is 0, resvec is of length iter+1 and
resvec(end) < tol*norm(b).

Start with A = west0479 and make the true solution the vector of all ones.

load west0479
A = west0479
b = sum(A,2)

We could accurately solve A*x = b using backslash since A is not so large.

X =A\Db
norm(b—A*x) 7/ norm(b) =
6.8476e-18

Now try to solve A*x = b with bicg.

[x,Fflag,relres, iter,resvec] = bicg(A,b)
flag =

1

relres =

1

iter =

(0]

The value of flag indicates that bicg iterated the default 20 times without

converging. The value of iter shows that the method behaved so badly that the
initial all zero guess was better than all the subsequent iterates. The value of
relres supports this: relres = norm(b-A*x)/norm(b) = norm(b)/norm(b) =1.

2-59

bicg

The plot semi logy(0:20, resvec/norm(b), "—o") below confirms that the
unpreconditioned method oscillated rather wildly.

relative residual

.
0 2 4 6 8 10 12 14 16 18 20
iteration number

Try an incomplete LU factorization with a drop tolerance of 1e-5 for the
preconditioner.

[L1,U1] = luinc(A,le-5)
nnz(A) =
1887
nnz(L1)
5562
nnz(U1l)
4320

2-60

bicg

A warning message indicates a zero on the main diagonal of the upper
triangular Ul. Thus it is singular. When we try to use it as a preconditioner

[x,flag,relres,iter,resvec] = bicg(A,b,1le-6,20,L1,Ul)
flag =
2
relres
1

iter =
0
resvec =
7.0557e+005

the method fails in the very first iteration when it tries to solve a system of
equations involving the singular U1 with backslash. It is forced to return the
initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.

[L2,U2]
nnz(L2)
6231
nnz(U2)
4559

luinc(A,1le-6)

This time U2 is nonsingular and may be an appropriate preconditioner.

[x,flag,relres, iter,resvec] = bicg(A,b,1le-15,10,L2,U2)
flag =

0

relres =

2.8664e-16

iter =

8

and bicg converges to within the desired tolerance at iteration number 8.
Decreasing the value of the drop tolerance increases the fill-in of the
incomplete factors but also increases the accuracy of the approximation to the
original matrix. Thus, the preconditioned system becomes closer to
inv(U)*inv(L)*L*U*x = inv(U)*inv(L)*b, where L and U are the true LU
factors, and closer to being solved within a single iteration.

2-61

bicg

2-62

The next graph shows the progress of bicg using six different incomplete LU
factors as preconditioners. Each line in the graph is labeled with the drop
tolerance of the preconditioner used in bicg.

relative residual

iteration number

This does not give us any idea of the time involved in creating the incomplete
factors and then computing the solution. The following graph plots drop
tolerance of the incomplete LU factors against the time to compute the
preconditioner, the time to iterate once the preconditioner has been computed,
and their sum, the total time to solve the problem. The time to produce the
factors does not increase very quickly with the fill-in, but it does slow down the
average time for an iteration. Since fewer iterations are performed, the total

bicg

See Also

References

time to solve the problem decreases. west0479 is quite a small matrix, only
139-by-139, and preconditioned bicg still takes longer than backslash.

0.4 T T
6——=o precondition and iterate
o—-—© iterate
~0.35F |© © compute preconditioner
-
o
-
o
o 03 y Oy
5]
>
=4
3
< 0.25 q
[=
<
=
2
T 02 B
o
o
o
o
2015 1
[}
£
- 7/
7/
0.1r 7 q
7/
o) [¢) o o
0.05 ‘ ‘ ‘ ‘ ¢ Q @
10 10" 10 10" 10 107 10° 107 10°

drop tolerance of incomplete LU preconditioner

bicgstab, cgs, gmres, luinc, pcg, gmr

The arithmetic operator \

“Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods”, SIAM, Philadelphia, 1994.

2-63

bicgstab

Purpose

Syntax

Description

2-64

BiConjugate Gradients Stabilized method

X = bicgstab(A,b)

bicgstab(A,b,tol)

bicgstab(A,b,tol ,maxit)

bicgstab(A,b,tol ,maxit,M)

bicgstab(A,b,tol ,maxit,M1,M2)

bicgstab(A,b,tol ,maxit,M1,M2,x0)

X = bicgstab(A,b,tol ,maxit,M1,M2,x0)

[x,Flag] = bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,Fflag,relres] = bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,Fflag,relres,iter] = bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,Fflag,relres,iter,resvec] = bicgstab(A,b,tol,maxit,M1,M2,x0)

x = bicgstab(A,b) attempts to solve the system of linear equations A*x = b
for x. The coefficient matrix A must be square and the column vector b must
have length n, where A is n-by-n. When A is not explicitly available as a matrix,
you can express A as an operator afun that returns the matrix-vector product
A*x for afun(x). This operator can be the name of an M-file, a string expression,
or an inline object. In this case n is taken to be the length of the column vector b.

bicgstab will start iterating from an initial estimate that, by default, is an all
zero vector of length n. Iterates are produced until the method either converges,
fails, or has computed the maximum number of iterations. Convergence is
achieved when an iterate x has relative residual norm(b—A*x)/norm(b) less
than or equal to the tolerance of the method. The default tolerance is 1e-6. The
default maximum number of iterations is the minimum of n and 20. No
preconditioning is used.

bicgstab(A,b,tol) specifies the tolerance of the method, tol.

bicgstab(A,b,tol ,maxit) additionally specifies the maximum number of
iterations, maxit.

bicgstab(A,b,tol ,maxit,M) and bicgstab(A,b,tol ,maxit,M1,M2) use left
preconditioner M or M = M1*M2 and effectively solve the system

inv(M)*A*x = inv(M)*b for x. You can replace the matrix M with a function
mfun such that mfun(x) returns M\x. If M1 or M2 is given as the empty matrix
(1), itis considered to be the identity matrix, equivalent to no preconditioning

bicgstab

at all. Since systems of equations of the form M*y = r are solved using
backslash within bicgstab, it is wise to factor preconditioners into their LU
factors first. For example, replace bicgstab(A,b,tol ,maxit,M) with:

[M1,M2] = Tu(M);
bicgstab(A,b,tol ,maxit,M1,M2).

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial estimate x0. If x0 is
given as the empty matrix ([1), the default all zero vector is used.

x = bicgstab(A,b,tol,maxit,M1,M2,x0) returns a solution x. If bicgstab
converged, a message to that effect is displayed. If bicgstab failed to converge
after the maximum number of iterations or halted for any reason, a warning
message is printed displaying the relative residual

norm(b—-A*x)/norm(b) and the iteration number at which the method stopped
or failed.

[x,flag] = bicgstab(A,b,tol,maxit,M1,M2,x0) returns a solution x and a
flag that describes the convergence of bicgstab.

Flag Convergence

0 bicgstab converged to the desired tolerance tol within
maxit iterations without failing for any reason.

1 bicgstab iterated maxit times but did not converge.

2 One of the systems of equations of the form M*y = r

involving the preconditioner was ill-conditioned and did not
return a useable result when solved by \ (backslash).

3 The method stagnated. (Two consecutive iterates were the
same.)
4 One of the scalar quantities calculated during bicgstab

became too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

2-65

bicgstab

Example

2-66

[x,flag,relres] = bicgstab(A,b,tol,maxit,M1,M2,x0) also returns the
relative residual norm(b—-A*x)/norm(b). If flag is 0, then relres < tol.

[x,flag,relres,iter] = bicgstab(A,b,tol,maxit,M1,M2,x0) also returns
the iteration number at which x was computed. This always satisfies 0 < iter
< maxit. iter may be an integer or an integer + 0.5, since bicgstab may
converge halfway through an iteration.

[x,flag,relres, iter,resvec] = bicgstab(A,b,tol,maxit,M1,M2,x0)

also returns a vector of the residual norms at each iteration, starting from
resvec(1l) = norm(b-A*x0). If flagisO, resvec is of length 2*iter+1, whether
iter is an integer or not. In this case, resvec(end) < tol*norm(b).

load west0479
A = west0479
b = sum(A,2)
[x,Flag] = bicgstab(A,b)

flag is 1 since bicgstab will not converge to the default tolerance 1e—6 within
the default 20 iterations.

[L1,U1] = luinc(A,le-5)
[x1,flagl] = bicgstab(A,b,le-6,20,L1,U1)

flagl is 2 since the upper triangular Ul has a zero on its diagonal so bicgstab
fails in the first iteration when it tries to solve a system such as Ul*y = r with
backslash.

[L2,U2] = luinc(A,le-6)
[x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,le-15,10,L2,U2)

flag2 is 0 since bicgstab will converge to the tolerance of 2.9e-16 (the value
of relres2) at the sixth iteration (the value of iter2) when preconditioned by
the incomplete LU factorization with a drop tolerance of 1e-6.

resvec2(1) = norm(b) and resvec2(13) = norm(b-A*x2). You can follow the
progress of bicgstab by plotting the relative residuals at the halfway point and

bicgstab
|

end of each iteration starting from the intial estimate (iterate number 0) with
semilogy(0:0.5:iter2,resvec2/norm(b),"—0")

relative residual
=
o
T

10
-12|

10

10714 L

10716

iteration number

See Also bicg, cgs, gmres, luinc, pcg, qmr
The arithmetic operator \
References van der Vorst, H. A., “BI-CGSTAB: A fast and smoothly converging variant of

BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat.
Comput., March 1992,Vol. 13, No. 2, pp. 631-644.

“Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods”, SIAM, Philadelphia, 1994.

2-67

bin2dec

Purpose Binary to decimal number conversion
Syntax bin2dec(binarystr)
Description bin2dec(binarystr) interprets the binary string binarystr and returns the

equivalent decimal number.
Examples bin2dec("010111") returns 23.

See Also dec2bin

2-68

bitand

Purpose Bit-wise AND
Syntax C = bitand(A,B)
Description C = bitand(A,B) returns the bit-wise AND of two nonnegative integer

arguments A and B. To ensure the operands are integers, use the ceil, fix,
floor, and round functions.

Examples The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise AND on these numbers yields
01001, or 9.

C

bitand(13,27)

C =

See Also bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor

2-69

bitcmp

Purpose Complement bits
Syntax C = bitcmp(A,n)
Description C = bitcmp(A,n) returns the bit-wise complement of A as an n-bit

floating-point integer (flint).

Example With eight-bit arithmetic, the ones’ complement of 01100011 (99, decimal) is
10011100 (156, decimal).
C = bitcmp(99,8)
C =
156
See Also bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor

2-70

bitget

Purpose
Syntax

Description

Example

See Also

Get bit
C = bitget(A,bit)
C = bitget(A,bit) returns the value of the bit at position bit in A. Operand

A must be a nonnegative integer, and bit must be a number between 1 and the
number of bits in the floating-point integer (flint) representation of A (52 for
IEEE flints). To ensure the operand is an integer, use the ceil, fix, floor, and
round functions.

The dec2bin function converts decimal numbers to binary. However, you can
also use the bitget function to show the binary representation of a decimal
number. Just test successive bits from most to least significant:

disp(dec2bin(13))
1101
C = bitget(13,4:-1:1)

C =
1 1 0 1

bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor

2-71

bitmax

Purpose Maximum floating-point integer

Syntax bitmax

Description bitmax returns the maximum unsigned floating-point integer for your
computer. It is the value when all bits are set. On IEEE machines, this is the
value2™ - 1.

See Also bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

2-72

bitor

Purpose
Syntax

Description

Examples

See Also

Bit-wise OR
C = bitor(A,B)
C = bitor(A,B) returns the bit-wise OR of two nonnegative integer

arguments A and B. To ensure the operands are integers, use the ceil, fix,
floor, and round functions.

The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise OR on these numbers yields 11111,
or 31.

C

bitor(13,27)
C =
31

bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor

2-73

bitset

Purpose

Syntax

Description

Examples

See Also

2-74

Set bit
C = bitset(A,bit)
C = bitset(A,bit,v)

C = bitset(A,bit) setsbit position bitinAto 1 (on). Amust be a nonnegative
integer and bit must be a number between 1 and the number of bits in the
floating-point integer (flint) representation of A (52 for IEEE flints). To ensure
the operand is an integer, use the ceil, fix, floor, and round functions.

C = bitset(A,bit,v) setsthe bit at position bit to the value v, which must be
either O or 1.

Setting the fifth bit in the five-bit binary representation of the integer 9 (01001)
yields 11001, or 25.

c

bitset(9,5)
C =
25

bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor

bitshift

Purpose

Syntax

Description

Examples

See Also

Bit-wise shift

C = bitshift(A.k,n)
C = bitshift(A,k)

C = bitshift(A,k,n) returns the value of A shifted by k bits. If k>0, this is
same as a multiplication by 2K (left shift). If k<0, this is the same as a division
by 2K (right shift). An equivalent computation for this function is

C = Fix(A*27K).

If the shift causes C to overflow n bits, the overflowing bits are dropped. A must
contain nonnegative integers between 0 and BITMAX, which you can ensure by
using the ceil, fix, floor, and round functions.

C = bitshift(A,k) uses the default value of n = 53.

Shifting 1100 (12, decimal) to the left two bits yields 110000 (48, decimal).
C = bitshift(12,2)

C =
48

bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, Fix

2-75

bitxor

Purpose
Syntax

Description

Examples

See Also

2-76

Bit-wise XOR
C = bitxor(A,B)

C = bitxor(A,B) returns the bit-wise XOR of the two arguments A and B. Both
A and B must be integers. You can ensure this by using the ceil, fix, floor,
and round functions.

The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise XOR on these numbers yields 10110,
or 22.

C = bitxor(13,27)

C =
22

bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift

blanks

Purpose
Syntax
Description

Examples

See Also

A string of blanks
blanks(n)
blanks(n) is a string of n blanks.

blanks is useful with the display function. For example,
disp(["xxx" blanks(20) “yyy 1)
displays twenty blanks between the strings "xxx" and "yyy".

disp(blanks(n) ") moves the cursor down n lines.

clc, format, home

2-77

blkdiag

Purpose
Syntax

Description

See Also

2-78

Construct a block diagonal matrix from input arguments

out blkdiag(a,b,c,d,...)

out = blkdiag(a,b,c,d,...) where a, b, ... are matrices outputs a block
diagonal matrix of the form:

a0000
0b0OO
00cOO
ooodo
0000 ...

The input matrics do not have to be square, nor do they have to be of equal size.

blkdiag works not only for matrices, but for any MATLAB objects which
support horzcat and vertcat operations.

diag

break

Purpose
Syntax

Description

Examples

See Also

Terminate execution of a for loop or while loop

break

break terminates the execution of a for loop or while loop. In nested loops,
break exits from the innermost loop only.

The example below shows awhi le loop that reads the contents of the file fft.m
into a MATLAB character array. A break statement is used to exit the while
loop when the first empty line is encountered. The resulting character array
contains the M-file help for the fft program.

fid = fopen("fft.m*,"r");

s ="

while ~feof(fid)

ine = fgetl(fid);

if isempty(line), break, end
s = strvcat(s,line);

end

disp(s)

end, for, return, while

2-79

builtin

Purpose

Syntax

Description

Remarks

See Also

2-80

Execute builtin function from overloaded method

builtin(function,x1,...,xn)
[y1l,..,yn] = builtin(function,x1,...,xn)

builtin is used in methods that overload builtin functions to execute the
original builtin function. If function is a string containing the name of a
builtin function,then:

builtin(function,x1,...,xn) evaluates that function at the given
arguments.

[yl,.-,yn] = builtin(function,xl,...,xn) returns multiple output
arguments.

builtin(...) is the same as feval(...) except that it calls the original builtin
version of the function even if an overloaded one exists. (For this to work you

must never overload builtin.)

feval

calendar

Purpose

Syntax

Description

Examples

See Also

Calendar

c = calendar

c = calendar(d)

c = calendar(y,m)

calendar(...)

c = calendar returns a 6-by-7 matrix containing a calendar for the current
month. The calendar runs Sunday (first column) to Saturday.

c = calendar(d), where d is a serial date number or a date string, returns a
calendar for the specified month.

c = calendar(y,m), where y and m are integers, returns a calendar for the
specified month of the specified year.

calendar(...) displays the calendar on the screen.
The command:
calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

Oct 1957
S M Tu W Th F S
0 0 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 0 0
0 0 0 0 0 0 0
datenum

2-81

cart2pol

Purpose

Syntax

Description

Algorithm

2-82

Transform Cartesian coordinates to polar or cylindrical

[THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

[THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional Cartesian
coordinates stored in corresponding elements of arrays X, Y, and z, into
cylindrical coordinates. THETA is a counterclockwise angular displacement in
radians from the positive x-axis, RHO is the distance from the origin to a point
in the x-y plane, and Z is the height above the x-y plane. Arrays X, Y, and Z must
be the same size (or any can be scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into polar
coordinates.

The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to cylindrical
coordinates is:

Y z
A
P
P
Y
z
o
~(\
< rho
thet theta
» X
X
Two-Dimensional Mapping Three-Dimensional Mapping
theta = atan2(y,x) theta = atan2(y,x)
rho = sqrt(x.”"2 + y."2) rho = sqrt(x.”"2 + y."2)
z = Z

cart2pol

See Also cart2sph, pol2cart, sph2cart

2-83

cart2sph

Purpose
Syntax

Description

Algorithm

See Also

2-84

Transform Cartesian coordinates to spherical

[THETA,PHI,R] = cart2sph(X,Y,Z)

[THETA,PHI,R] = cart2sph(X,Y,Z) transforms Cartesian coordinates stored
in corresponding elements of arrays X, Y, and Z into spherical coordinates.
Azimuth THETA and elevation PHI are angular displacements in radians
measured from the positive x-axis, and the x-y plane, respectively; and R is the
distance from the origin to a point.

Arrays X, Y, and Z must be the same size.

The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is:

theta = atan2(y,Xx)
phi = atan2(z, sqrt(x."2 + y."2))
r = sqrt(X."2+y."2+z_."2)

cart2pol, pol2cart, sph2cart

case

Purpose Case switch
Description case is part of the switch statement syntax, which allows for conditional
execution.

A particular case consists of the case statement itself, followed by a case
expression, and one or more statements.

A case is executed only if its associated case expression (case_expr) is the first
to match the switch expression (switch_expr).

Examples The general form of the switch statement is:

switch switch_expr
case case_expr
statement, . . . ,statement
case {case_exprl,case_expr2,case_expr3,...}
statement, . . . ,statement

otherwise
statement, . ..,statement
end

See switch for more details.

See Also switch

2-85

cat

Purpose

Syntax

Description

Remarks

Examples

See Also

2-86

Concatenate arrays

C = cat(dim,A,B)

C = cat(dim,A1,A2,A3,Ad__.)

C = cat(dim,A,B) concatenates the arrays A and B along dim.

C = cat(dim,A1,A2,A3,A4, ..) concatenates all the input arrays (A1, A2, A3,

A4, and so on) along dim.
cat(2,A,B) is the same as [A,B] and cat(1,A,B) is the same as [A;B].
When used with comma separated list syntax, cat(dim,C{:}) or

cat(dim,C.Ffield) is a convenient way to concatenate a cell or structure array
containing numeric matrices into a single matrix.

Given,

A = B =
1 2 5
3 4 7 8

()]

concatenating along different dimensions produces:

1 2 5 6
3 4 1 2 5 6 7 8
5 6 3 4 7 8 1 2
7 8 3 4
C = cat(1,A,B) C = cat(2,A,B) C = cat(3,A,B)

The commands

A = magic(3); B = pascal(3);
C = cat(4,A,B);

produce a 3-by-3-by-1-by-2 array.

num2cell

The special character []

catch

Purpose

Description

See Also

Begin catch block

The general form of a try statement is:
try statement, ..., statement, catch statement, ..., statement end

Normally, only the statements between the try and catch are executed.
However, if an error occurs while executing any of the statements, the error is
captured into lasterr, and the statements between the catch and end are
executed. If an error occurs within the catch statements, execution stops
unless caught by another try...catch block. The error string produced by a
failed try block can be obtained with lasterr.

end, eval, evalin, try

2-87

cd

Purpose Change working directory
Syntax cd

cd directory

cd ..
Description cd prints out the current directory.

cd directory sets the current directory to directory. On UNIX platforms, the
character ~ is interpreted as the user’s root directory.

cd .. changes to the directory above the current one.

Examples UNIX: cd Zusr/local/matlab/toolbox/demos
DOS: cd C:MATLAB\DEMOS

VMS: cd DISK1:[MATLAB.DEMOS]

See Also dir, path, what

2-88

cdf2rdf

Purpose
Syntax

Description

Examples

Convert complex diagonal form to real block diagonal form
[V.D] = cdf2rdf(v,D)

If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing in
complex-conjugate pairs, cdf2rdf transforms the system so D is in real
diagonal form, with 2-by-2 real blocks along the diagonal replacing the complex
pairs originally there. The eigenvectors are transformed so that

X = VID/V
continues to hold. The individual columns of V are no longer eigenvectors, but

each pair of vectors associated with a 2-by-2 block in D spans the corresponding
invariant vectors.

The matrix
X =
1 2 3
0 4 5
0 -5 4

has a pair of complex eigenvalues.

[V.D] = eig(X)

V =
1.0000 0.4002 — 0.01911i 0.4002 + 0.0191i
0 0.6479 0.6479
0 0 + 0.64791 0 — 0.6479i
D =
1.0000 0 0
0 4.0000 + 5.00001 0
0 0 4.0000 — 5.0000i

2-89

cdf2rdf

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

V =
1.0000 0.4002 —-0.0191
0 0.6479 0
0] 0 0.6479
D =
1 0 0
0 4 5
0 -5 4
Algorithm The real diagonal form for the eigenvalues is obtained from the complex form

using a specially constructed similarity transformation.

See Also eig, rsf2csf

2-90

ceil

Purpose Round toward infinity
Syntax B = ceil(p)
Description B = ceil(A) rounds the elements of A to the nearest integers greater than or

equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a=
Columns 1 through 4
—1.9000 —0.2000 3.4000 5.6000
Columns 5 through 6
7.0000 2.4000 + 3.6000i

ceil(a)

ans =
Columns 1 through 4
—1.0000 0 4._.0000 6.0000
Columns 5 through 6

7.0000 3.0000 + 4.0000i

See Also fix, floor, round

2-91

cell

Purpose

Syntax

Description

Examples

See Also

2-92

Create cell array

= cell(n)

= cell(m,n)

= cell(Im nD)

= cell(m,n,p,...)

=cell([mnp ... D
= cell(size(A))

O 0O 0 0 0 0

c = cell(n) creates an n-by-n cell array of empty matrices. An error message
appears if n is not a scalar.

c = cell(m,n) or c = cell([m,n]) creates an m-by-n cell array of empty
matrices. Arguments m and n must be scalars.

c = cell(m,n,p,--.)orc = cell([m n p ...]) creates an m-by-n-by-p-...
cell array of empty matrices. Arguments m, n, p,... must be scalars.

c = cell(size(A)) creates a cell array the same size as A containing all
empty matrices.

A = ones(2,2)
A =
1 1
1 1
c = cell(size(A))
Cc =
L1 L1
L1 L1

ones, rand, randn, zeros

cell2struct

Purpose
Syntax

Description

Examples

See Also

Convert cell array to structure array

cell2struct(c,fields,dim)

S

s = cell2struct(c, fields,dim) converts the cell array c into the structure
s by folding the dimension dim of c into fields of s. The length of c along the
specified dimension (size(c,dim)) must match the number of fields names in
fields. Argument fields can be a character array or a cell array of strings.

c = {"tree",37.4,"birch"};

f = {"category”, "height”,"name"};
s = cell2struct(c,f,2)

S =

category: “tree”
height: 37.4000
name: "birch*

fieldnames, struct2cell

2-93

celldisp

Purpose Display cell array contents.
Syntax celldisp(C)
celldisp(C,name)
Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C,name) uses the string name for the display instead of the name of
the first input (or ans).

Example Use cel ldisp to display the contents of a 2-by-3 cell array:

C = {[21 2] "Tony" 3+4i; [1 2;3 4] -5 "abc"};
celldisp(C)

c{1,1} =

c{1,2} =
Tony
c{2,2} =
-5
c{1,3} =

3.0000+ 4.0000i

c{2.3} =

abc

2-94

celldisp
|

See Also cellplot

2-95

cellfun

Purpose

Syntax

Description

Limitations

2-96

Apply a function to each element in a cell array

D = cellfun(*fname~,C)
D = cellfun("size",C,k)
D = cellfun("isclass”®,C,classname)

D = cellfun("fname~,C) applies the function fname to the elements of the cell
array C and returns the results in the double array D. Each element of D
contains the value returned by fname for the corresponding element in C. The
output array D is the same size as the cell array C.

These functions are supported:

Function Return Value

isempty true for an empty cell element

islogical true for a logical cell element

isreal true for a real cell element

length Length of the cell element

ndims Number of dimensions of the cell element
prodofsize Number of elements in the cell element

D = cellfun("size",C,k) returns the size along the k-th dimension of each
element of C.

D = cellfun("isclass”,C, "classname") returns true for each element of C
that matches classname. This function syntax returns false for objects that
are a subclass of classname.

If the cell array contains objects, cel Ifun does not call overloaded versions of
the function fname.

cellfun

Example Consider this 2-by-3 cell array:
c{1,1} = [1 2; 4 5];
C{1,2} = "Name";
C{1.,3} = pi;
c{2,1} = 2 + 4i;
c{2.2} = 7;
C{2,3} = magic(3);

cellfun returns a 2-by-3 double array:

D = cellfun("isreal”,C)

D =

1 1 1

0 1 1
len = cellfun("length*,C)
len =

2 4 1

1 1 3

isdbl = cellfun("isclass”,C, "double™)

isdbl =
1 0 1
1 1 1
See Also isempty, islogical, isreal, length, ndims, size

2-97

cellplot

Purpose

Syntax

Description

Limitations

Examples

2-98

Graphically display the structure of cell arrays

cellplot(c)
cellplot(c, "legend™)
handles = cellplot(...)

cellplot(c) displays afigure window that graphically represents the contents
of c. Filled rectangles represent elements of vectors and arrays, while scalars
and short text strings are displayed as text.

cellplot(c, "legend™) also puts a legend next to the plot.

handles = cellplot(c) displays a figure window and returns a vector of
surface handles.

The cellplot function can display only two-dimensional cell arrays.

Consider a 2-by-2 cell array containing a matrix, a vector, and two text strings:

c{1,1} = "2-by-2~;

c{1,2} = "eigenvalues of eye(2)";
c{2,1} = eye(2);

c{2,2} = eig(eye(2));

The command cel lplot(c) produces:

2-by-2 [NNNNNNNNNNNNNNNNNNNNN)

cellstr

Purpose
Syntax

Description

Examples

See Also

Create cell array of strings from character array

(¢}
1l

cellstr(S)

c = cellstr(S) places each row of the character array S into separate cells of
c. Use the string function to convert back to a string matrix.
Given the string matrix

S =
abc
defg
hi

The command ¢ = cellstr(S) returns the 3-by-1 cell array:

"defg*
“hi-

iscellstr, strings

2-99

cgs

Purpose

Syntax

Description

2-100

Conjugate Gradients Squared method

x = cgs(A,b)

cgs(A,b,tol)

cgs(A,b,tol ,maxit)

cgs(A,b,tol ,maxit,M)

cgs(A,b,tol ,maxit,M1,M2)

cgs(A,b,tol ,maxit,M1,M2,x0)

x = cgs(A,b,tol ,maxit,M1,M2,x0)

[x,flag] = cgs(A,b,tol,maxit,M1,M2,x0)
[x,Fflag,relres] = cgs(A,b,tol,maxit,M1,M2,x0)
[x,Fflag,relres,iter] = cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = cgs(A,b,tol,maxit,M1,M2,x0)

x = cgs(A,b) attempts to solve the system of linear equations A*x = b for x.
The coefficient matrix A must be square and the column vector b must have

length n, where A is n-by-n. When A is not explicitly available as a matrix, you
can express A as an operator afun that returns the matrix-vector product A*x
for afun(x). This operator can be the name of an M-file, a string expression, or
an inline object. In this case n is taken to be the length of the column vector b

cgs will start iterating from an initial estimate that, by default, is an all zero
vector of length n. Iterates are produced until the method either converges,
fails, or has computed the maximum number of iterations. Convergence is
achieved when an iterate x has relative residual norm(b—A*x)/norm(b) less
than or equal to the tolerance of the method. The default tolerance is 1e-6. The
default maximum number of iterations is the minimum of n and 20. No
preconditioning is used.

cgs(A, b, tol) specifies the tolerance of the method, tol.

cgs(A,b, tol ,maxit) additionally specifies the maximum number of
iterations, maxit.

cgs(A,b, tol ,maxit,M) and cgs(A,b, tol ,maxit,M1,M2) use left
preconditioner M or M = M1*M2 and effectively solve the system

inv(M)*A*x = inv(M)*b for x. You can replace the matrix M with a function
mfun such that mfun(x) returns M\x. If M1 or M2 is given as the empty matrix
(1), itis considered to be the identity matrix, equivalent to no preconditioning

cgs

at all. Since systems of equations of the form M*y = r are solved using
backslash within cgs, it is wise to factor preconditioners into their LU factors
first. For example, replace cgs(A,b,tol ,maxit,M) with:

[M1,M2] = Tu(M);
cgs(A,b,tol ,maxit,M1,M2).

cgs(A,b,tol ,maxit,M1,M2,x0) specifies the initial estimate x0. If x0 is given
as the empty matrix ([]), the default all zero vector is used.

x = cgs(A,b,tol ,maxit,M1,M2,x0) returns a solution x. If cgs converged, a
message to that effect is displayed. If cgs failed to converge after the maximum
number of iterations or halted for any reason, a warning message is printed
displaying the relative residual norm(b—-A*x)/norm(b) and the iteration
number at which the method stopped or failed.

[x,flag] = cgs(A,b,tol,maxit,M1,M2,x0) returns a solution x and a flag
that describes the convergence of cgs.

Flag Convergence

0 cgs converged to the desired tolerance tol within maxit
iterations without failing for any reason.

1 cgs iterated maxit times but did not converge.

2 One of the systems of equations of the form M*y = r
involving the preconditioner was ill-conditioned and did not
return a useable result when solved by \ (backslash).

3 The method stagnated. (Two consecutive iterates were the
same.)
4 One of the scalar quantities calculated during cgs became

too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

2-101

cgs

Examples

2-102

[x,flag,relres] = cgs(A,b,tol,maxit,M1,M2,x0) also returns the relative
residual norm(b—-A*x)/norm(b). If flag is 0, then relres < tol.

[x,flag,relres,iter] = cgs(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed. This always satisfies
0 < iter <maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norms at each iteration, starting from
resvec(l) = norm(b—A*x0). If flag is 0, resvec is of length iter+1 and
resvec(end) < tol*norm(b).

load west0479
A = west0479
b = sum(A,2)
[x,flag] = cgs(A,b)

flag is 1 since cgs will not converge to the default tolerance 1e—6 within the
default 20 iterations.

[L1,U1] = luinc(A,le-5)
[x1,flagl] = cgs(A,b,1le-6,20,L1,U1)

flagl is 2 since the upper triangular Ul has a zero on its diagonal so cgs fails
in the first iteration when it tries to solve a system such as Ul*y = r for y with
backslash.

[L2,U2] = luinc(A,le-6)
[x2,flag2,relres2,iter2,resvec2] = cgs(A,b,1le-15,10,L2,U2)

flag?2 is 0 since cgs will converge to the tolerance of 7.9e-16 (the value of
relres2) at the fifth iteration (the value of iter2) when preconditioned by the
incomplete LU factorization with a drop tolerance of

le-6. resvec2(1l) = norm(b) and resvec2(6) = norm(b-A*x2). You can
follow the progress of cgs by plotting the relative residuals at each iteration

cgs

See Also

References

starting from the initial estimate (iterate number 0) with
semilogy(O:iter2,res2/norm(b),"—0").

=
o
&
T
|

relative residual
i
o
T
L

=
o
N
S
T
I

-12

10 1

-16 I I I I

0 1 2 3 4 5
iteration number

10

bicg, bicgstab, gmres, luinc, pcg, gmr

The arithmetic operator \

Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric linear
systems”, SIAM J. Sci. Stat. Comput., January 1989, Vol. 10, No. 1, pp. 36-52.

“Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods”, SIAM, Philadelphia, 1994.

2-103

char

Purpose

Syntax

Description

Remarks

Examples

2-104

Create character array (string)

S = char(X)

S = char(C)

S = char(tl,t2.t3...)

S = char(X) converts the array X that contains positive integers representing

character codes into a MATLAB character array (the first 127 codes are ASCI|).
The actual characters displayed depend on the character set encoding for a
given font. The result for any elements of X outside the range from 0 to 65535
is not defined (and may vary from platform to platform). Use double to convert
a character array into its numeric codes.

S = char(C) when Cis a cell array of strings, places each element of C into the
rows of the character array s. Use cel lstr to convert back.

S = char(tl,t2,t3,..) forms the character array S containing the text
strings T1,T2,T3,... as rows, automatically padding each string with blanks to
form a valid matrix. Each text parameter,Ti, can itself be a character array.
This allows the creation of arbitarily large character arrays. Empty strings are
significant.

Ordinarily, the elements of A are integers in the range 32:127, which are the
printable ASCII characters, or in the range 0:255, which are all 8-bit values.
For noninteger values, or values outside the range 0:255, the characters
printed are determined by fix(rem(A, 256)).

To print a 3-by-32 display of the printable ASCII characters:

ascii = char(reshape(32:127,32,3)")

ascii =

1 #3$%& " ()YO+,-./70123456789: ;<=>7?

@ABCDEFGHIJKLMNOPQRSTUVWXYZI[\N]"™_
"abcdefghijklIlmnopqgqrstuvwxyz{]| 73}~

char

See Also cellstr, double, get, set, strings, strvcat, text

2-105

chol

Purpose

Syntax

Description

Examples

2-106

Cholesky factorization

R = chol(X)
[R.p] = chol(X)

The chol function uses only the diagonal and upper triangle of X. The lower
triangular is assumed to be the (complex conjugate) transpose of the upper.
That is, X is Hermitian.

R = chol (X), where X is positive definite produces an upper triangular R so
that R"*R = X. If X is not positive definite, an error message is printed.

[R,p] = chol(X), with two output arguments, never produces an error
message. If X is positive definite, then p is 0 and R is the same as above. If X is
not positive definite, then p is a positive integer and R is an upper triangular
matrix of order g = p-1sothatR**R = X(1:q,1:q).

The binomial coefficients arranged in a symmetric array create an interesting
positive definite matrix.

n=>5;

X = pascal(n)

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

It is interesting because its Cholesky factor consists of the same coefficients,
arranged in an upper triangular matrix.

R
R

chol (X)

OO OoOOor
OO OrRrr
OO FRr NP
OFr Wwwer
R O bSAPR

chol

Algorithm

References

See Also

Destroy the positive definiteness (and actually make the matrix singular) by
subtracting 1 from the last element.

X(n,n) = X(n,n)-1

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization fails.

chol uses the algorithm from the LINPACK subroutine ZPOFA. For a detailed
description of the use of the Cholesky decomposition, see Chapter 8 of the
LINPACK Users’ Guide.

[1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.

cholinc, cholupdate

2-107

cholinc

Purpose

Syntax

Description

2-108

Sparse incomplete Cholesky and Cholesky-Infinity factorizations

R = cholinc(X,droptol)
R = cholinc(X,options)
R = cholinc(X,"0")
[R,p] = cholinc(X,"0")
R = cholinc(X, "inf")

cholinc produces two different kinds of incomplete Cholesky factorizations:
the drop tolerance and the 0 level of fill-in factorizations. These factors may be
useful as preconditioners for a symmetric positive definite system of linear
equations being solved by an iterative method such as pcg (Preconditioned
Conjugate Gradients). cholinc works only for sparse matrices.

R = cholinc(X,droptol) performs the incomplete Cholesky factorization of X,
with drop tolerance droptol.

R = cholinc(X,options) allows additional options to the incomplete
Cholesky factorization. options is a structure with up to three fields:

droptol Drop tolerance of the incomplete factorization
michol Modified incomplete Cholesky
rdiag Replace zeros on the diagonal of R

Only the fields of interest need to be set.

droptol is a non-negative scalar used as the drop tolerance for the incomplete
Cholesky factorization. This factorization is computed by performing the
incomplete LU factorization with the pivot threshold option set to 0 (which
forces diagonal pivoting) and then scaling the rows of the incomplete upper
triangular factor, U, by the square root of the diagonal entries in that column.
Since the nonzero entries U(i , j) are bounded below by droptol*norm(X(:,j))
(see luinc), the nonzero entries R(i, j) are bounded below by the local drop
tolerance droptol*norm(X(:,j))/R(i,i).

Setting droptol = 0 produces the complete Cholesky factorization, which is the
default.

cholinc

Remarks

michol stands for modified incomplete Cholesky factorization. Its value is
either 0 (unmodified, the default) or 1 (modified). This performs the modified
incomplete LU factorization of X and scales the returned upper triangular
factor as described above.

rdiag iseither0oor 1. Ifitis 1, any zero diagonal entries of the upper triangular
factor R are replaced by the square root of the local drop tolerance in an
attempt to avoid a singular factor. The default is 0.

R = cholinc(X,"0") produces the incomplete Cholesky factor of a real sparse
matrix that is symmetric and positive definite using no fill-in. The upper
triangular R has the same sparsity pattern as triu(X), although R may be zero
in some positions where X is nonzero due to cancellation. The lower triangle of
X is assumed to be the transpose of the upper. Note that the positive
definiteness of X does not guarantee the existence of a factor with the required
sparsity. An error message results if the factorization is not possible. If the
factorization is successful, R**R agrees with X over its sparsity pattern.

[R,p] = cholinc(X,"0") with two output arguments, never produces an error
message. If R exists, p is 0. If R does not exist, then p is a positive integer and R
is an upper triangular matrix of size g-by-n where q = p-1. In this latter case,
the sparsity pattern of R is that of the g-by-n upper triangle of X. R**R agrees
with X over the sparsity pattern of its first q rows and first g columns.

R = cholinc(X, "inf") produces the Cholesky-Infinity factorization. This
factorization is based on the Cholesky factorization, and additionally handles
real positive semi-definite matrices. It may be useful for finding a solution to
systems which arise in interior-point methods. When a zero pivot is
encountered in the ordinary Cholesky factorization, the diagonal of the
Cholesky-Infinity factor is set to Inf and the rest of that row is set to 0. This
forces a 0 in the corresponding entry of the solution vector in the associated
system of linear equations. In practice, X is assumed to be positive
semi-definite so even negative pivots are replaced with a value of Inf.

The incomplete factorizations may be useful as preconditioners for solving

large sparse systems of linear equations. A single 0 on the diagonal of the upper
triangular factor makes it singular. The incomplete factorization with a drop
tolerance prints a warning message if the upper triangular factor has zeros on
the diagonal. Similarly, using the rdiag option to replace a zero diagonal only

2-109

cholinc

Examples

2-110

gets rid of the symptoms of the problem, but it does not solve it. The
preconditioner may not be singular, but it probably is not useful, and a warning
message is printed.

The Cholesky-Infinity factorization is meant to be used within interior-point
methods. Otherwise, its use is not recommended.

Example 1.
Start with a symmetric positive definite matrix, S.

S = delsq(numgrid("C",15));

S is the two-dimensional, five-point discrete negative Lapacian on the grid
generated by numgrid(=C-,15).

Compute the Cholesky factorization and the incomplete Cholesky factorization
of level 0 to compare the fill-in. Make S singular by zeroing out a diagonal entry
and compute the (partial) incomplete Cholesky factorization of level 0.

C = chol(S);

RO = cholinc(S,"0");

S2 = S; S2(101,101) = 0;
[R,p] = cholinc(S2,70%);

Fill-in occurs within the bands of S in the complete Cholesky factor, but none
in the incomplete Cholesky factor. The incomplete factorization of the singular
S2 stopped at row p = 101 resulting in a 100-by-139 partial factor.

D1 = (RO"*R0).*spones(S)-S;
D2 = (R*"*R).*spones(S2)-S2;

cholinc

D1 has elements of the order of eps, showing that RO**R0 agrees with S over its
sparsity pattern. D2 has elements of the order of eps over its first 100 rows and
first 100 columns, D2(1:100, :) and D2(:,1:100).

S

2N\
40 \\\\
N

0 50 100
nz = 643

RO=cholinc(S,'0")

3\
40 \\

0 50 100
nz =391

Example 2.

20
40
60
80
100
120

140

C=chol(S)

0 50 100

nz = 1557

Partial factor [R,p]=cholinc(S2,'0")

40

60

80

100

0
20\

>
o
>

50 100
nz =290

The first subplot below shows that cholinc(S,0), the incomplete Cholesky
factor with a drop tolerance of 0, is the same as the Cholesky factor of S.

2-111

cholinc

Increasing the drop tolerance increases the sparsity of the incomplete factors,
as seen below.

cholinc(S,0) cholinc(S,1e-3)
O 01

20| i, 20
40 i 40
60 b 60
80 i, 80
100 h 100
120 e 120
40— 140

0 50 100 0 50 100

nz = 1557 nz=1211

cholinc(S,1e-2) cholinc(S,1e-1)
Of 0
200 20
40 - 40
60) 60
80 ’ 80
100 . 100
120 | 120
140 140

0 50 100 0 50 100

nz =671 nz =391

Unfortunately, the sparser factors are poor approximations, as is seen by the
plot of drop tolerance versus norm(R"*R-S,1)/norm(S, 1) in the next figure.

Drop tolerance vs nnz(cholinc(S,droptol))

1500 T T
1000+ B
500+ 1
0 . . .
10" 10° 10° 10" 10°
o Drop tolerance vs norm(R*R-S)/norm(S;
10 T T

2-112

cholinc

Example 3.

The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically positive
definite:

H3 = hilb(3)
H3 =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000
R3 = chol (H3)
R3 =
1.0000 0.5000 0.3333
0 0.2887 0.2887
0 0 0.0745

In practice, the Cholesky factorization breaks down for larger matrices:

H20 = sparse(hilb(20));
[R,p] = chol(H20);
p =

14

For hilb(20), the Cholesky factorization failed in the computation of row 14
because of a numerically zero pivot. You can use the Cholesky-Infinity
factorization to avoid this error. When a zero pivot is encountered, cholinc
places an Inf on the main diagonal, zeros out the rest of the row, and continues
with the computation:

Rinf = cholinc(H20,"inf");

2-113

cholinc

Limitations

Algorithm

2-114

In this case, all subsequent pivots are also too small, so the remainder of the
upper triangular factor is:

full(Rinf(14:end,14:end))

ans =
Inf 0 0 0 0 0 0
0 Inf 0 0 (0] 0] 0
0 0 Inf 0 (0] 0 0
0 0] 0 Inf 0 0 0
0 0 0 0] Inf 0 0
0 0 0 0 0 Inf 0
0 0 0 0 (0] 0 Inf

cholinc works on square sparse matrices only. For cholinc(X,"0") and
cholinc(X, "inf"), X must be real.

R = cholinc(X,droptol) is obtained from [L,U] = luinc(X,options), where
options.droptol = droptol and options.thresh = 0. The rows of the
uppertriangular U are scaled by the square root of the diagonal in that row, and
this scaled factor becomes R.

R = cholinc(X,options) is produced in a similar manner, except the rdiag
option translates into the udiag option and the mi lu option takes the value of
the michol option.

R = cholinc(X,"0") is based on the “KJI” variant of the Cholesky
factorization. Updates are made only to positions which are nonzero in the
upper triangle of X.

R = cholinc(X, "inf") is based on the algorithm in Zhang ([2]).

cholinc

See Also chol, luinc, pcg

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996, Chapter 10 - Preconditioning Techniques.

[2] Zhang, Yin, Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment, Department of Mathematics and
Statistics, University of Maryland Baltimore County, Technical Report
TR96-01

2-115

cholupdate

Purpose Rank 1 update to Cholesky factorization

Syntax R1 = cholupdate(R,x)
R1 = cholupdate(R,Xx,"+")
R1 = cholupdate(R,x,"—")
[R1,p] = cholupdate(R,x,"—")

Description R1 = cholupdate(R,x) whereR = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A + x*x*,
where x is a column vector of appropriate length. cholupdate uses only the
diagonal and upper triangle of R. The lower triangle of R is ignored.

R1

cholupdate(R,x, "+") is the same as R1 = cholupdate(R,Xx).

R1 = cholupdate(R,x, ") returns the Cholesky factor of A — x*x*. An
error message reports when R is not a valid Cholesky factor or when the
downdated matrix is not positive definite and so does not have a Cholesky
factoriza- tion.

[R1,p] = cholupdate(R,x,"—") will not return an error message. If pis 0,
R1 is the Cholesky factor of A — x*x'. If p is greater than 0, R1 is the Cholesky
factor of the original A. If p is 1, cholupdate failed because the downdated
matrix is not positive definite. If p is 2, cholupdate failed because the upper
triangle of R was not a valid Cholesky factor.

Remarks cholupdate works only for full matrices.
Example A = pascal(4)
A =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

2-116

cholupdate

R = chol(A)

R =
1 1 1 1
0 1 2 3
0] 0] 1 3
0] 0] (0] 1

x =[00O0 1]";

This is called a rank one update to A since rank(x*x") is 1:

A + xX*x*©

ans =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 21

Instead of computing the Cholesky factor with R1 = chol (A + x*x"), we can
use cholupdate:

R1 = cholupdate(R,x)
R1 =

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix singular)
by subtracting 1 from the last element of A. The downdated matrix is:

2-117

cholupdate

A — xX*x*©

ans =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 19

Compare chol with cholupdate:

R1 = chol (A—x*x")
??? Error using ==> chol
Matrix must be positive definite.

R1 = cholupdate(R,x,"-")
??? Error using ==> cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky factor:

X = [0 0 0 1/sqgrt(2)]":
R1 = cholupdate(R,x,"—")

R1 =
1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 0.7071
Algorithm cholupdate uses the algorithms from the LINPACK subroutines ZCHUD and

ZCHDD. cholupdate is useful since computing the new Cholesky factor from
scratch is an O(N3) algorithm, while simply updating the existing factor in this
way is an O(N2) algorithm.

References Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users'
Guide, SIAM, Philadelphia, 1979.

See Also chol, qrupdate

2-118

class

Purpose

Syntax

Description

See Also

Limitations

Create object or return class of object

str = class(object)
obj = class(s, "class_name")
obj = class(s, "class_name" ,parentl,parent2...)

str = class(object) returns a string specifying the class of object.

The possible object classes are:

cell Multidimensional cell array

double Multidimensional double precision array
sparse Two-dimensional real (or complex) sparse array
char Array of alphanumeric characters

struct Structure

"class_name- User-defined object class

obj = class(s, "class_name") creates an object of class "class_name" using
structure s as a template. This syntax is only valid in a function named
class_name.m in a directory named @class_name (where “class_name~ is the
same as the string passed into class).

NOTE On VMS, the method directory is named #class_name.

obj = class(s, "class_name~",parentl,parent2,...) creates an object of
class "class_name* using structure s as a template, and also ensures that the
newly created object inherits the methods and fields of the parent objects
parentl, parent2, and so on.

inferiorto, isa, superiorto

clear doesn't affect the amount of memory allocated to the MATLAB process
under UNIX.

2-119

clc

Purpose Clear command window

Syntax clc

Description clc clears the command window.

Remarks After using clc, you still can use the up arrow to see the history of the

commands, one at a time.

Examples Display a sequence of random matrices at the same location in the command
window:

clc
for 1 =1:25
home
A = rand(b)
end

See Also clf, home

2-120

clear

Purpose

Syntax

Description

Remove items from memory

clear
clear name

clear namel name2 name3..

clear global name
clear keyword

clear clears all variables from the workspace.

clear name removes just the M-file or MEX-file function or variable name from
the workspace. A MATLABPATH relative partial pathname is permitted. If name is
global, it is removed from the current workspace, but left accessible to any

functions declaring it global. If name has been locked by mlock, it will remain in

memory.

clear namel name2 name3 removes namel, name2, and name3 from the

workspace.

clear global name removes the global variable name.

clear keyword clears the items indicated by keyword.

Keyword Items Cleared

functions Clears all the currently compiled M-functions from
memory.

variables Clears all variables from the workspace.

mex Clears all MEX-files from memory.

global Clears all global variables.

2-121

clear

Remarks

Limitations

See Also

2-122

all Removes all variables, functions, and MEX-files from
memory, leaving the workspace empty.

classes Works the same as clear all, but also clears class
definitions. If any objects exist outside the workspace
(e.g., in userdata or persistent in a locked m-file), a
warning will be issued and the class definition will not
be cleared. clear classes must be used if the number
or names of fields in a class are changed.

You can use wildcards (*) to remove items selectively. For instance, clear my*
removes any variables whose names begin with the string “my.” The function
form of the syntax, clear(“name™), is also permitted.

clear does not affect the amount of memory allocated to the MATLAB process
under UNIX.

mlock, munlock, pack

clock

Purpose
Syntax

Description

See Also

Current time as a date vector
c = clock

c = clock returns a 6-element date vector containing the current date and
time in decimal form:

c = [year month day hour minute seconds]

The first five elements are integers. The seconds element is accurate to several
digits beyond the decimal point. The statement fix(clock) rounds to integer
display format.

cputime, datenum, datevec, etime, tic, toc

2-123

colmmd

Purpose
Syntax

Description

Algorithm

Examples

2-124

Sparse column minimum degree permutation

colmmd(S)

©
1

p = colmmd(S) returns the column minimum degree permutation vector for
the sparse matrix S. For a nonsymmetric matrix S, this is a column
permutation p such that S(:,p) tends to have sparser LU factors than S.

The colmmd permutation is automatically used by \ and 7 for the solution of
nonsymmetric and symmetric indefinite sparse linear systems.

Use spparms to change some options and parameters associated with heuristics
in the algorithm.

The minimum degree algorithm for symmetric matrices is described in the
review paper by George and Liu [1]. For nonsymmetric matrices, MATLAB'’s
minimum degree algorithm is new and is described in the paper by Gilbert,
Moler, and Schreiber [2]. It is roughly like symmetric minimum degree for
A"[A, but does not actually form A" [A.

Each stage of the algorithm chooses a vertex in the graph of A*A of lowest
degree (that is, a column of A having nonzero elements in common with the
fewest other columns), eliminates that vertex, and updates the remainder of
the graph by adding fill (that is, merging rows). If the input matrix S is of size
m-by-n, the columns are all eliminated and the permutation is complete after n
stages. To speed up the process, several heuristics are used to carry out
multiple stages simultaneously.

The Harwell-Boeing collection of sparse matrices includes a test matrix
ABB2313. It is a rectangular matrix, of order 313-by-176, associated with least
squares adjustments of geodesic data in the Sudan. Since this is a least squares
problem, form the augmented matrix (see spaugment), which is square and of
order 489. The spy plot shows that the nonzeros in the original matrix are
concentrated in two stripes, which are reflected and supplemented with a
scaled identity in the augmented matrix. The colmmd ordering scrambles this

colmmd

structure. (Note that this example requires the Harwell-Boeing collection of

software.)

load("abb313.mat")
S = spaugment(A);
p = colmmd(S);
spy(S)

spy(S(:.p))

100

200

300

400

0 100 200 300
nz = 3427

400

100

200

300

400

S(.,p)

100

200 300
nz = 3427

400

Comparing the spy plot of the LU factorization of the original matrix with that
of the reordered matrix shows that minimum degree reduces the time and

2-125

colmmd

See Also

References

2-126

storage requirements by better than a factor of 2.6. The nonzero counts are
18813 and 7223, respectively.

spy (1u(S))
spy(hu(S(:,p)))

lu(s) lu(S(:,p))
0 0
100} 1 100
200 1 200
300} 300
400t 400
0O 100 200 300 400 0 100 200 300 400
nz = 18813 nz = 7223

colperm, lu, spparms, symmmd, symrcm

The arithmetic operator \

[1] George, Alan and Liu, Joseph, “The Evolution of the Minimum Degree
Ordering Algorithm,” SIAM Review, 1989, 31:1-19,.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications 13, 1992, pp. 333-356.

colperm

Purpose
Syntax

Description

Algorithm

Examples

See Also

Sparse column permutation based on nonzero count

b colperm(S)

j = colperm(S) generates a permutation vector j such that the columns of
S(:,j) are ordered according to increasing count of nonzero entries. This is
sometimes useful as a preordering for LU factorization; in this case use
hu(S(C:,1)).

If Sis symmetric, then j = colperm(S) generates a permutation j so that both
the rows and columns of S(j, j) are ordered according to increasing count of
nonzero entries. If S is positive definite, this is sometimes useful as a
preordering for Cholesky factorization; in this case use chol (S ,j))-

The algorithm involves a sort on the counts of nonzeros in each column.

The n-by-n arrowhead matrix
A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, Iu(A), is almost
completely full. The statement

J = colperm(A)

returns j = [2:n 1]. So A(J,Jj) sends the full row and column to the bottom
and the rear, and 1u(A(j ,j)) has the same nonzero structure as A itself.

On the other hand, the Bucky ball example, B = bucky,

has exactly three nonzero elements in each row and column, so
j = colperm(B) is the identity permutation and is no help at all for reducing
fill-in with subsequent factorizations.

chol, colmmd, lu, symrcm

2-127

compan

Purpose
Syntax

Description

Examples

See Also

2-128

Companion matrix

A = compan(u)

A = compan(u) returns the corresponding companion matrix whose first row is
—u(2:n)/u(l), where u is a vector of polynomial coefficients. The eigenvalues
of compan(u) are the roots of the polynomial.

The polynomial (x —1)(x—2)(x + 3) = x3—7x+ 6 has a companion matrix
given by

u=[1 0 -7 6]

A = compan(u)

A =
0] 7 -6
1 0] 0
0] 1 0

The eigenvalues are the polynomial roots:

eig(compan(u))
ans =
—3.0000
2.0000
1.0000

This is also roots(u).

eig, poly, polyval, roots

complex

Purpose

Syntax

Description

Example

See Also

Construct complex data from real and imaginary components

c = complex(a,b)
c = complex(a)
c = complex(a,b) creates a complex output, c, from the two real inputs.

c = a + bi

The output is the same size as the inputs, which must be equally sized vectors,
matrices, or multi-dimensional arrays.

The complex function provides a useful substitute for expressions such as
a+ i1*b or a+ j*b

in cases when the names “i” and “j” may be used for other variables (and do
not equal ./—1), or when a and b are not double precision.

c = complex(a) uses input a as the real component of the complex output. The
imaginary component is zero.

c =a+ 01

Create complex uint8 vector from two real uint8 vectors.

a = uint8([1;2;3;4])
b = uint8([2;2;7;71)
c = complex(a,b)
C =
1.0000 + 2.0000i
2.0000 + 2.0000i
3.0000 + 7.0000i
4_.0000 + 7.00001
imag, real

2-129

computer

Purpose Identify the computer on which MATLAB is running

Syntax str = computer
[str,maxsize] = computer

Description str = computer returns a string with the computer type on which MATLAB is
running.

[str,maxsize] = computer returns the integer maxsize, which contains the
maximum number of elements allowed in an array with this version of
MATLAB.

The list of supported computers changes as new computers are added and
others become obsolete.

String Computer

ALPHA DEC Alpha

AXP_VMSG Alpha VMS G_float
AXP_VMSIEEE Alpha VMS IEEE

HP700 HP 9000/700

1BM_RS IBM RS6000 workstation
LNX86 Linux Intel

PCWIN MS-Windows

SGI Silicon Graphics (R4000)
SG164 Silicon Graphics (R8000)
SOoL2 Solaris 2 SPARC workstation
SUN4 Sun4 SPARC workstation
VAX_VMSD VAX/VMS D_float
VAX_VMSG VAX/VMS G_float

2-130

computer

See Also isieee, isunix, isvms

2-131

cond

Purpose

Syntax

Description

Algorithm

See Also

References

2-132

Condition number with respect to inversion

C
Cc

cond(X)
cond(X,p)

The condition number of a matrix measures the sensitivity of the solution of a
system of linear equations to errors in the data. It gives an indication of the
accuracy of the results from matrix inversion and the linear equation solution.
Values of cond(X) and cond(X,p) near 1 indicate a well-conditioned matrix.

c = cond(X) returns the 2-norm condition number, the ratio of the largest
singular value of X to the smallest.

¢ = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p

If pis... Then cond(X,p) returns the...

1 1-norm condition number

2 2-norm condition number

"fro-” Frobenius norm condition number
inf Infinity norm condition number

The algorithm for cond (when p = 2) uses the singular value decomposition,
svd.

condeig, condest, norm, rank, svd

[1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.

condeig

Purpose

Syntax

Description

See Also

Condition number with respect to eigenvalues

c = condeig(A)
[V,D,s] = condeig(A)

c = condeig(A) returns a vector of condition numbers for the eigenvalues of A.
These condition numbers are the reciprocals of the cosines of the angles
between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to: [V,D] = eig(A); s = condeig(A);.

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

balance, cond, eig

2-133

condest

Purpose

Syntax

Description

See Also

Reference

2-134

1-norm matrix condition number estimate

c = condest(A)
[c.,v] = condest(A)

c = condest(A) uses Higham's modification of Hager’s method to estimate the
condition number of a matrix. The computed c is a lower bound for the
condition of A in the 1-norm.

[c,v] = condest(A) estimates the condition number and also computes a
vector v such that|Av| = [|A]|v]/c .

Thus, v is an approximate null vector of A if c is large.
This function handles both real and complex matrices. It is particularly useful
for sparse matrices.

cond, normest

[1] Higham, N.J. “Fortran Codes for Estimating the One-Norm of a Real or
Complex Matrix, with Applications to Condition Estimation.” ACM Trans.
Math. Soft., 14, 1988, pp. 381-396.

conj

Purpose
Syntax
Description

Algorithm

See Also

Complex conjugate

ZC conj(2)

ZC

conj (2) returns the complex conjugate of the elements of Z.

If Z is a complex array:

conj(2) = real(2) - iimag(2)

i, j, imag, real

2-135

conv

Purpose
Syntax

Description

Definition

Algorithm

See Also

2-136

Convolution and polynomial multiplication

w = conv(u,Vv)

w = conv(u,V) convolves vectors u and v. Algebraically, convolution is the
same operation as multiplying the polynomials whose coefficients are the
elements of u and v.

Letm = length(u) and n = length(v). Then w is the vector of length m+n-1
whose kth element is

w(k) = > u(jv(k+1-j)
]

The sum is over all the values of j which lead to legal subscripts for u(j) and
v(k+1-j), specifically j = max(1,k+1-n): min(k,m). When m = n, this gives

w(l) = u()Br (1)
w(2) = u(D)I)+u)Lv()
w(3) = u()’ v@)+u()()+u(3))

w(n) = u(D)v(N)+u@)v(n-1)+ ... +u(n)v(1)

v-vélih—l) = u(n)v(n)

The convolution theorem says, roughly, that convolving two sequences is the
same as multiplying their Fourier transforms. In order to make this precise, it
is necessary to pad the two vectors with zeros and ignore roundoff error. Thus,
if

X = FFe([x zeros(l,length(y)-1)1) and Y = fft([y zeros(l,length(x)-1)1)

then conv(x,y) = ifft(X.0¥)

convmtx and xcorr in the Signal Processing Toolbox, and:

deconv, Filter

conv2

Purpose

Syntax

Description

Examples

Two-dimensional convolution

C = conv2(A,B)
C = conv2(hcol,hrow,A)
C = conv2(...,"shape®)

C = conv2(A,B) computes the two-dimensional convolution of matrices A and
B. If one of these matrices describes a two-dimensional FIR filter, the other
matrix is filtered in two dimensions.

The size of C in each dimension is equal to the sum of the corresponding
dimensions of the input matrices, minus one. That is, if the size of A is [ma,na]
and the size of B is [mb, nb], then the size of C is [ma+mb-1,na+nb-1].

C = conv2(hcol ,hrow,A) convolves A separably with hcol in the column
direction and hrow in the row direction. hcol and hrow should both be vectors.

C = conv2(...,"shape”) returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:

full Returns the full two-dimensional convolution (default).
same Returns the central part of the convolution of the same size as A.

valid Returns only those parts of the convolution that are computed
without the zero-padded edges. Using this option, C has size [ma—
mb+1,na-nb+1] when size(A) > size(B).

In image processing, the Sobel edge finding operation is a two-dimensional
convolution of an input array with the special matrix

s=[121; 000; -1 -2 -1];
These commands extract the horizontal edges from a raised pedestal:

A = zeros(10);
A(3:7,3:7) = ones(5);
H = conv2(A,s);
mesh(H)

2-137

conv2

These commands display first the vertical edges of A, then both horizontal and
vertical edges.

V = conv2(A,s");
mesh(V)
mesh(sgrt(H-"2+V."2))

See Also conv, deconv, filter2

2-138

convhull

Purpose Convex hull

Syntax K = convhull(x,y)
K = convhull(x,y,TRI)

Description K = convhul I (x,y) returnsindices into the x and y vectors of the points on the
convex hull.

K = convhul I (x,y,TRI) uses the triangulation (as obtained from delaunay)
instead of computing it each time.

Examples XX = —=1:.05:1; yy = abs(sgrt(xx));
[x.,y]l = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(K),y(K), "r=",x,y, "b+")

See Also delaunay, polyarea, voronoi

2-139

convn

Purpose

Syntax

Description

See Also

2-140

N-dimensional convolution

C
C

convn(A,B)
convn(A,B, "shape*)

C = convn(A,B) computes the N-dimensional convolution of the arrays A and
B. The size of the result is size(A)+size(B)-1.

C = convn(A,B, "shape™) returns a subsection of the N-dimensional
convolution, as specified by the shape parameter:

= “full " returns the full N-dimensional convolution (default).
< "same” returns the central part of the result that is the same size as A.

= “valid' returns only those parts of the convolution that can be computed
without assuming that the array A is zero-padded. The size of the result is

max(size(A)-size(B) + 1, 0).

conv, conv2

copyfile

Purpose

Syntax

Description

See Also

Copy file

copyfile("source”, "dest")
copyfile("source®, "dest”, "writable")
status = copyfile("source”, "dest")
[status,msg] = copyfile("source”, "dest")

copyfile("source”, "dest") copies the file source to the new file dest.
source and dest may be absolute pathnames or pathnames relative to the
current directory. The pathname to dest must exist, but dest cannot be an
existing filename in the current directory.

copyfile("source","dest", "writable") checks that dest is writable.

status = copyfile("source-, "dest”) returns 1 if the file is copied
successfully and 0 otherwise.

[status,msg] = copyfile("source”, “dest") returns a nonempty error
message string when an error occurs.

delete, mkdir

2-141

corrcoef

Purpose

Syntax

Description

See Also

2-142

Correlation coefficients

S = corrcoef(X)
S = corrcoef(x,y)
S = corrcoef(X) returns a matrix of correlation coefficients calculated from

an input matrix whose rows are observations and whose columns are variables.
The matrix S = corrcoef(X) is related to the covariance matrix C = cov(X)

by

S(iJy = bl
G, 0EG,)

corrcoef(X) is the zeroth lag of the covariance function, that is, the zeroth lag
of xcov(x, "coeff") packed into a square array.

S = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]).

xcorr, xcov in the Signal Processing Toolbox, and:

cov, mean, std

cosS, cosh

Purpose

Syntax

Description

Examples

Algorithm

See Also

Cosine and hyperbolic cosine

Y
Y

cos(X)
cosh(X)

The cos and cosh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y

cos(X) returns the circular cosine for each element of X.

Y

cosh(X) returns the hyperbolic cosine for each element of X.

Graph the cosine function over the domain —1t< x < 11, and the hyperbolic cosine
function over the domain -5<x<5.

X
X

—pi:0.01:pi; plot(x,cos(x))
—-5:0.01:5; plot(x,cosh(x))

The expression cos(pi/2) is not exactly zero but a value the size of the
floating-point accuracy, eps, because pi is only a floating-point approximation
to the exact value of Tt

cos(x +1iy) = cos(x)cosh(y)—isin(x)sin(y)

_ eiz 4 g-iz

cos(z) = 5
4 —Z
cosh(z) = ?—%—

acos, acosh

2-143

cot, coth

Purpose Cotangent and hyperbolic cotangent
Syntax Y = cot(X)
Y = coth(X)
Description The cot and coth functions operate element-wise on arrays. The functions’

domains and ranges include complex values. All angles are in radians.

Y = cot(X) returns the cotangent for each element of X.

Y = coth(X) returns the hyperbolic cotangent for each element of X.

Examples Graph the cotangent and hyperbolic cotangent over the domains —rt<x <0 and
O<x<TL

x1 = —pi+0.01:0.01:-0.01; x2 = 0.01:0.01:pi-0.01;

plot(x1,cot(x1),x2,cot(x2))
plot(x1,coth(x1),x2,coth(x2))

150

100
80
60 100

40

201 50

Cot(x)
coth(x)

y=
y=

220 -

.40 |-

-60 - -50

-80

100 . . | . | . . 100 | . .
E E E -1 0 1 - E E -1 0 1 4
X1,x2 x1,x2

. _ 1
Algorithm cot(z) = @n ()
_ 1
coth(z) = —_tanh(z)
See Also acot, acoth

2-144

cov

Purpose

Syntax

Description

Remarks

Examples

See Also

Covariance matrix

C = cov(X)
C = cov(X,Y)
C = cov(x) where x is a vector returns the variance of the vector elements. For

matrices where each row is an observation and each column a variable, cov(x)
is the covariance matrix. diag(cov(x)) is a vector of variances for each column,
and sqrt(diag(cov(x))) is a vector of standard deviations.

C = cov(x,Y), where x and y are column vectors of equal length, is equivalent
to cov([x yD).
cov removes the mean from each column before calculating the result.
The covariance function is defined as
cov(xy,Xp) = E[(Xg —H1)(X; —Hy)]
where E is the mathematical expectation and p;= EXx;.
ConsiderA = [-1 12 ; =2 3 1 ; 4 0 3]. Toobtain a vector of variances for
each column of A:

diag(cov(A))*"

\%
VvV =
10.3333 2.3333 1.0000

Compare vector v with covariance matrix C:

C =
10.3333 —-4.1667 3.0000
—4.1667 2.3333 —-1.5000
3.0000 —-1.5000 1.0000

The diagonal elements C(i, i) represent the variances for the columns of A. The
off-diagonal elements C(i,j) represent the covariances of columns i and j.

xcorr, xcov in the Signal Processing Toolbox, and:

corrcoef, mean, std

2-145

cplxpair

Purpose

Syntax

Description

Diagnostics

2-146

Sort complex numbers into complex conjugate pairs

B = cplxpair(A)

B = cplxpair(A,tol)

B = cplxpair(A,[1.dim)

B = cplxpair(A,tol,dim)

B = cplxpair(A) sorts the elements along different dimensions of a complex

array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair, the
element with negative imaginary part comes first. The purely real values are
returned following all the complex pairs. The complex conjugate pairs are
forced to be exact complex conjugates. A default tolerance of 100Ckps relative
to abs(A(i)) determines which numbers are real and which elements are
paired complex conjugates.

If A is a vector, cplxpair(A) returns A with complex conjugate pairs grouped
together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and complex
conjugates paired.

If Ais a multidimensional array, cplxpair(A) treats the values along the first
non-singleton dimension as vectors, returning an array of sorted elements.

B

cplxpair(A,tol) overrides the default tolerance.

B

cplxpair(A,[].dim) sorts A along the dimension specified by scalar dim.

B = cplxpair(A,tol,dim) sorts A along the specified dimension and overrides
the default tolerance.

If there are an odd number of complex numbers, or if the complex numbers
cannot be grouped into complex conjugate pairs within the tolerance, cplxpair
generates the error message:

Complex numbers can®"t be paired.

cputime

Purpose
Syntax

Description

Examples

See Also

Elapsed CPU time

cputime

cputime returns the total CPU time (in seconds) used by MATLAB from the
time it was started. This number can overflow the internal representation and

wrap around.

For example

t = cputime; surf(peaks(40)); e = cputime-t
e =

0.4667

returns the CPU time used to run surf(peaks(40)).

clock, etime, tic, toc

2-147

Cross

Purpose

Syntax

Description

Remarks

Examples

2-148

Vector cross product

W = cross(U,V)
W = cross(U,V,dim)
W = cross(U,V) returns the cross product of the vectors U and V. That is,

W = U x V.UandV are usually 3-element vectors. If Uand V are
multidimensional arrays, cross returns the cross product of U and V along the
first dimension of length 3.

IfuandV are arrays, cross(U, V) treats the first size 3 dimension of Uand V as
vectors, returning pages whose columns are cross products.

W = cross(U,V,dim) where U and Vv are multidimensional arrays, returns the
cross product of U and V in dimension dim . U and V must have the same size,
and both size(U,dim) and size(V,dim) must be 3.

To perform a dot (scalar) product of two vectors of the same size, use:

c = sum(a.*b) or, ifa and b are row vectors, c = a."*b.

The cross and dot products of two vectors are calculated as shown:

a=1[123]; b=1]456];
c = cross(a,b)
c =
-3 6 -3
d = sum(a.lb)
d =
32

csc, csch

Purpose Cosecant and hyperbolic cosecant
Syntax Y = csc(x)
Y = csch(x)
Description The csc and csch functions operate element-wise on arrays. The functions’

domains and ranges include complex values. All angles are in radians.

Y = csc(x) returns the cosecant for each element of x.

Y = csch(x) returns the hyperbolic cosecant for each element of x.

Examples Graph the cosecant and hyperbolic cosecant over the domains —t<x <0 and
O<x<rr.
x1 = —pi+0.01:0.01:-0.01; x2 = 0.01:0.01:pi-0.01;

plot(x1,csc(x1),x2,csc(x2))
plot(x1,csch(x1),x2,csch(x2))

150 100

80
100 1

60
40

50
201

csc(x)
=)
y=csch(x)
=)

y=

220 -
50 4

40 |-
-60

-100 -
-80

E -100
15(?4 -4

1
sin(z)
_1
sinh(z)

Algorithm csc(z) =

csch(z) =

See Also acsc, acsch

2-149

cumprod

Purpose

Syntax

Description

Examples

See Also

2-150

Cumulative product

B = cumprod(Ah)
B = cumprod(A,dim)
B = cumprod(A) returns the cumulative product along different dimensions of

an array.

If Ais a vector, cumprod(A) returns a vector containing the cumulative product
of the elements of A.

If Ais a matrix, cumprod(A) returns a matrix the same size as A containing the
cumulative products for each column of A.

If A is a multidimensional array, cumprod(A) works on the first nonsingleton
dimension.

B = cumprod(A,dim) returns the cumulative product of the elements along the
dimension of A specified by scalar dim. For example, cumprod(A, 1) increments
the first (row) index, thus working along the rows of A.

cumprod(1:5) = [1 2 6 24 120]
A=1123; 45 6];:
disp(cumprod(A))

1 2 3

4 10 18
disp(cumprod(A,2))

1 2 6
4 20 120

cumsum, prod, sum

cumsum

Purpose

Syntax

Description

Examples

See Also

Cumulative sum

w
1

cumsum(A)
cumsum(A,dim)

w
1

B = cumsum(A) returns the cumulative sum along different dimensions of an
array.

If A is a vector, cumsum(A) returns a vector containing the cumulative sum of
the elements of A.

If A'is a matrix, cumsum(A) returns a matrix the same size as A containing the
cumulative sums for each column of A.

If A is a multidimensional array, cumsum(A) works on the first nonsingleton
dimension.

B = cumsum(A,dim) returns the cumulative sum of the elements along the
dimension of A specified by scalar dim. For example, cumsum(A, 1) works across
the first dimension (the rows).

cumsum(1:5) = [1 3 6 10 15]

A=1[123;456];

disp(cumsum(A))
1 2 3
5 7 9
disp(cumsum(A,2))
1 3 6
4 9 15

cumprod, prod, sum

2-151

cumtrapz

Purpose

Syntax

Description

Example

2-152

Cumulative trapezoidal numerical integration

Z = cumtrapz(Y)

Z = cumtrapz(X,Y)

Z = cumtrapz(... dim)

Z = cumtrapz(Y) computes an approximation of the cumulative integral of Y

via the trapezoidal method with unit spacing. (This is similar to cumsum(Y),
except that trapezoidal approximation is used.) To compute the integral with
other than unit spacing, multiply zZ by the spacing increment.

For vectors, cumtrapz(Y) is the cumulative integral of Y.

For matrices, cumtrapz(Y) is a row vector with the cumulative integral over
each column.

For multidimensional arrays, cumtrapz(Y) works across the first nonsingleton
dimension.

Z = cumtrapz(X,Y) computes the cumulative integral of Y with respect to X
using trapezoidal integration. X and Y must be vectors of the same length, or X
must be a column vector and Y an array.

If X is a column vector and Y an array whose first nonsingleton dimension is
length(X), cumtrapz(X,Y) operates across this dimension.

Z = cumtrapz(... dim) integrates across the dimension of Y specified by
scalar dim. The length of X must be the same as size(Y,dim).

Example: IfY = [0 1 2; 3 4 5]

cumtrapz(Y,1)
ans =
0] 1.0000 2.0000
1.5000 2.5000 3.5000

and

cumtrapz(Y,2)
ans =
0 0.5000 2.0000
3.0000 3.5000 8.0000

cumtrapz

See Also cumsum, trapz

2-153

date

Purpose Current date string
Syntax str = date
Description str = date returns a string containing the date in dd-mmm-yyyy format.

See Also clock, datenum, now

2-154

datenum

Purpose

Syntax

Description

Serial date number

datenum(str)
datenum(str,P)
datenum(Y,M,D)
datenum(Y,M,D,H,MI,S)

=2z =2
I n

The datenum function converts date strings and date vectors into serial date
numbers. Date numbers are serial days elapsed from some reference date. By
default, the serial day 1 corresponds to 1-Jan-0000.

N = datenum(str) converts the date string str into a serial date number. Date
strings with two-character years, e.g., 12-june-12, are assumed to lie within
the 100-year period centered about the current year.

NOTE The string str must be in one of the date formats 0, 1, 2, 6, 13, 14, 15,
or 16 as defined by datestr.

N = datenum(str,P) assumes that two-character years lie within the
100-yearperiod beginning with the pivot year p. The default pivot year is the
current year minus 50 years.

N = datenum(Y,M,D) returns the serial date number for corresponding
elements of the Y, M, and D (year, month, day) arrays. Y, M, and D must be arrays
of the same size (or any can be a scalar). Values outside the normal range of
each array are automatically “carried” to the next unit.

N = datenum(Y,M,D,H,MI,S) returns the serial date number for corresponding
elements of the Y, M, D, H, MI, and S (year, month, hour, minute, and second)
array values. Y, M, D, H, MI, and S must be arrays of the same size (or any can be
a scalar).

2-155

datenum

Examples

See Also

2-156

Convert a date string to a serial date number.

n datenum("19-May-19957)

728798

Specifying year, month, and day, convert a date to a serial date number.

n datenum(1994,12,19)

728647

Convert a date string to a serial date number using the default pivot year

n = datenum("12-june-127)

735032

Convert the same date string to a serial date number using 1900 as the pivot
year.

n = datenum("12-june-127, 1900)

698507

datestr, datevec, now

datestr

Purpose

Syntax

Description

Date string format

datestr(D,dateform)
datestr(D,dateform,P)

str

str

str = datestr(D,dateform) converts each element of the array of serial date
numbers (D) to a string. Date strings with two-character years, e.g.,
12-june-12, are assumed to lie within the 100-year period centered about the
current year.

str = datestr(D,dateform,P) assumes that two-character years lie within
the 100-yearperiod beginning with the pivot year p. The default pivot year is
the current year minus 50 years.

The optional argument dateform specifies the date format of the result.
dateform can be either a number or a string:

dateform (number) dateform (string) Example

0 "dd-mmm-yyyy HH:MM:SS* 01-Mar-1995
03:45

1 "dd-mmm-yyyy* 01-Mar-1995

2 “mm/dd/yy* 03701795

3 “mmm* Mar

4 “m* M

5 “mm* 3

6 “mm/dd* 03/01

7 "dd- 1

8 “ddd* Wed

9 “d* W

10 "yyyy”" 1995

11 "yy* 95

2-157

datestr

dateform (number) dateform (string) Example

12 “mmmyy*® Mar95

13 "HH:MM:SS* 15:45:17
14 "HH:MM:SS PM*® 03:45:17 PM
15 "HH:zMM* 15:45

16 "HH:MM PM* 03:45 PM
17 "QQ-YY" 01-96

18 "QQ- Q1

NOTE dateform numbers 0, 1, 2, 6, 13, 14, 15, and 16 produce a string
suitable for input to datenum or datevec. Other date string formats will not
work with these functions.

Time formats like "h:m:s", *h:m:s.s™, "h:m pm™, ... may also be part of the
input array D. If you do not specify dateform, the date string format defaults to

=« 1, if D contains date information only (01-Mar-1995)
= 16, if D contains time information only (03:45 PM)
= 0, if D contains both date and time information (01-Mar-1995 03:45)

See Also date, datenum, datevec

2-158

datevec

Purpose

Description

Examples

See Also

Date components
C = datevec(A)

C = datevec(A,P)
[Y,M,D,H,MI,S] = datevec(A)

C = datevec(A) splits its input into an n-by-6 array with each row containing
the vector [Y,M,D,H,MI,S]. The first five date vector elements are integers.
Input A can either consist of strings of the sort produced by the datestr
function, or scalars of the sort produced by the datenum and now functions. Date
strings with two-character years, e.g., 12-june-12, are assumed to lie within
the 100-year period centered about the current year.

C = datevec(A,P) assumes that two-character years lie within the
100-yearperiod beginning with the pivot year p. The default pivot year is the
current year minus 50 years..

[Y,M,D,H,MI,S] = datevec(A) returns the components of the date vector as
individual variables.

When creating your own date vector, you need not make the components
integers. Any components that lie outside their conventional ranges affect the
next higher component (so that, for instance, the anomalous June 31 becomes
July 1). A zeroth month, with zero days, is allowed.

datevec("12/24/1984")

ans =

1984 12 24 0 0 0

t = "725000.00"7,

Then datevec(d) and datevec(t) generate [1984 12 24 0 0 0].

clock, datenum, datestr

2-159

dbclear

Purpose

Syntax

Description

Remarks

See Also

2-160

Clear breakpoints

dbclear all

dbclear all in mfile
dbclear in mfile

dbclear in mfile at lineno
dbclear in mfile at subfun
dbclear if error

dbclear if warning

dbclear if naninf

dbclear if infnan

dbclear all removes all breakpoints in all M-files, as well as pauses set for
error, warning, and naninf/infnan using dbstop.

dbclear all in mfile removes breakpoints in mfile.

dbclear in mfile removes the breakpoint set at the first executable line in
mfile.

dbclear in mfile at lineno removes the breakpoint set at the line number
lineno in mfile.

dbclear in mfile at subfun removes the breakpoint set at the subfunction
subfun in mfile.

dbclear if error removes the pause set using dbstop if error.
dbclear if warning removes the pause set using dbstop if warning.
dbclear if naninf removes the pause set using dbstop if naninf.

dbclear if infnan removes the pause set using dbstop if infnan.

The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are
optional.

dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup
partialpath

dbcont

Purpose Resume execution
Syntax dbcont
Description dbcont resumes execution of an M-file from a breakpoint. Execution continues

until either another breakpoint is encountered, an error occurs, or MATLAB
returns to the base workspace prompt.

See Also dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

2-161

dbdown

Purpose
Syntax

Description

See Also

2-162

Change local workspace context
dbdown

dbdown changes the current workspace context to the workspace of the called
M-file when a breakpoint is encountered. You must have issued the dbup
command at least once before you issue this command. dbdown is the opposite
of dbup.

Multiple dbdown commands change the workspace context to each successively
executed M-file on the stack until the current workspace context is the current
breakpoint. It is not necessary, however, to move back to the current
breakpoint to continue execution or to step to the next line.

dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dbmex

Purpose

Syntax

Description

See Also

Enable MEX-file debugging

dbmex on
dbmex off
dbmex stop
dbmex print

dbmex on enables MEX-file debugging for UNIX platforms. To use this option,
first start MATLAB from within a debugger by typing: matlab —-Ddebugger,
where debugger is the name of the debugger.

dbmex off disables MEX-file debugging.
dbmex stop returns to the debugger prompt.

dbmex print displays MEX-file debugging information.

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-163

dbquit

Purpose Quit debug mode
Syntax dbquit
Description dbquit immediately terminates the debugger and returns control to the base

workspace prompt. The M-file being processed is not completed and no results
are returned.

All breakpoints remain in effect.

See Also dbclear, dbcont, dbdown, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

2-164

dbstack

Purpose

Syntax

Description

Examples

See Also

Display function call stack

dbstack
[ST,1] = dbstack

dbstack displays the line numbers and M-file names of the function calls that
led to the current breakpoint, listed in the order in which they were executed.
In other words, the line number of the most recently executed function call (at
which the current breakpoint occurred) is listed first, followed by its calling
function, which is followed by its calling function, and so on, until the topmost
M-file function is reached.

[ST,1] = dbstack returns the stack trace information in an m-by-1 structure
ST with the fields:

name Function name

line Function line number

The current workspace index is returned in 1.

dbstack
In /Zusr/local/matlab/toolbox/matlab/cond.m at line 13
In testl.m at line 2

In test.m at line 3

dbclear, dbcont, dbdown, dbquit, dbstatus, dbstep, dbstop, dbtype, dbup

2-165

dbstatus

Purpose

Syntax

Description

See Also

2-166

List all breakpoints

dbstatus
dbstatus function
s = dbstatus(...)

dbstatus lists all breakpoints in effect including error, warning, and naninf.

dbstatus function displays a list of the line numbers for which breakpoints
are set in the specified M-file.

s = dbstatus(...) returns the breakpoint information in an m-by-1
structure with the fields:

name Function name

line Function line number

cond Condition string (error, warning, or
naninf)

Use dbstatus class/function or dbstatus private/function or

dbstatus class/private/function to determine the status for methods,
private functions, or private methods (for a class named class). In all of these
forms you can further qualify the function name with a subfunction name as in
dbstatus function/subfunction.

dbclear, dbcont, dbdown, dbquit, dbstack, dbstep, dbstop, dbtype, dbup

dbstep

Purpose

Syntax

Description

See Also

Execute one or more lines from a breakpoint

dbstep
dbstep nlines
dbstep in

This command allows you to debug an M-file by following its execution from the
current breakpoint. At a breakpoint, the dbstep command steps through
execution of the current M-file one line at a time or at the rate specified by
nlines.

dbstep, by itself, executes the next executable line of the current M-file. dbstep
steps over the current line, skipping any breakpoints set in functions called by
that line.

dbstep nlines executes the specified number of executable lines.

dbstep in steps to the next executable line. If that line contains a call to
another M-file, execution resumes with the first executable line of the called

file. If there is no call to an M-file on that line, dbstep in is the same as dbstep.

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype, dbup

2-167

dbstop

Purpose

Syntax

Description

2-168

Set breakpoints in an M-file function

mfile
mfile at lineno
mFile at subfun
error

dbstop
dbstop
dbstop
dbstop
dbstop if warning
dbstop if naninf
dbstop if infnan

TR TR TR TR T
= 3 3 5

dbstop in mfile temporarily stops execution of mfile when you run it, at the
first executable line, putting MATLAB in debug mode. If you have graphical
debugging enabled, the MATLAB Debugger opens with a breakpoint at the
first executable line of mFile. You can then use the debugging utilities, review
the workspace, or issue any valid MATLAB command. Use dbcont or dbstep to
resume execution of mfile. Use dbquit to exit from the Debugger.

dbstop in mfile at lineno temporarily stops execution of mfile when you
run it, just prior to execution of the line whose number is lineno, putting
MATLAB in debug mode. If you have graphical debugging enabled, the
MATLAB Debugger opens mfi le with a breakpoint at line Iineno. If that line
is not executable, execution stops and the breakpoint is set at the next
executable line following Iineno. When execution stops, you can use the
debugging utilities, review the workspace, or issue any valid MATLAB
command. Use dbcont or dbstep to resume execution of mfile. Use dbquit to
exit from the Debugger.

dbstop in mfile at subfun temporarily stops execution of mfile when you
run it, just prior to execution of the subfunction subfun, putting MATLAB in
debug mode. If you have graphical debugging enabled, the MATLAB Debugger
opens mfi le with a breakpoint at the subfunction specified by subfun. You can
then use the debugging utilities, review the workspace, or issue any valid
MATLAB command. Use dbcont or dbstep to resume execution of mFile. Use
dbquit to exit from the Debugger.

dbstop if error stops execution when any M-file you subsequently run
produces a run-time error, putting MATLAB in debug mode, paused at the line

dbstop

Remarks

Examples

that generated the error. You cannot resume execution after an error. Use
dbquit to exit from the Debugger.

dbstop if warning stops execution when any M-file you subsequently run
produces a run-time warning, putting MATLAB in debug mode, paused at the
line that generated the warning. Use dbcont or dbstep to resume execution.

dbstop if naninf stops execution when any M-file you subsequently run
encounters an infinite value (1nf), putting MATLAB in debug mode, paused at
the line where Inf was encountered. Use dbcont or dbstep to resume
execution. Use dbquit to exit from the Debugger.

dbstop if infnan stops execution when any M-file you subsequently run
encounters a value that is not a number (NaN), putting MATLAB in debug
mode, paused at the line where NaN was encountered. Use dbcont or dbstep to
resume execution. Use dbquit to exit from the Debugger.

The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are
optional.
The file buggy, used in these examples, consists of three lines.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Example 1 - Stop at First Executable Line

The statements

dbstop in buggy
buggy(2:5)

stop execution at the first executable line in buggy
n = length(x);
The command

dbstep

advances to the next line, at which point, you can examine the value of n.

2-169

dbstop

Example 2 — Stop if Error
Because buggy only works on vectors, it produces an error if the input x is a full
matrix. The statements

dbstop if error
buggy(magic(3))

produce

??? Error using ==> ./
Matrix dimensions must agree.
Error in ==> c:\buggy.m

On line 3 ==> z = (1:n)./Xx;
K»

and put MATLAB in debug mode.

Example 3 - Stop if Inf

In buggy, if any of the elements of the input x are zero, a division by zero occurs.
The statements

dbstop if naninf
buggy(0:2)

produce

Warning: Divide by zero.
> In c:\buggy.-m at line 3
K>

and put MATLAB in debug mode.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbtype, dbup,
partialpath

2-170

dbtype

Purpose List M-file with line numbers

Syntax dbtype function
dbtype function start:end

Description dbtype function displays the contents of the specified M-file function with
line numbers preceding each line. function must be the name of an M-file
function or a MATLABPATH relative partial pathname.

dbtype function start:end displays the portion of the file specified by a
range of line numbers.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbup,
partialpath

2-171

dbup

Purpose
Syntax

Description

See Also

2-172

Change local workspace context
dbup

This command allows you to examine the calling M-file by using any other
MATLAB command. In this way, you determine what led to the arguments
being passed to the called function.

dbup changes the current workspace context (at a breakpoint) to the workspace
of the calling M-file.

Multiple dbup commands change the workspace context to each previous
calling M-file on the stack until the base workspace context is reached. (It is
not necessary, however, to move back to the current breakpoint to continue
execution or to step to the next line.)

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype

dblquad

Purpose

Syntax

Description

Example

Numerical double integration

result = dblquad("fun®, inmin, inmax,outmin,outmax)
result = dblquad("fun®, inmin, inmax,outmin,outmax,tol,trace)
result = dblquad("fun®, inmin, inmax,outmin,outmax,tol,trace,order)

result = dblquad("fun”,inmin, inmax,outmin,outmax) evaluates the
double integral fun(inner,outer) using the quad quadrature function. inner is
the inner variable, ranging from inmin to inmax, and outer is the outer
variable, ranging from outmin to outmax. The first argument "fun' is a string
representing the integrand function. This function must be a function of two
variables of the form fout = fun(inner,outer). The function must take a
vector inner and a scalar outer and return a vector fout that is the function
evaluated at outer and each value of inner.

result = dblquad("fun®, inmin, inmax,outmin,outmax,tol,trace) passes
tol and trace to the quad function. See the help entry for quad for a description
of the tol and trace parameters.

result = dblquad("fun®, inmin, inmax,outmin,outmax,tol,trace,order)
passes tol and trace to the quad or quad8 function depending on the value of
the string order. Valid values for order are "quad® and "quad8* or the name
of any user-defined quadrature method with the same calling and return
arguments as quad and quads.

result = dblquad(”integrnd”,pi,2*pi,0,pi) integrates the function
y*sin(x)+x*cos(y), where x ranges from mtto 2m, and y ranges from 0 to 1,
assuming:

=« x is the inner variable in the integration.

=y is the outer variable.

=« the M-file integrnd.m is defined as:

function out = integrnd(x, Yy)
out = y*sin(X)+x*cos(y);

Note that integrnd.m is valid when x is a vector and y is a scalar. Also, x must
be the first argument to integrnd.m since it is the inner variable.

2-173

dblquad

See Also quad, quad8

2-174

ddeadv

Purpose

Syntax

Description

Arguments

Set up advisory link

rc = ddeadv(channel, "item", "callback")

rc = ddeadv(channel, "item", "callback”, "upmtx*)

rc = ddeadv(channel, "item", "callback”, "upmtx”,format)

rc = ddeadv(channel, "item", "callback"”, "upmtx”,format, timeout)

ddeadv sets up an advisory link between MATLAB and a server application.
When the data identified by the item argument changes, the string specified by
the callback argument is passed to the eval function and evaluated. If the
advisory link is a hot link, DDE modifies upmtx, the update matrix, to reflect
the data in item.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

rc Return code: 0 indicates failure, 1 indicates success.
channel Conversation channel from ddeinit.
item String specifying the DDE item name for the advisory link.

Changing the data identified by item at the server triggers the
advisory link.

cal Iback String specifying the callback that is evaluated on update
notification. Changing the data identified by item at the server
causes cal Iback to get passed to the eval function to be
evaluated.

upmtx String specifying the name of a matrix that holds data sent

(optional) with an update notification. If upmtx is included, changing
item at the server causes upmtx to be updated with the revised
data. Specifying upmtx creates a hot link. Omitting upmtx or
specifying it as an empty string creates a warm link. If upmtx
exists in the workspace, its contents are overwritten. If upmtx
does not exist, it is created.

2-175

ddeadv

Examples

See Also

2-176

format
(optional)

timeout
(optional)

Two-element array specifying the format of the data to be sent
on update. The first element specifies the Windows clipboard
format to use for the data. The only currently supported format
is cf_text, which corresponds to a value of 1. The second
element specifies the type of the resultant matrix. Valid types
are numeric (the default, which corresponds to a value of 0)
and string (which corresponds to a value of 1). The default
format array is [1 0].

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). If
advisory link is not established within timeout milliseconds,
the function fails. The default value of timeout is three
seconds.

Set up a hot link between a range of cells in Excel (Row 1, Column 1 through
Row 5, Column 5) and the matrix x. If successful, display the matrix:

rc = ddeadv(channel, "rlcl:r5c5", "disp(X)", "Xx");

Communication with Excel must have been established previously with a
ddeinit command.

ddeexec, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

ddeexec

Purpose

Syntax

Description

Arguments

Examples

See Also

Send string for execution

rc
rc
rc

ddeexec(channel, "command*®)
ddeexec(channel, "command®, "item")
ddeexec(channel, "command®, "item", timeout)

ddeexec sends a string for execution to another application via an established
DDE conversation. Specify the string as the command argument.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

rc
channel
command

item
(optional)

timeout
(optional)

Return code: 0 indicates failure, 1 indicates success.
Conversation channel from ddeinit.
String specifying the command to be executed.

String specifying the DDE item name for execution. This
argument is not used for many applications. If your application
requires this argument, it provides additional information for
command. Consult your server documentation for more
information.

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

Given the channel assigned to a conversation, send a command to Excel:

rc = ddeexec(channel, "[formula.goto(*'ricl™)]")

Communication with Excel must have been established previously with a
ddeinit command.

ddeadv, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

2-177

ddeinit

Purpose
Syntax

Description

Examples

See Also

2-178

Initiate DDE conversation

channel = ddeinit("service®, "topic")

channel = ddeinit("service","topic") returns a channel handle assigned
to the conversation, which is used with other MATLAB DDE functions.
"service-" is a string specifying the service or application name for the

conversation. "topic" is a string specifying the topic for the conversation.

To initiate a conversation with Excel for the spreadsheet "stocks.xlIs":

channel = ddeinit("excel”,"stocks.xlIs")

channel =
0.00

ddeadv, ddeexec, ddepoke, ddereq, ddeterm, ddeunadv

ddepoke

Purpose

Syntax

Description

Arguments

Send data to application

rc = ddepoke(channel, "item" ,data)
rc = ddepoke(channel, "item" ,data, format)
rc = ddepoke(channel, "item" ,data, format, timeout)

ddepoke sends data to an application via an established DDE conversation.
ddepoke formats the data matrix as follows before sending it to the server
application:

= String matrices are converted, element by element, to characters and the
resulting character buffer is sent.

= Numeric matrices are sent as tab-delimited columns and carriage-return,
line-feed delimited rows of numbers. Only the real part of nonsparse
matrices are sent.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

rc Return code: 0 indicates failure, 1 indicates success.

channel Conversation channel from ddeinit.

item String specifying the DDE item for the data sent. Item is the
server data entity that is to contain the data sent in the data
argument.

data Matrix containing the data to send.

format Scalar specifying the format of the data requested. The value

(optional) indicates the Windows clipboard format to use for the data

transfer. The only format currently supported is cf_text,
which corresponds to a value of 1.

timeout Scalar specifying the time-out limit for this operation. timeout
(optional) is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

2-179

ddepoke

Examples

See Also

2-180

Assume that a conversation channel with Excel has previously been
established with ddeinit. To send a 5-by-5 identity matrix to Excel, placing the
data in Row 1, Column 1 through Row 5, Column 5:

rc = ddepoke(channel, "rlcl:r5c5", eye(5));

ddeadv, ddeexec, ddeinit, ddereq, ddeterm, ddeunadv

ddereq

Purpose

Syntax

Description

Arguments

Examples

Request data from application

data = ddereqg(channel,"item®)
data = ddereq(channel, "item" ,format)
data = ddereq(channel, "item",format, timeout)

ddereq requests data from a server application via an established DDE
conversation. ddereq returns a matrix containing the requested data or an
empty matrix if the function is unsuccessful.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

data Matrix containing requested data, empty if function fails.
channel Conversation channel from ddeinit.
item String specifying the server application's DDE item name for

the data requested.

format Two-element array specifying the format of the data requested.

(optional) The first element specifies the Windows clipboard format to
use. The only currently supported format is cf_text, which
corresponds to a value of 1. The second element specifies the
type of the resultant matrix. Valid types are numeric (the
default, which corresponds to 0) and string (which
corresponds to a value of 1). The default format array is [1 0].

timeout Scalar specifying the time-out limit for this operation. timeout
(optional) is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

Assume that we have an Excel spreadsheet stocks.xls. This spreadsheet
contains the prices of three stocks in row 3 (columns 1 through 3) and the
number of shares of these stocks in rows 6 through 8 (column 2). Initiate
conversation with Excel with the command:

channel = ddeinit("excel”,"stocks.xlIs")

DDE functions require the rxcy reference style for Excel worksheets. In Excel
terminology the prices are in r3cl:r3c3 and the shares in ré6c2:r8c2.

2-181

ddereq

To request the prices from Excel:

prices = ddereq(channel, "r3cl:r3c3")

prices
42 .50 15.00 78.88

To request the number of shares of each stock:

shares = ddereq(channel, "r6c2:r8c2%)

shares =
100.00
500.00
300.00
See Also ddeadv, ddeexec, ddeinit, ddepoke, ddeterm, ddeunadv

2-182

ddeterm

Purpose
Syntax

Description

Examples

See Also

Terminate DDE conversation

ddeterm(channel)

rc

rc = ddeterm(channel) accepts a channel handle returned by a previous call
to ddeinit that established the DDE conversation. ddeterm terminates this
conversation. rc is a return code where 0 indicates failure and 1 indicates
success.

To close a conversation channel previously opened with ddeinit:

rc = ddeterm(channel)

rc =

1.00

ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeunadv

2-183

ddeunadyv

Purpose Release advisory link
Syntax rc = ddeunadv(channel,"item")
rc = ddeunadv(channel, "item",format)
rc = ddeunadv(channel, "item",format, timeout)
Description ddeunadyv releases the advisory link between MATLAB and the server

application established by an earlier ddeadv call. The channel, item, and
format must be the same as those specified in the call to ddeadv that initiated
the link. If you include the timeout argument but accept the default format,
you must specify format as an empty matrix.

Arguments rc Return code: 0 indicates failure, 1 indicates success.
channel Conversation channel from ddeinit.
item String specifying the DDE item name for the advisory link.

Changing the data identified by item at the server triggers the
advisory link.

format Two-element array. This must be the same as the format
(optional) argument for the corresponding ddeadv call.

timeout Scalar specifying the time-out limit for this operation. timeout
(optional) is specified in milliseconds. (1000 milliseconds = 1 second). The

default value of timeout is three seconds.

Example To release an advisory link established previously with ddeadv:
rc = ddeunadv(channel, "rlcl:r5c57)
rc =
1.00
See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeterm

2-184

deal

Purpose

Syntax

Description

Remarks

Deal inputs to outputs

[Y1.Y2,Y3,...]
[Y1.Y2,Y3,...]

deal (X)
deal (X1,X2,X3,...)

[Y1,Y2,Y3,...] = deal(X) copies the single input to all the requested
outputs. Itisthe sameas Yl = X, Y2 = X,Y3 = X, ...

[Y1,Y2,Y3,...] = deal (X1,X2,X3,...) isthe same as Y1 = X1;Y2 = X2;
Y3 = X3; ...

deal is most useful when used with cell arrays and structures via comma
separated list expansion. Here are some useful constructions:

[S-field] = deal (X) sets all the fields with the name field in the structure
array S to the value X. If S doesn't exist, use [S(1:m).field] = deal(X).

[X{:}]1 = deal(A.field) copies the values of the field with name field to
the cell array X. If X doesn't exist, use [X{1:m}] = deal (A.field).

[Y1,Y2,Y3,...] = deal(X{:}) copies the contents of the cell array X to the
separate variables Y1,Y2,Y3,...

[Y1,Y2,Y3,...] = deal(S.field) copies the contents of the fields with the
name field to separate variables Y1,Y2,Y3,...

2-185

deal

Examples Use deal to copy the contents of a 4-element cell array into four separate output
variables.

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a.b,c,d] = deal(C{:})

a =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214
b =
1
1
1
C =
1 0 0
0 1 0
0 0 1
d =
0
0
0

2-186

deal

Use deal to obtain the contents of all the name fields in a structure array:

A_name = "Pat"; A.number = 176554;
A(2).name = "Tony"; A(2).number = 901325;
[namel,name2] = deal (A(:).-name)

namel

Pat

name2

Tony

2-187

deblank

Purpose

Syntax

Description

Examples

2-188

Strip trailing blanks from the end of a string

str = deblank(str)
c = deblank(c)

Thedeblank function is useful for cleaning up the rows of a character array.

str = deblank(str) removes the trailing blanks from the end of a character
string str.

c = deblank(c), when c is a cell array of strings, applies deblank to each
element of c.

A{1,1} = "MATLAB "

A{1,2} = "SIMULINK "

A{2,1} = "Toolboxes "

A{2,2} = "The MathWorks "

A =
"MATLAB " "SIMULINK "
"Toolboxes - "The MathWorks -

deblank(A)

ans =
"MATLAB* "SIMULINK"
"Toolboxes™ "The MathWorks*

dec2base

Purpose

Syntax

Description

Examples

See Also

Decimal number to base conversion

dec2base(d,base)
dec2base(d,base,n)

str
str

str = dec2base(d,base) converts the nonnegative integer d to the specified
base.d must be a nonnegative integer smaller than 2752, and base must be an
integer between 2 and 36. The returned argument str is a string.

str = dec2base(d,base,n) produces a representation with at least n digits.

The expression dec2base(23,2) converts 23, to base 2, returning the string
"10111°".

base2dec

2-189

dec2bin

Purpose Decimal to binary number conversion
Syntax str = dec2bin(d)
str = dec2bin(d,n)
Description str = dec2bin(d) returns the binary representation of d as a string. d must be

S 52
a nonnegative integer smaller than 27 .

str = dec2bin(d,n) produces a binary representation with at least n bits.
Examples dec2bin(23) returns "10111°".

See Also bin2dec, dec2hex

2-190

dec2hex

Purpose

Syntax

Description

Examples

See Also

Decimal to hexadecimal number conversion

str = dec2hex(d)
str = dec2hex(d,n)
str = dec2hex(d) converts the decimal integer d to its hexadecimal

representation 5sztored in a MATLAB string. d must be a nonnegative integer
smaller than 27"

str = dec2hex(d,n) produces a hexadecimal representation with at least n
digits.

dec2hex(1023) is the string "3fFf".

dec2bin, fFormat, hex2dec, hex2num

2-191

deconv

Purpose
Syntax

Description

Examples

Algorithm

See Also

2-192

Deconvolution and polynomial division

deconv(v,u)

[a.r]

[g,r] = deconv(v,u) deconvolves vector u out of vector v, using long division.
The quotient is returned in vector g and the remainder in vector r such that v
= conv(u,q)+r.

If u and v are vectors of polynomial coefficients, convolving them is equivalent
to multiplying the two polynomials, and deconvolution is polynomial division.
The result of dividing v by u is quotient g and remainder r.

If

u
Vv

[L 2 3 4]
[10 20 30]

the convolution is

(]
C =

conv(u,Vv)

10 40 100 160 170 120

Use deconvolution to recover u:
[q,r] = deconv(c,u)
q =
10 20 30
0 0 0 0 0 0
This gives a quotient equal to v and a zero remainder.

deconv uses the filter primitive.

convmtx, conv2, and filter in the Signal Processing Toolbox, and:

conv, residue

del2

Purpose

Syntax

Definition

Discrete Laplacian

del2(U)

del2(U,h)

del2(U, hx,hy)
del2(U,hx,hy,hz,...)

| e i
I

If the matrix U is regarded as a function u(x,y) evaluated at the point on a
square grid, then 4fdel2(V) is a finite difference approximation of Laplace’s
differential operator applied to u, that is:

| = Dou_ 10, g%
4 AQy? dy2D

where:

=1

ij 4(+

Uipg jHUimg jHUi jan t U 1)U

in the interior. On the edges, the same formula is applied to a cubic
extrapolation.

For functions of more variables u(x,y,z,...), del2(U) is an approximation,

o
c
o
c

|:|:|_2u:i2+
2N 2N X

+
+
ooo

N
N

E
o
<
o
N

where N is the number of variables in u.

2-193

del2

Description

2-194

L = del2(U) where U is a rectangular array is a discrete approximation of

|- Do
4

The matrix L is the same size as U with each element equal to the difference
between an element of U and the average of its four neighbors.

L = del2(U) when U is an multidimensional array, returns an approximation
of

Ou

u
2N

where N is ndims(u).

L = del2(U,h) whereHisascalar uses H as the spacing between points in each
direction (h=1 by default).

L = del2(U,hx,hy) when U is a rectangular array, uses the spacing specified
by hx and hy. If hx is a scalar, it gives the spacing between points in the
x-direction. If hx is a vector, it must be of length size(u,2) and specifies the
x-coordinates of the points. Similarly, if hy is a scalar, it gives the spacing
between points in the y-direction. If hy is a vector, it must be of length
size(u, 1) and specifies the y-coordinates of the points.

L = del2(U,hx,hy,hz,._.) where U is multidimensional uses the spacing
given by hx, hy, hz, ...

del2

Examples The function
u(x,y) = x2+y?2
has
O2u = 4

For this function, 4del2(V) is also 4.

[x,y] = meshgrid(—4:4,-3:3);
U= X.k+y.lyy

U =
25 18 13 10 9 10 13 18 25
20 13 8 5 4 5 8 13 20
17 10 5 2 1 2 5 10 17
16 9 4 1 0 1 4 9 16
17 10 5 2 1 2 5 10 17
20 13 8 5 4 5 8 13 20
25 18 13 10 9 10 13 18 25

V = 4mdel2(U)

V =
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4

See Also diff, gradient

2-195

delaunay

Purpose

Syntax

Definition

Description

Remarks

2-196

Delaunay triangulation

TRI delaunay(x,y)

TRI

delaunay(x,y, "sorted®)

Given a set of data points, the Delaunay triangulation is a set of lines
connecting each point to its natural neighbors. The Delaunay triangulation is
related to the Voronoi diagram— the circle circumscribed about a Delaunay
triangle has its center at the vertex of a VVoronoi polygon.

N\

X

J/\ — Delaunay triangle
Voronoi polygon
TRI = delaunay(x,y) returns a set of triangles such that no data points are

contained in any triangle's circumscribed circle. Each row of the m-by-3 matrix
TRI defines one such triangle and contains indices into the vectors x and .

To avoid the degeneracy of collinear data, delaunay adds some random fuzz to
the data. The default fuzz standard deviation 4*sgrt(eps) has been chosen to
maintain about seven digits of accuracy in the data.

tri = delaunay(x,y,fuzz) uses the specified value for the fuzz standard
deviation. It is possible that no value of fuzz produces a correct triangulation.
In this unlikely situation, you need to preprocess your data to avoid collinear
or nearly collinear data.

TRI = delaunay(Xx,y, "sorted") assumes that the points x and y are sorted
first by y and then by x and that duplicate points have already been eliminated.

The Delaunay triangulation is used with: griddata (to interpolate scattered
data), convhull, voronoi (to compute the voronoi diagram), and is useful by
itself to create a triangular grid for scattered data points.

delaunay

The functions dsearch and tsearch search the triangulation to find nearest
neighbor points or enclosing triangles, respectively.

Examples This code plots the Delaunay triangulation for 10 randomly generated points.

rand("state”,0);

x = rand(1,10);

y = rand(1,10);

TRI = delaunay(x,y);

subplot(1,2,1),--.
trimesh(TRI,X,y,zeros(size(x))); view(2), ...
axis([0 1 0 1]); hold on;

plot(x,y,"0");

set(gca, "box","on");

Compare the Voronoi diagram of the same points:

[vx, vy] = voronoi(x,y,TRI);
subplot(1,2,2), ...

plot(x,y, r+",vx,vy,"b-"), ...
axis([0O 1 0 1D

2-197

delaunay

See Also

2-198

0.1

0.5 1

0.8r

0.7r

0.5r

0.41

0.21

0.1-

+

0.5

convhull, dsearch, griddata, tsearch, voronoi

delete

Purpose Delete files and graphics objects
Syntax delete filename
delete(h)
Description delete filename deletes the named file. Wildcards may be used.

delete(h) deletes the graphics object with handle h. The function deletes the
object without requesting verification even if the object is a window.

Use the functional form of delete, such as delete("filename™), when the
filename is stored in a string.

See Also dir, type

2-199

det

Purpose
Syntax

Description

Remarks

Algorithm

Examples

See Also

2-200

Matrix determinant

o
1

det(X)

d = det(X) returns the determinant of the square matrix X. If X contains only
integer entries, the result d is also an integer.

Using det(X) == 0 as a test for matrix singularity is appropriate only for
matrices of modest order with small integer entries. Testing singularity using
abs(det(X)) <= tolerance is not recommended as it is difficult to choose the
correct tolerance. The function cond(X) can check for singular and nearly
singular matrices.

The determinant is computed from the triangular factors obtained by Gaussian

elimination

[L.U] = lu(A)
s = det(L) % This is always +1 or -1

det(A) = slprod(diag(V))

The statementA =[1 2 3; 4 5 6; 7 8 9]

produces
A =
1 2 3
4 5 6
7 8 9

This happens to be a singular matrix, sod = det(A) producesd = 0.
Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix. Now
d = det(A) producesd = 27.

cond, condest, inv, lu, rref

The arithmetic operators \, /

detrend

Purpose

Syntax

Description

Remove linear trends.

y = detrend(x)
y = detrend(Xx, "constant®)
y = detrend(x, "linear”,bp)

detrend removes the mean value or linear trend from a vector or matrix,
usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and returns it
iny. If x is a matrix, detrend removes the trend from each column.

y = detrend(x, "constant™) removes the mean value from vector x or, if x is
a matrix, from each column of the matrix.

y = detrend(Xx, "linear" ,bp) removes a continuous, piecewise linear trend
from vector x or, if x is a matrix, from each column of the matrix. Vector bp
contains the indices of the breakpoints between adjacent linear segments. The
breakpoint between two segments is defined as the data point that the two
segments share.

breakpoints

detrend(x, "linear™), with no breakpoint vector specified, is the same as
detrend(x).

2-201

detrend

Example

Algorithm

See Also

2-202

sig=[01-2101-210]; % signal with no linear trend
trend = [012343210]; % two-segment linear trend

X = sig+trend; 4 signal with added trend

y = detrend(x, "linear-,5) % breakpoint at 5th element

X

y:

-0.0000
1.0000
-2.0000
1.0000
0.0000
1.0000
-2.0000
1.0000
-0.0000

Note that the breakpoint is specified to be the fifth element, which is the data
point shared by the two segments.

detrend computes the least-squares fit of a straight line (or composite line for
piecewise linear trends) to the data and subtracts the resulting function from
the data. To obtain the equation of the straight-line fit, use polyfit.

polyfit

diag

Purpose

Syntax

Description

Examples

See Also

Diagonal matrices and diagonals of a matrix

diag(v,k)
diag(v)
diag(X,k)
diag(X)

< < X X
1

X = diag(v,k) when v is a vector of n components, returns a square matrix X
of order n+abs(k), with the elements of v on the kth diagonal. k = 0 represents
the main diagonal, k > 0 above the main diagonal, and k < 0 below the main
diagonal.

k=0 k>0
k<0 eoe

X

diag(v) puts v on the main diagonal, same as above with k = 0.

v = diag(X,k) for matrix X, returns a column vector v formed from the
elements of the kth diagonal of X.

v = diag(X) returns the main diagonal of X, same as above with k = 0.

diag(diag(X)) is a diagonal matrix.

sum(diag(X)) is the trace of X.

The statement
diag(—m:m)+diag(ones(2in,1),1)+diag(ones(2in,1),-1)

produces a tridiagonal matrix of order 2(m+1.

spdiags, tril, triu

2-203

diary

Purpose

Syntax

Description

Remarks

Limitations

2-204

Save session in a disk file

diary

diary filename
diary off
diary on

The diary command creates a log of keyboard input and system responses. The
output of diary is an ASCII file, suitable for printing or for inclusion in reports
and other documents.

diary toggles diary mode on and off.

diary filename writes a copy of all subsequent keyboard input and most of
the resulting output (but not graphs) to the named file. If the file already exists,
output is appended to the end of the file.

diary off suspends the diary.

diary on resumes diary mode using the current filename, or the default
filename diary if none has yet been specified.

The function form of the syntax, diary("filename"), is also permitted.

You cannot put a diary into the files named off and on.

diff

Purpose

Syntax

Description

Remarks

Differences and approximate derivatives

Y = diff(X)
Y = diff(X,n)

Y = diff(X,n,dim)

Y = diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element shorter than X, of
differences between adjacent elements:

[X(2)-X(1) X(3)—X(2) --- X(n)—X(n-1)]

If X is a matrix, then di ff(X) returns a matrix of column differences:
[X2:m,:)-X(1:m-1,:)]

In general, diff(X) returns the differences calculated along the first

non-singleton (size(X,dim) > 1) dimension of X.

Y = diff(X,n) applies diff recursively n times, resulting in the nth
difference. Thus, diff(X,2) is the same as diff(diff(X)).

Y = diff(X,n,dim) is the nth difference function calculated along the
dimension specified by scalar dim. If order n equals or exceeds the length of
dimension dim, diff returns an empty array.

Since each iteration of diff reduces the length of X along dimension dim, it is
possible to specify an order n sufficiently high to reduce dim to a singleton
(size(X,dim) = 1) dimension. When this happens, diff continues calculating
along the next nonsingleton dimension.

2-205

diff

Examples The quantity diff(y)./diff(x) is an approximate derivative.
x = [12 3 45];
y = diff(x)
y =
1 1 1 1
z = diff(x,2)
zZ =
0 0 0
Given,

A = rand(1,3,2,4);
diff(A) is the first-order difference along dimension 2.

diff(A,3,4) is the third-order difference along dimension 4.

See Also gradient, prod, sum

2-206

dir

Purpose Directory listing

Syntax dir
dir dirname
names = dir
names = dir("dirname®)

Description dir lists the files in the current directory.

dir dirname lists the files in the specified directory. You can use pathnames
and wildcards.

names = dir("dirname”) returns the list of files in the specified directory (or
the current directory if dirname is not specified) to an m-by-1 structure with the

fields:
name Filename
date Modification date
bytes Number of bytes allocated to the file
isdir 1 if name is a directory; 0 if not
Examples cd /Matlab/Toolbox/Local; dir

Contents.m matlabrc.m siteid.m userpath.m

names = dir

names

4x1 struct array with fields:
name
date
bytes
isdir

See Also cd, delete, Is, type, what

2-207

disp

Purpose
Syntax

Description

Examples

See Also

2-208

Display text or array
disp(X)
disp(X) displays an array, without printing the array name. If X contains a

text string, the string is displayed.

Another way to display an array on the screen is to type its name, but this
prints a leading “X =,” which is not always desirable.

One use of disp in an M-file is to display a matrix with column labels:

disp(” Corn Oats Hay™)
disp(rand(5,3))

which results in

Corn Oats Hay
0.2113 0.8474 0.2749
0.0820 0.4524 0.8807
0.7599 0.8075 0.6538
0.0087 0.4832 0.4899
0.8096 0.6135 0.7741

format, int2str, num2str, rats, sprintf

dimread

Purpose

Syntax

Description

Remarks

See Also

Read an ASCII delimited file into a matrix

M = dImread(filename,delimiter)

M = dImread(filename,delimiter,r,c)

M = dImread(filename,delimiter,range)

M = dImread(Filename,delimiter) reads data from the ASCII delimited

format filename, using the delimiter delimiter. A comma (,) is the default
delimiter. Use "\t" to specify a tab delimiter.

M = dImread(filename,delimiter,r,c) readsdatafromthe ASCII delimited
format filename, using the delimiter delimiter, starting at file offset r and c,
where r is the row offset and c is the column offset. r and c are zero based so
that r=0, c=0 specifies the first value in the file, which is the upper left corner.
A comma (,) is the default delimiter. Use "\t" to specify a tab delimiter.

M = dImread(filename,delimiter,range) imports an indexed or named
range of ASCII-delimited data, using the delimiter delimiter. A comma (,) is
the default delimiter. Use "\t" to specify a tab delimiter. Specify range by

range = [UpperLeftRow UpperLeftColumn LowerRightRow
LowerRightColumn]

or using spreadsheet notation, for example,

range = "al..b7"
dImread fills empty delimited fields with zero. Data files having lines that end
with a non-space delimiter produce a result that has an additional last column

of zeros.

dImwrite, textread, wklread, wklwrite

2-209

dimwrite

Purpose

Syntax

Description

Remarks

See Also

2-210

Write a matrix to an ASCII delimited file

dimwrite(filename,A,delimiter)
dimwrite(filename,A,delimiter,r,c)

The dImwrite command a MATLAB matrix.

dimwrite(filename,A,delimiter) converts matrix A into an ASCII-format
file, readable by spreadsheet programs. The data is written to the upper
left-most cell of the spreadsheet filename, using del imiter to separate matrix
elements. A comma (,) is the default delimiter. Use "\t" to produce
tab-delimited files.

dimwrite(filename,A,delimiter,r,c) converts matrix A into an
ASCII-format file, readable by spreadsheet programs, using delimiter to
separate matrix elements. The data is written to the spreadsheet filename,
starting at spreadsheet cell r and c, where r is the row offset and c is the
column offset.r and c are zero based so that r=0, c=0 specifies the first value in
the file, which is the upper left corner. A comma (,) is the default delimiter. Use
"\t" to specify a tab delimiter.

Any elements whose value is 0 will be omitted. For example, the array [1 0 2]
will appear in a file as "1, ,2" when the delimiter is a comma.

dImread, wklread, wklwrite

dmperm

Purpose

Syntax

Description

Dulmage-Mendelsohn decomposition

p = dmperm(A)
[p.d.r] = dmperm(A)
[p.q,r,s] = dmperm(A)

If Ais a reducible matrix, the linear system Ax= b can be solved by permuting
A to a block upper triangular form, with irreducible diagonal blocks, and then
performing block backsubstitution. Only the diagonal blocks of the permuted
matrix need to be factored, saving fill and arithmetic in the blocks above the

diagonal.

p = dmperm(A) returns a row permutation p so that if A has full column rank,
A(p, :) is square with nonzero diagonal. This is also called a maximum
matching.

[p.q,r] = dmperm(A) where A is a square matrix, finds a row permutation p
and a column permutation q so that A(p,q) is in block upper triangular form.
The third output argument r is an integer vector describing the boundaries of
the blocks: The kth block of A(p,q) has indices r(k) :r(k+1)-1.

[p.q,r,s] = dmperm(A), where A is not square, finds permutations p and q
and index vectors r and s so that A(p,q) is block upper triangular. The blocks
have indices (r(i):r(i+1)-1, s(i):s(i+1)-1).

In graph theoretic terms, the diagonal blocks correspond to strong Hall
components of the adjacency graph of A.

2-211

doc

Purpose

Syntax

Description

See Also

2-212

Display HTML documentation in a Web browser

doc
doc function
doc toolbox/function

doc launches the Help Desk.

doc function displays the HTML documentation for the MATLAB function
function. If function is overloaded, doc lists the overloaded functions in the
MATLAB command window.

doc toolbox/function displays the HTML documentation for the specified
toolbox function.

help, helpdesk, helpwin, lookfor, type

docopt

Purpose

Syntax

Description

Remarks

See Also

Display location of help file directory for UNIX platforms

docopt
[doccmd, options,docpath]=docopt

docopt displays the location of the online help file directory. It is used for UNIX
platforms only. (For the PC, select Preferences from the File menu to view or
change the online help file directory location.) You specify where the online
help information will be located when you install MATLAB. It can be on a disk
or CD-ROM in your local system. If you relocate your online help file directory,
edit the docopt.m file, changing the location in it.

[doccmd, options,docpath]=docopt displays three strings: doccmd, options,
and docpath.

doccmd The command that doc uses to display MATLAB
documentation. The default is netscape.

options Additional configuration options for use with doccmd.

docpath The path to the MATLAB online help files. If docpath is empty,
the DOC command assumes the help files are in the default
location.

To globally replace the online help file directory location, update $SMATLAB/
toolbox/local/docopt.m.

To override the global setting, copy $MATLAB/toolbox/local/docopt.m to
$HOME/matlab/docopt.m and make changes there. For the changes to take
effect in the current MATLAB session, $HOME/matlab must be on your
MATLAB path.

doc, help, helpdesk, helpwin, lookfor, type

2-213

double

Purpose Convert to double precision
Syntax double(X)
Description double(x) returns the double precision value for X. If X is already a double

precision array, double has no effect.
Remarks double is called for the expressions in for, if, and whi le loops if the expression

isn't already double precision. double should be overloaded for any object when
it makes sense to convert it to a double precision value.

2-214

dsearch

Purpose

Syntax

Description

See Also

Search for nearest point

K = dsearch(x,y,TRI ,xi,yi)
K = dsearch(x,y,TRIl,xi,yi,S)
K = dsearch(x,y,TRI,xi,yi) returns the index of the nearest (x,y) point to

the point (xi,yi). dsearch requires a triangulation TR1 of the points x,y
obtained from delaunay.

K = dsearch(x,y,TRI,xi,yi,S) uses the sparse matrix S instead of
computing it each time:

S = sparse(TRI(:,[1 1 2 2 3 3]),TRI(:,[2 31 3 1 2]),1,nxy,nxy)

where nxy = prod(size(x)).

delaunay, tsearch, voronoi

2-215

echo

Purpose

Syntax

Description

See Also

2-216

Echo M-files during execution

echo on

echo off

echo

echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

The echo command controls the echoing of M-files during execution. Normally,
the commands in M-files do not display on the screen during execution.
Command echoing is useful for debugging or for demonstrations, allowing the
commands to be viewed as they execute.

The echo command behaves in a slightly different manner for script files and
function files. For script files, the use of echo is simple; echoing can be either
on or off, in which case any script used is affected:

echo on Turns on the echoing of commands in all script files.
echo off Turns off the echoing of commands in all script files.
echo Toggles the echo state.

With function files, the use of echo is more complicated. If echo is enabled on a
function file, the file is interpreted, rather than compiled. Each input line is
then displayed as it is executed. Since this results in inefficient execution, use
echo only for debugging.

echo fcnname on Turns on echoing of the named function file.

echo fcnname off Turns off echoing of the named function file.

echo fcnname Toggles the echo state of the named function file.
echo on all Set echoing on for all function files.

echo off all Set echoing off for all function files.

function

edit

Purpose

Syntax

Description

Remarks

Edit an M-file

edit

edit fun

edit file.ext

edit class/fun

edit private/fun

edit class/private/fun

edit opens a new editor window.
edit fun opens the M-file fun.m in the default editor.
edit File.ext opens the specified text file.

edit class/fun, edit private/fun, or edit class/private/fun can be
used to edit a method, private function, or private method (for the class named
class).

PC Users

You also can start MATLAB's Editor/Debugger by selecting New or Open from
the File menu, or by clicking the new (page icon) button or the open (folder
icon) button on the toolbar.

Specify the default editor for MATLAB in the Command Window. Select
Preferences from the File menu. On the General page, select MATLAB's
Editor/Debugger or specify another.

UNIX Users

At the time when MATLAB is installed, you specify the default editor. To
change the setting, edit your ~home/ . Xdefaul ts file. If the MATLAB Editor is
the default, turn it off in the .Xdefaults file.

matlab*builtinEditor: OFf
matlab*graphicalDebugger: Off

Then before starting MATLAB, run

xrdb —merge ~home/.Xdefaults

2-217

edit

2-218

If you set the Editor OFfF, use the option
matlab*externalEditorCommand: $EDITOR $FILE &

to control what the edit command does. MATLAB substitutes $SEDITOR with
the name of your default editor and $FILE with the filename. This option can
be modified to any sort of command line you want.

For information about saving Editor options and turning off the Editor during
a MATLAB session, see the “UNIX Handbook” section in Chapter 2 of Using
MATLAB.

eig

Purpose

Syntax

Description

Remarks

Find eigenvalues and eigenvectors

d = eig(A)

[V.D] = eig(A)

[V,D] = eig(A, "nobalance")
d = eig(A,B)

[V.D] = eig(A,B)

d = eig(A) returns a vector of the eigenvalues of matrix A.

[V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors (V) of
matrix A, so that ALV = VID. Matrix D is the canonical form of A—a diagonal
matrix with A’s eigenvalues on the main diagonal. Matrix V is the modal
matrix—its columns are the eigenvectors of A.

The eigenvectors are scaled so that the norm of each is 1.0. Use
[W,D] = eig(A™); W = W* to compute the left eigenvectors, which satisfy
WA = DOW.

[V,D] = eig(A, "nobalance™) finds eigenvalues and eigenvectors without a

preliminary balancing step. Ordinarily, balancing improves the conditioning of
the input matrix, enabling more accurate computation of the eigenvectors and
eigenvalues. However, if a matrix contains small elements that are really due
to roundoff error, balancing may scale them up to make them as significant as
the other elements of the original matrix, leading to incorrect eigenvectors. Use
the nobalance option in this event. See the balance function for more details.

d = eig(A,B) returns avector containing the generalized eigenvalues, if Aand
B are square matrices.

[V,D] = eig(A,B) produces a diagonal matrix D of generalized eigenvalues
and a full matrix V whose columns are the corresponding eigenvectors so that
ALV = BODVID. The eigenvectors are scaled so that the norm of each is 1.0.

The eigenvalue problem is to determine the nontrivial solutions of the
equation:

AX = AX

2-219

eig

Examples

2-220

where A is an n-by-n matrix, x is a length n column vector, and A is a scalar. The
n values of A that satisfy the equation are the eigenvalues, and the
corresponding values of x are the right eigenvectors. In MATLAB, the function
eig solves for the eigenvalues A, and optionally the eigenvectors x.

The generalized eigenvalue problem is to determine the nontrivial solutions of
the equation

AX = ABx

where both A and B are n-by-n matrices and A is a scalar. The values of A that
satisfy the equation are the generalized eigenvalues and the corresponding
values of x are the generalized right eigenvectors.

If B is nonsingular, the problem could be solved by reducing it to a standard
eigenvalue problem

B-1Ax = Ax

Because B can be singular, an alternative algorithm, called the QZ method, is
necessary.

When a matrix has no repeated eigenvalues, the eigenvectors are always
independent and the eigenvector matrix vV diagonalizes the original matrix A if
applied as a similarity transformation. However, if a matrix has repeated
eigenvalues, it is not similar to a diagonal matrix unless it has a full
(independent) set of eigenvectors. If the eigenvectors are not independent then
the original matrix is said to be defective. Even if a matrix is defective, the
solution from eig satisfies ALX = X[D.

The matrix
B =[3 -2 -.9 2*eps;—2 4 -1 —eps;—eps/4 eps/2 -1 0;-.5 -5 .1 1];

has elements on the order of roundoff error. It is an example for which the
nobalance option is necessary to compute the eigenvectors correctly. Try the
statements

[vB,DB] = eig(B)

BLWVB — VBIDB
[VN,DN] = eig(B, "nobalance")
BLWN — VNIDN

eig

Algorithm

Diagnostics

See Also

References

For real matrices, eig(X) uses the EISPACK routines BALANC, BALBAK,
ORTHES, ORTRAN, and HQR2. BALANC and BALBAK balance the input matrix.
ORTHES converts a real general matrix to Hessenberg form using orthogonal
similarity transformations. ORTRAN accumulates the transformations used by
ORTHES. HQR2 finds the eigenvalues and eigenvectors of a real upper
Hessenberg matrix by the QR method. The EISPACK subroutine HQR2 is
modified to make computation of eigenvectors optional.

When eig is used with two input arguments, the EISPACK routines QZHES,
QZIT, QZVAL, and QzVEC solve for the generalized eigenvalues via the QZ
algorithm. Modifications handle the complex case.

When eig is used with one complex argument, the solution is computed using
the QZ algorithm as eig(X,eye(X)). Modifications to the QZ routines handle
the special case B = I.

For detailed descriptions of these algorithms, see the EISPACK Guide.

If the limit of 30n iterations is exhausted while seeking an eigenvalue:

Solution will not converge.
balance, condeig, hess, gz, schur

[1] Smith, B. T., 3. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.
Klema, and C. B. Moler, Matrix Eigensystem Routines — EISPACK Guide,
Lecture Notes in Computer Science, Vol. 6, second edition, Springer-Verlag,
1976.

[2] Garbow, B. S., J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix
Eigensystem Routines — EISPACK Guide Extension, Lecture Notes in
Computer Science, Vol. 51, Springer-Verlag, 1977.

[3] Moler, C. B. and G.W. Stewart, “An Algorithm for Generalized Matrix
Eigenvalue Problems”, SIAM J. Numer. Anal., Vol. 10, No. 2, April 1973.

2-221

eigs

Purpose

Syntax

Description

2-222

Find a few eigenvalues and eigenvectors

= eigs(A)

= eigs("Afun-,n)
eigs(A,B,k,sigma,options)

= eigs("Afun*,n,B,k,sigma,options)
[V.D] = eigs(A,...)

[V,D] = eigs("Afun®,n,...)
[V.,D,flag] = eigs(A,...)

[V,.D,flag]l = eigs("Afun®,n,...)

O QO QO Qo
1

eigs solves the eigenvalue problem A*v = lambda*v or the generalized
eigenvalue problem A*v = lambda*B*v, where B is symmetric positive definite.
Only a few selected eigenvalues, or eigenvalues and eigenvectors, are
computed, in contrast to eig, which computes all eigenvalues and eigenvectors.

eigs(A) or eigs("Afun”,n) solves the eigenvalue problem where the first
input argument is either a square matrix (which can be full or sparse,
symmetric or nonsymmetric, real or complex), or a string containing the name
of an M-file which applies a linear operator to the columns of a given matrix. In
the latter case, the second input argument must be n, the order of the problem.
For example, eigs("fft", ...) is much faster thaneigs(F, ...),whereFis
the explicit FFT matrix.

With one output argument, d is a vector containing k eigenvalues.With two
output arguments, V is a matrix with k columns and D is a k-by-k diagonal
matrix so that A*V = v*D or A*V = B*V*D. With three output arguments, flag
indicates whether or not the eigenvalues were computed to the desired
tolerance. flag = 0O indicates convergence; flag = 1 indicates no convergence.

The remaining input arguments are optional and can be given in practically
any order:

eigs

Argument Value

B A matrix the same size as A. If B is not specified,
B = eye(size(A)) is used. B must be a symmetric positive
definite matrix.

k An integer, the number of eigenvalues desired. If k is not
specified, k = min(n,6) eigenvalues are computed.

sigma A scalar shift or a two letter string. If sigma is not specified,
the k eigenvalues largest in magnitude are computed. If
sigma is 0, the k eigenvalues smallest in magnitude are
computed. If sigma is a real or complex scalar, the shift, the
k eigenvalues nearest sigma, are computed. If sigma is one
of the following strings, it specifies the desired eigenvalues:

“Im" Largest Magnitude (the default)

"sm" Smallest Magnitude (same as sigma = 0)
“Ir Largest Real part

“sr- Smallest Real part

“be" Both Ends. Computes k/2 eigenvalues from

each end of the spectrum (one more from the
high end if k is odd.)

Note 1. If sigma is a scalar with no fractional part, k must be specified first.
For example, eigs(A,2.0) finds the two largest magnitude eigenvalues, not
the six eigenvalues closest to 2.0, as you may have wanted.

Note 2. If sigma is exactly an eigenvalue of A, eigs will encounter problems
when it performs divisions of the form 1/(lambda — sigma), where lambda is
an approximation of an eigenvalue of A. Restart with eigs(A,sigma2), where
sigma? is close to, but not equal to, sigma.

The options structure specifies certain parameters in the algorithm.

2-223

eigs

Parameter Description Default Value

options.tol Convergence tolerance 1e-10 (symmetric)
norm(A*V—=V*D) <= tol*norm(A) 1e—6 (nonsymmetric)

options.p Dimension of the Arnoldi basis 2*k
options.maxit Maximum number of iterations 300

options.disp Number of eigenvalues 20
displayed at each iteration. Set
to 0 for no intermediate output.

options.issym Positive if Afun is symmetric 0

options.cheb Positive if A is a string, sigmais O
“Ir","sr", or a shift, and
polynomial acceleration should
be applied.

options.v0 Starting vector for the Arnoldi rand(n,1)-.5
factorization

Remarks d = eigs(A,k) is not a substitute for

= eig(full(hd))
sort(d)
d(end—k+1:end)

o O O
1]

but is most appropriate for large sparse matrices. If the problem fits into
memory, it may be quicker to use eig(full (A)).

2-224

eigs

Examples

Example 1:

west0479 is a real 479-by-479 sparse matrix with both real and pairs of
complex conjugate eigenvalues. eig computes all 479 eigenvalues. eigs easily
picks out the smallest and largest magnitude eigenvalues.

load west0479

d = eig(full(west0479))
dim = eigs(west0479,8)
dsm = eigs(west0479, "sm")

These plots show the eigenvalues of west0479 as computed by eig and eigs.

The first plot shows the four largest magnitude eigenvalues in the top half of
the complex plane (but not their complex conjugates in the bottom half). The
second subplot shows the six smallest magnitude eigenvalues.

Largest magnitude eigenvalues of west0479

10 T T T T
+ + eigs(A,8)
o o eig(A) @
10°F E
10°F @]
8 S
101 I I I I I
-150 -100 -50 0 50 100 150
Smallest magnitude eigenvalues of west0479
0.02 T T T T T T
) =]
+ + eigs(A’SM)
001F | P o eig(A) B
=)
oF ® 3 4
B
-0.01- q
=]
~0.02 I I I I I I I
-0.5 0 0.5 1 15 2 25 3 35

2-225

eigs

Example 2:

A = delsq(numgrid(~C=,30)) is a symmetric positive definite matrix of size
632 with eigenvalues reasonably well-distributed in the interval (0 8), but with
18 eigenvalues repeated at 4. eig computes all 632 eigenvalues. eigs computes
the six largest and smallest magnitude eigenvalues of A successfully with:

d = eig(full(hd))
dim = eigs(Ah)
dsm = eigs(A, "sm")

6 largest magnitude eigenvalues of delsq(numgrid('C’,30))

8 T T T T
B
7951 T
B
B
791 7
B
B
7851 | + eigs(A) @]
o o eig®)
78 Il Il Il Il Il Il
1 2 3 4 5 6
6 smallest magnitude eigenvalues of delsq(numgrid('C’,30))
0.2 T T T T T
+ + eigs(A,;’SM) @
0151 | B o eig(A) B
=]
=]
0.1 7
B
B
0.05- T
B
0 Il Il Il Il Il Il
1 2 3 4 5 6

However, the repeated eigenvalue at 4 must be handled more carefully. The
call eigs(A,18,4.0) to compute 18 eigenvalues near 4.0 tries to find
eigenvalues of A — 4.0*1. This involves divisions of the form 1/(lambda —
4.0), where lambda is an estimate of an eigenvalue of A. As lambda gets closer
t0 4.0, eigs fails. We must use sigma near but not equal to 4 to find those 18
eigenvalues.

sigma = 4 — 1le-6
[V,D] = eigs(A,18,sigma)

2-226

eigs

See Also

References

The plot shows the 20 eigenvalues closest to 4 that were computed by eig.

18 repeated eigenvalues of delsq(numgrid('C’,30)) at 4
T T T

4.03 T T T T T g
+ + eigs(A,18,sigma)
o o eig(A)
4.02 b
4.01+- 4
4r B 8 8 8B B8 B 8\ 8 8 B 8 8 8 8 8 @ g
399 4
3.981 E
3.97 o Il Il Il Il Il Il Il Il Il Il
2 4 6 8 10 12 14 16 18 20
eig, svds

[1] R. Radke, “A MATLAB Implementation of the Implicitly Restarted Arnoldi
Method for Solving Large-Scale Eigenvalue Problems,” Dept. of Computational
and Applied Math, Rice University, Houston, Texas.

[2] D. C. Sorensen, “Implicit Application of Polynomial Filters in a k-step
Arnoldi Method,” SIAM Journal on Matrix Analysis and Applications,
volume 13, number 1, 1992, pp 357-385.

[3] R. B. Lehoucq and D. C. Sorensen, “Deflation Techniques within an
Implicitly Restarted Iteration,” SIAM Journal on Matrix Analysis and
Applications,

volume 17, 1996, pp 789-821.

2-227

ellipj

Purpose Jacobi elliptic functions

Syntax [SN,CN,DN]

ellipj(u,m

[SN,CN,DN] = ellipj(U.M,tol)
Definition The Jacobi elliptic functions are defined in terms of the integral:
9
u = J’OLE
(1 -msin28)2
Then

1
2

sn(u) = sing, cn(u) = cos@, dn(u) = (1 -sin?2@)?, am(u) = @

Some definitions of the elliptic functions use the modulus k instead of the
parameter m. They are related by:

k2 = m = sin2a
The Jacobi elliptic functions obey many mathematical identities; for a good

sample, see [1].

Description [SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN, CN, and
DN, evaluated for corresponding elements of argument U and parameter M.
Inputs U and M must be the same size (or either can be scalar).

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions to

accuracy tol. The default is eps; increase this for a less accurate but more
quickly computed answer.

2-228

ellipj

Algorithm

Limitations

See Also

References

ellipj computes the Jacobi elliptic functions using the method of the
arithmetic-geometric mean [1]. It starts with the triplet of numbers:

1 1
ag=1,by=(1-m)’cy = (m)?

ellipj computes successive iterates with:

1
a; = 5(@j_1+bj_y)
1
b; = (aj_1bj_1)?

1
¢ = 5(@j_1=bj_q)

Next, it calculates the amplitudes in radians using:

- C -
sin(29,_,-9,) = a—lr—'sm((pn)
n

being careful to unwrap the phases correctly. The Jacobian elliptic functions
are then simply:

sn(u) = sing,
cn(u) = cosq,

1
2

dn(u) = (1-m Bn(u)?)
The el lipj function is limited to the input domain 0 <m <1 . Map other
values of M into this range using the transformations described in [1], equations
16.10 and 16.11. U is limited to real values.

ellipke

[1] Abramowitz, M. and I|.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

2-229

ellipke

Purpose Complete elliptic integrals of the first and second kind

Syntax K = ellipke(M)
[K.E] = ellipke(M)
[K,E] = ellipke(M,tol)

Definition The complete elliptic integral of the first kind [1] is:
K(m) = F(1v2|m),

where F, the elliptic integral of the first kind, is:

-1

-1
K (m) :J’;[(l—tZ)(l—th)]7 dt =

2(1-msin26) 2 do
0

|
—

The complete elliptic integral of the second kind,

E(m) = E(K(m)) = EOGv2mQ

=(m) :J’(l)(l_tz)%(l_mtz)% dt = Ji(l—msinze)%de

Some definitions of K and E use the modulus k instead of the parameter m. They
are related by:

k2 = m = sina

2-230

ellipke

Description

Algorithm

Limitations
See Also

References

K = ellipke(M) returns the complete elliptic integral of the first kind for the
elements of M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first and
second kinds.

[K,E] = ellipke(M,tol) computes the Jacobian elliptic functions to accuracy
tol. The default is eps; increase this for a less accurate but more quickly
computed answer.

el lipke computes the complete elliptic integral using the method of the
arithmetic-geometric mean described in [1], section 17.6. It starts with the

triplet of numbers:
1 1
ag=1, by =(1-m)2 ¢y = (M)

el lipke computes successive iterations of a;, by, and ¢; with:

1
a; = 5(aj_1*+0j_g)

1
b; = (aj_1bj_41)?

1
¢; = 5(ai_1—=bi_1)

stopping at iteration n when cn= 0, within the tolerance specified by eps. The
complete elliptic integral of the first kind is then:

Tt
<M = 7,
n

ellipke is limited to the input domain 0sm«<1.
ellipj

[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

2-231

else

Purpose

Syntax

Description

See Also

2-232

Conditionally execute statements

if expression
statements
else
statements
end

The else command is used to delineate an alternate block of statements.

if expression
statements
else
statements
end

The second set of statements is executed if the expression has any zero
elements. The expression is usually the result of

expression rop expression

where rop is ==, <, >, <=, >=, or ~=

break, elseif, end, for, if, return, switch, while

elseif

Purpose

Syntax

Description

Conditionally execute statements

if expression
statements
elseif expression
statements
end

The elseif command conditionally executes statements.

ifT expression
statements
elseif expression
statements
end

The second block of statements executes if the first expression has any zero
elements and the second expression has all nonzero elements. The expression
is usually the result of

expression rop expression
where rop is ==, <, >, <=, >=, or ~=,

else if, with a space between the else and the if, differs from elseif, with
no space. The former introduces a new, nested, if, which must have a matching
end. The latter is used in a linear sequence of conditional statements with only
one terminating end.

2-233

elseif

The two segments

if A it A
X = a X = a
else elseif B
if B X =Db
X =Db elseif C
else X = C
ifC else
X =C x =d
else end
x =d
end
end
end

produce identical results. Exactly one of the four assignments to x is executed,
depending upon the values of the three logical expressions, A, B, and C.

See Also break, else, end, for, if, return, switch, while

2-234

end

Purpose Terminate for, while, switch, try, and if statements or indicate last index
Syntax while expression% (or if, for, or try)
statements
end

B = A(index:end, index)

Description end is used to terminate for, while, switch, try, and if statements.
Without an end statement, for, while, switch, try, and if wait for further
input. Each end is paired with the closest previous unpaired for, while,
switch, try, or if and serves to delimit its scope.

The end command also serves as the last index in an indexing expression. In
that context, end = (size(x,k)) when used as part of the kth index.
Examples of this use are X(3:end) and X(1,1:2:end-1). When using end to
grow an array, as in X(end+1)=5, make sure X exists first.

You can overload the end statement for a user object by defining an end
method for the object. The end method should have the calling sequence
end(obj ,k,n), where obj is the user object, k is the index in the expression
where the end syntax is used, and n is the total number of indices in the
expression. For example, consider the expression

A(end-1,:)

MATLAB will call the end method defined for A using the syntax

end(A,1,2)
Examples This example shows end used with the for and if statements.
for i = 1:n
if a(i) == 0
a(i) = a(i) + 2;
end
end

2-235

end

In this example, end is used in an indexing expression.

A = magic(5)

A =
17 24 1 8 15
23 5 7 14 16

4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

B = A(end,2:end)

B =
18 25 2 9

See Also break, for, if, return, switch, try, while

2-236

eomday

Purpose End of month
Syntax E = eomday(Y,M)
Description E = eomday(Y,M) returns the last day of the year and month given by

corresponding elements of arrays Y and M.

Examples Because 1996 is a leap year, the statement eomday (1996, 2) returns 29.
To show all the leap years in this century, try:

y = 1900:1999;
E = eomday(y,2lbnes(length(y),1)");
y(Find(E==29))"

ans =
Columns 1 through 6
1904 1908 1912 1916 1920 1924

Columns 7 through 12
1928 1932 1936 1940 1944 1948

Columns 13 through 18
1952 1956 1960 1964 1968 1972

Columns 19 through 24
1976 1980 1984 1988 1992 1996

See Also datenum, datevec, weekday

2-237

eps

Purpose Floating-point relative accuracy
Syntax eps
Description eps returns the distance from 1.0 to the next largest floating-point number.

The value eps is a default tolerance for pinv and rank, as well as several other
MATLAB functions. On machines with IEEE floating-point arithmetic,
eps = 2~(-52), which is roughly 2.22e-16.

See Also realmax, realmin

2-238

erf, erfc, erfcx, erfinv

Purpose

Syntax

Definition

Description

Examples

Error functions

Y = erf(X) Error function

Y = erfc(X) Complementary error function

Y = erfcx(X) Scaled complementary error function
X = erfinv(Y) Inverse of the error function

The error function erf(X) is twice the integral of the Gaussian distribution
with 0 mean and variance of 1/2 :

2 X
erf(x) = = [etdt
0 ==l
The complementary error function erfc(X) is defined as:
erfe(x) = ij’me-tzdt = 1—erf(x)
Jmdx

The scaled complementary error function erfcx(X) is defined as:

erfex(x) = eXerfe(x)
For large X, erfcx(X) is approximately EHEC .
’ DﬁB(
Y = erf(X) returns the value of the error function for each element of real
array X.

Y = erfc(X) computes the value of the complementary error function.
Y = erfcx(X) computes the value of the scaled complementary error function.

X = erfinv(Y) returns the value of the inverse error function for each element
of Y. The elements of Y must fall within the domain -1 <Y <1,

erfinv(l) is Inf
erfinv(-1) is —Inf.

For abs(Y) > 1, erfinv(Y) is NaN.

2-239

erf, erfc, erfcx, erfinv

Remarks

Algorithms

References

2-240

The relationship between the error function and the standard normal
probability distribution is:

X = =5:0.1:5;
standard_normal_cdf = (1 + (erf(X/sqrt(2))))./2;

For the error functions, the MATLAB code is a translation of a Fortran program
by W. J. Cody, Argonne National Laboratory, NETLIB/SPECFUN, March 19,
1990. The main computation evaluates near-minimax rational approximations
from [1].

For the inverse of the error function, rational approximations accurate to
approximately six significant digits are used to generate an initial
approximation, which is then improved to full accuracy by two steps of
Newton’s method. The M-file is easily modified to eliminate the Newton
improvement. The resulting code is about three times faster in execution, but
is considerably less accurate.

[1] Cody, W. J., “Rational Chebyshev Approximations for the Error Function,”
Math. Comp., pgs. 631-638, 1969

error

Purpose
Syntax

Description

Examples

See Also

Display error messages
error(“error_message”)
error("error_message") displays an error message and returns control to the

keyboard. The error message contains the input string error_message.

The error command has no effect if error_message is a null string.

The error command provides an error return from M-files.

function foo(Xx,y)
if nargin ~= 2

error("Wrong number of input arguments®)
end

The returned error message looks like:

» Foo(pi)
??? Error using ==> foo
Wrong number of input arguments

dbstop, disp, lasterr, warning

2-241

errortrap

Purpose Continue execution after errors during testing

Syntax errortrap on
errortrap off

Description errortrap on continues execution after errors when they occur. Execution
continues with the next statement in a top level script.

errortrap off (the default) stops execution when an error occurs.

2-242

etime

Purpose
Syntax

Description

Examples

Limitations

See Also

Elapsed time

etime(t2,tl)

e

e = etime(t2,tl) returns the time in seconds between vectors t1 and t2. The
two vectors must be six elements long, in the format returned by clock:

T = [Year Month Day Hour Minute Second]

Calculate how long a 2048-point real FFT takes.

X = rand(2048,1);
t = clock; Ffft(x); etime(clock,t)
ans =

0.4167

As currently implemented, the etime function fails across month and year
boundaries. Since etime is an M-file, you can modify the code to work across
these boundaries if needed.

clock, cputime, tic, toc

2-243

eval

Purpose

Syntax

Description

Examples

2-244

Execute a string containing a MATLAB expression

eval (expression)
[al,a2,a3,...] = eval(expression)
eval (expression,catch_expr)

eval (expression) executes expression, a string containing any valid
MATLAB expression. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [stringl,int2str(var),string2,...]
[al,a2,a3,...] = eval(expression) executes expression and returns the

results in the specified output variables. Using the eval output argument list
is recommended over including the output arguments in the expression string:

eval("[al,a2,a3,...] = function(var)")

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

eval (expression,catch_expr) executes expression and, if an error is
detected, executes the catch_expr string. If expression produces an error, the
error string can be obtained with the lasterr function. This syntax is useful
when expression is a string that must be constructed from substrings. If this
is not the case, use the try. . .catch control flow statement in your code.

This example executes a simple MATLAB expression:

A= T1+47;

aval = eval(A)

aval

eval

This for loop generates a sequence of 12 matrices named M1 through M12:

for n = 1:12

magic_str = ["M",int2str(n)," = magic(n)"];
eval(magic_str)

end

See Also assignin, catch, evalin, feval, lasterr, try

2-245

evalc

Purpose

Syntax

Description

Remark

See Also

2-246

Evaluate MATLAB expression with capture

T = evalc(S)
T = evalc(sl,s2)
[T.X,Y,Z,...] = evalc(S)

T = evalc(S) is the same as eval (S) except that anything that would normally
be written to the command window is captured and returned in the character
array T (lines in T are separated by \n characters).

T = evalc(sl,s2) isthe same as eval(sl,s2) except that any output is
captured into T.

[T,X,Y,Z,...] = evalc(S) isthesameas [X,Y,Z,...] = eval(S) except
that any output is captured into T.

When you are using evalc, diary, more, and input are disabled.

diary, eval, evalin, input, more

evalin

Purpose

Syntax

Description

Remarks

Examples

Execute a string containing a MATLAB expression in a workspace

evalin(ws,expression)
[al,a2,a3,...] = evalin(ws,expression)
evalin(ws,expression,catch_expr)

eval in(ws,expression) executes expression, a string containing any valid
MATLAB expression, in the context of the workspace ws. ws can have a value
of 'base’ or 'cal ler' to denote the MATLAB base workspace or the workspace
of the caller function. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [stringl, int2str(var),string2,...]

[al,a2,a3,...] = evalin(ws,expression) executes expression and
returns the results in the specified output variables. Using the evalin output
argument list is recommended over including the output arguments in the
expression string:

evalin(ws,"[al,a2,a3,...] = function(var)")

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

evalin(ws,expression,catch_expr) executes expression and, if an error is
detected, executes the catch_expr string. If expression produces an error, the
error string can be obtained with the lasterr function. This syntax is useful
when expression is a string that must be constructed from substrings. If this
is not the case, use the try. . .catch control flow statement in your code.

The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note, the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

This example extracts the value of the variable var in the MATLAB base
workspace and captures the value in the local variable v:

v = evalin(“base”,’var?”);

2-247

evalin

Limitation evalin cannot be used recursively to evaluate an expression. For example, a
sequence of the form evalin(“caller”, evalin(""caller™",""x"")")
doesn't work.

See Also assignin, catch, eval, feval, lasterr, try

2-248

exist

Purpose Check if a variable or file exists

Syntax a = exist("item")
ident = exist("item", "kind")

Description a = exist("item") returns the status of the variable or file item:

If item does not exist.

If the variable item exists in the workspace.
If item is an M-file or a file of unknown type.
If item is a MEX-file.

If item is a MDL-file.

If item is a built-in MATLAB function.

If itemis a P-file.

N o o b~ WwN P O

If item is a directory.

exist("item") returns 2 if item is on the MATLAB search path. item may be
a MATLABPATH relative partial pathname. item may be item.ext, but the
filename extension (ext) cannot be mdl, p, or mex.

ident = exist("item","kind") returns logical true (1) if an item of the
specified kind is found, and returns 0 otherwise. kind may be:

var Checks only for variables.

builtin Checks only for built-in functions.

file Checks only for files.
dir Checks only for directories.
Examples exist can check whether a MATLAB function is built-in or a file:
ident = exist("plot")
ident =
5

plot is a built-in function.

2-249

exist

See Also dir, help, lookfor, partialpath, what, which, who

2-250

exp

Purpose
Syntax

Description

Remark

See Also

Exponential
Y = exp(X)

The exp function is an elementary function that operates element-wise on
arrays. Its domain includes complex numbers.

Y = exp(X) returns the exponential for each element of X. For complex
z= X+ i0y, it returns the complex exponential: ez = eX(cos(y) +isin(y))

Use expm for matrix exponentials.

expm, log, 10g10, expint

2-251

expint

Purpose Exponential integral
Syntax Y = expint(X)
Definitions The exponential integral is defined as:
0 e—t
—dt
[

Another common definition of the exponential integral function is the Cauchy
principal value integral:

X

Ei(x) = [etdt

which, for real positive x, is related to expint as follows:

expint(—x+ilD) = —Ei(x) - ilpi
Ei(X) = real(—expint(—x))

Description Y = expint(X) evaluates the exponential integral for each element of X.

Algorithm For elements of X in the domain [-38, 2], expint uses a series expansion
representation (equation 5.1.11 in [1]):

Ei(x) = —y—-Inx— z = i)rr:lxn

For all other elements of X, expint uses a continued fraction representation
(equation 5.1.22 in [1]):

2-252

expint

E.(2) = et~ ———"— .H\angle(z)\ <T

References [1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical Functions.
Chapter 5, New York: Dover Publications, 1965.

2-253

expm

Purpose
Syntax

Description

Algorithm

Examples

2-254

Matrix exponential

Y expm(X)

Y = expm(X) raises the constant e to the matrix power X. Complex results are
produced if X has nonpositive eigenvalues.

Use exp for the element-by-element exponential.

The expm function is built-in, but it uses the Padé approximation with scaling
and squaring algorithm expressed in the file expm1.m.

A second method of calculating the matrix exponential uses a Taylor series
approximation. This method is demonstrated in the file expm2.m. The Taylor
series approximation is not recommended as a general-purpose method. It is
often slow and inaccurate.

A third way of calculating the matrix exponential, found in the file expm3.m, is
to diagonalize the matrix, apply the function to the individual eigenvalues, and
then transform back. This method fails if the input matrix does not have a full
set of linearly independent eigenvectors.

References [1] and [2] describe and compare many algorithms for computing
expm(X). The built-in method, expmi, is essentially method 3 of [2].

Suppose A is the 3-by-3 matrix

1 1 0
0 0 2
0 0 -1

then expm(A) is

2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

while exp(A) is

2.7183 2.7183 1.0000
1.0000 1.0000 7.3891
1.0000 1.0000 0.3679

expm

See Also

References

Notice that the diagonal elements of the two results are equal; this would be
true for any triangular matrix. But the off-diagonal elements, including those
below the diagonal, are different.

exp, funm, logm, sqrtm

[1] Golub, G. H. and C. F. Van Loan, Matrix Computation, p. 384, Johns
Hopkins University Press, 1983.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.

2-255

eye

Purpose

Syntax

Description

Limitations

See Also

2-256

Identity matrix

Y
Y
Y

Y

Y

eye(n)

eye(m,n)

eye(size(A))

eye(n) returns the n-by-n identity matrix.

eye(m,n) or eye([m n]) returns an m-by-n matrix with 1's on the

dlagonal and 0's elsewhere.

Y

eye(size(A)) returns an identity matrix the same size as A.

The identity matrix is not defined for higher-dimensional arrays. The
assignmenty = eye([2,3,4]) results in an error.

ones, rand, randn, zeros

factor

Purpose

Syntax

Description

Examples

See Also

Prime factors

-h
1

factor(n)
factor(symb)

-h
1

-h
1]

factor(n) returns a row vector containing the prime factors of n.

-h
|

= factor(123)

3 41

isprime, primes

2-257

factorial

Purpose Factorial function
Syntax factorial(n)
Description factorial(n) is the product of all the integers from 1 to n, i.e. prod(1:n).

Since double pricision numbers only have about 15 digits, the answer is only
accurate for n <= 21. For larger n, the answer will have the right magnitute,
and is accurate for the first 15 digits.

See Also prod

2-258

fclose

Purpose

Syntax

Description

See Also

Close one or more open files

status = fclose(fid)
status = fclose("all™)
status = fclose(fid) closes the specified file, if it is open, returning 0 if

successful and -1 if unsuccessful. Argument fid is a file identifier associated
with an open file (See fopen for a complete description).

status = fclose("all") closes all open files, (except standard input, output,
and error), returning 0 if successful and -1 if unsuccessful.

ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

2-259

feof

Purpose Test for end-of-file
Syntax eofstat = Feof(fid)
Description eofstat = feof(fid) tests whether the end-of-file indicator is set for the file

with identifier fid. It returns 1 if the end-of-file indicator is set, or 0 if it is not.
(See fopen for a complete description of fid.)

The end-of-file indicator is set when there is no more input from the file.

See Also fopen

2-260

ferror

Purpose

Syntax

Description

See Also

Query MATLAB about errors in file input or output

message = ferror(fid)
message = ferror(fid, "clear”)
[message,errnum] = ferror(...)

message = ferror(fid) returns the error message message. Argument fid is
a file identifier associated with an open file (See fopen for a complete
description of fid).

message = ferror(fid, "clear™) clears the error indicator for the specified
file.

[message,errnum] = ferror(...) returns the error status number errnum of
the most recent file 1/0 operation associated with the specified file.

If the most recent 1/O operation performed on the specified file was successful,
the value of message is empty and ferror returns an errnum value of 0.

A nonzero errnum indicates that an error occurred in the most recent file 1/0
operation. The value of message is a string that may contain information about
the nature of the error. If the message is not helpful, consult the C run-time
library manual for your host operating system for further details.

fclose, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

2-261

feval

Purpose
Syntax

Description

Examples

See Also

2-262

Function evaluation
[yl,y2, ...] = feval(function,x1,...,xn)

[yl,y2...] = feval(function,x1, ...,xn) If function is a string
containing the name of a function (usually defined by an M-file), then
feval (function,x1, .. .,xn) evaluates that function at the given arguments.

The statements:
[V.,D] feval("eig”,A)
[V.D] = eig(A)

are equivalent. feval is useful in functions that accept string arguments
specifying function names. For example, the function:

function plotf(fun,x)
y = feval(fun,x);
plot(x,y)

can be used to graph other functions.

assignin, builtin, eval, evalin

fft

Purpose

Syntax

Definition

Description

One-dimensional fast Fourier transform

FFE(X)
FFE(X,n)
FFe(x, [1.dim)
FFE(X,n,dim)

< < < <

The functions X = fft(x) and x = ifft(X) implement the transform and
inverse transform pair given for vectors of length N by:

N
X(k) = z x(J)wl ~Hk-1)
j=1
N
x(j) = (1/N) z X (k)i -D(k=1)
k=1

where
— a(-2mi)/N
wy = e(-2m)
is an nth root of unity.
Y = FFt(X) returns the discrete Fourier transform of vector X, computed with
a fast Fourier transform (FFT) algorithm.

If X is a matrix, fft returns the Fourier transform of each column of the matrix.

If X is a multidimensional array, fft operates on the first nonsingleton
dimension.

Y = fft(X,n) returns the n-point FFT. If the length of X is less than n, X is
padded with trailing zeros to length n. If the length of X is greater than n, the
sequence X is truncated. When X is a matrix, the length of the columns are
adjusted in the same manner.

Y = fft(X,[1.dim) and Y = fft(X,n,dim) apply the FFT operation across
the dimension dim.

2-263

fft

Remarks

Examples

Algorithm

2-264

The fft function employs a radix-2 fast Fourier transform algorithm if the
length of the sequence is a power of two, and a slower mixed-radix algorithm if
it is not. See “Algorithm.”

A common use of Fourier transforms is to find the frequency components of a
signal buried in a noisy time domain signal. Consider data sampled at 1000 Hz.
Form a signal containing 50 Hz and 120 Hz and corrupt it with some zero-mean
random noise:

t 0:0.001:0.6;

X = sin(Rpib0o0)+sin(20pi11200t) ;

y = x + 20randn(size(t));

plot(y(1:50))
It is difficult to identify the frequency components by looking at the original
signal. Converting to the frequency domain, the discrete Fourier transform of

the noisy signal y is found by taking the 512-point fast Fourier transform
(FFT):

Y = fft(y,512);

The power spectral density, a measurement of the energy at various
frequencies, is

Pyy = Y.O conj(Y) / 512;

Graph the first 257 points (the other 255 points are redundant) on a
meaningful frequency axis.

f = 10000(0:256)/512;
plot(f,Pyy(1:257))

This represents the frequency content of y in the range from DC up to and
including the Nyquist frequency. (The signal produces the strong peaks.)

When the sequence length is a power of two, a high-speed radix-2 fast Fourier
transform algorithm is employed. The radix-2 FFT routine is optimized to
perform a real FFT if the input sequence is purely real, otherwise it computes
the complex FFT. This causes a real power-of-two FFT to be about 40% faster
than a complex FFT of the same length.

fft

When the sequence length is not an exact power of two, an alternate algorithm
finds the prime factors of the sequence length and computes the mixed-radix
discrete Fourier transforms of the shorter sequences.

The time it takes to compute an FFT varies greatly depending upon the
sequence length. The FFT of sequences whose lengths have many prime factors
is computed quickly; the FFT of those that have few is not. Sequences whose
lengths are prime numbers are reduced to the raw (and slow) discrete Fourier
transform (DFT) algorithm. For this reason it is generally better to stay with
power-of-two FFTs unless other circumstances dictate that this cannot be done.
For example, on one machine a 4096-point real FFT takes 2.1 seconds and a
complex FFT of the same length takes 3.7 seconds. The FFTs of neighboring
sequences of length 4095 and 4097, however, take 7 seconds and 58 seconds,
respectively.

See Also dftmtx, Filter, and freqz in the Signal Processing Toolbox, and:

fft2, freshift, ifft

2-265

fft2

Purpose

Syntax

Description

Algorithm

See Also

2-266

Two-dimensional fast Fourier transform

Y
Y

Fe2(x)
fft2(X,m,n)

Y = fFt2(X) performs the two-dimensional FFT. The result Y is the same size
as X.

Y = fft2(X,m,n) truncates X, or pads X with zeros to create an m-by-n array
before doing the transform. The result is m-by-n.

fFt2(X) can be simply computed as
FRe(FFE(X).")."

This computes the one-dimensional FFT of each column X, then of each row of
the result. The time required to compute Fft2(X) depends strongly on the
number of prime factors in [m,n] = size(X). It is fastest when m and n are
powers of 2.

fft, frtshift, iffe2

fftn

Purpose

Syntax

Description

Algorithm

See Also

Multidimensional fast Fourier transform

Y
Y

ftn(X)
ffen(X,siz)

Y = fFtn(X) performs the N-dimensional fast Fourier transform. The resultY
is the same size as X.

Y = fftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the transform. The size
of the result Y is siz.

fFtn(X) is equivalent to

Y = X;

for p = 1:length(size(X))
Y = ffe(Y,[1.p):

end

This computes in-place the one-dimensional fast Fourier transform along each
dimension of X. The time required to compute fftn(X) depends strongly on the
number of prime factors of the dimensions of X. It is fastest when all of the
dimensions are powers of 2.

ft, T2, ifftn

2-267

fftshift

Purpose
Syntax

Description

Examples

See Also

2-268

Shift DC component of fast Fourier transform to center of spectrum

Y = fftshift(X)

Y = fftshift(X) rearranges the outputs of fft, fft2, and fftn by moving the
zero frequency component to the center of the array.

For vectors, fftshift(X) swaps the left and right halves of X. For matrices,
fftshift(X) swaps quadrants one and three of X with quadrants two and four.
For higher-dimensional arrays, fftshift(X) swaps “half-spaces” of X along
each dimension.
For any matrix X

Y = fft2(X)

has Y(1,1) = sum(sum(X)); the DC component of the signal is in the upper-left
corner of the two-dimensional FFT. For

Z = Fftshife(Y)

this DC component is near the center of the matrix.

fft, Fft2, fftn, ifftshift

fgetl

Purpose Return the next line of a file as a string without line terminators
Syntax line = fgetl(Ffid)
Description line = fgetl(fid) returns the next line of the file with identifier fid. If

fgetl encounters the end of a file, it returns —1. (See fopen for a complete
description of fid.)

The returned string Iine does not include the line terminator(s) with the text
line. To obtain the line terminators, use fgets.

See Also fgets

2-269

fgets

Purpose

Syntax

Description

See Also

2-270

Return the next line of a file as a string with line terminators

line = fgets(fid)
line = fgets(fid,nchar)
line = fgets(fid) returns the next line for the file with identifier fid. If

fgets encounters the end of a file, it returns —1. (See fopen for a complete
description of fid.)

The returned string ine includes the line terminators associated with the text
line. To obtain the string without the line terminators, use fgetl.

line = fgets(fid,nchar) returnsat most nchar characters of the next line.
No additional characters are read after the line terminators or an end-of-file.

fgetl

fieldnames

Purpose
Syntax

Description

Examples

See Also

Field names of a structure
names = Fieldnames(s)

names = fieldnames(s) returns a cell array of strings containing the
structure field names associated with the structure s.

Given the structure:

mystr(1,1).name "alice”;
mystr(1,1).1D =
mystr(2,1).name

mystr(2,1).1D =

"gertrude”;

= 1ol

Then the command n = fieldnames(mystr) yields

n =

"name”
“ID"

getfield, setfield

2-271

fileparts

Purpose
Syntax

Description

See Also

2-272

Return filename parts
[path,name,ext,ver] = Fileparts(file)

[path,name,ext,ver] = fileparts(file) returns the path, filename,
extension, and version for the specified file. ver will be nonempty only on VMS
systems. fileparts is platform dependent.

You can reconstruct the file from the parts using

fullfile(path, [name ext ver])

fullfile

filter

Purpose

Syntax

Description

Filter data with an infinite impulse response (IIR) or finite impulse response
(FIR) filter

y = Filter(b,a,X)

Ly,zf] = filter(b,a,X)
Ly.,zf] = filter(b,a,X,zi)

y = Filter(b,a,X,zi,dim)
[-..1 = filter(b,a,X,[].,dim)

The filter function filters a data sequence using a digital filter which works
for both real and complex inputs. The filter is a direct form 1l transposed
implementation of the standard difference equation (see “Algorithm”).

y = Filter(b,a,X) filters the data in vector X with the filter described by
numerator coefficient vector b and denominator coefficient vector a. If a(1) is
not equal to 1, filter normalizes the filter coefficients by a(1). If a(1) equals
0, filter returns an error.

If X is a matrix, filter operates on the columns of X. If X is a multidimensional
array, filter operates on the first nonsingleton dimension.

Ly,zf] = filter(b,a,X) returns the final conditions, zf, of the filter delays.
Output zf is a vector of max(size(a),size(b)) or an array of such vectors, one
for each column of X.

Ly,zf] = filter(b,a,X,zi) accepts initial conditions and returns the final
conditions, zi and zf respectively, of the filter delays. Input zi is a vector (or
an array of vectors) of length max(length(a), length(b))-1.

y = filter(b,a,X,zi,dim) and

[...] = filter(b,a,X,[],dim) operate across the dimension dim.

2-273

filter

Algorithm The Filter function is implemented as a direct form Il transposed structure,

x(m)

or

y(n) = b()X(M) + b(2)k(n-1) + ... + b(nb+1)k(n—nb)
- a@y(n-1) - ... — a(na+l)y(n—na)

where n-1 is the filter order, and which handles both FIR and IIR filters [1].

The operation of filter at sample mis given by the time domain difference
equations

y(m) = b(1)x(m)+z;(m-1)
zy(m) = b(2)x(m) +z,(m-1)-a(2)y(m)

zr.]_z(m) :.b(n—l)x(rﬁ)+zn_1(m—1)—a(n—1)y(m)
z,_1(m) = b(n)x(m)-a(n)y(m)

The input-output description of this filtering operation in the ztransform
domain is a rational transfer function,

_b(1)+b(2)z 1+ ... +b(nb+1)z7"P
1+a(2)z1l+...+a(na+1)z"a

Y(2) X(2)

See Also filtfiltin the Signal Processing Toolbox, and:

2-274

filter

Ffilter2

References [1] Oppenheim, A. V. and R.W. Schafer. Discrete-Time Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 311-312.

2-275

filter2

Purpose

Syntax

Description

Remarks

Algorithm

See Also

2-276

Two-dimensional digital filtering

Y = filter2(h,X)
Y = Filter2(h,X,shape)
Y = filter2(h,X) filtersthe datain X with the two-dimensional FIR filter in

the matrix h. It computes the result, Y, using two-dimensional correlation, and
returns the central part of the correlation that is the same size as X.

Y = filter2(h,X,shape) returns the part of Y specified by the shape
parameter. shape is a string with one of these values:

= “full " returns the full two-dimensional correlation. In this case, Y is larger
than X.

= "same" (the default) returns the central part of the correlation. In this case,
Y is the same size as X.

= “valid" returns only those parts of the correlation that are computed
without zero-padded edges. In this case, Y is smaller than X.

Two-dimensional correlation is equivalent to two-dimensional convolution with
the filter matrix rotated 180 degrees. See the Algorithm section for more
information about how filter2 performs linear filtering.

Given a matrix X and a two-dimensional FIR filter h, fi I ter2 rotates your filter
matrix 180 degrees to create a convolution kernel. It then calls conv2, the
two-dimensional convolution function, to implement the filtering operation.

filter2 uses conv2 to compute the full two-dimensional convolution of the FIR
filter with the input matrix. By default, filter2 then extracts the central part
of the convolution that is the same size as the input matrix, and returns this as
the result. If the shape parameter specifies an alternate part of the convolution
for the result, filter2 returns the appropriate part.

conv2, filter

find

Purpose

Syntax

Description

Examples

Find indices and values of nonzero elements

k = Find(x)
[i.31 = find(X)
[i.3.v] = Ffind(X)

k = Ffind(X) returns the indices of the array x that point to nonzero elements.
If none is found, find returns an empty matrix.

[i,§]1 = find(X) returns the row and column indices of the nonzero entries in
the matrix X. This is often used with sparse matrices.

[i.§.v] = Ffind(X) returns a column vector v of the nonzero entries in X, as
well as row and column indices.

In general, find(X) regards X as X(:), which is the long column vector formed
by concatenating the columns of X.

[i.§.v] = Find(X~=0) produces a vector v with all 1s, and returns the row and
column indices.

Some operations on a vector

x=[11 0 33 0 55]°;

find(x)
ans =

1

3

5
find(x == 0)
ans =

2

4

2-277

find

find(0 < x & x < 10*pi)
ans =

1

And on a matrix

M = magic(3)

M =
8 1 6
3 5 7
4 9 2

[i.j.v] = find(M > 6)

i= j = Vv =
1 1
3 2 1
2 3 1
See Also nonzeros, sparse

The logical operators &, |, ~
The relational operators <, <=, >, >=, ==, ~=

The colon operator :

2-278

findstr

Purpose
Syntax

Description

Examples

See Also

Find one string within another

k = findstr(strl,str2)

k = findstr(stril,str2) finds the starting indices of any occurrences of the
shorter string within the longer.

strl = "Find the starting indices of the shorter string.";
str2 = "the";
findstr(strl,str2)

ans =
6 30

strcmp, strmatch, strncmp

2-279

fix

Purpose Round towards zero

Syntax B = Fix(A)

Description B = Tix(A) rounds the elements of A toward zero, resulting in an array of
integers. For complex A, the imaginary and real parts are rounded
independently.

Examples a =

Columns 1 through 4
—1.9000 —0.2000 3.4000 5.6000
Columns 5 through 6
7.0000 2.4000 + 3.6000i
fix(a)
ans =
Columns 1 through 4
—1.0000 0 3.0000 5.0000
Columns 5 through 6
7.0000 2.0000 + 3.0000i

See Also ceil, floor, round

2-280

flipdim

Purpose
Syntax

Description

Examples

See Also

Flip array along a specified dimension

B = flipdim(A,dim)

B = Fflipdim(A,dim) returns A with dimension dim flipped.

When the value of dimis 1, the array is flipped row-wise down. When dimis 2,
the array is flipped columnwise left to right. flipdim(A,1) is the same as
flipud(A), and flipdim(A,2) is the same as fliplr(A).

flipdim(A,1) where

A =
1 4
2 5
3 6
produces
3 6
2 5
1 4

fliplr, flipud, permute, rot90

2-281

fliplr

Purpose Flip matrices left-right
Syntax B = Fliplr(A)
Description B = Ffliplr(A) returns A with columns flipped in the left-right direction, that

is, about a vertical axis.

Examples A =

1 4

2 5

3 6

produces

4 1

5 2

6 3
Limitations Array A must be two dimensional.
See Also flipdim, flipud, rot90

2-282

flipud

Purpose
Syntax

Description

Examples

Limitations

See Also

Flip matrices up-down

B

flipud(A)

B = flipud(A) returns A with rows flipped in the up-down direction, that is,

about a horizontal axis.

A =

produces

Array A must be two dimensional.

flipdim, Fliplr, rot90

1
2
3

3
2
1

g b

6
5
4

2-283

floor

Purpose Round towards minus infinity
Syntax B = floor(A)
Description B = floor(A) rounds the elements of A to the nearest integers less than or

equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a =
Columns 1 through 4
—1.9000 —0.2000 3.4000 5.6000
Columns 5 through 6
7.0000 2.4000 + 3.6000i

floor(a)

ans =
Columns 1 through 4
—2.0000 —1.0000 3.0000 5.0000
Columns 5 through 6

7.0000 2.0000 + 3.0000i

See Also ceil, fix, round

2-284

flops

Purpose

Syntax

Description

Examples

Algorithm

Count floating-point operations

f = Flops
flops(0)

f = flops returns the cumulative number of floating-point operations.
Tlops(0) resets the count to zero.

If A and B are real n-by-n matrices, some typical flop counts for different
operations are:

Operation Flop Count
A+B n"2

ALB 2[h"3
AN100 99[(2[h"3)
uCh) (2/3)[h"3

MATLAB's version of the LINPACK benchmark is:

n = 100;

A = rand(n,n);
b = rand(n,1);
Tflops(0)

tic;

X = A\b;

Tt = toc

megaflops = flops/t/1.e6

It is not feasible to count all the floating-point operations, but most of the
important ones are counted. Additions and subtractions are each one flop if real
and two if complex. Multiplications and divisions count one flop each if the
result is real and six flops if it is complex. Elementary functions count one if
real and more if complex.

2-285

fmin

Purpose

Syntax

Description

Arguments

-286

Minimize a function of one variable

NOTE The name of this function has been changed to fminbnd in Release 11
(MATLAB 5.3). While fmin is supported in Release 11, it will be removed in a
future release so please begin using fminbnd.

x = fmin("fun*® ,x1,x2)
x = fmin(*fun® ,x1,x2,options)
x = fmin(*fun® ,x1,x2,options,P1,P2, ._.)

[x,options] = fmin(...)

x = fmin("fun”,x1,x2) returns a value of x which is a local minimizer of
fun(x) in the interval x; <x<X,.

x = fmin("fun”,x1,x2,options) does the same as the above, but uses
options control parameters.

x = fmin("fun",x1,x2,options,P1,P2,...) doesthe same as the above, but
passes arguments to the objective function, fun(x,P1,P2, ...). Pass an empty
matrix for options to use the default value.

[x,options] = fmin(...) returns, in options(10), a count of the number of
steps taken.

x1,x2 Interval over which function is minimized.

P1,P2... Arguments to be passed to function.

fmin

fun

options

A string containing the name of the function to be minimized.

A vector of control parameters. Only three of the 18
components of options are referenced by fmin; Optimization
Toolbox functions use the others. The three control options
used by fmin are:

=« options(1) — If this is nonzero, intermediate steps in the so-
lution are displayed. The default value of options(1) is 0.

= options(2) — This is the termination tolerance. The default
value is 1.e—4.

= options(14) — This is the maximum number of steps. The
default value is 500.

-287

fmin

Examples fmin(~cos",3,4) computes 1tto a few decimal places.

fmin("cos",3,4,[1,1.e-12]) displays the steps taken to compute 1tto 12
decimal places.

To find the minimum of the functionf(x) = x 3_2x-5 on the interval (0,2),
write an M-file called £._m.

function y = f(X)
y = X."3-2[k-5;

Then invoke fmin with
x = fmin("f", 0, 2)
The result is

X =
0.8165

The value of the function at the minimum is

y = fF)
y =
—6.0887
Algorithm The algorithm is based on golden section search and parabolic interpolation. A

Fortran program implementing the same algorithms is given in [1].
See Also fmins Minimize a function of several variables

fzero Zero of a function of one variable

foptions in the Optimization Toolbox (or type help foptions).

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

-288

fminbnd

Purpose

Syntax

Description

Minimize a function of one variable

x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(fun,x1,x2,options,P1,P2,._.)

[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

fminbnd finds the minimum of a function of one variable within a fixed
interval.

x = Ffminbnd(fun,x1,x2) returns a value x that is a local minimizer of the
function that is described in fun (usually an M-file, built-in function, or inline
object) in the interval x1 < x < x2. The function fun should return a scalar
function value ¥ when called with feval: f=feval (fun,x).

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminbnd uses these options
structure fields:

= Display — Level of display. off displays no output; iter displays output at
each iteration; final displays just the final output.

= MaxFunEvals — Maximum number of function evaluations allowed.

= Maxlter — Maximum number of iterations allowed.

= TolX — Termination tolerance on x.

x = fminbnd(fun,x1,x2,options,P1,P2,...) provides for additional
arguments, P1, P2, etc., which are passed to the objective function,
fun(x,P1,P2,...). Use options=[] as a placeholder if no options are set.

[x,fval]l = fminbnd(...) returns the value of the objective function
computed in fun at x.

[x,fval,exitflag] = fminbnd(...) returns avalue exitflag that describes
the exit condition of fminbnd:

2-289

fminbnd

Arguments

Examples

2-290

=< > 0 indicates that the function converged to a solution x.
=« 0 indicates that the maximum number of function evaluations was reached.

[x,fval,exitflag,output] = fminbnd(...) returns astructure output that
contains information about the optimization:

=« output.algorithm — The algorithm used.
= output. funcCount — The number of function evaluations.
= output. iterations — The number of iterations taken.

fun is a string containing the name of the function that computes the objective
function to be minimized at the point x. The function returns one argument, a
scalar valued function f to be minimized. For example, if fun="fun", the first
line of the M-file fun.m is

T = fun(X)
fun can also be the name of a built-in function such as fun="sin".
Alternatively, you can specify an inline object. For example,

fun = inline("sin(x*x)");
Other arguments are described in the syntax descriptions above.
x = fminbnd("cos",3,4) computes 1t to a few decimal places and gives a
message on termination.

[x,fval,exitflag] =
fminbnd("cos”,3,4,optimset("TolX",1le-12, "Display”, "off"))

computes 1tto about 12 decimal places, suppresses output, returns the function
value at x, and returns an exitflag of 1.

The argument fun can also be an inline function. To find the minimum of the
function f(x) = x =2x -5 on the interval (0,2), create an inline object £

f = inline("x."3-2*x-5");
Then invoke fminbnd with

x = fminbnd(F, 0, 2)

fminbnd

Algorithm

Limitations

See Also

References

The result is

X =
0.8165

The value of the function at the minimum is

y = GO

y:
—6.0887

The algorithm is based on golden section search and parabolic interpolation. A
Fortran program implementing the same algorithm is given in [1].

The function to be minimized must be continuous. fminbnd may only give local
solutions.

fminbnd often exhibits slow convergence when the solution is on a boundary of
the interval.

fminbnd only handles real variables.
fminsearch, fzero, optimset, inline

[1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

2-291

fmins

Purpose

Syntax

Description

Arguments

-292

Minimize a function of several variables

NOTE The name of this function has been changed to fminsearch in Release
11 (MATLAB 5.3). While fmins is supported in Release 11, it will be removed
in a future release so please begin using fminsearch.

x = fmins("fun®,x0)

x = fmins("fun®,x0,options)

x = fmins("fun®,x0,options,[],P1,P2, ...)
[x,options] = fmins(...)

x = fmins("fun~,x0) returns a vector x which is a local minimizer of
fun() near Xg.

x = fmins("fun”,x0,options) does the same as the above, but uses options
control parameters.

x = fmins("fun”,x0,options,[]1,P1,P2,...) does the same as above, but
passes arguments to the objective function, fun(x,P1,P2, ...). Passanempty
matrix for options to use the default value.

[x,options] = fmins(...) returns, in options(10), a count of the number
of steps taken.

x0 Starting vector.
P1,P2... Arguments to be passed to fun.
1 Argument needed to provide compatibility with fminu in the

Optimization Toolbox.

fmins

Examples

fun

options

A string containing the name of the objective function to be
minimized. fun(x) is a scalar valued function of a vector
variable.

A vector of control parameters. Only four of the 18
components of options are referenced by fmins;
Optimization Toolbox functions use the others. The four
control options used by fmins are:

= options(1) — If this is nonzero, intermediate steps in the
solution are displayed. The default value of options(1) is
0.

=« options(2) and options(3) — These are the termination
tolerances for x and function(x), respectively. The de-
fault values are 1.e-4.

= options(14) — This is the maximum number of steps.
The default value is 500.

A classic test example for multidimensional minimization is the Rosenbrock

banana function:

f(x) = 100(x2—x§)2+(1—x1)2

The minimum is at (1,1) and has the value 0. The traditional starting point is
-file banana.m defines the function.

(-1.2,1). The M

function f =

banana(x)

f = 1000(x(2)—x(1)"2)"2+(1-x(1))"2;

The statements

[x,out] = fmins("banana”,[-1.2, 1]);

X
out(10)

-293

fmins

Algorithm

See Also

-294

produce

X =
1.0000 1.0000
ans =

165

This indicates that the minimizer was found to at least four decimal places in
165 steps.

Move the location of the minimum to the point [a,a”2] by adding a second
parameter to banana.m.

function f = banana(x,a)
if nargin < 2,a = 1; end
f = 1000(x(2)—x () 2)"2+(a—x(1))"2;

Then the statement
[x,out] = fmins("banana”, [-1.-2, 1], [0, 1-e-8], [1., sart(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default.

The algorithm is the Nelder-Mead simplex search described in the two refer-
ences. It is a direct search method that does not require gradients or other
derivative information. If n is the length of x, a simplex in n-dimensional space
is characterized by the n+1 distinct vectors which are its vertices. In two-space,
a simplex is a triangle; in three-space, it is a pyramid.

At each step of the search, a new point in or near the current simplex is gener-
ated. The function value at the new point is compared with the function’s
values at the vertices of the simplex and, usually, one of the vertices is replaced
by the new point, giving a new simplex. This step is repeated until the diameter
of the simplex is less than the specified tolerance.

fmin Minimize a function of one variable
foptions in the Optimization Toolbox (or type help foptions).

fmins

References [1] Nelder, J. A. and R. Mead, “A Simplex Method for Function Minimization,”
Computer Journal, Vol. 7, p. 308-313.

[2] Dennis, J. E. Jr. and D. J. Woods, “New Computing Environments: Micro-
computers in Large-Scale Computing,” edited by A. Wouk, SIAM, 1987, pp.
116-122.

-295

fminsearch

Purpose

Syntax

Description

2-296

Minimize a function of several variables

x = Ffminsearch(fun,x0)

x = fminsearch(fun,x0,options)

x = fminsearch(fun,x0,options,P1,P2,...)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

fminsearch finds the minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as unconstrained
nonlinear optimization.

x = Tminsearch(fun,x0) returns a vector x that is a local minimizer of the
function described in fun (usually an M-file, built-in function or an inline
object) near the starting vector x0. fun should return a scalar function value ¥
evaluated at x when called with feval: f=Feval (fun,x).

x = fminsearch(fun,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminsearch uses these options
structure fields:

=« Display — Level of display. off displays no output; iter displays output at
each iteration; final displays just the final output.

= MaxFunEvals — Maximum number of function evaluations allowed.

= MaxIter — Maximum number of iterations allowed.

= TolFun — Termination tolerance on the function value.

< TolX — Termination tolerance on x.

x = fminsearch(fun,x0,options,P1,P2,...) passesthe problem-dependent
parameters P1, P2, etc., directly to the function fun: feval (fun,x,P1,P2,...).
Pass an empty matrix for options to use the default values.

[x,fval] = fminsearch(...) returns in fval the value of the objective
function fun at the solution x.

fminsearch

Arguments

Examples

[x,fval,exitflag] = fminsearch(...) returns a value exitflag that
describes the exit condition of fminsearch:

= > 0 indicates that the function converged to a solution x.
= 0 indicates that the maximum number of function evaluations was reached.
= < 0 indicates that the function did not converge to a solution.

[x,fval,exitflag,output] = fminsearch(...) returns a structure output
that contains information about the optimization:

= output.algorithm — The algorithm used.
= output.funcCount — The number of function evaluations.
= output. iterations — The number of iterations taken.

fun is a string containing the name of the function that computes the objective
function to be minimized at the point x. The function returns one argument, a
scalar valued function f to be minimized, given a vector x. For example, if
fun="fun", the first line of the M-file fun.m is

f = fun(x)

fun can also be the name of a built-in function such as fun="norm*.(Note that
norm takes a vector and returns a scalar.)

Alternatively, you can specify an inline object. For example,
fun = inline("sin(X""*x)");

Other arguments are described in the syntax descriptions above.

A classic test example for multidimensional minimization is the Rosenbrock
banana function

F(X) = 100(xy —x2)° + (1 —x,)?

The minimum is at (1,1) and has the value 0. The traditional starting point is
(-1.2,1). The M-file banana.m defines the function.

function f = banana(x)
f = 100*(xX(2)—x(1)"2)"2+(1—x(1))"2;

2-297

fminsearch

The statement
[x,fval] = fminsearch("banana®,[-1.2, 1])
produces

X =
1.0000 1.0000
fval =

8.1777e-010

This indicates that the minimizer was found to at least four decimal places
with a value near zero.

Move the location of the minimum to the point [a,a”2] by adding a second
parameter to banana.m.

function ¥ = banana(x,a)
if nargin < 2,a = 1; end
f = 100*(x(2)—x(1)"2)"2+(a—x(1))"2;

Then the statement

[x,fval] = fminsearch("banana®, [-1.2, 1],
optimset("TolX",1e-8), sqrt(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default on x.

Algorithm fminsearch uses the simplex search method of [1]. This is a direct search
method that does not use numerical or analytic gradients.

If n is the length of x, a simplex in n-dimensional space is characterized by the
n+1 distinct vectors that are its vertices. In two-space, a simplex is a triangle;

in three-space, it is a pyramid. At each step of the search, a new point in or near

the current simplex is generated. The function value at the new point is
compared with the function’s values at the vertices of the simplex and, usually,
one of the vertices is replaced by the new point, giving a new simplex. This step
is repeated until the diameter of the simplex is less than the specified
tolerance.

2-298

fminsearch

Limitations fminsearch can often handle discontinuity, particularly if it does not occur
near the solution. fminsearch may only give local solutions.

fminsearch only minimizes over the real numbers, that is, x must only consist
of real numbers and f(x) must only return real numbers. When x has complex
variables, they must be split into real and imaginary parts.

See Also fminbnd, optimset, inline
References [1] Lagarias, J.C., J. A. Reeds, M.H. Wright, and P.E. Wright, “Convergence

Properties of the Nelder-Mead Simplex Algorithm in Low Dimensions,” May 1,
1997. To appear in the SIAM Journal of Optimization.

2-299

fopen

Purpose

Syntax

Description

2-300

Open a file or obtain information about open files

fid = fopen(filename,permission)

[fid,message] = fopen(Filename,permission,format)
fids = fopen(“all®)

[filename,permission, format] = fopen(fid)

If fopen successfully opens a file, it returns a file identifier fid, and the value
of message is empty. The file identifier can be used as the first argument to
other file input/output routines. If fopen does not successfully open the file, it
returns a —1 value for fid. In that case, the value of message is a string that
helps you determine the type of error that occurred.

Two Fids are predefined and cannot be explicitly opened or closed:

1 Standard output, which is always open for appending (permission
setto "a”)

2 Standard error, which is always open for appending (permission set
to "a”)

fid = fopen(filename,permission) opens the file filename in the mode
specified by permission and returns fid, the file identifier. filename may a
MATLABPATH relative partial pathname. If the file is opened for reading and it is
not found in the current working directory, fopen searches down MATLAB's
search path.

permission can be:

r- Open the file for reading (default).

r+" Open the file for reading and writing.

“w" Delete the contents of an existing file or create a new file, and
open it for writing.

“w+" Delete the contents of an existing file or create new file, and
open it for reading and writing.

W Write without automatic flushing; used with tape drives

fopen

a Create and open a new file or open an existing file for writing,
appending to the end of the file.
“at+" Create and open a new file or open an existing file for reading
and writing, appending to the end of the file.
TAT Append without automatic flushing; used with tape drives

Files can be opened in binary mode (the default) or in text mode and for some
systems, you must make the distinction when you use fopen. On PC and VMS
systems, you must distinguish between text and binary mode. On UNIX
systems, you do not need to distinguish between binary and text mode. In text
mode, line separators are deleted on input before they reach MATLAB and are
added for output. In binary mode, line separators are not deleted or added. To
open a file in text mode, add a "t~ to the permission string, for example, "rt-,
which forces the file to be opened in text mode. Similarly, use a "b~ to force the
file to be opened in binary mode (the default).

[fid,message] = fopen(filename,permission,format) opens a file as
above, returning file identifier and message. In addition, you specify the
numeric format with format, a string defining the numeric format of the file,
allowing you to share files between machines of different formats. If you omit
the format argument, the numeric format of the local machine is used.
Individual calls to fread or fwrite can override the numeric format specified
in a call to fopen.

format can be:

"cray" or "c" Cray floating point with big-endian byte ordering

“ieee—be" or "b" IEEE floating point with big-endian byte ordering

“ieee-le"or "I" IEEE floating point with little-endian byte
ordering

“ieee-be_164" or "s* |EEE floating point with big-endian byte ordering
and 64-bit long data type

“ieee-le_164" or "a" |EEE floating point with little-endian byte
ordering and 64-bit long data type

2-301

fopen

See Also

2-302

“native” or "n” the numeric format of the machine you are
currently running

“vaxd® or "d" VAX D floating point and VAX ordering

“vaxg® or "g" VAX G floating point and VAX ordering

fids = fopen(“all™) returns a row vector containing the file identifiers of all
open files, not including 1 and 2 (standard output and standard error). The
number of elements in the vector is equal to the number of open files.

[Filename,permission,format] = fopen(Ffid) returns the full filename
string, the permission string, and the format string associated with the
specified file. An invalid fid returns empty strings for all output arguments.
Both permission and format are optional.

fclose, ferror, fprintf, fread, fscanf, fseek, ftell, fwrite

for

Purpose

Syntax

Description

Examples

Repeat statements a specific number of times

for variable = expression
statements
end
The general format is
for variable = expression
statement
statement
end

The columns of the expression are stored one at a time in the variable while
the following statements, up to the end, are executed.

In practice, the expression is almost always of the form scalar : scalar, in
which case its columns are simply scalars.

The scope of the for statement is always terminated with a matching end.
Assume n has already been assigned a value. Create the Hilbert matrix, using
zeros to preallocate the matrix to conserve memory:

a = zeros(n,n) % Preallocate matrix
for i = 1:n
for j = 1:n
a(i,j) = 1/@(+j -1);
end
end

Step s with increments of —0.1
for s = 1.0: -0.1: 0.0,..., end
Successively set e to the unit n-vectors:
for e = eye(n),..., end
The line
for V=A,..., end

2-303

for

has the same effect as
for j = 1:n,V = A(:,1);---, end

except j is also set here.

See Also break, end, if, return, switch, while

The colon operator :

2-304

format

Purpose Control the output display format
Syntax format
format type
Description MATLAB performs all computations in double precision.The format command
described below changes the display format.
Command Result Example
format Default. Same as short.
format short 5 digit scaled fixed point 3.1416
format long 15 digit scaled fixed point 3.14159265358979
format short e 5 digit floating point 3.1416e+00
format long e 15 digit floating point 3.141592653589793e+
00
format short g Best of 5 digit fixed or 3.1416
floating
format long ¢ Best of 15 digit fixed or 3.14159265358979
floating
format hex Hexadecimal 400921fb54442d18
format bank Fixed dollars and cents 3.14
format rat Ratio of small integers 355/113
format + +,—, blank +
format compact Suppresses excess line feeds
format loose Adds line feeds
Algorithms The command format + displays +, —, and blank characters for positive,

negative, and zero elements. format hex displays the hexadecimal
representation of a binary double-precision number. format rat uses a

2-305

format

continued fraction algorithm to approximate floating-point values by ratios of
small integers. See rat.m for the complete code.

See Also fprintf, num2str, rat, sprintf, spy

2-306

fprintf

Purpose

Syntax

Description

Write formatted data to file

count = fprintf(fid,format,A,...)
fprintf(format,A,...)

count = fprintf(fid,format,A, ...) formats the data in the real part of
matrix A (and in any additional matrix arguments) under control of the
specified format string, and writes it to the file associated with file identifier
fid. fprintf returns a count of the number of bytes written.

Argument fid is an integer file identifier obtained from fopen. (It may also be
1 for standard output (the screen) or 2 for standard error. See fopen for more
information.) Omitting fid from fprintf’s argument list causes output to

appear on the screen, and is the same as writing to standard output (fid = 1).

fprintf(format,A, . ..) writes to standard output, the screen.

The format string specifies notation, alignment, significant digits, field width,
and other aspects of output format. It can contain ordinary alphanumeric
characters, along with escape characters, conversion specifiers, and other
characters, organized as shown below.

%-12.5e

NN

Flag Field width and oharacter
precision

Initial % character

2-307

fprintf

Remarks The fprintf function behaves like its ANSI C language fprintf() namesake
with certain exceptions and extensions, including:

These non-standard subtype b The underlying C data type is a

specifiers are supported for double rather than an unsigned

conversion specifiers %o, %u, integer. For example, to print a

%x, and %X. double-precision value in
hexadecimal, use a format like
"%bx'.

t The underlying C data type is a
float rather than an unsigned

integer.
When input matrix A is The format string is cycled through
nonscalar, fprintfis the elements of A (columnwise)
vectorized. until all the elements are used up.

It is then cycled in a similar
manner, without reinitializing,
through any additional matrix
arguments.

The following tables describe the nonalphanumeric characters found in format
specification strings.

2-308

fprintf

Escape Characters

Character Description

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\\ Backslash

\"" or "" Single quotation mark
(two single

quotes)

%%

Percent character

Conversion Specifiers
Conversion characters specify the notation of the output.

Specifier

Description

%c
%d

%e

%E

%F

%g

Single character
Decimal notation (signed)

Exponential notation (using a lowercase e as in
3.1415e+00)

Exponential notation (using an uppercase E as in
3.1415E+00)

Fixed-point notation

The more compact of %e or %f, as defined in [2];
insignificant zeros do not print

2-309

fprintf

2-310

Specifier

Description

%G

%o

%s

%u

%X

%X

Same as %g, but using an uppercase E
Octal notation (unsigned)
String of characters

Decimal notation (unsigned)

Hexadecimal notation (using lowercase letters a—¥)

Hexadecimal notation (using uppercase letters A—F)

Other Characters

Other characters can be inserted into the conversion specifier between the %
and the conversion character.

Character Description Example

A minus sign (-) Left-justifies the converted argument in %-5.2d
its field.

A plus sign (+) Always prints a sign character (+ or —). %+5.2d

Zero (0) Pads with zeros rather than spaces. %05.2d

Digits (field A digit string that specifies the %6F

width) minimum number of digits to be printed.

Digits (precision) A digit string including a period (.) that %6.2F

specifies the number of digits to be

printed to the right of the decimal point.

For more information about format strings, refer to the printf() and
fprintf() routines in the documents listed in “References”.

fprintf

Examples

The statements

X = 0:.1:1;

y = [x; exp(®)];

fid = fopen("exp.-txt", "w");
fprintf(Fid, "%6.2F %12.8F\n",y);
fclose(fid)

create a text file called exp.txt containing a short table of the exponential
function:

0.00 1.00000000
0.10 1.10517092

i:éo 2.71828183
The command

fprintf("A unit circle has circumference %g.\n",2[pi)
displays a line on the screen:

A unit circle has circumference 6.283186.

To insert a single quotation mark in a string, use two single quotation marks
together. For example,

fprintf(1,"1t""s Friday-\n%)
displays on the screen:

It"s Friday.
The commands

B = [8.8 7.7; 8800 7700]
fprintf(1,"X is %6.2F meters or %8.3Ff mm\n*,9.9,9900,B)

display the lines:

X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm

2-311

fprintf

See Also

References

2-312

Explicitly convert MATLAB double-precision variables to integral values for
use with an integral conversion specifier. For instance, to convert signed 32-bit
data to hexadecimal format:

a = [6 10 14 44];
fprintfF("%9X\n",a + (a<0)[2"32)
6
A
E
2C

fclose, ferror, fopen, fread, fscanf, fseek, ftell, fwrite

[1] Kernighan, B.W. and D.M. Ritchie, The C Programming Language, Second
Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430
Broadway, New York, NY 10018.

frameedit

Purpose

Syntax

Description

Remarks

Create and edit print frames for Simulink and Stateflow block diagrams

frameedit
frameedit filename

frameedit starts the PrintFrame Editor, a graphical user interface you use to
create borders for Simulink and Stateflow block diagrams. With no argument,
frameedit opens the PrintFrame Editor window with a new file.

frameedit filename opens the PrintFrame Editor window with the specified
filename, where filename is a figure file (. fig) previously created and saved
using frameedit.

This illustrates the main features of the PrintFrame Editor.

2-313

frameedit

2-314

Use the File menu for page setup, and saving and opening print frames. Change the information in a cell, and resize, add, and

Get help for the PrintFrame Editor. remove cels

| PrintFrame Editor
File Help

splitcelll deletecelll

add row | delete row |

Fill

I Tent - I Add |
Addand //

remove align Lic|r
rows.
Zoom in or
out on
selected cell.
SIEK r ‘ 3
Use these buttons to create and edit borders. Use these Use the list box and button to add
buttons to align information in cells, such as text
information or the date.
within a cell.

Closing the PrintFrame Editor

To close the PrintFrame Editor window, click the close box in the upper right
corner, or select Close from the File menu.

frameedit

Printing Simulink Block Diagrams with Print Frames

Select Print from the Simulink File menu. Check the Frame box and supply
the filename for the print frame you want to use. Click OK in the Print dialog
box.

Getting Help for the PrintFrame Editor

For further instructions on using the PrintFrame Editor, select PrintFrame
Editor Help from the Help menu in the PrintFrame Editor.

2-315

fread

Purpose

Syntax

Description

2-316

Read binary data from file

[A,count] fread(fid,size,precision)
[A,count] = fread(fid,size,precision,skip)

[A,count] = fread(fid,size,precision) reads binary data from the
specified file and writes it into matrix A. Optional output argument count
returns the number of elements successfully read. fid is an integer file
identifier obtained from fopen.

size is an optional argument that determines how much data is read. If size
is not specified, fread reads to the end of the file. Valid options are:

n Reads n elements into a column vector.

inf Reads to the end of the file, resulting in a column vector containing
the same number of elements as are in the file.

[m,n] Reads enough elements to fill an m—by—n matrix, filling in elements
in column order, padding with zeros if the file is too small to fill the
matrix.

If fread reaches the end of the file and the current input stream does not
contain enough bits to write out a complete matrix element of the specified
precision, fread pads the last byte or element with zero bits until the full value
is obtained. If an error occurs, reading is done up to the last full value.

precision is a string representing the numeric precision of the values read,
precision controls the number of bits read for each value and the
interpretation of those bits as an integer, a floating-point value, or a character.
The precision string may contain a positive integer repetition factor of the
form "n*= which prepends one of the strings above, like *40*uchar". If
precision is not specified, the default “uchar® (8-bit unsigned character) is
assumed. See “Remarks” for more information.

[A,count] = fread(fid,size,precision,skip) includes an optional skip

argument that specifies the number of bytes to skip after each precision value
is read. With the skip argument present, fread reads in one value and does a
skip of input, reads in another value and does a skip of input, etc. for at most
size times. This is useful for extracting data in noncontiguous fields from fixed

fread

Remarks

length records. If precision is a bit format like "bitN" or "ubitN", skip is
specified in bits.

Numeric precisions can differ depending on how numbers are represented in
your computer’s architecture, as well as by the type of compiler used to produce
executable code for your computer.

The tables below give C-compliant, platform-independent numeric precision
string formats that you should use whenever you want your code to be portable.

For convenience, MATLAB accepts some C and Fortran data type equivalents
for the MATLAB precisions listed. If you are a C or Fortran programmer, you
may find it more convenient to use the names of the data types in the language
with which you are most familiar.

MATLAB C or Fortran Interpretation

"schar" "signed char” Signed character; 8 bits
"uchar" "unsigned char" Unsigned character; 8 bits
"int8~ "integer*1- Integer; 8 bits

"intl6" "integer*2" Integer; 16 bits

"int32" "integer*4- Integer; 32 bits

"int64" "integer*8- Integer; 64 bits

"uint8" "integer*1- Unsigned integer; 8 bits
"uintlé" "integer*2" Unsigned integer; 16 bits
“uint32-” "integer*4- Unsigned integer; 32 bits
“uint64- "integer*8- Unsigned integer; 64 bits
*"float32" "real*4- Floating-point; 32 bits
"float64" "real*8- Floating-point; 64 bits
"double- “real*8-" Floating-point; 64 bits

2-317

fread

If you always work on the same platform and do not care about portability,
these platform-dependent numeric precision string formats are also available.

MATLAB C or Fortran Interpretation

“char" "char*1" Character; 8 bits

"short* "short* Integer; 16 bits

"int" “int” Integer; 32 bits

“long" “long" Integer; 32 or 64 bits

“ushort* "unsigned short-” Unsigned integer; 16 bits
“uint” "unsigned int" Unsigned integer; 32 bits
“ulong" "unsigned long" Unsigned integer; 32 or 64 bits
"float” "float” Floating-point; 32 bits

Two formats map to an input stream of bits rather than bytes.

MATLAB C or Fortran Interpretation

“bitN*® Signed integer; N bits (1 <N < 64)

"ubitN" Unsigned integer; N bits (1 <N <64)
See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

2-318

freqspace

Purpose

Syntax

Description

See Also

Determine frequency spacing for frequency response

[f1,f2] = fregspace(n)
[f1,f2] = freqspace([m n])
[x1,y1] = freqspace(...,""meshgrid®)

T = freqgspace(N)
f = freqspace(N, "whole™)

fregspace returns the implied frequency range for equally spaced frequency
responses. fregspace is useful when creating desired frequency responses for
various one- and two-dimensional applications.

[f1,f2] = fregspace(n) returns the two-dimensional frequency vectors f1
and f2 for an n-by-n matrix.

For n odd, both f1 and f2 are [-n+1:2:n-1]/n.

For n even, both 1 and 2 are [-n:2:n-2]/n.

[f1,f2] = fregspace([m n]) returns the two-dimensional frequency
vectors f1 and f2 for an m-by-n matrix.
[x1,y1] = fregspace(.-., "meshgrid") is equivalent to

[f1,f2] fregspace(...);
[x1,y1l] = meshgrid(fl,f2);

f = fregspace(N) returns the one-dimensional frequency vector £ assuming
N evenly spaced points around the unit circle. For N even or odd, fis (0:2/N:1).
For N even, freqgspace therefore returns (N+2)/2 points. For N odd, it returns
(N+1)/2 points.

f = freqgspace(N, "whole™) returns N evenly spaced points around the whole
unit circle. In this case, fis 0:2/N:2*(N-1)/N.

meshgrid

2-319

frewind

Purpose Rewind an open file
Syntax frewind(Ffid)
Description frewind(Fid) sets the file position indicator to the beginning of the file

specified by fid, an integer file identifier obtained from fopen.

Remarks Rewinding a fid associated with a tape device may not work even though
frewind does not generate an error message.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

2-320

fscanf

Purpose

Syntax

Description

Remarks

Read formatted data from file

A = fscanf(fid,format)
[A,count] = fscanf(fid,format,size)

A = fscanf(fid,format) reads all the data from the file specified by fid,
converts it according to the specified format string, and returns it in matrix A.
Argument fid is an integer file identifier obtained from fopen. format is a
string specifying the format of the data to be read. See “Remarks” for details.

[A,count] = fscanf(fid,format,size) reads the amount of data specified
by size, converts it according to the specified format string, and returns it
along with a count of elements successfully read. size is an argument that
determines how much data is read. Valid options are:

n Read n elements into a column vector.

inf Read to the end of the file, resulting in a column vector
containing the same number of elements as are in the file.

[m,n] Read enough elements to fill an m-by-n matrix, filling the matrix
in column order. n can be Inf, but not m.

fscanf differs from its C language namesakes scanf() and fscanf() in an
important respect — it is vectorized in order to return a matrix argument. The
format string is cycled through the file until an end-of-file is reached or the
amount of data specified by size is read in.

When MATLAB reads a specified file, it attempts to match the data in the file
to the format string. If a match occurs, the data is written into the matrix in
column order. If a partial match occurs, only the matching data is written to
the matrix, and the read operation stops.

The format string consists of ordinary characters and/or conversion
specifications. Conversion specifications indicate the type of data to be

2-321

fscanf

2-322

matched and involve the character %, optional width fields, and conversion
characters, organized as shown below:
%-12.5e

NN

Flag Field width and oharacter
precision

Initial % character

Add one or more of these characters between the % and the conversion
character:

An asterisk (*) Skip over the matched value, if the value is matched but
not stored in the output matrix.

A digit string Maximum field width.

A letter The size of the receiving object; for example, h for short as
in %hd for a short integer, or I for long as in %1d for a long
integer or %lg for a double floating-point number.

Valid conversion characters are:

%C Sequence of characters; number specified by field width
%d Decimal numbers

%e, %F, %g Floating-point numbers

%i Signed integer

%0 Signed octal integer

%s A series of non-white-space characters

%u Signed decimal integer

%X Signed hexadecimal integer

[---1 Sequence of characters (scanlist)

If %s is used, an element read may use several MATLAB matrix elements, each
holding one character. Use %c to read space characters or %s to skip all white
space.

fscanf

Mixing character and numeric conversion specifications cause the resulting
matrix to be numeric and any characters read to appear as their ASCII values,
one character per MATLAB matrix element.

For more information about format strings, refer to the scanf() and fscanf()
routines in a C language reference manual.

Examples The example in fprintf generates an ASCII text file called exp . txt that looks
like:

0.00 1.00000000
0.10 1.10517092

1.00 2.71828183

Read this ASCII file back into a two-column MATLAB matrix:

fid = fopen(“exp.txtT);
a = Fscanf(fid,"%g %g",[2 inf]) % It has two rows now.

a=a";
fclose(fid)

See Also fgetl, fgets, fread, fprintf, fscanf, input, sscanf, textread

2-323

fseek

Purpose Set file position indicator

Syntax status = fseek(fid,offset,origin)

Description status = fseek(fid,offset,origin) repositions the file position indicatorin
the file with the given fid to the byte with the specified offset relative to
origin.

Arguments fid An integer file identifier obtained from fopen.

offset A value that is interpreted as follows:

offset > 0 Move position indicator offset bytes toward the
end of the file.

offset = 0 Do not change position.

offset < 0 Move position indicator offset bytes toward the
beginning of the file.

origin A string whose legal values are:

"bof*" —1: Beginning of file.
"cof- 0: Current position in file.
“eof" 1: End of file.

status A returned value that is 0 if the fseek operation is successful
and —1 if it fails. If an error occurs, use the function ferror to
get more information.

See Also fopen, ftell

2-324

ftell

Purpose
Syntax

Description

See Also

Get file position indicator

position = ftell(fid)

position = ftell(fid) returns the location of the file position indicator for
the file specified by fid, an integer file identifier obtained from fopen. The
position is a nonnegative integer specified in bytes from the beginning of the
file. A returned value of -1 for position indicates that the query was
unsuccessful; use ferror to determine the nature of the error.

fclose, ferror, fopen, fprintf, fread, fscanf, fseek, fwrite

2-325

full

Purpose
Syntax

Description

Remarks

Examples

See Also

2-326

Convert sparse matrix to full matrix

A = full(S)

A = Full(S) converts a sparse matrix S to full storage organization. If Sis a
full matrix, it is left unchanged. If A is full, issparse(A) is 0.

Let X be an m-by-n matrix with nz = nnz(X) nonzero entries. Then ful 1(X)
requires space to store mCh real numbers while sparse(X) requires space to
store nz real numbers and (nz+n) integers.

On most computers, a real number requires twice as much storage as an
integer. On such computers, sparse(X) requires less storage than ful 1(X) if
the density, nnz/prod(size(X)), is less than one third. Operations on sparse
matrices, however, require more execution time per element than those on full
matrices, so density should be considerably less than two-thirds before sparse
storage is used.

Here is an example of a sparse matrix with a density of about two-thirds.
sparse(S) and ful 1(S) require about the same number of bytes of storage.

S = sparse(rand(200,200) < 2/3);

A = full(S);
whos
Name Size Bytes Class

A 200X200 320000 double array (logical)
S 200X200 318432 sparse array (logical)

sparse

fullfile

Purpose
Syntax

Description

Examples

Build full filename from parts
fullfile(dirl,dir2, ..._,Ffilename)
fullfile(dirl,dir2, ...,filename) builds a full filename from the

directories and filename specified. This is conceptually equivalent to

T = [dirl dirsep dir2 dirsep ... dirsep Tilename]

except that care is taken to handle the cases when the directories begin or end
with a directory separator. Specify the filename as "* to build a pathname
from parts. On VMS, care is taken to handle the cases involving [or].

fullfile(matlabroot, "toolbox/matlab/general/Contents.m") and
fullfile(matlabroot, "toolbox", "matlab”, "general ", "Contents.m")

produce the same result on UNIX, but only the second one works on all
platforms.

2-327

function

Purpose

Description

2-328

Function M-files

You add new functions to MATLAB's vocabulary by expressing them in terms
of existing functions. The existing commands and functions that compose the
new function reside in a text file called an M-file.

M-files can be either scripts or functions. Scripts are simply files containing a
sequence of MATLAB statements. Functions make use of their own local
variables and accept input arguments.

The name of an M-file begins with an alphabetic character, and has a filename
extension of .m. The M-file name, less its extension, is what MATLAB searches
for when you try to use the script or function.

A line at the top of a function M-file contains the syntax definition. The name
of a function, as defined in the first line of the M-file, should be the same as the
name of the file without the .m extension. For example, the existence of a file
on disk called stat.m with

function [mean,stdev] = stat(x)
n = length(X);

mean = sum(x)/n;

stdev = sqrt(sum((x—mean).”2/n));

defines a new function called stat that calculates the mean and standard
deviation of a vector. The variables within the body of the function are all local
variables.

A subfunction,visible only to the other functions in the same file, is created by
defining a new function with the function keyword after the body of the
preceding function or subfunction. For example, avg is a subfunction within the
file stat.m:

function [mean,stdev] = stat(x)

n = length(x);

mean = avg(x,n);

stdev = sgrt(sum((x-avg(x,n)).-"2)/n);

function mean = avg(x,n)
mean = sum(x)/n;

function

See Also

Subfunctions are not visible outside the file where they are defined. Functions
normally return when the end of the function is reached. Use a return
statement to force an early return.

When MATLAB does not recognize a function by name, it searches for a file of
the same name on disk. If the function is found, MATLAB compiles it into
memory for subsequent use. In general, if you input the name of something to
MATLAB, the MATLAB interpreter:

1 Checks to see if the name is a variable.

2 Checks to see if the name is an internal function (eig, sin) that was not
overloaded.

3 Checks to see if the name is a local function (local in sense of multifunction
file).

4 Checks to see if the name is a function in a private directory.

5 Locates any and all occurrences of function in method directories and on the
path. Order is of no importance.

At execution, MATLAB:

6 Checks to see if the name is wired to a specific function (2, 3, & 4 above)

7 Uses precedence rules to determine which instance from 5 above to call (we
may default to an internal MATLAB function). Constructors have higher
precedence than anything else.

When you call an M-file function from the command line or from within
another M-file, MATLAB parses the function and stores it in memory. The
parsed function remains in memory until cleared with the clear command or
you quit MATLAB. The pcode command performs the parsing step and stores
the result on the disk as a P-file to be loaded later.

nargin, nargout, pcode, varargin, varargout, what

2-329

funm

Purpose

Syntax

Description

Examples

Algorithm

See Also

2-330

Evaluate functions of a matrix

Y = funm(X, "function®)
[Y,esterr] = funm(X, >function?)

Y = funm(X, "function~) evaluates function using Parlett's method [1]. X
must be a square matrix, and function any element-wise function.

The commands funm(X, "sgrt”) and funm(X, "log") are equivalent to the
commands sqrtm(X) and logm(X). The commands funm(X, "exp*) and
expm(X) compute the same function, but by different algorithms. expm(X) is
preferred.

[Y,esterr] = funm(X, >function”) does not print any message, but returns a
very rough estimate of the relative error in the computer result. If X is
symmetric or Hermitian, then its Schur form is diagonal, and funm is able to
produce an accurate result.

The statements

S
C

funm(X, "sin®);
funm(X, "cos™);

produce the same results to within roundoff error as

E = expm(ilX);
C = real(E);
S = imag(E);
In either case, the results satisfy S*S+C*C = 1, where I = eye(size(X)).

The matrix functions are evaluated using Parlett’s algorithm, which is
described in [1]. The algorithm uses the Schur factorization of the matrix and
may give poor results or break down completely when the matrix has repeated
eigenvalues. A warning message is printed when the results may be
inaccurate.

expm, logm, sqrtm

funm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns Hopkins
University Press, 1983, p. 384.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.

2-331

fwrite

Purpose

Syntax

Description

Remarks

2-332

Write binary data to a file

count = fwrite(fid,A,precision)
count = fwrite(Ffid,A,precision,skip)

count = fwrite(fid,A,precision) writes the elements of matrix A to the
specified file, translating MATLAB values to the specified numeric precision.
(See “Remarks” for more information.)

The data is written to the file in column order, and a count is kept of the
number of elements written successfully. Argument fid is an integer file
identifier obtained from fopen.

count = fwrite(fid,A,precision,skip) includes an optional skip
argument that specifies the number of bytes to skip before each precision
value is written. With the skip argument present, fwrite skips and writes one
value, skips and writes another value, etc. until all of A is written. This is useful
for inserting data into noncontiguous fields in fixed-length records. If
precision is a bit format like "bitN" or "ubitN~, skip is specified in bits.

Numeric precisions can differ depending on how numbers are represented in
your computer’s architecture, as well as by the type of compiler used to produce
executable code for your computer.

The tables below give C-compliant, platform-independent numeric precision
string formats that you should use whenever you want your code to be portable.

For convenience, MATLAB accepts some C and Fortran data type equivalents
for the MATLAB precisions listed. If you are a C or Fortran programmer, you
may find it more convenient to use the names of the data types in the language
with which you are most familiar.

MATLAB C or Fortran Interpretation

"schar* "signed char- Signed character; 8 bits
“float32® “real*4" Floating-point; 32 bits
“float64™ "real*8" Floating-point; 64 bits

fwrite

MATLAB C or Fortran Interpretation

"int8" "integer*1- Integer; 8 bits

"intl6" Tinteger*2- Integer; 16 bits

"int32" "integer*4- Integer; 32 bits

"int64" "integer*8- Integer; 64 bits

"uchar" "unsigned char" Unsigned character; 8 bits
"uint8" "integer*1- Unsigned integer; 8 bits
"uintl6” "integer*2- Unsigned integer; 16 bits
"uint32” "integer*4- Unsigned integer; 32 bits
"uint64- "integer*8- Unsigned integer; 64 bits
"double- "double” Floating-point; 64 bits

If you always work on the same platform and do not care about portability,
these platform-dependent numeric precision string formats are also available.

MATLAB C or Fortran Interpretation

“char- "char*1" Character; 8 bits

"short" "short" Integer; 16 bits

"int" "int” Integer; 32 bits

“long" "long" Integer; 32 or 64 bits

"ushort” "unsigned short" Unsigned integer; 16 bits
"uint” "unsigned int" Unsigned integer; 32 bits
“ulong" "unsigned long" Unsigned integer; 32 or 64 bits
“float" “float" Floating-point; 32 bits

2-333

fwrite

Two formats map to an input stream of bits rather than bytes:

MATLAB C or Fortran Interpretation

"bitN" Signed integer; N bits (1 <N < 64)

"ubitN"® Unsigned integer; N bits (1 <N < 64)
Examples fid = fopen("magic5.bin", "wb");

fwrite(fid,magic(b), "integer*4-)

creates a 100-byte binary file, containing the 25 elements of the 5-by-5 magic
square, stored as 4-byte integers.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell

2-334

fzero

Purpose

Syntax

Description

Zero of a function of one variable

x = Fzero(fun,x0)

x = Fzero(fun,x0,options)

x = Ffzero(fun,x0,options,P1,P2,...)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)

x = fzero(fun,x0) tries to find a zero of fun near x0. fun (usually an M-file,
built-in function, or an inline object) should take a scalar real value and return
a real scalar value when called with feval: f=feval (fun,x). The value x
returned by fzero is near a point where fun changes sign, or NaN if the search
fails.

x = fzero(fun,x0) where x0 is a vector of length two, assumes x0 is an
interval where the sign of fun(x0(1)) differs from the sign of fun(x0(2)). An
error occurs if this is not true. Calling fzero with such an interval guarantees
fzero will return a value near a point where fun changes sign.

x = fzero(fun,x0) where x0 is a scalar value, uses x0 as a starting guess.
fzero looks for an interval containing a sign change for fun and containing x0.
If no such interval is found, NaN is returned. In this case, the search terminates
when the search interval is expanded until an Inf, NaN, or complex value is
found.

x = fzero(fun,x0,options) minimizes with the optimization parameters
specified in the structure options. You can define these parameters using the
optimset function. fzero uses these options structure fields:

= Display — Level of display. off displays no output; iter displays output at
each iteration; final displays just the final output.

« TolX — Termination tolerance on x.

x = fzero(fun,x0,options,P1,P2,...) provides for additional arguments
passed to the function, f=feval (fun,x,P1,P2,...). Pass an empty matrix for
options to use the default values.

2-335

fzero

Arguments

Examples

2-336

[x,fval] = fzero(...) returns the value of the objective function fun at the
solution x.

[x,fval,exitflag] = fzero(...) returns a value exitflag that describes
the exit condition of fzero:

« > 0 indicates that the function found a zero x.

= < 0 then no interval was found with a sign change, or NaN or Inf function
value was encountered during search for an interval containing a sign
change, or a complex function value was encountered during search for an
interval containing a sign change.

[x,fval,exitflag,output] = fzero(...) returns a structure output that
contains information about the optimization:

= output.algorithm — The algorithm used.
= output.funcCount — The number of function evaluations.
= output.iterations — The number of iterations taken.

NOTE For the purposes of this command, zeros are considered to be points
where the function actually crosses, not just touches, the x-axis.

fun is a string containing the name of a file in which an arbitrary function of
one variable is defined. fun can also be an inline object.

Other arguments are described in the syntax descriptions above.

Calculate by finding the zero of the sine function near 3.
x = fzero("sin",3)
X =

3.1416

To find the zero of cosine between 1 and 2

x = fzero("cos",[1 2])
X =
1.5708

fzero

Algorithm

Limitations

See Also

Note that cos(1) and cos(2) differ in sign.

To find a zero of the function
f(x) = x3-2x-5

write an M-file called f.m.

function y = f(X)
y = X."3-2*x-5;

To find the zero near 2

z
Z =

fzero("f",2)

2.0946

Because this function is a polynomial, the statement roots([1 0 —2 -5]) finds
the same real zero, and a complex conjugate pair of zeros.

2.0946
—-1.0473 + 1.1359i
—-1.0473 — 1.1359i

fzero(Tabs(x)+1", 1) returns NaN since this function does not change sign
anywhere on the real axis (and does not have a zero as well).

The fzero command is an M-file. The algorithm, which was originated by T.
Dekker, uses a combination of bisection, secant, and inverse quadratic
interpolation methods. An Algol 60 version, with some improvements, is given
in [1]. A Fortran version, upon which the fzero M-file is based, is in [2].

The fzero command defines a zero as a point where the function crosses the
x-axis. Points where the function touches, but does not cross, the x-axis are not
valid zeros. For example, y = x.”~2 is a parabola that touches the x-axis at O.
Because the function never crosses the x-axis, however, no zero is found. For
functions with no valid zeros, fzero executes until Inf, NaN, or a complex value
is detected.

roots, fminbnd, inline, optimset

2-337

fzero

References [1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall,
1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

2-338

gallery

Purpose

Syntax

Description

Test matrices

[A,B,C,...] = gallery("tmfun®,P1,P2,._.)
gallery(3) abadly conditioned 3-by-3 matrix
gallery(5) an interesting eigenvalue problem

[A,B,C,...] = gallery("tmfun",P1,P2,...) returns the test matrices
specified by string tmfun. tmfun is the name of a matrix family selected from
the table below. P1, P2, ... are input parameters required by the individual
matrix family. The number of optional parameters P1,P2, ... used in the
calling syntax varies from matrix to matrix.The exact calling syntaxes are
detailed in the individual matrix descriptions below.

The gallery holds over fifty different test matrix functions useful for testing
algorithms and other purposes.

2-339

gallery

Test Matrices

cauchy chebspec chebvand chow
circul clement compar condex
cycol dorr dramadah fiedler
forsythe frank gearmat grcar
hanowa house invhess invol
ipjfact jordbloc kahan kms
krylov lauchli lehmer lesp
lotkin minij moler neumann
orthog parter pei poisson
prolate rando randhess randsvd
redheff riemann ris rosser
smoke toeppd tridiag triw
vander wathen wilk

cauchy—Cauchy matrix

C = gallery("cauchy”,x,y) returns an n-by-n matrix, C(i,j) = 1/
x(i)+y())- Arguments x and y are vectors of length n. If you pass in scalars
for x and y, they are interpreted as vectors 1:x and 1:y.

C = gallery("cauchy",x) returns the same as above withy = x. That is, the
command returns C(i,j) = 1/(x(i)+x(g)).

Explicit formulas are known for the inverse and determinant of a Cauchy
matrix. The determinant det(C) is nonzero if x and y both have distinct
elements. C is totally positive if 0 < x(1) <... < x(n) and

0 <y(@) < ... <y).

2-340

gallery

chebspec—Chebyshev spectral differentiation matrix

C = gallery("chebspec”,n,switch) returns a Chebyshev spectral
differentiation matrix of order n. Argument switch is a variable that
determines the character of the output matrix. By default, switch = 0.

For switch = 0 (“no boundary conditions™), ¢ is nilpotent (" = 0) and has the
null vector ones(n,1). The matrix C is similar to a Jordan block of size n with
eigenvalue zero.

For switch =1, Cc is nonsingular and well-conditioned, and its eigenvalues have
negative real parts.

The eigenvector matrix v of the Chebyshev spectral differentiation matrix is
ill-conditioned.

chebvand—Vandermonde-like matrix for the Chebyshev polynomials

C = gallery(“chebvand",p) produces the (primal) Chebyshev Vandermonde
matrix based on the vector of points p, which define where the Chebyshev
polynomial is calculated.

C = gallery(“chebvand®,m,p) where m is scalar, produces a rectangular
version of the above, with m rows.

If p is a vector, then:Z(i, j)= T, _,(p(j)) whereT; _, is the Chebyshev
polynomial of degree i—1. If p is a scalar, then p equally spaced points on the
interval [0,1] are used to calculate C.

chow—Singular Toeplitz lower Hessenberg matrix

A = gallery("chow" ,n,alpha,del_t?}returns A such that A = H(alpha) +
deltaleye(n), where 4; j(a): a(' 1T and argument n is the order of the
Chow matrix. alpha and delta are scalars with default values 1 and o,

respectively.

H(alpha) has p = floor(n/2) eigenvalues that are equal to zero. The rest of the
eigenvalues are equal to 4Calphaltos(kpi/(n+2))"2, k=1:n—p.

2-341

gallery

2-342

circul—Circulant matrix

C = gallery(“circul",v) returns the circulant matrix whose first row is the
vector v.

A circulant matrix has the property that each row is obtained from the previous
one by cyclically permuting the entries one step forward. It is a special Toeplitz
matrix in which the diagonals “wrap around.”

If v is a scalar, then Cc = gallery(“circul”,1:v).

The eigensystem of C (n-by-n) is known explicitly: If t is an nth root of unity,
then the inner product of v withw =[1t 2 ... t"] is an eigenvalue of ¢ and
w(n:-1:1) is an eigenvector.

clement—Tridiagonal matrix with zero diagonal entries

A = gallery(“clement”,n,sym) returns an n by n tridiagonal matrix with
zeros on its main diagonal and known eigenvalues. It is singular if order n is
odd. About 64 percent of the entries of the inverse are zero. The eigenvalues
include plus and minus the numbers n-1, n-3, n-5, ..., as well as (for odd n) a
final eigenvalue of 1 or 0.

Argument sym determines whether the Clement matrix is symmetric. For
sym = 0 (the default) the matrix is nonsymmetric, while for sym = 1, itis
symmetric.

compar—Comparison matrices

A = gallery("compar”,A,1) returns A with each diagonal element replaced
by its absolute value, and each off-diagonal element replaced by minus the
absolute value of the largest element in absolute value in its row. However, if
A is triangular compar(A,1) is too.

gallery(“compar®,A) isdiag(B) — tril(B,-1) — triu(B,1), where B = abs(A).
compar (A) is often denoted by M(A) in the literature.

gallery("compar*®,A,0) is the same as compar(A).

gallery

condex—Counter-examples to matrix condition number estimators

A = gallery("condex",n,k,theta) returns a “counter-example” matrix to a
condition estimator. It has order n and scalar parameter theta (default 100).

The matrix, its natural size, and the estimator to which it applies are specified
by k as follows:

k=1 4-by-4 LINPACK (rcond)

k =2 3-by-3 LINPACK (rcond)

k =3 arbitrary LINPACK (rcond) (independent of theta)
k =4 n=4 SONEST (Higham 1988) (default)

If n is not equal to the natural size of the matrix, then the matrix is padded out
with an identity matrix to order n.

cycol—Matrix whose columns repeat cyclically

A = gallery(“cycol”,[m n],k) returns an m-by-n matrix with cyclically
repeating columns, where one “cycle” consists of randn(m, k). Thus, the rank of
matrix A cannot exceed k. k must be a scalar.

Argument k defaults to round(n/4), and need not evenly divide n.

A = gallery("cycol”,n,k), where n is a scalar, is the same as
gallery(“cycol”,[n n],Kk).

dorr—Diagonally dominant, ill-conditioned, tridiagonal matrix

[c.d,e] = gallery(dorr~,n,theta) returns the vectors defining a row
diagonally dominant, tridiagonal order n matrix that is ill-conditioned for small
nonnegative values of theta. The default value of theta is 0.01. The Dorr
matrix itself is the same as gallery("tridiag”,c,d,e).

A = gallery("dorr=,n,theta) returns the matrix itself, rather than the
defining vectors.

2-343

gallery

2-344

dramadah—Matrix of zeros and ones whose inverse has large integer entries

A = gallery("dramadah”,n,k) returns an n-by-n matrix of 0’s and 1's for
which mu(A) = norm(inv(A), "fro~) is relatively large, although not necessarily
maximal. An anti-Hadamard matrix A is a matrix with elements 0 or 1 for
which mu(A) is maximal.

n and k must both be scalars. Argument k determines the character of the
output matrix:

k =1 Default. Ais Toeplitz, with abs(det(A)) = 1, and
mu(A) > c(1.75)"n, where c is a constant. The inverse of A has
integer entries.

k =2 Aisupper triangular and Toeplitz. The inverse of A has integer
entries.

k =3 A has maximal determinant among lower Hessenberg (0,1)
matrices.
det(A) = the nth Fibonacci number. A is Toeplitz. The eigenvalues
have an interesting distribution in the complex plane.

fiedler—Symmetric matrix

A = gallery(~fiedler”,c), where c is a length n vector, returns the n-by-n
symmetric matrix with elements abs(n(i)-n(j)). For scalar c,
A = gallery("fiedler~,1:c).

Matrix A has a dominant positive eigenvalue and all the other eigenvalues are
negative.

Explicit formulas for inv(A) and det(A) are given in [Todd, J., Basic Numerical
Mathematics, Vol. 2: Numerical Algebra, Birkhauser, Basel, and Academic
Press, New York, 1977, p. 159] and attributed to Fiedler. These indicate that
inv(A) is tridiagonal except for nonzero (1,n) and (n,1) elements.

gallery

forsythe—Perturbed Jordan block

A = gallery("forsythe",n,alpha, lambda) returns the n-by-n matrix equal
to the Jordan block with eigenvalue lambda, excepting that A(n,1) = alpha. The
default values of scalars alpha and lambda are sqrt(eps) and 0, respectively.

The characteristic polynomial of A is given by:

det(A—t1) = (lambda—t)”N — alphall(—1)"n.
frank—Matrix with ill-conditioned eigenvalues

F = gallery(~frank",n,k) returns the Frank matrix of order n. It is upper
Hessenberg with determinant 1. If k = 1, the elements are reflected about the
anti-diagonal (1,n)—(n,1). The eigenvalues of F may be obtained in terms of
the zeros of the Hermite polynomials. They are positive and occur in reciprocal
pairs; thus if n is odd, 1 is an eigenvalue. F has floor(n/2) ill-conditioned
eigenvalues—the smaller ones.

gearmat—Gear matrix

A = gallery(~gearmat”,n,i,j) returns the n-by-n matrix with ones on the
sub- and super-diagonals, sign(i) in the (1,abs(i)) position, sign(j) in the
(n,n+1-abs(j)) position, and zeros everywhere else. Arguments i and j default
to n and —n, respectively.

Matrix A is singular, can have double and triple eigenvalues, and can be
defective.

All eigenvalues are of the form 2[tos(a) and the eigenvectors are of the form
[sin(w+a), sin(w+2a), ..., sin(w+Na)], where a and w are given in Gear, C.
W., “A Simple Set of Test Matrices for Eigenvalue Programs”, Math. Comp.,
Vol. 23 (1969), pp. 119-125.

grcar—Toeplitz matrix with sensitive eigenvalues
A = gallery("grcar”,n,k) returns an n-by-n Toeplitz matrix with —1s on the

subdiagonal, 1s on the diagonal, and k superdiagonals of 1s. The default is
k = 3. The eigenvalues are sensitive.

2-345

gallery

hanowa—Matrix whose eigenvalues lie on a vertical line in the complex plane

A = gallery("hanowa",n,d) returns an n-by-n block 2-by-2 matrix of the form:

[dleye(m) —diag(l:m)
diag(1:m) dleye(m)]

Argument n is an even integer n=2[h. Matrix A has complex eigenvalues of the
form d + k[, for 1 <= k <= m. The default value of d is —1.

house—Householder matrix

[v, beta] = gallery(~house",x) takes x, a scalar or n-element column
vector, and returns v and beta such that eye(n,n) — betal/\O/" is a
Householder matrix. A Householder matrix H satisfies the relationship

H*x = —sign(xX(1))*norm(x)*el

where el is the first column of eye(n,n). Note that if x is complex, then
sign(x) = exp(ilarg(x)) (which equals x./abs(x) when x is nonzero).

If x = 0,thenv = 0 and beta = 1.

invhess—Inverse of an upper Hessenberg matrix

A = gallery("invhess”,x,y), where x is a length n vector and y a length n-1
vector, returns the matrix whose lower triangle agrees with that of
ones(n,1)[x" and whose strict upper triangle agrees with that of

[1 yllbnes(1,n).

The matrix is nonsingular if x(1) ~= 0 and x(i+1) ~= y(i) for all i, and its
inverse is an upper Hessenberg matrix. Argument y defaults to —x(1:n-1).

If x is a scalar, invhess(x) is the same as invhess(1:x).

2-346

gallery

invol—Involutory matrix
A = gallery("invol",n) returns an n-by-n involutory (ACA = eye(n)) and
ill-conditioned matrix. It is a diagonally scaled version of hilb(n).

B = (eye(n)-A)/2 and B = (eye(n)+A)/2 are idempotent (B[B = B).
ipjfact—Hankel matrix with factorial elements

[A,d] = gallery("ipjfact”,n,k) returns A, an n-by-n Hankel matrix, and d,
the determinant of A, which is known explicitly. If k = 0 (the default), then the
elements of Aare A(i,j) = (i+j)! Ifk = 1, then the elements of A are

A(iL3) = 1/7(@i+)).

Note that the inverse of A is also known explicitly.

jordbloc—Jordan block

A = gallery("jordbloc",n, lambda) returns the n-by-n Jordan block with
eigenvalue lambda. The default value for lambda is 1.

kahan—Upper trapezoidal matrix

A = gallery("kahan",n,theta,pert) returns an upper trapezoidal matrix
that has interesting properties regarding estimation of condition and rank.

If n is a two-element vector, then A is n(1)-by-n(2); otherwise, A is n-by-n. The
useful range of theta is 0 < theta < pi, with a default value of 1.2.

To ensure that the QR factorization with column pivoting does not interchange
columns in the presence of rounding errors, the diagonal is perturbed by
pertlepsdiag([n:—-1:1]). The default pert is 25, which ensures no
interchanges for gallery(“kahan=,n) up to at least n = 90 in IEEE arithmetic.

kms—Kac-Murdock-Szego Toeplitz matrix

A = gallery("kms",n,rho) returns the n-by-n Kac-Murdock-Szego Toeplitz
matrix such that A(i,j) = rho”~(abs(i—j)), for real rho.

For complex rho, the same formula holds except that elements below the
diagonal are conjugated. rho defaults to 0.5.

2-347

gallery

2-348

The KMS matrix A has these properties:

= An LDL' factorization with L = inv(triw(n,-rho,1)"), and
D(i,i) = (l-abs(rho)”~2)lkye(n), except D(1,1) = 1.

= Positive definite if and only if 0 < abs(rho) < 1.

= The inverse inv(A) is tridiagonal.

krylov—Krylov matrix
B = gallery("krylov",A,x,j) returns the Krylov matrix
[x, Ax, A"2x, ..., A~g-1)x]

where A is an n-by-n matrix and x is a length n vector. The defaults are
x = ones(n,1),and j = n.

B = gallery("krylov",n) is the same as gallery("krylov", (randn(n)).

lauchli—Rectangular matrix

A = gallery("lauchli~,n,mu) returns the (n+1)-by-n matrix
[ones(1,n); mu*eye(n)]

The Lauchli matrix is a well-known example in least squares and other
problems that indicates the dangers of forming A*[hA. Argument mu defaults to
sqrt(eps).

lehmer—Symmetric positive definite matrix

A = gallery("lehmer”,n) returns the symmetric positive definite n-by-n
matrix such that A(i,j) = i/j for j >= i.

The Lehmer matrix A has these properties:

= A is totally nonnegative.

= The inverse inv(A) is tridiagonal and explicitly known.

« The order n <= cond(A) <= 4[hlCh.

gallery

lesp—Tridiagonal matrix with real, sensitive eigenvalues

A = gallery("lesp”,n) returns an n-by-n matrix whose eigenvalues are real
and smoothly distributed in the interval approximately [-2[N-3.5, —4.5].

The sensitivities of the eigenvalues increase exponentially as the eigenvalues
grow more negative. The matrix is similar to the symmetric tridiagonal matrix
with the same diagonal entries and with off-diagonal entries 1, via a similarity
transformation with b = diag(1!,2!,...,n1).

lotkin—Lotkin matrix

A = gallery("lotkin",n) returns the Hilbert matrix with its first row
altered to all ones. The Lotkin matrix A is nonsymmetric, ill-conditioned, and
has many negative eigenvalues of small magnitude. Its inverse has integer
entries and is known explicitly.

minij—Symmetric positive definite matrix

A = gallery("minij",n) returns the n-by-n symmetric positive definite
matrix with A(i,j) = min(i.Jj)-

The minij matrix has these properties:

= The inverse inv(A) is tridiagonal and equal to -1 times the second difference
matrix, except its (n,n) element is 1.

= Givens’ matrix, 2[A-ones(size(A)), has tridiagonal inverse and eigenvalues
0.50kec(O—1)[pi/s(4lh))~2, where r=1:n.

= (n+1)[bnes(size(A))-A has elements that are max(i,j) and a tridiagonal
inverse.

moler—Symmetric positive definite matrix

A = gallery("moler”,n,alpha) returns the symmetric positive definite
n-by-n matrix U*[U, where U = triw(n,alpha).

For the default alpha = -1, A(i,j) = min(i,j)-2, and A(i,i) = i.One of the
eigenvalues of A is small.

2-349

gallery

2-350

neumann—Singular matrix from the discrete Neumann problem (sparse)

C = gallery(“neumann®,n) returns the singular, row-diagonally dominant
matrix resulting from discretizing the Neumann problem with the usual
five-point operator on a regular mesh. Argument n is a perfect square integer
n = m? or a two-element vector. C is sparse and has a one-dimensional null
space with null vector ones(n,1).

orthog—Orthogonal and nearly orthogonal matrices

Q = gallery("orthog”,n,k) returns the kth type of matrix of order n, where
k > 0 selects exactly orthogonal matrices, and k < 0 selects diagonal scalings
of orthogonal matrices. Available types are:

k=1 Q(i,J) = sgrt(2/(n+1)) O sin(ijlpi/z(n+1))
Symmetric eigenvector matrix for second difference matrix. This
is the default.

k =2 Q(i.j) = 2/(sqrt(2h+1)) O sinOgpi/(2h+1))
Symmetric.

k =3 Q(r,s) = exppilA(r-1)(s-1)/n) 7/ sqrt(n)
Unitary, the Fourier matrix. Q™4 is the identity. This is
essentially the same matrix as fft(eye(n))/sqrt(n)!

k =4 Helmert matrix: a permutation of a lower Hessenberg matrix,
whose first row is ones(1:n)/sqrt(n).

k=5 Q(i,j) = sinRpil(i-1)Oj-1)/n) +
cospil(i-1)(j-1)/n)
Symmetric matrix arising in the Hartley transform.

k =-1 QCi,j) = cos((i-DHUG-1)pi/(n-1))
Chebyshev Vandermonde-like matrix, based on extrema of
T(n-1).

k =-2 Q(Ci,J) = cos((i-1)(j-1/2)[pi/n))
Chebyshev Vandermonde-like matrix, based on zeros of T(n).

gallery

parter—Toeplitz matrix with singular values near pi

C = gallery("parter”,n) returns the matrix c such that
C(i,j) = 1/(i—j+0.5).

c is a Cauchy matrix and a Toeplitz matrix. Most of the singular values of c are
very close to pi.

pei—Pei matrix

A = gallery("pei~,n,alpha), where alphais a scalar, returns the symmetric
matrix alphalkye(n) + ones(n). The default for alpha is 1. The matrix is
singular for alpha equal to either 0 or —n.

poisson—BIlock tridiagonal matrix from Poisson’s equation (sparse)

A = gallery("poisson~,n) returns the block tridiagonal (sparse) matrix of
order n~2 resulting from discretizing Poisson's equation with the 5-point
operator on an n-by-n mesh.

prolate—Symmetric, ill-conditioned Toeplitz matrix

A = gallery("prolate”,n,w) returns the n-by-n prolate matrix with
parameter w. It is a symmetric Toeplitz matrix.

Ifo < w < 0.5 then A is positive definite

= The eigenvalues of A are distinct, lie in (0,1), and tend to cluster around 0
and 1.

« The default value of w is 0.25.

2-351

gallery

randhess—Random, orthogonal upper Hessenberg matrix

H = gallery("randhess”,n) returns an n-by-n real, random, orthogonal
upper Hessenberg matrix.

H = gallery(“randhess”,x) if x is an arbitrary, real, length n vector with
n > 1, constructs H nonrandomly using the elements of x as parameters.

Matrix H is constructed via a product of n-1 Givens rotations.

rando—Random matrix composed of elements -1, 0 or 1

A = gallery("rando”,n,k) returns a random n-by-n matrix with elements
from one of the following discrete distributions:

k =1 A(i,j) =0or 1 with equal probability (default)
k =2 A(i,j) =-1 or 1 with equal probability
k =3 A(i,j) =-1, 0 or 1 with equal probability

Argument n may be a two-element vector, in which case the matrix is
n(1)-by-n(2).

randsvd—Random matrix with preassigned singular values

A = gallery("randsvd",n,kappa,mode,kl,ku) returns a banded
(multidiagonal) random matrix of order n with cond(A) = kappa and singular
values from the distribution mode. If n is a two-element vector, A is

n(1)-by-n(2).

Arguments kI and ku specify the number of lower and upper off-diagonals,
respectively, in A. If they are omitted, a full matrix is produced. If only k1 is
present, ku defaults to kI.

Distribution mode may be:

1 One large singular value
2 One small singular value
3 Geometrically distributed singular values (default)

2-352

gallery

One large singular value

Arithmetically distributed singular values

a N P

Random singular values with uniformly distributed logarithm

< 0 Ifmodeis-1, —2, -3, —4, or -5, then randsvd treats mode as abs(mode),
except that in the original matrix of singular values the order of the
diagonal entries is reversed: small to large instead of large to small.

Condition number kappa defaults to sqrt(1/eps). In the special case where
kappa < 0, A is a random, full, symmetric, positive definite matrix with
cond(A) = —kappa and eigenvalues distributed according to mode. Arguments ki
and ku, if present, are ignored.

redheff—Redheffer’s matrix of 1s and Os

A = gallery("redheff~,n) returns an n-by-n matrix of 0's and 1's defined by
A(i,j) = 1,ifj = 1orifidivides j, and A(i,j) = 0 otherwise.

The Redheffer matrix has these properties:

= (n—Floor(log2(n)))-1 eigenvalues equal to 1

= A real eigenvalue (the spectral radius) approximately sqrt(n)
= A negative eigenvalue approximately —sqrt(n)

= The remaining eigenvalues are provably “small.”

= The Riemann hypothesis is true if and only if det(A) = O(n”(1/2+epsilon)) for
every epsilon > 0.

Barrett and Jarvis conjecture that “the small eigenvalues all lie inside the unit
circle abs(2) = 1,” and a proof of this conjecture, together with a proof that
some eigenvalue tends to zero as n tends to infinity, would yield a new proof of
the prime number theorem.

riemann—Matrix associated with the Riemann hypothesis
A = gallery(“riemann~,n) returns an n-by-n matrix for which the Riemann

hypothesis is true if and only if det(A) = O(n! n”*(-1/2+epsilon)) for every
epsilon > 0.

2-353

gallery

2-354

The Riemann matrix is defined by:

A = B(2:n+1,2:n+1)
where B(i,j) = i-1if i divides j, and B(i,j) = -1 otherwise.
The Riemann matrix has these properties:

=« Each eigenvalue e(i) satisfies abs(e(i)) <= m-1/m, where m = n+1.
= i <= e(i) <= i+1 with at most m—sqrt(m) exceptions.
=« All integers in the interval (mw/3, m/2] are eigenvalues.

ris—Symmetric Hankel matrix

A = gallery("ris”,n) returns a symmetric n-by-n Hankel matrix with
elements

ACi,J) = 0.5/(n—i—j+1.5)

The eigenvalues of A cluster around /2 and —1v/2 . This matrix was invented
by F.N. Ris.

rosser—Classic symmetric eigenvalue test matrix

A = rosser returns the Rosser matrix. This matrix was a challenge for many
matrix eigenvalue algorithms. But the Francis QR algorithm, as perfected by
Wilkinson and implemented in EISPACK and MATLAB, has no trouble with it.
The matrix is 8-by-8 with integer elements. It has:

= A double eigenvalue
= Three nearly equal eigenvalues
< Dominant eigenvalues of opposite sign

= A zero eigenvalue
= A small, nonzero eigenvalue

smoke—Complex matrix with a 'smoke ring' pseudospectrum

A = gallery("smoke",n) returns an n-by-n matrix with 1’s on the
superdiagonal, 1 in the (n,1) position, and powers of roots of unity along the
diagonal.

gallery

A = gallery("smoke",n,1) returns the same except that element A(n,1) is
zero.

The eigenvalues of smoke(n,1) are the nth roots of unity; those of smoke(n) are
the nth roots of unity times 2~(1/n).

toeppd—Symmetric positive definite Toeplitz matrix

A = gallery("toeppd”,n,m,w,theta) returns an n-by-n symmetric, positive
semi-definite (SPD) Toeplitz matrix composed of the sum of m rank 2 (or, for
certain theta, rank 1) SPD Toeplitz matrices. Specifically,

T = w(@)Or(theta(l)) + ... + w(m)Or(theta(m))
where T(theta(k)) has (i,j) element cos(2lpiCtheta(k)(i—j)).

By default: m = n,w = rand(m,1), and theta = rand(m,1).

toeppen—Pentadiagonal Toeplitz matrix (sparse)

P = gallery(~toeppen®,n,a,b,c,d,e) returns the n-by-n sparse,
pentadiagonal Toeplitz matrix with the diagonals: P(3,1) = a, P(2,1) = b,
P(1,1) = ¢,P(,2) = d,and P(1,3) = e, where a, b, ¢, d, and e are scalars.

By default, (a,b,c,d,e) = (1,-10,0,10,1), yielding a matrix of Rutishauser.
This matrix has eigenvalues lying approximately on the line segment
2[tos(2[1) + 200dkin(L).

tridiag—Tridiagonal matrix (sparse)

A = gallery("tridiag~,c,d,e) returns the tridiagonal matrix with
subdiagonal c, diagonal d, and superdiagonal e. Vectors c and e must have
length(d)-1.

A = gallery("tridiag”,n,c,d,e), wherec, d, and e are all scalars, yields the
Toeplitz tridiagonal matrix of order n with subdiagonal elements c, diagonal
elements d, and superdiagonal elements e. This matrix has eigenvalues

d + 2[kgrt(clk)tos(klpi/(n+l))

where k = 1:n. (see [1].)

2-355

gallery

2-356

A = gallery("tridiag”,n) is the same as
A = gallery("tridiag”,n,-1,2,-1), which is a symmetric positive definite
M-matrix (the negative of the second difference matrix).

triw—Upper triangular matrix discussed by Wilkinson and others
A = gallery("triw",n,alpha,k) returns the upper triangular matrix with
ones on the diagonal and alphas on the first k >= 0 superdiagonals.

Order n may be a 2-vector, in which case the matrix is n(1)-by-n(2) and upper
trapezoidal.

Ostrowski [“On the Spectrum of a One-parametric Family of Matrices, J. Reine
Angew. Math., 1954] shows that

cond(gallery("triw",n,2)) = cot(pi/(4[h))"2,

and, for large abs(alpha), cond(gallery("triw",n,alpha)) is approximately
abs(alpha)~nlkin(pi/(4[h-2)).

Adding —2~(2-n) to the (n,1) element makes triw(n) singular, as does adding
—27~(1-n) to all the elements in the first column.

vander—Vandermonde matrix

A = gallery("vander®,c) returnsthe Vandermonde matrix whose second to
last column is c. The jth column of a Vandermonde matrix is given by

ACz.J) = CrM(n-J).
wathen—Finite element matrix (sparse, random entries)
A = gallery("wathen”,nx,ny) returns a sparse, random, n-by-n finite

element matrix where

n = 3[lhxthy + 2[hx + 2[hy + 1.

Matrix A is precisely the “consistent mass matrix” for a regular nx-by-ny grid of
8-node (serendipity) elements in two dimensions. A is symmetric, positive
definite for any (positive) values of the “density,” rho(nx,ny), which is chosen
randomly in this routine.

gallery

A = gallery("wathen”,nx,ny,1) returns a diagonally scaled matrix such
that

0.25 <= eig(inv(D)[A) <= 4.5

where D = diag(diag(A)) for any positive integers nx and ny and any densities
rho(nx,ny).

wilk—Various matrices devised or discussed by Wilkinson

[A,b] = gallery("wilk",n) returns a different matrix or linear system
depending on the value of n:

n MATLAB Code Result

n=3 [A.b] = Upper triangular system Ux=b
gallery(C"wilk",3) illustrating inaccurate solution.

n=4 [A,b] = Lower triangular system Lx=b,
gallery("wilk",4) ill-conditioned.

n=>5 A = gallery("wilk",5) hilb(6)(1:5,2:6)[1.8144. A

symmetric positive definite
matrix.

n=21 A= gallery("wilk",21) w21+, tridiagonal matrix.
Eigenvalue problem.

2-357

gallery

See Also

References

2-358

hadamard, hilb, invhilb, magic, wilkinson

The MATLAB gallery of test matrices is based upon the work of Nicholas J.
Higham at the Department of Mathematics, University of Manchester,
Manchester, England. Additional detail on these matrices is documented in
The Test Matrix Toolbox for MATLAB (Version 3.0) by N. J. Higham,
September, 1995. To obtain this report in pdf format, enter the doc command
at the MATLAB prompt and select the item Related Papers > Test Matrix
Toolbox under the Full Documentation Set entry on the Help Desk main
screen. This report is also available via anonymous ftp from The MathWorks at
/pub/contrib/linalg/testmatrix/testmatrix.ps or World Wide Web
(Ftp://ftp.ma.man.ac.uk/pub/narep or http://www.ma.man.ac.uk/MCCM/
MCCM_html). Further background may be found in the book Accuracy and
Stability of Numerical Algorithms, Nicholas J. Higham, SIAM, 1996.

gamma, gammainc, gammaln

Purpose

Syntax

Definition

Description

Algorithm

Gamma functions

Y = gamma(A) Gamma function
Y = gammainc(X,A) Incomplete gamma function
Y = gammaln(A) Logarithm of gamma function

The gamma function is defined by the integral:

2]

M(a) = Ie‘t 2 Ldt
0

The gamma function interpolates the factorial function. For integer n:
gamma(n+1l) = n! = prod(1:n)

The incomplete gamma function is:

-1 Hotpa-n
P(x,a) = I_(a)IOe ta-idt

Y = gamma(A) returns the gamma function at the elements of A. A must be real.

Y = gammainc(X,A) returns the incomplete gamma function of corresponding
elements of X and A. Arguments X and A must be real and the same size (or
either can be scalar).

Y = gammaln(A) returns the logarithm of the gamma function,
gammaln(A) = log(gamma(A)). The gammaln command avoids the underflow
and overflow that may occur if it is computed directly using log(gamma(A)).

The computations of gamma and gammaln are based on algorithms outlined in
[1]. Several different minimax rational approximations are used depending
upon the value of A. Computation of the incomplete gamma function is based
on the algorithm in [2].

2-359

gamma, gammainc, gammaln

References [1] Cody, J., An Overview of Software Development for Special Functions,
Lecture Notes in Mathematics, 506, Numerical Analysis Dundee, G. A. Watson
(ed.), Springer Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sec. 6.5.

2-360

gcd

Purpose

Syntax

Description

Examples

Greatest common divisor

G = gcd(A,B)
[G.C,D] = gcd(A,B)

G = gcd(A,B) returns an array containing the greatest common divisors of the
corresponding elements of integer arrays A and B. By convention, gcd(0,0)
returns a value of 0; all other inputs return positive integers for G.

[G,C,D] = gcd(A,B) returns both the greatest common divisor array G, and
the arrays C and D, which satisfy the equation: A(i) .[C(i) + B(i).[D(i) =
G(i). These are useful for solving Diophantine equations and computing
elementary Hermite transformations.

The first example involves elementary Hermite transformations.

For any two integers a and b there is a 2-by-2 matrix E with integer entries and
determinant = 1 (a unimodular matrix) such that:

E O [a;b] = [g,0],

where g is the greatest common divisor of a and b as returned by the command
[g.c,d] = gcd(a,b).
The matrix E equals:

c d
—b/g a/g

In the case wherea = 2and b = 4:

[9.c.d] = gcd(2,4)

g =
2

c =
1

d =
0

2-361

gcd

1 0
-2 1

In the next example, we solve for x and y in the Diophantine equation
30x + 56y = 8.

[g.c,d] = gcd(30,56)

g =
2

c =
-13

d =
7

By the definition, for scalars c and d:
30(-13) + 56(7) = 2,

Multiplying through by 8/2:
30(~13[H4) + 56(7[4) = 8

Comparing this to the original equation, a solution can be read by inspection:
x = (-13[4) = -52; y = (7[B) = 28

See Also Icm

References [1] Knuth, Donald, The Art of Computer Programming, Vol. 2, Addison-Wesley:
Reading MA, 1973. Section 4.5.2, Algorithm X.

2-362

getfield
|

Purpose Get field of structure array
Syntax T = getfield(s, "Field")
f = getfield(s,{i,j}, Ffield",{k})

Description f = getfield(s, "field"), where s is a 1-by-1 structure, returns the contents
of the specified field. This is equivalent to the syntax f = s_field.

f = getfield(s,{i,j}, field",{k}) returns the contents of the specified
field. This is equivalent to the syntax ¥ = s(i,j)-field(k). All subscripts
must be passed as cell arrays—that is, they must be enclosed in curly braces
(similar to{i,j} and {k} above). Pass field references as strings.

Examples Given the structure:

mystr(1,1).name "alice”;
mystr(1,1).1D =
mystr(2,1) .name

mystr(2,1).1D =

"gertrude”;

= 1ol

Then the command f = getfield(mystr,{2,1}, "name") yields
f =

gertrude

To list the contents of all name (or other) fields, embed getfield in a loop:

for i = 1:2
name{i} = getfield(mystr,{i,1}, " name");
end
name
name =
"alice” "gertrude”
See Also setfield

2-363

global

Purpose
Syntax

Description

Remarks

Examples

2-364

Define a global variable
global XY z

global X Y Z defines X, Y, and Z as global in scope.

Ordinarily, each MATLAB function, defined by an M-file, has its own local
variables, which are separate from those of other functions, and from those of
the base workspace and nonfunction scripts. However, if several functions, and
possibly the base workspace, all declare a particular name as global, they all
share a single copy of that variable. Any assignment to that variable, in any
function, is available to all the functions declaring it global.

If the global variable does not exist the first time you issue the global
statement, it is initializied to the empty matrix.

If a variable with the same name as the global variable already exists in the
current workspace, MATLAB issues a warning and changes the value of that
variable to match the global.

Use clear global variable to clear a global variable from the global
workspace. Use clear variable to clear the global link from the current
workspace without affecting the value of the global.

To use aglobal within a callback, declare the global, use it, then clear the global
link from the workspace. This avoids declaring the global after it has been
referenced. For example:

uicontrol ("style”, "pushbutton*,”CallBack”’, ...
"global MY_GLOBAL,disp(MY_GLOBAL),MY_GLOBAL = MY_GLOBAL+1,clear MY_GLOBAL",...

"string”, "count™)

Here is the code for the functions tic and toc (some comments abridged).
These functions manipulate a stopwatch-like timer. The global variable TICTOC

global
|

is shared by the two functions, but it is invisible in the base workspace or in any
other functions that do not declare it.

function tic

% TIC Start a stopwatch timer.
% TIC; any stuff; TOC

% prints the time required.

% See also: TOC, CLOCK.

global TICTOC

TICTOC = clock;

function t = toc
% TOC Read the stopwatch timer.
% TOC prints the elapsed time since TIC was used.
% t = TOC; saves elapsed time in t, does not print.
% See also: TIC, ETIME.
global TICTOC
if nargout < 1
elapsed_time = etime(clock,TICTOC)
else
t = etime(clock,TICTOC);
end

See Also clear, isglobal, who

2-365

gmres

Purpose

Syntax

Description

2-366

Generalized Minimum Residual method (with restarts)

x = gmres(A,b,restart)

gmres(A,b,restart,tol)

gnres(A,b,restart,tol ,maxit)

gmres(A,b,restart, tol ,maxit,M)

gmres(A,b,restart, tol ,maxit,M1,M2)

gnres(A,b,restart,tol ,maxit,M1,M2,x0)

x = gmres(A,b,restart,tol ,maxit,M1,M2,x0)

[x,flag] = gmres(A,b,restart,tol,maxit,M1,M2,x0)

[x,Fflag,relres] = gmres(A,b,restart,tol,maxit,M1,M2,x0)

[x,flag,relres,iter] = gmres(A,b,restart,tol,maxit,M1,M2,x0)

[x,flag,relres,iter,resvec] =
gmres(A,b,restart, tol ,maxit,M1,M2,x0)

x = gmres(A,b, restart) attempts to solve the system of linear equations
A*x = b for x. The coefficient matrix A must be square and the column vector
b must have length n, where A is n-by-n. When A is not explicitly available as a
matrix, you can express A as an operator afun that returns the matrix-vector
product A*x for afun(x). This operator can be the name of an M-file, a string
expression, or an inline object. In this case n is taken to be the length of the
column vector b.

gmres will start iterating from an initial estimate that, by default, is an all zero
vector of length n. gmres will restart itself every restart iterations using the
last iterate from the previous outer iteration as the initial guess for the next
outer iteration. Iterates are produced until the method either converges, fails,
or has computed the maximum number of iterations. Convergence is achieved
when an iterate x has relative residual norm(b-A*x)/norm(b) less than or
equal to the tolerance of the method. The default tolerance is 1e-6. The default
maximum number of iterations is the minimum of n/restart and 10. No
preconditioning is used.

gmres(A,b, restart, tol) specifies the tolerance of the method, tol.

gmres(A,b,restart, tol ,maxit) additionally specifies the maximum number
of iterations, maxit.

gmres

gmres(A,b,restart,tol ,maxit,M) and gmres(A,b,restart,tol ,maxit,M1,
M2) use left preconditioner Mor M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. You can replace the matrix M with a function
mfun such that mfun(x) returns M\x. If M1 or M2 is given as the empty matrix
(1), itis considered to be the identity matrix, equivalent to no preconditioning
at all. Since systems of equations of the form M*y = r are solved using
backslash within gmres, it is wise to factor preconditioners into their LU factors
first. For example, replace gmres(A,b, restart, tol ,maxit,M) with:

[M1,M2] = Tu(M);
gmres(A,b,restart, tol ,maxit,M1,M2).

gmres(A,b,restart, tol ,maxit,M1,M2,x0) specifies the first initial estimate
x0. If x0 is given as the empty matrix ([1), the default all zero vector is used.

x = gmres(A,b,restart,tol ,maxit,M1,M2,x0) returns a solution x. If gmres
converged, a message to that effect is displayed. If gmres failed to converge
after the maximum number of iterations or halted for any reason, a warning
message is printed displaying the relative residual

norm(b—-A*x)/norm(b) and the iteration number at which the method stopped
or failed.

[x,flag] = gmres(A,b,restart,tol,maxit,M1,M2,x0) returns a solution x
and a flag that describes the convergence of gmres.

Flag Convergence

0 gmres converged to the desired tolerance tol within maxit
iterations without failing for any reason.

1 gmres iterated maxit times but did not converge.

2 One of the systems of equations of the form M*y = r

involving the preconditioner was ill-conditioned and did not
return a useable result when solved by \ (backslash).

3 The method stagnated. (Two consecutive iterates were the
same.)

2-367

gmres

Examples

2-368

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = gmres(A,b,restart,tol,maxit,M1,M2,x0) also returns
the relative residual norm(b—-A*x)/norm(b). If flag is 0, then relres < tol.

[x,flag,relres,iter] = gmres(A,b,restart,tol,maxit,M1,M2,x0) also
returns both the outer and inner iteration numbers at which x was computed.
The outer iteration number iter (1) is an integer between 0 and maxit. The
inner iteration number iter(2) is an integer between 0 and restart.

[x,flag,relres,iter,resvec] =

gmres(A,b, restart, tol ,maxit,M1,M2,x0) also returns a vector of the
residual norms at each inner iteration, starting from

resvec(l) = norm(b-A*x0). If flagisO0and iter = [i j], resvec is of
length (i—-1)*restart+j+1 and resvec(end) < tol*norm(b).

load west0479

A = west0479

b = sum(A,2)

[x,flag] = gmres(A,b,5)

flag is 1 since gmres(5)will not converge to the default tolerance 1e—6 within
the default 10 outer iterations.

[L1,U1] = luinc(A,le-5);
[x1,flagl] = gmres(A,b,5,1e-6,5,L1,U1);

flaglis 2 since the upper triangular U1l has a zero on its diagonal so gmres(5)
fails in the first iteration when it tries to solve a system such as Ul1*y = r for
y with backslash.

[L2,U2] = luinc(A,le-6);

tol = le-15;

[x4,flag4,relres4,iter4d,resvecd] = gmres(A,b,4,tol,5,L2,U2);
[x6,flag6,relres6, iter6,resvec6] = gmres(A,b,6,tol,3,L2,U2);
[x8,flag8,relres8, iter8,resvec8] = gmres(A,b,8,tol,3,L2,U2);

flag4, flag6, and flag8 are all 0 since gmres converged when restarted at
iterations 4, 6, and 8 while preconditioned by the incomplete LU factorization

gmres

See Also

References

with a drop tolerance of 1e-6. This is verified by the plots of outer iteration

number against relative residual. A combined plot of all three clearly shows the
restarting at iterations 4 and 6. The total number of iterations computed may
be more for lower values of restart, but the number of length n vectors stored
is fewer, and the amount of work done in the method decreases proportionally.

gmres(4) gmres(6)

10° 10° ¢-6-5
\
)
N
Q
\
10710 10710 -G & ®
\
\
1S
0 1 2 3 4 0 1 2
number of outer iterations

gmres(8)

10° $66 o
Q

o

10—10 e}
[0
o -0
o)
0 1 0 4 8 12 16 20
number of outer iterations number of inner iterations

bicg, bicgstab, cgs, luinc, pcg, gmr
The arithmetic operator \
Saad, Youcef and Martin H. Schultz, “GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat.
Comput., July 1986, Vol. 7, No. 3, pp. 856-869.

“Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods”, SIAM, Philadelphia, 1994.

2-369

gradient

Purpose

Syntax

Definition

Description

2-370

Numerical gradient

FX = gradient(F)

[FX,FY] = gradient(F)
[Fx,Fy,Fz,...] = gradient(F)
[---]1 = gradient(F,h)

[---1 = gradient(F,h1,h2,...)

The gradient of a function of two variables, F(x,y), is defined as:

0F- OF-~
=]+
aF ax i ayj
and can be thought of as a collection of vectors pointing in the direction of
increasing values of F. In MATLAB, numerical gradients (differences) can be
computed for functions with any number of variables. For a function of N
variables, F(x,y,z,...),

_OF2 0F~ OF:
OF = &I+Wj+ak+...

FX = gradient(F) where F is a vector returns the one-dimensional numerical
gradient of F. FX corresponds to dF/0x, the differences in the x direction.

[FX,FY] = gradient(F) where F is a matrix returns the x and y components
of the two-dimensional numerical gradient. FX corresponds to d0F/0x, the
differences in the x (column) direction. FY corresponds to 0F / dy, the differences
in the y (row) direction. The spacing between points in each direction is
assumed to be one.

[FX,FY,FZ,...] = gradient(F) where F has N dimensions returns the N
components of the gradient of F. There are two ways to control the spacing
between values in F:

= A single spacing value, h, specifies the spacing between points in every
direction.

=« N spacing values (h1,h2, . . .) specifies the spacing for each dimension of F.
Scalar spacing parameters specify a constant spacing for each dimension.

gradient

Examples

Vector parameters specify the coordinates of the values along corresponding
dimensions of F. In this case, the length of the vector must match the size of
the corresponding dimension.

[---1 = gradient(F,h) where h is a scalar uses h as the spacing between
points in each direction.

[---1 = gradient(F,h1,h2,...) with N spacing parameters specifies the
spacing for each dimension of F.

The statements

v = -2:0.2:2;

[x,y] = meshgrid(v);

z = x .Oexp(=x."2 — y."2);

[px,py]l = gradient(z,.2,.2);

contour(v,v,z), hold on, quiver(px,py), hold off

produce

2 T

15 8

BINGYINS

il o 3

) 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 15 2

Given,

F(:,:,1) = magic(3); F(:,:,2) =
gradient(F) takes dx = dy = dz
[PX,PY,PZ] = gradient(F,0.2,0.
dz = 0.2.

ascal (3);

O kR

.2) takesdx = 0.2, dy = 0.1, and

=l

2-371

gradient

See Also del2, diff

2-372

griddata

Purpose

Syntax

Description

Remarks

Data gridding

Z1l = griddata(x,y,z,X1,YIl)
[X1,Y1,Z1] = griddata(x,y,z,xi,yi)
[--.1 = griddata(...,method)

Z1 = griddata(x,y,z,X1,Yl) fits asurface of the form z = £(x,y) to the data
in the (usually) nonuniformly spaced vectors (x,y,z). griddata interpolates
this surface at the points specified by (X1,Y1) to produce Z1. The surface
always passes through the data points. X1 and Y1 usually form a uniform grid
(as produced by meshgrid).

X1 can be a row vector, in which case it specifies a matrix with constant
columns. Similarly, YI can be a column vector, and it specifies a matrix with
constant rows.

[X1,Y1,Z1] = griddata(x,y,z,xi,yi) returns the interpolated matrix zZ1 as
above, and also returns the matrices X1 and Y1 formed from row vector xi and
column vector yi. These latter are the same as the matrices returned by
meshgrid.

[---1 = griddata(...,method) uses the specified interpolation method:

“linear" Triangle-based linear interpolation
(default)

“cubic- Triangle-based cubic interpolation

"nearest” Nearest neighbor interpolation

"v4r MATLAB 4 griddata method

The method defines the type of surface fit to the data. The "cubic® and "v4-
methods produce smooth surfaces while "linear® and "nearest" have
discontinuities in the first and zero'th derivatives, respectively. All the
methods except "v4* are based on a Delaunay triangulation of the data.

X1 and Y1 can be matrices, in which case griddata returns the values for the

corresponding points (X1(i,3),Y1(i,j)). Alternatively, you can pass in the
row and column vectors xi and yi, respectively. In this case, griddata

2-373

griddata

Algorithm

Examples

2-374

interprets these vectors as if they were matrices produced by the command
meshgrid(xi,yi).

The griddata(. - ., "v4") command uses the method documented in [1]. The
other methods are based on Delaunay triangulation (see delaunay).

Sample a function at 100 random points between +2.0:

rand("seed”,0)
X rand(100,1)(4-2; y = rand(100,1)[4-2;
z = X.[exp(—x.-"2-y."2);

X, ¥, and z are now vectors containing nonuniformly sampled data. Define a
regular grid, and grid the data to it:

ti = —2:.25:2;

[X1,Yl] = meshgrid(ti,ti);

Z1 = griddata(x,y,z,X1,Yl);

Plot the gridded data along with the nonuniform data points used to generate
it:

mesh(X1,Yl,Z1), hold
plot3(x,y,z,"0"), hold off

griddata
|

See Also delaunay, interp2, meshgrid

References [1] Sandwell, David T., “Biharmonic Spline Interpolation of GEOS-3 and
SEASAT Altimeter Data”, Geophysical Research Letters, 2, 139-142,1987.

[2] Watson, David E., Contouring: A Guide to the Analysis and Display of
Spatial Data, Tarrytown, NY: Pergamon (Elsevier Science, Inc.): 1992.

2-375

gsvd

Purpose

Syntax

Description

2-376

Generalized singular value decomposition

[U,V,X,C,S] gsvd(A,B)
[u,V,X,C,S] gsvd(A,B,0)
sigma = gsvd(A,B)

[U,V,X,C,S] = gsvd(A,B) returns unitary matrices U and V, a (usually)
square matrix X, and nonnegative diagonal matrices C and S so that

A = U*C*X*
B = V*S*X*
C"*C + S™*S =1

A and B must have the same number of columns, but may have different
numbers of rows. If A is m-by-p and B is n-by-p, then U is m-by-m, V is n-by-n and
X is p-by-q where g = min(m+n,p).

sigma = gsvd(A,B) returns the vector of generalized singular values,
sgrt(diag(C"*C)./diag(S"*S)).

The nonzero elements of S are always on its main diagonal. If m >= p the
nonzero elements of C are also on its main diagonal. But if m < p, the nonzero
diagonal of C is diag(C,p-m). This allows the diagonal elements to be ordered
so that the generalized singular values are nondecreasing.

gsvd(A,B,0), with three input arguments and either mor n >= p, produces the
“economy-sized” decomposition where the resulting U and Vv have at most p
columns, and C and S have at most p rows. The generalized singular values are
diag(C)./diag(S).

When B is square and nonsingular, the generalized singular values, gsvd(A, B),
are equal to the ordinary singular values, svd(A/B), but they are sorted in the
opposite order. Their reciprocals are gsvd(B,A).

In this formulation of the gsvd, no assumptions are made about the individual
ranks of A or B. The matrix X has full rank if and only if the matrix [A;B] has
full rank. In fact, svd(X) and cond(X) are are equal to svd([A;B]) and
cond([A;B]). Other formulations, eg. G. Golub and C. Van Loan [1], require
that nul 1 (A) and nul 1 (B) do not overlap and replace X by inv(X) or inv(X").

Note, however, that when nul 1 (A) and nul 1(B) do overlap, the nonzero
elements of C and S are not uniquely determined.

gsvd

Examples In the first example, the matrices have at least as many rows as columns.
A = reshape(1:15,5,3)
B = magic(3)

A =
1 6 11
2 7 12
3 8 13
4 9 14
5 10 15
B =
1 6
3 5 7
4 9 2

The statement
[U,V,X,C,S] = gsvd(A,B)

produces a 5-by-5 orthogonal U, a 3-by-3 orthogonal Vv, a 3-by-3 nonsingular X,

X =
—2.8284 9.3761 —6.9346
5.6569 8.3071 -18.3301
—2.8284 7.2381 -29.7256
and
C =
0.0000 0 0
0 0.3155 0
0 0 0.9807
0 0 0
0 0 0
S =
1.0000 0 0
0 0.9489 0
0 0 0.1957

Since A is rank deficient, the first diagonal element of C is zero.

2-377

gsvd

The economy sized decomposition,
[U,V,X,C,S] = gsvd(A,B,0)

produces a 5-by-3 matrix U and a 3-by-3 matrix C.

U =
—-0.3736 —-0.6457 —-0.4279
—-0.0076 —-0.3296 —-0.4375
0.8617 —-0.0135 —0.4470
—-0.2063 0.3026 —0.4566
—-0.2743 0.6187 —-0.4661

C =
0.0000 0 0
0 0.3155 0
0 0 0.9807

The other three matrices, V, X, and S are the same as those obtained with the
full decomposition.

The generalized singular values are the ratios of the diagonal elements of C and
S

sigma = gsvd(A,B)

sigma
0.0000
0.3325
5.0123

These values are a reordering of the ordinary singular values

svd(A/B)

ans =
5.0123
0.3325
0.0000

2-378

gsvd

In the second example, the matrices have at least as many columns as rows.

A
B

magic(5)

A =

N =

17
23

4
10
11

The statement

[SLRN

24

[é)]

12
18

reshape(1:15,3,5)

© N

13
19
25

[U,V,X,C,S] = gsvd(A,B)

10
11
12

14
20
21

13
14
15

15
16
22

produces a 3-by-3 orthogonal U, a 5-by-5 orthogonal Vv, a 5-by-5 nonsingular X

and
C =
0
0
0
S =
1.0000
0
0
0
0

o O

0.0000

0 0
0.0439 0
0 0.7432
0 0
0 0]
0 0]
0.9990 0]
0 0.6690

2-379

gsvd

Algorithm

Diagnostics

Reference

See Also

2-380

In this situation, the nonzero diagonal of C is diag(C,2). The generalized
singular values include three zeros.

sigma = gsvd(A,B)

sigma
0]

0]

0.0000

0.0439

1.1109

Reversing the roles of A and B reciprocates these values, producing three
infinities.

gsvd(B,A)
ans =
0.9001
22.7610
Inf
Inf
Inf

The generalized singular value decomposition uses the C-S decomposition
described in [1], as well as the built-in svd and gr functions. The C-S
decomposition is implemented in a subfunction in the gsvd M-file.

The only warning or error message produced by gsvd itself occurs when the two
input arguments do not have the same number of columns.

[1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

svd

hadamard

Purpose
Syntax
Description

Definition

Examples

See Also

References

Hadamard matrix

T
1l

hadamard(n)

T
1

hadamard(n) returns the Hadamard matrix of order n.

Hadamard matrices are matrices of 1's and —1's whose columns are orthogonal,
H*[H = n{l
where [n n] = size(H) and I = eye(n,n).

They have applications in several different areas, including combinatorics,
signal processing, and numerical analysis, [1], [2].

An n-by-n Hadamard matrix with n > 2 exists only if rem(n,4) = 0. This
function handles only the cases where n, n/12, or n/20 is a power of 2.
The command hadamard(4) produces the 4-by-4 matrix:

1 1 1 1

N S =Y
[EEY
|
'_\
|
'_\

compan, hankel, toeplitz

[1] Ryser, H. J., Combinatorial Mathematics, John Wiley and Sons, 1963.
[2] Pratt, W. K., Digital Signal Processing, John Wiley and Sons, 1978.

2-381

hankel

Purpose

Syntax

Description

Definition

Examples

See Also

2-382

Hankel matrix

T
1l

hankel (c)
hankel(c,r)

T
1

H = hankel (c) returns the square Hankel matrix whose first column is c and
whose elements are zero below the first anti-diagonal.

H = hankel(c,r) returns a Hankel matrix whose first column is c and whose
last row is r. If the last element of ¢ differs from the first element of r, the last
element of c prevails.

A Hankel matrix is a matrix that is symmetric and constant across the
anti-diagonals, and has elements h(i,j) = p(i+j-1), where vector
p = [c r(2:end)] completely determines the Hankel matrix.

A Hankel matrix with anti-diagonal disagreement is

c =1:3; r = 7:10;
h hankel(c,r)
h =

1 2 3 8
2 3 8 9
3 8 9 10
p=1[12389 10]

hadamard, toeplitz

hdf

Purpose
Syntax

Description

HDF interface
hdf*(functstr,paraml,param2,...)

MATLAB provides a set of functions that enable you to access the HDF library
developed and supported by the National Center for Supercomputing
Applications (NCSA). MATLAB supports all or a portion of these HDF
interfaces: SD, V, VS, AN, DRF8, DF24, H, HE, and HD.

To use these functions you must be familiar with the HDF library.
Documentation for the library is available on the NCSA HDF Web page at
http://hdf_ncsa.uiuc.edu. MATLAB additionally provides extensive
command line help for each of the provided functions.

This table lists the interface-specific HDF functions in MATLAB.

Function Interface

hdfan Multifile annotation
hdfdf24 24-bit raster image
hdfdfr8 8-bit raster image
hdfgd HDF-EOS GD interface
hdfh HDF H interface

hdfhd HDF HD interface
hdfhe HDF HE interface
hdfml Gateway utilities

hdfpt HDF-EOS PT interface
hdfsd Multifile scientific data set
hdfsw HDF-EOS SW interface
hdfv Vgroup

hdfvf Vdata VF functions

2-383

hdf

Function Interface
hdfvh Vdata VH functions
hdfvs Vdata VS functions
See Also imfinfo, imread, imwrite, int8, intl6, int32, single, uint8, uintl6, uint32

2-384

help

Purpose

Syntax

Description

Remarks

Display online help for MATLAB functions and M-files

help
help topic

help lists all primary help topics. Each main help topic corresponds to a
directory name on MATLAB’s search path.

help topic gives help on the specified topic. The topic can be a function name,
a directory name, or a MATLABPATH relative partial pathname If it is a function
name, help displays information about that function. If it is a directory name,
help displays the contents file for the specified directory. It is not necessary to
give the full pathname of the directory; the last component, or the last several
components, is sufficient.

It is possible to write help text for your own M-files and toolboxes; see
“Remarks”.

MATLADB's help system, like MATLAB itself, is highly extensible. You can
write help descriptions for your own M-files and toolboxes using the same
self-documenting method that MATLAB'’s M-files and toolboxes use.

The command help lists all help topics by displaying the first line (the H1 line)
of the contents files in each directory on MATLAB'’s search path. The contents
files are the M-files named Contents.m within each directory.

The command help topic, where topic is a directory name, displays the
comment lines in the Contents.mfile located in that directory. If a contents file
does not exist, help displays the H1 lines of all the files in the directory.

The command help topic, where topic is a function name, displays help for
the function by listing the first contiguous comment lines in the M-file topic.m.

Creating Online Help for Your Own M-Files

Create self-documenting online help for your own M-files by entering text on
one or more contiguous comment lines, beginning with the second line of the file

2-385

help

Examples

See Also

2-386

(first line if it is a script). For example, an abridged version of the M-file
angle.m provided with MATLAB could contain

function p = angle(h)

% ANGLE Polar angle.

% ANGLE(H) returns the phase angles, in radians, of a matrix
% with complex elements. Use ABS for the magnitudes.

p = atan2(imag(h),real(h));

When you execute help angle, lines 2, 3, and 4 display. These lines are the first
block of contiguous comment lines. The help system ignores comment lines that
appear later in an M-file, after any executable statements or after a blank line.

The first comment line in any M-file (the H1 line) is special. It should contain
the function name and a brief description of the function. The lookfor
command searches and displays this line, and help displays these lines in
directories that do not contain a Contents.nm file.

Creating Contents Files for Your Own M-File Directories
A Contents.m file is provided for each M-file directory included with the

MATLAB software. If you create directories in which to store your own M-files,
you should create Contents.m files for them too. To do so, simply follow the
format used in an existing Contents.m file.
The command

help datafun
gives help for the datafun directory.
To prevent long descriptions from scrolling off the screen before you have time
to read them, enter more on; then enter the help command.

dir, doc, helpdesk, helpwin, lookfor, more, partialpath, path, what, which

helpdesk

Purpose
Syntax

Description

Remarks

Display Help Desk page in a Web browser, providing access to extensive help
helpdesk

helpdesk displays the Help Desk page in a Web browser. The Help Desk page
provides direct access to a comprehensive library of online help, including
reference pages and manuals.

On Windows platforms, you can also access the Help Desk by selecting the Help
Desk option under the Help menu.

You specify where the help information will be located when you install
MATLAB. It can be on a disk or CD-ROM in your local system.

< On Windows, you can see the help location by selecting Preferences from the
File menu — see the Help Directory entry under the General tab in the
Preferences dialog box. If you relocate your online help directory, for
example, to a network location, be sure to update the Help Directory
location in the Preferences dialog box.

= On UNIX, the help location is specified in the docopt M-file. If you relocate
your online help directory, be sure to update the location in docopt.m.

HTML Documents

Many of the documents use the HyperText Markup Language (HTML) and are
accessed with an Internet Web browser such as Netscape Navigator or
Microsoft Internet Explorer. All of MATLADB's operators and functions have
online reference pages in HTML format, which you can access from the Help
Desk. These reference pages often provide more details and examples than the
help command for a function.

Use the search engine provided to query all the online HTML material. To use
this search utility, your browser must support Java and it must be enabled.

PDF-Formatted Documentation

Most MATLAB documentation is available in Portable Document Format
(PDF) through the Help Desk. You view this documentation using Adobe’s
Acrobat Reader. PDF documents reproduce the look and feel of the printed
page, complete with fonts, graphics, formatting, and images. Use links from the

2-387

helpdesk

See Also

2-388

table of contents or index of a manual, as well as internal links, to go directly
to the page of interest.

Print selected pages within a document using Acrobat. This is the best way to
get printed copies of the online MATLAB Function Reference, which is not
otherwise available in hardcopy form.

Use the Acrobat search tool to query a single document or the entire set of
documents.

MathWorks Web Site

If your computer is connected to the Internet, the Help Desk provides
connections to The MathWorks Web site. Use electronic mail to ask questions,
make suggestions, and report possible bugs. Use the Solution Search Engine to
query an up-to-date data base of technical support information.

Alternatively, you can point your Web browser directly at www._mathworks .com
to access The MathWorks Web site.

doc, docopt, help, helpwin, lookfor, web

helpwin

Purpose

Syntax

Description

Remarks

Display Help Window, which provides access to help for all commands

helpwin
helpwin topic

helpwin displays the Help Window, which lists all commands, grouped by
topic. From it you can see brief descriptions of commands, as well as get more
help for any command.

helpwin topic displays the Help Window, listing all commands in the
directory topic. If topic is acommand, the Help Window displays help for that
command.

On Windows platforms, you can also access the Help Window by selecting the
Help Window option under the Help menu, or by clicking the question mark
button on the menu bar.

In the Help Window, double-click on a directory. A list of the commands in that
directory appears, along with a brief description for each command.

2-389

helpwin

Double-click on a command in the list of commands; help for that command
appears. This is the same help information you see if you type help for a
specific command.

Help appears for the View the list of all Access help for Go to the MATLAB Help Desk for access
command you specified. topics. related commands. to more online information.

| MATLAB Help Window

I rand ISEE also j Goto Help Desk |

Back | Fammard | Home | Tipsz Cloze |

|RAHD Tniformly distributed random numbers.

RAND(HN) i= an F-by-N matrizx with random entries. chosen from

a uniform distribution on the interwal (0.0,1.0).

RAND{M . H) and RAND{[M.N]) are M-by-N matrices with random entries
RAND(M. H.P... .) or RAND{[M.H.P. .. .]) generate random arravs.

FAND with no argument= i= & scalar wvhose value changes each time
iz referenced. RAND(SIZE(A)) i= the =zame =ize a= A.

RAND produces ps=eudo—random numbers. The =equence of numbers
generated is determined by the state of the generator. Since HMAT
reszets the state at start-up, the =sequence of numbers generated @
be the zame unless the state i= changed. -

1| | Ll

See Also doc, docopt, help, helpdesk, lookfor, web

2-390

hess

Purpose

Syntax

Description

Definition

Examples

Algorithm

See Also

Hessenberg form of a matrix

[P,H] = hess(A)
H = hess(A)

H = hess(A) finds H, the Hessenberg form of matrix A.

[P,H] = hess(A) produces a Hessenberg matrix H and a unitary matrix P so
that A = PCHCP" and P"[P = eye(size(A)).

A Hessenberg matrix is zero below the first subdiagonal. If the matrix is
symmetric or Hermitian, the form is tridiagonal. This matrix has the same
eigenvalues as the original, but less computation is needed to reveal them.

H is a 3-by-3 eigenvalue test matrix:

H =
—-149 -50 —-154
537 180 546
=27 -9 -25

Its Hessenberg form introduces a single zero in the (3,1) position:

hess(H) =
—149.0000 42.2037 -156.3165
—537.6783 152.5511 —554.9272
0 0.0728 2.4489

For real matrices, hess uses the EISPACK routines ORTRAN and ORTHES. ORTHES
converts a real general matrix to Hessenberg form using orthogonal similarity
transformations. ORTRAN accumulates the transformations used by ORTHES.

When hess is used with a complex argument, the solution is computed using
the QZ algorithm by the EISPACK routines QZHES. It has been modified for
complex problems and to handle the special case B = I.

For detailed write-ups on these algorithms, see the EISPACK Guide.

eig, gz, schur

2-391

hess

References

2-392

[1] Smith, B. T., J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. lkebe, V. C.
Klema, and C. B. Moler, Matrix Eigensystem Routines — EISPACK Guide,
Lecture Notes in Computer Science, Vol. 6, second edition, Springer-Verlag,
1976.

[2] Garbow, B. S., J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix
Eigensystem Routines — EISPACK Guide Extension, Lecture Notes in
Computer Science, Vol. 51, Springer-Verlag, 1977.

[3] Moler, C.B. and G. W. Stewart, “An Algorithm for Generalized Matrix
Eigenvalue Problems,” SIAM J. Numer. Anal., Vol. 10, No. 2, April 1973.

hex2dec
|

Purpose IEEE hexadecimal to decimal number conversion

Syntax d = hex2dec(~hex_value™)

Description d = hex2dec("hex_value”) converts hex_value to its floating-point integer
representation. The argument hex_value is a hexadecimal integer stored in a
MATLAB string. If hex_value is a character array, each row is interpreted as a
hexadecimal string.

Examples hex2dec("3Ff")
ans =

1023

For a character array S

S =
OFF
2DE
123

hex2dec(S)
ans =
255
734
291

See Also dec2hex, Format, hex2num, sprintf

2-393

hex2num

Purpose
Syntax

Description

Examples

Limitations

See Also

2-394

Hexadecimal to double number conversion

f hex2num("hex_value*®)

f = hex2num("hex_value®) converts hex_value to the IEEE double
precision floating-point number it represents. NaN, Inf, and denormalized
numbers are all handled correctly. Fewer than 16 characters are padded on the
right with zeros.

f

hex2num("400921fh54442d18%)
¥ =
3.14159265358979

hex2num only works for IEEE numbers; it does not work for the floating-point
representation of the VAX or other non-IEEE computers.

format, hex2dec, sprintf

hilb

Purpose
Syntax
Description

Definition

Examples

Algorithm

See Also

References

Hilbert matrix

T
1l

hilb(n)

T
1

hilb(n) returns the Hilbert matrix of order n.

The Hilbert matrix is a notable example of a poorly conditioned matrix [1]. The
elements of the Hilbert matrices are: H(i, j) = 1/(i+j-1).

Even the fourth-order Hilbert matrix shows signs of poor conditioning.

cond(hilb(4)) =
1.5514e+04

See the M-file for a good example of efficient MATLAB programming where
conventional for loops are replaced by vectorized statements.

invhilb

[1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, 1967, Chapter 19.

2-395

home

Purpose Send the cursor home
Syntax home
Description home returns the cursor to the upper-left corner of the command window.
Examples Display a sequence of random matrices at the same location in the command
window:
clc
for 1 =1:25
home
A = rand(b)
end
See Also clc

2-396

Purpose

Syntax

Description

Examples

See Also

Imaginary unit
i
at+bi

x+ily

As the basic imaginary unit sqrt(-1), i is used to enter complex numbers.
Since i is a function, it can be overridden and used as a variable. This permits
you to use i as an index in for loops, etc.

If desired, use the character i without a multiplication sign as a suffix in
forming a complex numerical constant.

You can also use the character j as the imaginary unit.
2+31

X+i*y
= r*exp(i*theta)

z
z
z

conj, imag, j, real

2-397

Purpose

Syntax

Description

Arguments

2-398

Conditionally execute statements

if expression
statements

end

if expressionl
statements

elseif expression2
statements

else

statements

end

if conditionally executes statements.

The simple form is:

if expression
statements

end

More complicated forms use else or elseif. Each if must be paired with a

matching end.

expression

statements

A MATLAB expression, usually consisting of smaller
expressions or variables joined by relational operators (==, <,
>, <=, >=, or ~=). Two examples are: count < limit and
(height — offset) >= 0.

Expressions may also include logical functions, as in:

isreal (A).

Simple expressions can be combined by logical operators
(&,1,~) into compound expressions such as: (count < limit) &
((height — offset) >= 0).

One or more MATLAB statements to be executed only if the
expression is true (or nonzero). See Examples for information
about how nonscalar variables are evaluated.

if

Examples

See Also

Here is an example showing if, else, and elseif:

for j 1:n

ifi==]
a(i,j) = 2;

elseif abs([i J]) ==
a(i,j) = 1;

else
a(i,j) = 0;

end

end
end

Such expressions are evaluated as false unless every element-wise comparison
evaluates as true. Thus, given matrices A and B:

A = B =
1 0 1 1
2 3 3 4
The expression:
A<B Evaluates as false Since A(1,1) is not less than B(1,1).
A < (B+1) Evaluates as true Since no element of A is greater than
the corresponding element of B.
Aé&B Evaluates as false Since A(1,2) | B(1,2) is false.
5>8B Evaluates as true Since every element of B is less than
5.

break, else, end, for, return, switch, while

2-399

ifft

Purpose

Syntax

Description

Examples

Algorithm

See Also

2-400

Inverse one-dimensional fast Fourier transform

y = ifft(X)

y = ifft(X,n)

y = ifft(X,[1,dim)

y = ifft(X,n,dim)

y = ifft(X) returns the inverse fast Fourier transform of vector X.

If X is a matrix, i fft returns the inverse Fourier transform of each column of
the matrix.

If X is a multidimensional array, ifft operates on the first non-singleton
dimension.

y = ifft(X,n) returns the n-point inverse fast Fourier transform of vector X.

y = ifft(X,[].dim) andy = ifft(X,n,dim) return the inverse discrete
Fourier transform of X across the dimension dim.

For any x, i fFFt(FFt(x)) equals x to within roundoff error. If x is real,
i fFFt(FFt(x)) may have small imaginary parts.

The algorithm for i fft(x) is the same as the algorithm for Fft(x), except for
a sign change and a scale factor of n = length(x). So the execution time is
fastest when n is a power of 2 and slowest when n is a large prime.

dftmtx and freqz, in the Signal Processing Toolbox, and:

fft, ffe2, ffeshift

ifft2

Purpose

Syntax

Description

Examples

Algorithm

See Also

Inverse two-dimensional fast Fourier transform

Y = ifft2a(X)
Y = ifft2(X,m,n)

Y = ifft2(X) returns the two-dimensional inverse fast Fourier transform of
matrix X.

Y = ifft2(X,m,n) returns the m—by-n inverse fast Fourier transform of matrix
X.

For any X, iffe2(fft2(X)) equals X to within roundoff error. If X is real,
ifFe2(FFt2(X)) may have small imaginary parts.

The algorithm for ifFt2(X) is the same as the algorithm for fFt2(X), except
for a sign change and scale factors of [m,n] = size(X). The execution time is

fastest when m and n are powers of 2 and slowest when they are large primes.

dftmtx and freqz in the Signal Processing Toolbox, and:

fft2, ffeshift, ifft

2-401

Ifftn

Purpose

Syntax

Description

Remarks

Algorithm

See Also

2-402

Inverse multidimensional fast Fourier transform

Y = ifftn(X)
Y = ifftn(X,siz)

Y = ifftn(X) performs the N-dimensional inverse fast Fourier transform. The
result Y is the same size as X.

Y = ifftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the inverse transform.
The size of the result Y is siz.

For any X, iffen(FFtn(X)) equals X within roundoff error. If X is real,
ifftn(FFen(X)) may have small imaginary parts.

ifftn(X) is equivalent to

Y = X;

for p = 1:length(size(X))
Y = iffe(Y,[1.p);

end

This computes in-place the one-dimensional inverse fast Fourier transform
along each dimension of X. The time required to compute ifftn(X) depends
strongly on the number of prime factors of the dimensions of X. It is fastest
when all of the dimensions are powers of 2.

fft, Tft2, fftn

ifftshift

Purpose Inverse FFT shift
Syntax ifFtshift(X)
Description i FFtshift undoes the results of fftshift.

If X is a vector, iFfshift(X) swaps the left and right halves of X. For matrices,
i frtshift(X) swaps the first quadrant with the third and the second quadrant
with the fourth. If X is a multidimensional array, ifftshift(X) swaps
half-spaces of X along each dimension.

See Also fft, Fft2, fftn, fftshift

2-403

imag

Purpose Imaginary part of a complex number
Syntax Y = imag(2)
Description Y = imag(2) returns the imaginary part of the elements of array z.
Examples imag(2+3i)
ans =
3
See Also conj, i, j, real

2-404

imfinfo

Purpose

Synopsis

Description

Return information about a graphics file

imfinfo(filename, fmt)
imfFinfo(filename)

info
info

info = imfinfo(Ffilename,fmt) returns a structure whose fields contain
information about an image in a graphics file. filename is a string that specifies
the name of the graphics file, and fmt is a string that specifies the format of the
file. The file must be in the current directory or in a directory on the MATLAB
path. If imfinfo cannot find a file named filename, it looks for a file named
filename.fmt.

This table lists the possible values for fmt:

Format File type
"bmp*" Windows Bitmap (BMP)
“hdf* Hierarchical Data Format (HDF)

"jpg" or " jpeg” Joint Photographic Experts Group (JPEG)
"pcx” Windows Paintbrush (PCX)

‘png” Portable Network Graphics (PNG)
“tifTor "tiff" Tagged Image File Format (TIFF)

"xwd " X Windows Dump (XWD)

If Filename is a TIFF or HDF file containing more than one image, info is a
structure array with one element (i.e., an individual structure) for each image
in the file. For example, info(3) would contain information about the third
image in the file.

2-405

Imfinfo

The set of fields in info depends on the individual file and its format. However,
the first nine fields are always the same. This table lists these fields and
describes their values:

Field Value

Filename A string containing the name of the file; if the file is
not in the current directory, the string contains the
full pathname of the file

FileModDate A string containing the date when the file was last
modified

FileSize An integer indicating the size of the file in bytes

Format A string containing the file format, as specified by fmt;
for JPEG and TIFF files, the three-letter variant is
returned

Formatversion A string or number describing the version of the
format

Width An integer indicating the width of the image in pixels

Height An integer indicating the height of the image in pixels

BitDepth An integer indicating the number of bits per pixel

ColorType A string indicating the type of image; either

“truecolor™ for atruecolor RGB image, "grayscale”
for a grayscale intensity image, or "indexed" for an
indexed image

info = imfinfo(filename) attempts to infer the format of the file from its
content.

2-406

imfinfo

Example info =

info =

Filename:
FileModDate:
FileSize:

Format:
FormatVersion:
Width:

Height:

BitDepth:
ColorType:
FormatSignature:
NumColormapEntries:
Colormap:
RedMask:
GreenMask:
BlueMask:
ImageDataOffset:
BitmapHeaderSize:
NumPlanes:
CompressionType:
BitmapSize:
HorzResolution:
VertResolution:
NumColorsUsed:
NumImportantColors:

See Also imread, imwrite

imfFinfo(" flowers.

bmp*)

“flowers.bmp*®
"16-0ct-1996 11:41:38"
182078

"bmp*

"Version 3 (Microsoft Windows 3.x)*
500

362

8

"indexed”

“BM"

256

[256x3 double]

01
01

01
1078

40

1
"none”
181000
0

0

256

0

2-407

imread

Purpose

Synopsis

Description

2-408

Read image from graphics file

A = imread(filename, fmt)
[X,map] = imread(Filename,fmt)
[---1 = imread(filename)

[---1 = imread(...,idx) (TIFF only)
[--.]1 = imread(...,ref) (HDF only)
[---1 = imread(.-- ., BackgroundColor”,BG) (PNG only)

[A,map,alpha] = imread(-...) (PNG only)

A = imread(filename,fmt) reads a grayscale or truecolor image named
filename into A. If the file contains a grayscale intensity image, Ais a
two-dimensional array. If the file contains a truecolor (RGB) image, A is a
three-dimensional (m-by-n-by-3) array.

[X,map] = imread(filename,fmt) reads the indexed image in filename into
X and its associated colormap into map. The colormap values are rescaled to the
range [0,1]. A and map are two-dimensional arrays.

[---1 = imread(filename) attempts to infer the format of the file from its
content.

filename is a string that specifies the name of the graphics file, and fmt is a
string that specifies the format of the file. If the file is not in the current
directory or in a directory in the MATLAB path, specify the full pathname for
a location on your system. If imread cannot find a file named fi lename, it looks
for a file named filename . fmt. If you do not specify a string for fmt, the toolbox
will try to discern the format of the file by checking the file header.

This table lists the possible values for fmt:

Format File type
"bmp*" Windows Bitmap (BMP)
“hdf* Hierarchical Data Format (HDF)

"jpg* or “jpeg” Joint Photographic Experts Group (JPEG)

pcx” Windows Paintbrush (PCX)

imread

Special Case
Syntax

Format File type

‘png” Portable Network Graphics (PNG)
“tif" or"tiff" Tagged Image File Format (TIFF)
"xwd " X Windows Dump (XWD)

TIFF-Specific Syntax

[---1 = imread(...,idx) reads in one image from a multi-image TIFF file.
idx is an integer value that specifies the order in which the image appears in
the file. For example, if idx is 3, imread reads the third image in the file. If you
omit this argument, imread reads the first image in the file. To read all ages of
a TIFF file, omit the idx argument.

PNG-Specific Syntax

The discussion in this section is only relevant to PNG files that contain
transparent pixels. A PNG file does not necessarily contain transparency data.
Transparent pixels, when they exist, will be identified by one of two
components: a transparency chunk or an alpha channel. (A PNG file can only
have one of these components, not both.)

The transparency chunk identifies which pixel values will be treated as
transparent, e.g., if the value in the transparency chunk of an 8-bit image is
0.5020, all pixels in the image with the color 0.5020 can be displayed as
transparent. An alpha channel is an array with the same number of pixels as
are in the image, which indicates the transparency status of each
corresponding pixel in the image (transparent or nontransparent).

Another potential PNG component related to transparency is the background
color chunk, which (if present) defines a color value that can be used behind all
transparent pixels. This section identifies the default behavior of the toolbox
for reading PNG images that contain either a transparency chunk or an alpha
channel, and describes how you can override it.

Case 1. You do not ask to output the alpha channel and do not specify a
background color to use. For example,

[a,map] = imread(Filename);
a = imread(filename);

2-409

imread

2-410

If the PNG file contains a background color chunk, the transparent pixels will
be composited against the specified background color.

If the PNG file does not contain a background color chunk, the transparent
pixels will be composited against 0 for grayscale (black), 1 for indexed (first
color in map), or [0 0 0] for RGB (black).

Case 2. You do not ask to output the alpha channel but you specify the
background color parameter in your call. For example,

[---]1 = imread(.. ., "BackgroundColor-®,bg);

The transparent pixels will be composited against the specified color. The form
of bg depends on whether the file contains an indexed, intensity (grayscale), or
RGB image. If the input image is indexed, bg should be an integer in the range
[1,P] where P is the colormap length. If the input image is intensity, bg should
be an integer in the range [0,1]. If the input image is RGB, bg should be a
3-element vector whose values are in the range [0,1].

There is one exception to the toolbox’s behavior of using your background color.
If you set background to "none™ no compositing will be performed. For
example,

[---1 = imread(...,"Back","none");

Note: If you specify a background color, you cannot output the alpha
channel.

Case 3. You ask to get the alpha channel as an output variable. For example,

[a,map,alpha]
[a,map,alpha]

imread(filename);
imread(filename, fmt);

No compositing is performed; the alpha channel will be stored separately from
the image (not merged into the image as in cases 1 and 2). This form of imread
returns the alpha channel if one is present, and also returns the image and any
associated colormap. If there is no alpha channel, alpha returns []. If there is
no colormap, or the image is grayscale or truecolor, map may be empty.

imread

Class Support

HDF-Specific Syntax

[---1 = imread(...,ref) reads in one image from a multi-image HDF file.
ref is an integer value that specifies the reference number used to identify the
image. For example, if ref is 12, imread reads the image whose reference
number is 12. (Note that in an HDF file the reference numbers do not
necessarily correspond to the order of the images in the file. You can use
imfinfo to match up image order with reference number.) If you omit this
argument, imread reads the first image in the file.

This table summarizes the types of images that imread can read:

Format Variants

BMP 1-bit, 4-bit, 8-bit, and 24-bit uncompressed images; 4-bit
and 8-bit run-length encoded (RLE) images

HDF 8-bit raster image datasets, with or without associated
colormap; 24-bit raster image datasets

JPEG Any baseline JPEG image; JPEG images with some
commonly used extensions

PCX 1-bit, 8-bit, and 24-bit images

PNG Any PNG image, including 1-bit, 2-bit, 4-bit, 8-bit, and

16-bit grayscale images; 8-bit and 16-bit indexed images;
24-bit and 48-bit RGB images

TIFF Any baseline TIFF image, including 1-bit, 8-bit, and 24-bit
uncompressed images; 1-bit, 8-bit, and 24-bit images with
packbit compression; 1-bit images with CCITT compression;
also 16-bit grayscale, 16-bit indexed, and 48-bit RGB
images.

XWD 1-bit and 8-bit ZPixmaps; XYBitmaps; 1-bit XYPixmaps

In most of the image file formats supported by imread, pixels are stored using
eight or fewer bits per color plane. When reading such a file, the class of the
output (aor x) isuint8. imread also supports reading 16-bit-per-pixel data from
TIFF and PNG files; for such image files, the class of the output (a or x) is

2-411

imread

Examples

See Also

2-412

uintl16. Note that for indexed images, imread always reads the colormap into
an array of class double, even though the image array itself may be of class
uint8 or uintle6.
This example reads the sixth image in a TIFF file:

[X,map] = imread("flowers.tif",6);
This example reads the fourth image in an HDF file:

info = imfinfo("skull_hdf");
[X,map] = imread("skull_hdf*",info(4).Reference);

This example reads a 24-bit PNG image and sets any of its fully transparent
(alpha channel) pixels to red.

bg = [255 0 0];
A = imread("image.png”, "BackgroundColor*®,bg);

This example returns the alpha channel (if any) of a PNG image.

[A,map,alpha] = imread("image.png~”);

double, fread, imfinfo, imwrite, uint8, uintl6

iImwrite

Purpose

Synopsis

Description

Write an image to a graphics file

imvrite(A, filename, fmt)
imvrite(X,map, Filename, fmt)
imvrite(...,Filename)
imvrite(...,Paraml,Vall,Param2,vVal2...)

imvrite(A, filename,fmt) writes the image in A to filename. filename is a
string that specifies the name of the output file, and fmt is a string that
specifies the format of the file. If A is a grayscale intensity image or a truecolor
(RGB) image of class uint8, imwrite writes the actual values in the array to
the file. If A is of class double, imwrite rescales the values in the array before
writing, using uint8(round(255*A)). This operation converts the

floating-point numbers in the range [0, 1] to 8-bit integers in the range [0, 255].

imvrite(X,map, filename, fmt) writes the indexed image in X and its
associated colormap map to filename. If X is of class uint8 or uint16, imwrite
writes the actual values in the array to the file. If X is of class double, imwrite
offsets the values in the array before writing using uint8(X-1). (See note below
for an exception.) map must be a valid MATLAB colormap of class double;
imwrite rescales the values in map using uint8(round(255*map)). Note that
most image file formats do not support colormaps with more than 256 entries.

Note: If the image is double, and you specify PNG as the output format and a
bit depth of 16 bpp, the values in the array will be offset using uinti6(X-1).

imvrite(...,Filename) writes the image to filename, inferring the format to
use from the filename’s extension. The extension must be one of the legal values
for fmt.

imvrite(...,Paraml,Vall,Param2,Val2...) specifies parameters that
control various characteristics of the output file. Parameter settings can
currently be made for HDF, JPEG, and TIFF files. For example, if you are
writing a JPEG file, you can set the “quality” of the JPEG compression. For the
full list of parameters available per format, see the tables of parameters.

filename is a string that specifies the name of the output file, and fmt is a
string that specifies the format of the file.

2-413

Imwvrite

This table lists the possible values for fmt:

Format

File type

“bmp*
"hdf"
"Jpg” Or "jpeg”

pcx

“png
“tif" or"tiff"

"xwd*®

Windows Bitmap (BMP)

Hierarchical Data Format (HDF)

Joint Photographers Expert Group (JPEG)
Windows Paintbrush (PCX)

Portable Network Graphics (PNG)

Tagged Image File Format (TIFF)

X Windows Dump (XWD)

This table describes the available parameters for HDF files:

Parameter

Values Default

"Compression*®

"Quality*

"WriteMode"

One of these strings: "none*, "rle", rle
"jpeg". "rle" is valid only for

grayscale and indexed images. " jpeg"

is valid only for grayscale and RGB

images.

A number between 0 and 100; this 75
parameter applies only if

"Compression” is "jpeg”.

A number between 0 and 100; higher
numbers mean higher quality (less

image degradation due to

compression), but the resulting file

size is larger.

One of these strings: "overwrite-, “overwrite”

"append*

2-414

iImwrite

This table describes the available parameters for JPEG files:

Parameter Values Default

"Quality" A number between 0 and 100; higher 75
numbers mean quality is better (less
image degradation due to
compression), but the resulting file
size is larger.

This table describes the available parameters for TIFF files:

Parameter Values Default

"Compression™ One of these strings: "none”, "ccitt" for
"packbits”, "ccitt"; "ccitt" is binary images;
valid for binary images only. "packbits" forall
"packbits" is the default for other images

nonbinary images; 'ccitt' is the
default for binary images.

"Description® Any string; fills in the empty
ImageDescription field returned
by imfinfo.

"Resolution” A scalar value that is used to set 72

the resolution of the output file in
both the x and y directions.

This table describes the available parameters for PNG files.

2-415

Imwvrite

Parameter Values Default
*Author” A string Empty
"Description” A string Empty
"Copyright” A string Empty
"CreationTime" A string Empty
“Software" A string Empty
*Disclaimer” A string Empty
"Warning" A string Empty
“Source” A string Empty
“Comment” A string Empty
"InterlaceType” Either "none” or "adam7*" 'none’
"BitDepth"” A scalar value indicating desired bit depth. For 8 bits per pixel if
grayscale images this can be 1, 2, 4, 8, or 16. image is double or
For grayscale images with an alpha channel this uints.
can be 8 or 16. For indexed images this can be 1, 2, 16 bits per pixel if
4, or 8. For truecolor images with or without an image is uint16.
alpha channel this can be 8 or 16. 1 bit per pixel if

image is logical.

2-416

iImwrite

Parameter

Values Default

"Transparency”

"Background*

"Gamma*

This value is used to indicate transparency Empty
information only when no alpha channel is used. Set

to the value that indicates which pixels should be

considered transparent. (If the image uses a

colormap, this value will represent an index number

to the colormap.)

For indexed images: a Q-element vector in the range
[0,1] where Q is no larger than the colormap
length and each value indicates the transparency
associated with the corresponding colormap entry.
In most cases, Q=1.

For grayscale images: a scalar in the range [0,1].
For truecolor images: a 3-element vector in the
range [0,1].

You cannot specify *Transparency™ and "Alpha~ at
the same time.

The value specifies background color to be used Empty
when compositing transparent pixels. For indexed

images: an integer in the range [1,P], where P is

the colormap length. For grayscale images: a scalar

in the range [0, 1]. For truecolor images: a

3-element vector in the range [0,1].

A nonnegative scalar indicating the file gamma Empty

2-417

Imwvrite

Parameter Values Default
"Chromaticities” An 8-element vector [wx wy rx ry gx gy bx by] Empty
that specifies the reference white point and the
primary chromaticities
"XResolution” A scalar indicating the number of pixels/unit inthe = Empty
horizontal direction
"YResolution* A scalar indicating the number of pixels/unitin the Empty
vertical direction
"ResolutionUnit” Either 'unknown' or 'meter’ Empty
“Alpha* A matrix specifying the transparency of each pixel Empty
individually. The row and column dimensions must
be the same as the data array; they can be uints,
uintis, or double, in which case the values should
be in the range [0,1].
“SignificantBits” A scalar or vector indicating how many bits in the Empty

data array should be regarded as significant; values
must be in the range [1,bitdepth].

For indexed images: a 3-element vector. For
grayscale images: a scalar. For grayscale images
with an alpha channel: a 2-element vector. For
truecolor images: a 3-element vector. For truecolor
images with an alpha channel: a 4-element vector

2-418

In addition to these PNG parameters, you can use any parameter name that
satisfies the PNG specification for keywords, including only printable
characters, 80 characters or fewer, and no leading or trailing spaces. The value
corresponding to these user-specified parameters must be a string that
contains no control characters other than linefeed.

iImwrite

Class Support

Example

This table summarizes the types of images that imwrite can write:

Format

Variants

BMP

HDF

JPEG

PCX
PNG

TIFF

XWD

8-bit uncompressed images with associated colormap; 24-bit
uncompressed images

8-bit raster image datasets, with or without associated
colormap; 24-bit raster image datasets

Baseline JPEG images 8 or 24-bit).

Note: Indexed images are converted to RGB before writing
out JPEG files, because the JPEG format does not support
indexed images.

8-bit images

1-bit, 2-bit, 4-bit, 8-bit, and 16-bit grayscale images;
8-bit and 16-bit grayscale images with alpha channels;
1-bit, 2-bit, 4-bit, and 8-bit indexed images;

24-bit and 48-bit truecolor images with or without alpha
channels

Baseline TIFF images, including 1-bit, 8-bit, and 24-bit
uncompressed images; 1-bit, 8-bit, and 24-bit images with
packbits compression; 1-bit images with CCITT
compression

8-bit ZPixmaps

Most of the supported image file formats store uint8 data. PNG and TIFF
additionally support uint16 data. For grayscale and RGB images, if the data
array is double, the assumed dynamic range is [0,1]. The data array is
automatically scaled by 255 before being written out as uint8. If the data array
isuint8 or uintl16 (PNG and TIFF only), then it is written out without scaling
as uint8 or uintle, respectively.

imvrite(X,map, "flowers._hdf*", "Compression®, "none”, . ..
"WriteMode", "append®)

2-419

Imwvrite

See Also fwrite, imfinfo, imread

2-420

ind2sub

Purpose

Syntax

Description

Examples

See Also

Subscripts from linear index

[1.,J] = ind2sub(siz,IND)
[11,12,13,...,In] = ind2sub(siz, IND)

The ind2sub command determines the equivalent subscript values corre-
sponding to a single index into an array.

[1,J] = ind2sub(siz, IND) returns the arrays 1 and J containing the
equivalent row and column subscripts corresponding to the index matrix IND
for a matrix of size siz.

For matrices, [1,J] = ind2sub(size(A),find(A>5)) returns the same values
as
[1,J] = find(A>5).

[11,12,13,..., In] = ind2sub(siz, IND) returns n subscript arrays
11,12,..,In containing the equivalent multidimensional array subscripts
equivalent to IND for an array of size siz.

The mapping from linear indexes to subscript equivalents for a 2-by-2-by-2
array is:

1 3 1,1,1/1,2,1

2 4 2,1,1(2,2,1
5 7 1,1,2/1,2,2
6 8 2,1,212,2,2

sub2ind, find

2-421

Inf

Purpose
Syntax

Description

Examples

See Also

2-422

Infinity
Inf

Inf returns the IEEE arithmetic representation for positive infinity. Infinity
results from operations like division by zero and overflow, which lead to results
too large to represent as conventional floating-point values.

1/0, 1.e1000, 271000, and exp(1000) all produce Inf.

1og(0) produces —Inf.

Inf—Inf and Inf/Inf both produce NaN, Not-a-Number.

is*, NaN

inferiorto

Purpose
Syntax

Description

Remarks

See Also

Inferior class relationship
inferiorto(“classl”, "class2",...)

The inferiorto function establishes a hierarchy which determines the order
in which MATLAB calls object methods.

inferiorto("classl”,"class2",...) invoked within a class constructor
method (say myclass.m) indicates that myclass's method should not be invoked
if a function is called with an object of class myclass and one or more objects of
class classl, class?2, and so on.

Suppose A is of class "class_a', B is of class "class_b' and C is of class
"class_c". Also suppose the constructor class_c.m contains the statement:
inferiorto("class_a"). Thene = fun(a,c) or e = fun(c,a) invokes
class_a/fun.

If a function is called with two objects having an unspecified relationship, the
two objects are considered to have equal precedence, and the leftmost object's
method is called. So, fun(b,c) calls class_b/fun, while fun(c,b) calls
class_c/fun.

superiorto

2-423

inline

Purpose

Syntax

Description

Remarks

2-424

Construct an inline object

g = inline(expr)
g = inline(expr,argl,arg2, ...)
g = inline(expr,n)

inline(expr) constructs an inline function object from the MATLAB
expression contained in the string expr. The input argument to the inline
function is automatically determined by searching expr for an isolated lower
case alphabetic character, other than i or j, that is not part of a word formed
from several alphabetic characters. If no such character exists, x is used. If the
character is not unique, the one closest to x is used. If two characters are found,
the one later in the alphabet is chosen.

inline(expr,argl,arg2, ...) constructs an inline function whose input
arguments are specified by the strings argl, arg2,. . .. Multicharacter symbol
names may be used.

inline(expr,n), where nis a scalar, constructs an inline function whose input
arguments are x, P1, P2,

Three commands related to inline allow you to examine an inline function
object and determine how it was created.

char(fun) converts the inline function into a character array. This is identical
to formula(fun).

argnames(fun) returns the names of the input arguments of the inline object
fun as a cell array of strings.

formula(fun) returns the formula for the inline object fun.

A fourth command vectorize(fun) inserts a . before any ~, * or /' in the
formula for fun. The result is a vectorized version of the inline function.

inline

Examples

This example creates a simple inline function to square a number.
g = inline("t"27)
g =

Inline function:
g(t) = 2

You can convert the result to a string using the char function.
char(g)
ans =
™2

This examplg creates an inline function to represent the formula
f = 3sin(2x"). The resulting inline function can be evaluated with the
argnames and formula functions.

f

inline("3*sin(2*x.72)")
¥ =

Inline function:
f(X) = 3*sin(2*x."2)

argnames(f)

ans =

X
formula(f)
ans =

3*sin(2*x.M2)ans =

2-425

inline

This call to inline defines the function f to be dependent on two variables,
alpha and x:

f = inline("sin(alpha*x) ")
f =

Inline function:
f(alpha,x) = sin(alpha*x)

If inline does not return the desired function variables or if the function
variables are in the wrong order, you can specify the desired variables
explicitly with the inline argument list.

g = inline("sin(alpha*x)", "x","alpha™)
g:

Inline function:
g(x,alpha) = sin(alpha*x)

2-426

iInmem

Purpose

Syntax

Description

Examples

See Also

Functions in memory

M = inmem
[M,X] = inmem

M = inmem returns a cell array of strings containing the names of the M-files
that are in the P-code buffer.

[M,X] = inmem returns an additional cell array, X, containing the names of
the MEX-files that have been loaded.

This example lists the M-files that are required to run erf.

clear all; % clear the workspace
erf(0.5);
M = inmem

"repmat-
"erfcore
“erf"

clear

2-427

inpolygon

Purpose
Syntax

Description

Examples

2-428

Detect points inside a polygonal region

IN = inpolygon(X,Y,xv,yv)

IN = inpolygon(X,Y,xv,yv) returns a matrix IN the same size as X and Y.
Each element of IN is assigned one of the values 1, 0.5 or 0, depending on
whether the point (X(p,q).Y(p,q)) is inside the polygonal region whose
vertices are specified by the vectors xv and yv. In particular:

IN(p,g) = 1 If (X(p,q),Y(p,q)) is inside the polygonal region
IN(p,q) = 0.5 If (X(p,9),Y(p,q)) is on the polygon boundary
IN(p,g) =0 If (X(p,q),Y(p,q)) is outside the polygonal region

L = linspace(0,2.*pi,6); xv = cos(L)";yv = sin(L)";
xv = [xv ; xv(D)]; yv = [yv ; ywQ)1:

X = randn(250,1); y = randn(250,1);

in = inpolygon(X,y,Xv,yv);
plot(xv,yv,x(in),y(in), "r+" ,x(~=in),y(~in),"bo")

o
© o
2t o .
o 4 o o o o
o @ o] oD 8
o o o o % oog Oo o Q
1t R ° .
Qo o o
o O_@ ¢} o o
© (o3
o o 0% 8o ° o
OFo [eRe} 6 ® 5 =
o 89" 9 @% oo o
o 9 o
[Shgre) \\ / $» © 0 o R
) (]
o y o
1k g Oooogo O\Og”jo\()/@oo o o 4
° > o 0% 4 o
o o5 8 IS}
o o o
o o o ®
o
oL o ¢} 5 o B
o
o
o ° o
_3 L L L L L L L L L
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25

input

Purpose

Syntax

Description

Remarks

Examples

See Also

Request user input

input(“prompt®)
input(“prompt®,“sT)

user_entry
user_entry

The response to the input prompt can be any MATLAB expression, which is
evaluated using the variables in the current workspace.

user_entry = input(“prompt") displays prompt as a prompt on the screen,
waits for input from the keyboard, and returns the value entered in
user_entry.

user_entry = input(“prompt”,~s*®) returns the entered string as a text
variable rather than as a variable name or numerical value.

If you press the Return key without entering anything, input returns an empty
matrix.

The text string for the prompt may contain one or more “"\n" characters. The
“\n" means to skip to the next line. This allows the prompt string to span
several lines. To display just a backslash, use *\\".

Press Return to select a default value by detecting an empty matrix:
i = input(*Do you want more? Y/N [Y]: ","s");
it isempty(i)
i= YT
end

keyboard, menu, ginput, uicontrol

2-429

inputname

Purpose
Syntax

Description

Examples

See Also

2-430

Input argument name
inputname(argnum)

This command can be used only inside the body of a function.

inputname(argnum) returns the workspace variable name corresponding to
the argument number argnum. If the input argument has no name (for
example, if it is an expression instead of a variable), the inputname command
returns the empty string (= 7).

Suppose the function myfun.m is defined as:

function ¢ = myfun(a,b)
disp(sprintf("First calling variable is "%s".",inputname(1))

Then

X = 5; y = 3; myfun(x,y)
produces

First calling variable is "x".
But

myfun(pi+l,pi-1)
produces

First calling variable is "

nargin, nargout, nargchk

int8, Intl6, int32

Purpose

Syntax

Description

See Also

Convert to signed integer

int8(x)
intl6(x)
int32(x)

i = int*(x) converts the vector x into a signed integer. x can be any numeric
object (such as a double). The results of an int* operation are shown in the

next table.
Operatio Output Output Type Bytes Output Class
n Range per
Element
int8 -128 to 127 Signed 8-bit 1 int8
integer

intl6 -32768 to Signed 16-bit 2 intl6

32767 integer
int32 -2147483648 Signed 32-bit 4 int32

to integer

2147483647

A value of x above or below the range for a class is mapped to one of the
endpoints of the range. If x is already a signed integer of the same class, int*

has no effect.

The int* class is primarily meant to store integer values. Most operations that
manipulate arrays without changing their elements are defined (examples are
reshape, size, the logical and relational operators, subscripted assignment,
and subscripted reference). No math operations except for sum are defined for
int* since such operations are ambiguous on the boundary of the set (for
example, they could wrap or truncate there). You can define your own methods
for int* (as you can for any object) by placing the appropriately named method
in an @int* directory within a directory on your path.

Type help datatypes for the names of the methods you can overload.

double, single, uint8, uintl6, uint32

2-431

INt8, intl6, int32

2-432

INnt2str

Purpose
Syntax

Description

Examples

See Also

Integer to string conversion

int2str(N)

str

str = int2str(N) converts an integer to a string with integer format. The
input N can be a single integer or a vector or matrix of integers. Noninteger
inputs are rounded before conversion.
int2str(2+3) is the string "5".
One way to label a plot is

title(["case number * int2str(n)])
For matrix or vector inputs, int2str returns a string matrix:

int2str(eye(3))

ans =

O O P
(ol o]
—~ OO

fprintf, num2str, sprintf

2-433

interpl

Purpose

Syntax

Description

2-434

One-dimensional data interpolation (table lookup)

interpl(x,Y,xi)
interpl(x,Y,xi,method)

y
yi

yi = interpl(x,Y,xi) returns vector yi containing elements corresponding
to the elements of xi and determined by interpolation within vectors x and Y.
The vector x specifies the points at which the data Y is given. If Y is a matrix,
then the interpolation is performed for each column of Y and yi will be
length(xi)-by-size(Y,2). Out of range values are returned as NaNs.

yi = interpl(x,Y,xi,method) interpolates using alternative methods:

= "nearest"” for nearest neighbor interpolation
= "linear" for linear interpolation

<« “spline-~ for cubic spline interpolation

= “cubic" for cubic interpolation

All the interpolation methods require that x be monotonic. For faster
interpolation when x is equally spaced, use the methods " inear*®, "[tubic”,
"[hearest”, or "[kpline~.

The interpl command interpolates between data points. It finds values of a

one-dimensional function f(x) underlying the data at intermediate points. This

is shown below, along with the relationship between vectors x, Y, xi, and yi.
1 1

A\ .
f(x) \ o
\ .
\/ \:1 L
Y yi
[o ° ° e | x
[© o] xi

Interpolation is the same operation as table lookup. Described in table lookup
terms, the table is tab = [x,y] and interpl looks up the elements of xi in x,

interpl

Examples

and, based upon their locations, returns values yi interpolated within the
elements of y.

Here are two vectors representing the census years from 1900 to 1990 and the
corresponding United States population in millions of people.

t
p

1900:10:1990;
[75.995 91.972 105.711 123.203 131.669...
150.697 179.323 203.212 226.505 249.633];

The expression interpl(t,p,1975) interpolates within the census data to
estimate the population in 1975. The result is

ans =
214 .8585

Now interpolate within the data at every year from 1900 to 2000, and plot the
result.

X = 1900:1:2000;
y = interpl(t,p,X,"spline”);
plot(t,p, 0" ,X,y)

United States Census
300 T T T

250

N
(=)
o

i
u
o

Population in Millions

100

50 I I I I I I I I I
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Year

2-435

interpl

Algorithm

See Also

References

2-436

Sometimes it is more convenient to think of interpolation in table lookup terms
where the data are stored in a single table. If a portion of the census data is
stored in a single 5-by-2 table,

tab =
1950 150.697
1960 179.323
1970 203.212
1980 226.505
1990 249.633

then the population in 1975, obtained by table lookup within the matrix tab, is

p
p

interpl(tab(:,1),tab(:,2),1975)

214.8585

The interpl command is a MATLAB M-file. The 'nearest”, 'linear” and
‘cubic™ methods have fairly straightforward implementations. For the
'spline™ method, interpl calls a function spline that uses the M-files ppval,
mkpp, and unmkpp. These routines form a small suite of functions for working
with piecewise polynomials. spline uses them in a fairly simple fashion to
perform cubic spline interpolation. For access to the more advanced features,
see these M-files and the Spline Toolbox.

interpft, interp2, interp3, interpn, spline

[1] de Boor, C. A Practical Guide to Splines, Springer-Verlag, 1978.

interp2

Purpose

Syntax

Description

Two-dimensional data interpolation (table lookup)

Z1 = interp2(X,Y,Z,X1,YI)

Zl = interp2(Z,X1,Yl)

Z1 = interp2(Z,ntimes)

Z1l = interp2(X,Y,Z,X1,Yl,method)

Z1 = interp2(X,Y,Z,X1,Yl) returns matrix ZI containing elements
corresponding to the elements of X1 and Y1 and determined by interpolation
within the two-dimensional function specified by matrices X, Y, and Z. X and Y
must be monotonic, and have the same format (“plaid”) as if they were
produced by meshgrid. Matrices X and Y specify the points at which the data z
is given. Out of range values are returned as NaNs.

X1 and Y1 can be matrices, in which case interp2 returns the values of Z
corresponding to the points (X1(i,j),Y1(i,j)). Alternatively, you can pass in
the row and column vectors xi and yi, respectively. In this case, interp2
interprets these vectors as if you issued the command meshgrid(xi,yi).

Z1 = interp2(Z,X1,Yl) assumesthatX = 1:nand Y = 1:m, where [m,n] =
size(2).

Z1 = interp2(Z,ntimes) expands Z by interleaving interpolates between
every element, working recursively for ntimes. interp2(2) is the same as
interp2(Z,1).

Z1 = interp2(X,Y,Z,X1,Yl,method) specifies an alternative interpolation
method:

< "linear" for bilinear interpolation (default)

= "nearest"” for nearest neighbor interpolation

= "spline” for cubic spline interpolation

= “cubic" for bicubic interpolation

All interpolation methods require that X and Y be monotonic, and have the
same format (“plaid”) as if they were produced by meshgrid. Variable spacing

is handled by mapping the given values in X, Y, X1, and Y1 to an equally spaced
domain before interpolating. For faster interpolation when X and Y are equally

2-437

interp2

Remarks

2-438

spaced and monotonic, use the methods " inear”, "[tubic”, "[spline”, or
"[hearest-.

The interp2 command interpolates between data points. It finds values of a
two-dimensional function f(x,y) underlying the data at intermediate points.

Interpolated points P(XI,Y1,ZI)

Grid points P(X,Y,Z)

Interpolation is the same operation as table lookup. Described in table lookup
terms, the table is tab = [NaN,Y; X,Z] and interp2 looks up the elements of
X1in X, Yl inY, and, based upon their location, returns values Z1 interpolated

within the elements of Z.

interp2

Examples

Interpolate the peaks function over a finer grid:

20

15

10

[X,Y] = meshgrid(-3:.25:3);

Z = peaks(X,Y);

[X1,Y1] = meshgrid(-3:.125:3);

Zl = interp2(X,Y,Z,X1,Y1);
mesh(X,Y,Z), hold, mesh(Xl,Yl,ZI1+15)
hold off

axis([-3 3 -3 3 -5 20])

% X
NS
N7 NN\

N2

MK

A}
2N

<S>

Given this set of employee data,

years = 1950:10:1990;

service = 10:10:30;

wage = [150.697 199.592 187.625
179.323 195.072 250.287
203.212 179.092 322.767
226.505 153.706 426.730
249.633 120.281 598.243];

itis possible to interpolate to find the wage earned in 1975 by an employee with
15 years’ service:

w = interp2(service,years,wage,15,1975)
W =
190.6287

2-439

interp2

See Also griddata, interpl, interp3, interpn, meshgrid

2-440

interp3

Purpose

Syntax

Description

Discussion

Three-dimensional data interpolation (table lookup)

VI interp3(X,Y,Z,V,X1,YL,ZI)
V1 = interp3(V,XI1,Yl,Zl)

V1 = interp3(V,ntimes)

VI interp3(...,method)

V1 = interp3(X,Y,Z,V,X1,Yl,Zl) interpolates to find VI, the values of the
underlying three-dimensional function Vv at the points in matrices X1,Y1 and Z1.
Matrices X,Y and Z specify the points at which the data V is given. Out of range
values are returned as NaN.

X1, Y1, and ZI can be matrices, in which case interp3 returns the values of Z

corresponding to the points (X1 (i,j),Y1(i,j),Z1(i,j)). Alternatively, you

can pass in the vectors xi, yi, and zi. Vector arguments that are not the same
size are interpreted as if you called meshgrid.

VI = interp3(V,XI,Yl,Z1) assumes X=1:N, Y=1:M, Z=1:P where
[M,N,P]=size(V).
V1 = interp3(V,ntimes) expands V by interleaving interpolates between

every element, working recursively for ntimes iterations. The command
interp3(V, 1) is the same as interp3(V).

V1 = interp3(...,method) specifies alternative methods:

= "linear" for linear interpolation (default)

= "cubic" for cubic interpolation

<« "spline" for cubic spline interpolation

= "nearest” for nearest neighbor interpolation

All the interpolation methods require that X,Y and Z be monotonic and have the
same format (“plaid”) as if they were produced by meshgrid. Variable spacing
is handled by mapping the given values in X,Y,Z,X1,YI and Z1 to an equally
spaced domain before interpolating. For faster interpolation when X, Y, and zZ
are equally spaced and monotonic, use the methods 'l inear’, '[tubic',
'[bpline', or '[hearest'.

2-441

interp3

To generate a course approximation of flow and interpolate over a finer mesh:

Examples
[x,y,z,v] = flow(10);
[xi,yi,zi] = meshgrid(-1:.25:10, —-3:.25:3, —-3:.25:3);
vi = interp3(X,y,z,Vv,xi,yi,zi); % V is 31-by-41-by-27
slice(xi,yi,zi,vi,[6 9.5],2,[-2 .2]) shading flat
See Also interpl, interp2, interpn, meshgrid

2-442

interpft

Purpose

Syntax

Description

Algorithm

See Also

One-dimensional interpolation using the FFT method

interpft(x,n)
interpft(x,n,dim)

y
y

y = interpft(x,n) returns the vector y that contains the value of the periodic
function x resampled to n equally spaced points.

If length(x) = m, and x has sample interval dx, then the new sample interval
for y is dy = dx[i/n. Note that n cannot be smaller than m.

If X is a matrix, interpft operates on the columns of X, returning a matrix Y
with the same number of columns as X, but with n rows.

y = interpft(x,n,dim) operates along the specified dimension.

The interpft command uses the FFT method. The original vector x is
transformed to the Fourier domain using £ft and then transformed back with
more points.

interpl

2-443

interpn

Purpose

Syntax

Description

Discussion

2-444

Multidimensional data interpolation (table lookup)

VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...)
V1l = interpn(V,Y1,Y2,Y3,...)

V1 = interpn(V,ntimes)

V1 = interpn(...,method)

VI = interpn(X1,X2,X3, ,V,Y1,Y2,Y3,...) interpolates to find VI, the
values of the underlying multldlmensmnal functlon V at the points in the
arrays Y1, Y2, Y3, etc. For a multidimensional V, you should call interpn with
2*N+1 arguments, where N is the number of dimensions in V. Arrays X1,X2,X3,...
specify the points at which the dataV is given. Out of range values are returned
as NaN.

Y1, Y2, Y3,... can be matrices, in which case interpn returns the values of VI
corresponding to the points (Y1(i,j),Y2(i,j),Y3(i,j),--.). Alternatively,
you can pass in the vectors y1, y2, y3,... In this case, interpn interprets these
vectors as if you issued the command ndgrid(yl,y2,y3,-..).

VI = mterpn(v Y1,Y2,Y3,...) interpolates as above, assuming X1 =
1:size(V,1), X2 = 1: S|ze(V 2), X3 = 1:size(V,3), and so on.
V1 = interpn(V,ntimes) expands V by interleaving interpolates between

each element, working recursively for ntimes iterations. interpn(V, 1) is the
same as interpn(V).

V1 = interpn(...,method) specifies alternative methods:

<« "linear" for linear interpolation (default)

= “cubic" for cubic interpolation

= "spline” for cubic spline interpolation

= "nearest” for nearest neighbor interpolation

All the interpolation methods require that X,Y and Z be monotonic and have the
same format (“plaid”) as if they were produced by ndgrid. Variable spacing is
handled by mapping the given values in X1,X2,X3,... and Y1,Y2,Y3,... to an
equally spaced domain before interpolating. For faster interpolation when
X1,X2,Y3, and so on are equally spaced and monotonic, use the methods
‘Minear’, '[tubic', '[bpline', or 'Chearest'.

interpn

See Also interpl, interp2, ndgrid

2-445

intersect

Purpose

Syntax

Description

Examples

See Also

2-446

Set intersection of two vectors

c intersect(a,b)
c = intersect(A,B, "rows")
[c,ia,ib] = intersect(...)

c = intersect(a,b) returns the values common to both a and b. The resulting
vector is sorted in ascending order. In set theoretic terms, this is
an b. aand b can be cell arrays of strings.

c = intersect(A,B, "rows") when A and B are matrices with the same
number of columns returns the rows common to both A and B.

[c,ia,ib] = intersect(a,b) also returns column index vectors ia and ib
such that c = a(ia) and ¢ = b(ib) (orc = a(ia,:) and c = b(ib,:)).

A=[1236];B=1[12346 10 20];
[c,ia,ib] = intersect(A,B);
disp([c;ia;ib])

1 2 3 6
1 2 3 4
1 2 3 5

ismember, setdiff, setxor, union, unique

inv

Purpose
Syntax

Description

Examples

Matrix inverse

Y inv(X)

Y = inv(X) returns the inverse of the square matrix X. A warning message is
printed if X is badly scaled or nearly singular.

In practice, it is seldom necessary to form the explicit inverse of a matrix. A
frequent misuse of inv arises when solving the system of linear equations

Ax = b. One way to solve this is with x = inv(A)[b. A better way, from both an
execution time and numerical accuracy standpoint, is to use the matrix
division operator x = A\b. This produces the solution using Gaussian
elimination, without forming the inverse. See \ and / for further information.

Here is an example demonstrating the difference between solving a linear
system by inverting the matrix with inv(A)[b and solving it directly with A\b.
A matrix A of order 100 has been constructed so that its condition number,
cond(A), is 1.e10, and its norm, norm(A), is 1. The exact solution x is a random
vector of length 100 and the right-hand side is b = ADk. Thus the system of
linear equations is badly conditioned, but consistent.

On a 20 MHz 386SX notebook computer, the statements

tic, y = inv(A)*b, toc
err = norm(y—x)
res = norm(A*y-b)

produce

elapsed_time =
-6600

©

err

2.4321e-07
res =
1

-8500e-09

while the statements

tic, z = A\b, toc
err = norm(z—x)
res = norm(A*z-b)

2-447

inv

Algorithm

Diagnostics

2-448

produce

elapsed_time =
3.9500
err =
6.6161e—08
res =
9.1103e-16

It takes almost two and one half times as long to compute the solution with

y = inv(A)b as with z = A\b. Both produce computed solutions with about
the same error, 1.e-7, reflecting the condition number of the matrix. But the
size of the residuals, obtained by plugging the computed solution back into the
original equations, differs by several orders of magnitude. The direct solution
produces residuals on the order of the machine accuracy, even though the
system is badly conditioned.

The behavior of this example is typical. Using A\b instead of inv(A) b is two to
three times as fast and produces residuals on the order of machine accuracy,
relative to the magnitude of the data.

The inv command uses the subroutines ZGEDI and ZGEFA from LINPACK. For
more information, see the LINPACK Users’ Guide.
From inv, if the matrix is singular,

Matrix is singular to working precision.

On machines with IEEE arithmetic, this is only a warning message. inv then
returns a matrix with each element set to Inf. On machines without IEEE
arithmetic, like the VAX, this is treated as an error.

If the inverse was found, but is not reliable, this message is displayed.

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = Xxxx

inv

See Also det, lu, rref

The arithmetic operators \, /

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.

2-449

invhilb

Purpose
Syntax

Description

Limitations

Examples

See Also

References

2-450

Inverse of the Hilbert matrix

T
1l

invhilb(n)

H = invhilb(n) generates the exact inverse of the exact Hilbert matrix for n
less than about 15. For larger n, invhi lb(n) generates an approximation to the
inverse Hilbert matrix.

The exact inverse of the exact Hilbert matrix is a matrix whose elements are
large integers. These integers may be represented as floating-point numbers
without roundoff error as long as the order of the matrix, n, is less than 15.

Comparing invhilb(n) with inv(hilb(n)) involves the effects of two or three
sets of roundoff errors:

= The errors caused by representing hilb(n)

<« The errors in the matrix inversion process

= The errors, if any, in representing invhilb(n)

It turns out that the first of these, which involves representing fractions like 1/
3 and 1/5 in floating-point, is the most significant.

invhilb(4) is

16 -120 240 —-140
-120 1200 -2700 1680
240 -2700 6480 —4200
—140 1680 —4200 2800

hilb

[1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, 1967, Chapter 19.

ipermute

Purpose
Syntax

Description

Remarks

Examples

See Also

Inverse permute the dimensions of a multidimensional array

A ipermute(B,order)

A = ipermute(B,order) is the inverse of permute. ipermute rearranges the
dimensions of B so that permute(A,order) will produce B. B has the same
values as A but the order of the subscripts needed to access any particular
element are rearranged as specified by order. All the elements of order must
be unique.

permute and ipermute are a generalization of transpose (. ") for
multidimensional arrays.

Consider the 2-by-2-by-3 array a:
a = cat(3,eye(2),2*eye(2),3*eye(2))

a(:,:,1) = a(:,:,2) =
1 0 2 0
0 1 0 2
a(:,:,3) =
3 0
0 3

Permuting and inverse permuting a in the same fashion restores the array to
its original form:

B = permute(a,[3 2 1]);
C = ipermute(B,[3 2 1]);
isequal(a,C)
ans=
1
permute

2-451

Is*

Purpose

Syntax

Description

2-452

Detect state

k = iscell(C) k = islogical(A)
k = iscellstr(S) TF = isnan(A)

k = ischar(S) k = isnumeric(A)
k = isempty(A) k = isobject(Ah)
k = isequal(A,B,...) TF = isprime(A)
k = isfield(S, field”) k = isreal(A)

TF = isfinite(A) TF = isspace("str*®)
k = isglobal (NAME) k = issparse(S)
TF = ishandle(H) k = isstruct(S)
k = ishold k = isstudent

k = isieee k = isunix

TF = isinf(A) k = isvms

TF = isletter("str*)

k = iscell(C) returns logical true (1) if C is a cell array and logical false (0)
otherwise.

k = iscellstr(S) returns logical true (1) if S is a cell array of strings and
logical false (0) otherwise. A cell array of strings is a cell array where every
element is a character array.

k = ischar(S) returns logical true (1) if S is a character array and logical false
(0) otherwise.

k = isempty(A) returns logical true (1) if A is an empty array and logical false
(0) otherwise. An empty array has at least one dimension of size zero, for
example, 0-by-0 or 0-by-5.

k = isequal(A,B,...) returnslogical true (1) if the input arrays are the same
type and size and hold the same contents, and logical false (0) otherwise.

k = isfield(S, field”) returns logical true (1) if field is the name of a field
in the structure array S.

TF = isfinite(A) returns an array the same size as A containing logical true
(1) where the elements of the array A are finite and logical false (0) where they
are infinite or NaN.

Is*

For any A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

k = isglobal (NAME) returns logical true (1) if NAME has been declared to be a
global variable, and logical false (0) if it has not been so declared.

TF = ishandle(H) returns an array the same size as H that contains logical
true (1) where the elements of H are valid graphics handles and logical false
(O)where they are not.

k = ishold returns logical true (1) if hold is on, and logical false (0) if it is off.
When hold is on, the current plot and all axis properties are held so that
subsequent graphing commands add to the existing graph. hold on means the
NextPlot property of both figure and axes is set to add.

k = isieee returns logical true (1) on machines with IEEE arithmetic (e.g.,
IBM PC and most UNIX workstations) and logical false (0) on machines
without IEEE arithmetic (e.g., VAX, Cray).

TF = isinf(A) returns an array the same size as A containing logical true (1)
where the elements of A are +Inf or —Inf and logical false (0) where they are
not.

TF = isletter("str”) returns an array the same size as "str* containing
logical true (1) where the elements of str are letters of the alphabet and logical
false (0) where they are not.

k = islogical (A) returns logical true (1) if Ais a logical array and logical false
(0) otherwise.

TF = isnan(A) returns an array the same size as A containing logical true (1)
where the elements of A are NaNs and logical false (0) where they are not.

k = isnumeric(A) returns logical true (1) if A is a numeric array and logical
false (0) otherwise. For example, sparse arrays, and double precision arrays are
numeric while strings, cell arrays, and structure arrays are not.

k = isobject(A) returns logical true (1) if A is an object and logical false (0)
otherwise.

2-453

Is*

2-454

TF = isprime(A) returns an array the same size as A containing logical true
(2) for the elements of A which are prime, and logical false (0) otherwise.

k = isreal (A) returns logical true (1) if all elements of A are real numbers,
and logical false (0) if either A is not a numeric array, or if any element of A has
a nonzero imaginary component. Since strings are a subclass of numeric
arrays, isreal always returns 1 for a string input.

Because MATLAB supports complex arithmetic, certain of its functions can
introduce significant imaginary components during the course of calculations
that appear to be limited to real numbers. Thus, you should use isreal with
discretion.

TF = isspace("str") returns an array the same size as "str' containing
logical true (1) where the elements of str are ASCII white spaces and logical
false (0) where they are not. White spaces in ASCII are space, newline, carriage
return, tab, vertical tab, or formfeed characters.

k = issparse(S) returns logical true (1) if the storage class of S is sparse and
logical false (0) otherwise.

k = isstruct(S) returns logical true (1) if S is a structure and logical false (0)
otherwise.

k = isstudent returns logical true (1) for student editions of MATLAB and
logical false (0) for commercial editions.

k = isunix returns logical true (1) for UNIX versions of MATLAB and logical
false (0) otherwise.

k = isvms returns logical true (1) for VMS versions of MATLAB and logical
false (0) otherwise.

Is*

Examples

s = "Al1,B2,C3";

isletter(s)
ans =
i1 0 0 1 o0 o0 1 O

B = rand(2,2,2);

B(:,:,:) = L

isempty(B)

ans =
1

Given,

A= B = C =
1 0 1 0 1 0
0 1 0] 1 0 0

isequal (A,B,C) returns 0, and isequal (A,B) returns 1.

Let

a=[-2 -1 0 1 2]

Then
isfinite(1./7a) = [1 1 0 1 1]
isinf(1./a) = [0 0 1 0 O]
isnan(1./a) = [0 0O O 0O 0]
and

isfinite(0./72) = [1 1 0 1 1]
isinf(0./a) = [0 0O O O O]
isnan(0./a) = [0 0 1 0 O]

2-455

Isa

Purpose
Syntax

Description

Examples

See Also

2-456

Detect an object of a given class

K isa(obj, “"class_name*®)

K = isa(obj, "class_name") returns logical true (1) if obj is of class (or a
subclass of) class_name, and logical false (0) otherwise.

The argument class_name is the name of a user-defined or pre-defined class of
objects. Predefined MATLAB classes include:

cell Multidimensional cell array

double Multidimensional double precision array
sparse Two-dimensional real (or complex) sparse array
char Array of alphanumeric characters

struct Structure

"class_name” User-defined object class

isa(rand(3,4), "double™)

ans =

class

ismember

Purpose

Syntax

Description

Examples

See Also

Detect members of a set

=~
1l

ismember(a,S)
ismember(A,S, "rows")

=~
1

k = ismember(a,S) returns an vector the same length as a containing logical
true (1) where the elements of a are in the set S, and logical false (0) elsewhere.

In set theoretic terms, k is 1 where a [0 S. a and S can be cell arrays of strings.

k = ismember(A,S, "rows") when A and S are matrices with the same number
of columns returns a vector containing 1 where the rows of A are also rows of S
and 0 otherwise.

set = [0 2 46 8 10 12 14 16 18 20];
a = reshape(1:5,[5 1])

a =

apr wNeE

ismember(a,set)

ans =

Or OFr o

intersect, setdi ff, setxor, union, unique

2-457

Isstr

Purpose Detect strings
Description This MATLAB 4 function has been renamed ischar in MATLAB 5.
See Also is*

2-458

Purpose

Syntax

Description

Examples

See Also

Imaginary unit
i

X+yJ

x+jly

Use the character j in place of the character i, if desired, as the imaginary unit.

As the basic imaginary unit sqrt(-1), j is used to enter complex numbers.
Since j is a function, it can be overridden and used as a variable. This permits
you to use j as an index in for loops, etc.

It is possible to use the character j without a multiplication sign as a suffix in
forming a numerical constant.

Z = 2+3j

Z = x+jly

Z = rlexp(Ctheta)

conj, i, imag, real

2-459

keyboard

Purpose
Syntax

Description

See Also

2-460

Invoke the keyboard in an M-file
keyboard

keyboard , when placed in an M-file, stops execution of the file and gives control
to the keyboard. The special status is indicated by a K appearing before the
prompt. You can examine or change variables; all MATLAB commands are
valid. This keyboard mode is useful for debugging your M-files.

To terminate the keyboard mode, type the command:
return

then press the Return key.

dbstop, input, quit, return

kron

Purpose
Syntax

Description

Examples

Kronecker tensor product

K kron(X,Y)

K = kron(X,Y) returns the Kronecker tensor product of X and Y. The result is
a large array formed by taking all possible products between the elements of X
and those of Y. If X is m-by-n and Y is p-by-q, then kron(X,Y) is mCp-by-nCq.

If X is 2-by-3, then kron(X,Y) is

[X(1,1)D¥ X(1,2)D¥ X(1,3)0¥
X(2,1)0Y X(2,2)0¥ X(2,3)0¥]

The matrix representation of the discrete Laplacian operator on a
two-dimensional, n-by-n grid is a n*2-by-n~2 sparse matrix. There are at most
five nonzero elements in each row or column. The matrix can be generated as
the Kronecker product of one-dimensional difference operators with these
statements:

= speye(n,n);
sparse(2:n,1:n-1,1,n,n);
E+E"—201;

kron(D, 1)+kron(l1,D);

> O (M =
1

Plotting this with the spy function for n = 5 yields:
0 T T

.o .
e oo .
e e .
e oo .
5) .
. .o .
. e oo .
. e oo .
. e e .
10F .) .
. .o .
. e oo .
. e e .
. e oo .
15+ .) .
. .o .
. e oo .
. e e .
. e oo .
20 .) o
. .o
. e oo
. e e
. e oo
25+ . e o
0 & 10 15 20 25
nz =105

2-461

lasterr

Purpose

Syntax

Description

Examples

2-462

Last error message

str = lasterr
lasterr (")

str = lasterr returns the last error message generated by MATLAB.

lasterr(™") resets lasterr so it returns an empty matrix until the next error
occurs.

Here is a function that examines the lasterr string and displays its own
message based on the error that last occurred. This example deals with two
cases, each of which is an error that can result from a matrix multiply.

function catchfcn
1 = lasterr;
findstr(l, "Inner matrix dimensions®);
fi—=0
disp("Wrong dimensions for matrix multiply®)
else
k = Findstr(l,"Undefined function or variable®)
it (k~=[D

disp("At least one operand does not exist")

- -
1

end
end

The lasterr function is useful in conjunction with the two-argument form of
the eval function:

eval("string®, "catchstr*)

or the try ... catch...end statements. The catch action examines the
lasterr string to determine the cause of the error and takes appropriate
action.

lasterr

The eval function evaluates string and returns if no error occurs. If an error
occurs, eval executes catchstr. Using eval with the catchfcn function above:

clear

A=[1 2 3;6 7 2;0 -1 5];
B [9 5 6; 0 4 9];

eval ("AB", "catch"®)

MATLAB responds with Wrong dimensions for matrix multiply.

See Also error, eval

2-463

lastwarn

Purpose

Syntax

Description

See Also

2-464

Last warning message

lastwarn
lastwarn(™ ")
lastwarn("string”)

lastwarn returns a string containing the last warning message issued by
MATLAB.

lastwarn(" ") resets the lastwarn function so that it will return an empty
string matrix until the next warning is encountered.

lastwarn("string") sets the last warning message to "string”. The last
warning message is updated regardless of whether warning is on or off.

lasterr, warning

Ilcm

Purpose Least common multiple
Syntax L = lcm(A,B)
Description L = lcm(A,B) returns the least common multiple of corresponding elements of

arrays A and B. Inputs A and B must contain positive integer elements and must
be the same size (or either can be scalar).

Examples Icm(8,40)
ans =

40

Icm(pascal (3) ,magic(3))

ans =
8 1 6
3 10 21
4 9 6
See Also gcd

2-465

legendre

Purpose

Syntax

Definition

Description

2-466

Associated Legendre functions

p
S

legendre(n,X)
legendre(n,X, "sch")

The Legendre functions are defined by:

PG = ()m(-2 Lle

where
PL(x)

is the Legendre polynomial of degree n:

n
Pa(x) = Bx(xz—l)”}

The Schmidt seminormalized associated Legendre functions are related to the
. - - m
nonnormalized associated Legendre functions P (x) by:

sno0 = ()" | =t Pl

where m > 0.

P = legendre(n,X) computes the associated Legendre functions of degree n
andorderm = 0,1, ...,n, evaluated at X. Argument n must be a scalar integer
less than 256, and X must contain real values in the domain -1 < x < 1.

The returned array P has one more dimension than X, and each element
P(m+1,d1,d2...) contains the associated Legendre function of degree n and
order m evaluated at X(d1,d2...).

legendre

If X is a vector, then P is a matrix of the form:

P, (x(1)) P, (x(2) P, (x(3))
P, (x(1) P, (x(2) P,y (x(3))
PZ(x(1)) P (x(2) PF(x(3)

S = legendre(...,"sch") computes the Schmidt seminormalized associated
Legendre functions Snm(x) .

Examples The statement legendre(2,0:0.1:0.2) returns the matrix:
x=0 x =0.1 x =0.2
=0 —0.5000 —0.4850 —-0.4400
m=1 0 —0.2985 —-0.5879
=2 3.0000 2.9700 2.8800

Note that this matrix is of the form shown at the bottom of the previous page.

Given,

X = rand(2,4,5); N = 2;
P = legendre(N,X)

Then size(P) is 3-by-2-by-4-by-5, and P(:,1,2,3) is the same as
legendre(n,X(1,2,3)).

2-467

length

Purpose Length of vector
Syntax n = length(X)
Description The statement length(X) is equivalent to max(size(X)) for nonempty arrays

and 0 for empty arrays.

n = length(X) returns the size of the longest dimension of X. If X is a vector,
this is the same as its length.

Examples x = ones(1,8);
n = length(x)
n =
8
x = rand(2,10,3);
n = length(x)
n =
10
See Also ndims, size

2-468

lin2mu

Purpose Convert linear audio signal to mu-law
Syntax mu = lin2mu(y)
Description mu = lin2mu(y) converts linear audio signal amplitudes in the range —

1 <Y <1 to mu-law encoded “flints” in the range 0 < u < 255.

See Also auwrite, mu2lin

2-469

linspace

Purpose Generate linearly spaced vectors

Syntax y = linspace(a,b)
y = linspace(a,b,n)

Description The linspace function generates linearly spaced vectors. It is similar to the
colon operator “:”, but gives direct control over the number of points.

y = linspace(a,b) generates a row vector y of 100 points linearly spaced
between aandb.

y = linspace(a,b,n) generates n points.

See Also logspace

The colon operator :

2-470

load

Purpose

Syntax

Description

Remarks

Retrieve variables from disk

load

load filename

load ("filename®)
load filename.ext
load filename —ascii
load filename —mat
S = load(-...)

The load and save commands retrieve and store MATLAB variables on disk.

load loads all the variables saved in the file 'matlab.mat".

load filename retrieves the variables from filename.mat given a full
pathname or a MATLABPATH relative partial pathname.

load (“filename™) loads a file whose name is stored in filename. The
statements

str = "filename.mat"; load (str)

retrieve the variables from the binary file "filename.mat".

load filename.ext reads ASCII files that contain rows of space-separated
values. The resulting data is placed into an variable with the same name as the
file (without the extension). ASCII files may contain MATLAB comments (lines
that begin with %).

load filename —ascii or load filename —mat can be used to force load to
treat the file as either an ASCI|I file or a MAT -file.

S = load(...) returns the contents of a MAT-file as a structure instead of
directly loading the file into the workspace. The field names in S match the
names of the variables that were retrieved. When the file is ASCII, Sis a
double-precision array.

MAT-files are double-precision binary MATLAB format files created by the

save command and readable by the load command. They can be created on one
machine and later read by MATLAB on another machine with a different

2-471

load

See Also

2-472

floating-point format, retaining as much accuracy and range as the disparate
formats allow. They can also be manipulated by other programs, external to
MATLAB.

The Application Program Interface Libraries contain C- and Fortran-callable
routines to read and write MAT-files from external programs.

fprintf, fscanf, partialpath, save, spconvert

loadobj

Purpose
Syntax

Description

Remarks

See Also

User-defined extension of the load function for user objects

b loadobj(a)

b = loadobj (a) extends the load function for user objects. When an object is
loaded from a MAT file, the load function calls the loadobj method for the
object’s class if it is defined. The loadobj method must have the calling
sequence shown; the input argument a is the object as loaded from the MAT file
and the output argument b is the object that the load function will load into the
workspace.

These steps describe how an object is loaded from a MAT file into the
workspace:

1 The load function detects the object a in the MAT file.

2 The load function looks in the current workspace for an object of the same
class as the object a. If there isn’'t an object of the same class in the
workspace, load calls the default constructor, registering an object of that
class in the workspace. The default constructor is the constructor function
called with no input arguments.

3 The load function checks to see if the structure of the object a matches the
structure of the object registered in the workspace. If the objects match, a is
loaded. If the objects don’'t match, load converts a to a structure variable.

4 The load function calls the loadobj method for the object’s class if it is
defined. load passes the object a to the loadobj method as an input
argument. Note, the format of the object a is dependent on the results of step
3 (object or structure). The output argument of loadobj, b, is loaded into the
workspace in place of the object a.

loadobj can be overloaded only for user objects. load will not call 1oadobj for
built-in datatypes (such as double).

loadobj is invoked separately for each object in the MAT file. The load function
recursively descends cell arrays and structures applying the loadobj method
to each object encountered.

load, save, saveobj

2-473

log

Purpose
Syntax

Description

Examples

See Also

2-474

Natural logarithm
Y = log(X)

The log function operates element-wise on arrays. Its domain includes
complex and negative numbers, which may lead to unexpected results if used
unintentionally.

Y = log(X) returns the natural logarithm of the elements of X. For complex or
negative z, where z= x + y, the complex logarithm is returned:

log(z) = log(abs(z)) + i*atan2(y,x)

The statement abs(log(-1)) is a clever way to generate T:

ans =
3.1416

exp, 1logl0, log2, logm

log2

Purpose

Syntax

Description

Remarks

Examples

See Also

Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

Y = 10g2(X)
[F.E] = log2(X)

Y = log2(X) computes the base 2 logarithm of the elements of X.

[F,E] = log2(X) returns arrays F and E. Argument F is an array of real
values, usually in the range 0.5 < abs(F) < 1. For real X, F satisfies the
equation: X = F.*2_~E. Argument E is an array of integers that, for real X,
satisfy the equation: X = F.*2_/E.

This function corresponds to the ANSI C function frexp() and the IEEE
floating-point standard function logb(). Any zeros in X produce F = 0 and
E = 0.

For IEEE arithmetic, the statement [F,E] = log2(X) yields the values:

X F E

1 1/2 1

pi pi/a 2

-3 -3/4 2

eps 1/2 -51
realmax l-eps/2 1024
realmin 172 -1021
log, pow2

2-475

logl10

Purpose Common (base 10) logarithm
Syntax Y = log1l0(X)
Description The 1o0g10 function operates element-by-element on arrays. Its domain

includes complex numbers, which may lead to unexpected results if used
unintentionally.

Y = 1og10(X) returns the base 10 logarithm of the elements of X.

Examples On a computer with IEEE arithmetic
loglO(realmax) is 308.2547

and

logl0(eps) is —15.6536

See Also exp, log, log2, logm

2-476

logical

Purpose
Syntax

Description

Remarks

Examples

See Also

Convert numeric values to logical

K logical (A)

K = logical (A) returns an array that can be used for logical indexing or
logical tests.

A(B), where B is a logical array, returns the values of A at the indices where the
real part of B is nonzero. B must be the same size as A.

Logical arrays are also created by the relational operators (==,<,>,~, etc.) and
functions like any, all, isnan, isinf, and isfinite.

GivenA = [1 2 3; 4 5 6; 7 8 9], the statement B = logical (eye(3))
returns a logical array

B =
1 0 0
0 1 0
0 0 1

which can be used in logical indexing that returns A’'s diagonal elements:
A(B)

ans =
1
5
9

However, attempting to index into A using the numeric array eye(3) results in;

Aeye(3))
??? Index into matrix is negative or zero.

The logical operators &, |, ~

2-477

logm

Purpose

Syntax

Description

Remarks

Limitations

Examples

2-478

Matrix logarithm

Y = logm(X)
[Y,esterr] = logm(X)

Y = logm(X) returns the matrix logarithm: the inverse function of expm(X).
Complex results are produced if X has negative eigenvalues. A warning
message is printed if the computed expm(Y) is not close to X.

[Y,esterr] = logm(X) does not print any warning message, but returns an
estimate of the relative residual, norm(expm(Y)—X)/norm(X).
If X is real symmetric or complex Hermitian, then so is logm(X).
Some matrices, like X = [0 1; 0 0], do not have any logarithms, real or
complex, and logm cannot be expected to produce one.
For most matrices:

logm(expm(X)) = X = expm(logm(X))

These identities may fail for some X. For example, if the computed eigenvalues
of X include an exact zero, then logm(X) generates infinity. Or, if the elements
of X are too large, expm(X) may overflow.

Suppose A is the 3-by-3 matrix

1 1 0
0 0 2
0 0 -1

and X = expm(A) is
X =

2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

logm

Algorithm

See Also

References

Then A = logm(X) produces the original matrix A.

A =
1.0000 1.0000 0.0000
0 0 2.0000
0 0 —1.0000

But log(X) involves taking the logarithm of zero, and so produces

ans =

1.0000 0.5413 0.0826
—Inf 0 0.2345
—Inf —Inf —-1.0000

The matrix functions are evaluated using an algorithm due to Parlett, which is
described in [1]. The algorithm uses the Schur factorization of the matrix and
may give poor results or break down completely when the matrix has repeated
eigenvalues. A warning message is printed when the results may be
inaccurate.

expm, funm, sqrtm

[1] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns Hopkins
University Press, 1983, p. 384.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979,pp. 801-836.

2-479

logspace

Purpose Generate logarithmically spaced vectors

Syntax y = logspace(a,b)
y = logspace(a,b,n)
y = logspace(a,pi)

Description The logspace function generates logarithmically spaced vectors. Especially
useful for creating frequency vectors, it is a logarithmic equivalent of 1 inspace
and the “:” or colon operator.

y = logspace(a,b) generates a row vector y of 50 logarithmically spaced
points between decades 10”a and 107b.

y = logspace(a,b,n) generates n points between decades 10~a and 107b.

y = logspace(a,pi) generates the points between 10~a and pi, which is
useful for digital signal processing where frequencies over this interval go
around the unit circle.

Remarks All the arguments to logspace must be scalars.

See Also linspace

The colon operator :

2-480

lookfor

Purpose

Syntax

Description

Examples

See Also

Search for keyword through all help entries

lookfor topic
lookfor topic —all

lookfor topic searches for the string topic in the first comment line (the H1
line) of the help text in all M-files found on MATLAB'’s search path. For all files
in which a match occurs, lookfor displays the H1 line.

lookfor topic —all searches the entire first comment block of an M-file
looking for topic.
For example

lookfor inverse

finds at least a dozen matches, including H1 lines containing “inverse
hyperbolic cosine,” “two-dimensional inverse FFT,” and “pseudoinverse.”
Contrast this with

which iInverse

or

what inverse

These commands run more quickly, but probably fail to find anything because
MATLAB does not ordinarily have a function inverse.

In summary, what lists the functions in a given directory, which finds the
directory containing a given function or file, and lookfor finds all functions in
all directories that might have something to do with a given keyword.

dir, doc, help, helpdesk, helpwin, what, which, who

2-481

lower

Purpose Convert string to lower case
Syntax t = lower("str")
B = lower(A)
Description t = lower("str™) returns the string formed by converting any upper-case

characters in str to the corresponding lower-case characters and leaving all
other characters unchanged.

B = lower(A) when A is a cell array of strings, returns a cell array the same
size as A containing the result of applying lower to each string within A.

Examples lower("MathWorks™) is mathworks.

Remarks Character sets supported:

< PC: Windows Latin-1
= Other: I1SO Latin-1 (ISO 8859-1)

See Also upper

2-482

Is

Purpose List directory on UNIX
Syntax Is
Description Is displays the results of the Is command on UNIX. You can pass any flags to

Is that your operating system supports. On UNIX, Is returns a \n delimited
string of filenames. On all other platforms, Is executes dir.

See Also dir

2-483

Iscov

Purpose

Syntax

Description

Algorithm

See Also

Reference

2-484

Least squares solution in the presence of known covariance

x = Iscov(A,b,V)
[x,dx] = Iscov(A,b,V)

x = Iscov(A,b,V) returns the vector x that solves A*x = b + e where e is
normally distributed with zero mean and covariance V. Matrix A must be m-by-n
where m > n. This is the over-determined least squares problem with
covariance V. The solution is found without inverting V.

[x,dx] = Iscov(A,b,V) returnsthe standard errors of x in dx. The standard
statistical formula for the standard error of the coefficients is:

mse = B**(inv(V)—-inv(\)*A*inv(A"*inv(V)*A)*A"*inv(V))*B./(mn-n)

dx = sgrt(diag(inv(A**inv(V)*A)*mse))
The vector x minimizes the quantity (A*x—b) "*inv(V)*(A*x-b). The classical
linear algebra solution to this problem is

X = inv(A"Oinv(V)A) A GDnv(V)[b

but the Iscov function instead computes the QR decomposition of A and then
modifies Q by V.
Isgnonneg, qr
The arithmetic operator \

Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge, 1986,
p. 398.

Isgnonneg

Purpose

Syntax

Description

Linear least squares with nonnegativity constraints

x = Isgnonneg(C,d)
x = Isgnonneg(C,d,x0)
x = Isgnonneg(C,d,x0,options)

[x,resnorm] = Isgnonneg(...)

[x,resnorm,residual] = Isgnonneg(...)

[x,resnorm,residual ,exitflag] = Isgnonneg(...)
[x,resnorm,residual,exitflag,output] = Isgnonneg(-..)
[x,resnorm,residual,exitflag,output, lambda] = Isgnonneg(.--..)

x = Isgnonneg(C,d) returns the vector x that minimizes norm(C*x—d) subject
to x >= 0. C and d must be real.

x = Isgnonneg(C,d,x0) uses x0 as the starting point if all x0 >= 0; otherwise,
the default is used. The default start point is the origin (the default is used
when x0==[] or when only two input arguments are provided).

x = Isgnonneg(C,d,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. Isgnonneg uses these options
structure fields:

=« Display — Level of display. off displays no output; iter displays output at
each iteration; final displays just the final output.
= TolX — Termination tolerance on x.

[x,resnorm] = Isgnonneg(...) returns the value of the squared 2-norm of
the residual: norm(C*x—d)"2.

[x,resnorm,residual] = Isgnonneg(...) returns the residual, C*x—d.

[x,resnorm,residual,exitflag] = Isgnonneg(...) returns a value
exitflag that describes the exit condition of Isgnonneg:

= > 0 indicates that the function converged to a solution x.

= 0 indicates that the iteration count was exceeded. Increasing the tolerance
(TolX parameter in options) may lead to a solution.

= < 0O indicates that the function did not converge to a solution.

2-485

Isgnonneg

Examples

Algorithm

2-486

[x,resnorm,residual ,exitflag,output] = Isqgnonneg(...) returnsa
structure output that contains information about the operation:

= output. iterations — The number of iterations taken.

=« output.algorithm — The algorithm used.

[x,resnorm,residual ,exitflag,output, lambda] = Isqgnonneg(.--.)
returns the dual vector lambda, where lambda(i)<=0 when x(i) is
(approximately) 0, and lambda(i) is (approximately) 0 when x(i)>0.

Compare the unconstrained least squares solution to the Isgnonneg solution
for a 4-by-2 problem:

C=
0.0372 0.2869
0.6861 0.7071
0.6233 0.6245
0.6344 0.6170
d=
0.8587
0.1781
0.0747
0.8405

[C\d Isgnonneg(C,d)] =
—2.5627 0
3.1108 0.6929

[norm(C*(C\d)—d) norm(C*Isgnonneg(C,d)-d)] =
0.6674 0.9118

The solution from Isgnonneg does not fit as well (has a larger residual), but has
no negative components.

Isgnonneg uses the algorithm described in [1]. The algorithm starts with a set
of possible basis vectors and computes the associated dual vector lambda. It
then selects the basis vector corresponding to the maximum value in lambda in
order to swap out of the basis in exchange for another possible candidate. This
continues until lambda <= 0.

Isgnonneg

See Also The arithmetic operator \, optimset

References [1] Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974, Chapter 23, p. 161.

2-487

lu

Purpose

Syntax

Description

Remarks

Arguments

Examples

2-488

LU matrix factorization

[L.U] = TuQX)
[L.U.P] = Tu(X)
1u(X)

The Tu function expresses any square matrix X as the product of two essentially
triangular matrices, one of them a permutation of a lower triangular matrix
and the other an upper triangular matrix. The factorization is often called the
LU, or sometimes the LR, factorization.

[L,U] = lu(X) returns an upper triangular matrix in U and a psychologically
lower triangular matrix (i.e., a product of lower triangular and permutation
matrices) in L, so that X = L*U.

[L,U,P] = Iu(X) returns an upper triangular matrix in U, a lower triangular
matrix in L, and a permutation matrix in P, so that L*U = P*X.

lu(X) return