
Computation

Visualization

Programming

For Use with MATLAB®

Version 5

Upgrading from
MATLAB 4 to MATLAB 5.0

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Upgrading from MATLAB 4 to MATLAB 5.0
 COPYRIGHT 1984 - 1998 by The MathWorks, Inc. All Rights Reserved.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: January 1998 (online version) New for MATLAB 5.2
October 1998 Revised for MATLAB 5.3 Release 11 (online only)

☎PHONE

FAX

✉MAIL

INTERNET

@

Contents
Introduction . v
Who Should Read This Manual? . v
Contents . v

1
MATLAB 5.0 Enhancements

MATLAB 5.0 Enhancements . 1-2
Enhanced Programming and Application Development Tools . 1-2
New Data Types, Structures, and Language Features 1-3
Faster, Better Graphics and Visualization 1-3
More Mathematical and Data Analysis Tools 1-4
Enhancements to Application Toolboxes and to Simulink 1-4

New Data Constructs . 1-5
Multidimensional Arrays . 1-5
Cell Arrays . 1-7
Structures . 1-7
MATLAB Objects . 1-8

Objects . 1-8
Character Arrays . 1-9

Programming Capabilities . 1-11
Flow-Control Improvements . 1-11
M-File Programming Tools . 1-13

Variable Number of Input and Output Arguments 1-13
Multiple Functions Within an M-File 1-13
M-File Profiler . 1-13
Pseudocode M-Files . 1-13

New and Enhanced Language Functions 1-15
Subscripting and Assignment Enhancements 1-17
Integer Bit Manipulation Functions . 1-17
Dimension Specification for Data Analysis Functions 1-18
i

ii Contents
Wildcards in Utility Commands . 1-19
Empty Arrays . 1-19

New Data Analysis Features . 1-21
Higher-Dimension Interpolation . 1-22
griddata Based on Delaunay Triangulation 1-22
Set Theoretic Functions . 1-22

New and Enhanced Handle Graphics Features 1-24
Plotting Capabilities . 1-24

Filling Areas . 1-24
Bar Chart Enhancements . 1-24
Labels for Patches and Surfaces . 1-25
Marker Style Enhancement . 1-25
Stem Plot Enhancements . 1-25
Three-Dimensional Plotting Support 1-25

Data Visualization . 1-26
New Viewing Model . 1-26
New Method for Defining Patches . 1-26
Triangular Meshes and Surfaces . 1-26
Improved Slicing . 1-26
Contouring Enhancements . 1-27
New zoom Options . 1-27

Graphics Presentation . 1-27
Enhancements to Axes Objects . 1-27
Color Enhancements . 1-28
Text Object Enhancements . 1-28
Improved General Graphics Features 1-29

Lighting . 1-29
print Command Revisions . 1-30

Additional print Device Options . 1-30
Image Support . 1-32

Truecolor . 1-32
Reading and Writing Images . 1-32
8-Bit Images . 1-32
Indexed Images . 1-33
Colormaps . 1-34
Truecolor Images . 1-34

New and Enhanced Handle Graphics Object Properties . 1-35

Improvements to Graphical User Interfaces (GUIs) 1-44
General GUI Enhancements . 1-44
Guide . 1-45

Enhanced Application Program Interface (API) 1-46
New Fundamental Data Type . 1-46
New Functions . 1-46

Support for Structures and Cells . 1-46
Support for Multidimensional Arrays 1-46
Support for Nondouble Precision Data 1-47

Enhanced Debugging Support . 1-47
Enhanced Compile Mechanism . 1-47
MATLAB 4 Feature Unsupported in MATLAB 5.0 1-47

Non-ANSI C Compilers . 1-47

New Platform-Specific Features . 1-48
Microsoft Windows . 1-48

Path Browser . 1-48
Workspace Browser . 1-49
M-File Editor/Debugger . 1-50
Command Window Toolbar . 1-50
New Dialog Boxes . 1-51
16-bit Stereo Sound . 1-51

UNIX Workstations . 1-52
Figure Window Toolbar . 1-52
Path Editor . 1-53
Simplified Installation Procedure . 1-54
iii

iv Contents
2
Upgrading to MATLAB 5.0

Upgrading from MATLAB 4 to MATLAB 5.0 2-2

Converting M-Files to MATLAB 5.0 . 2-3

Converting MATLAB 4 External Interface Programs
to the MATLAB 5.0 Application Program Interface 2-18

General Considerations . 2-18
Non-ANSI C Compilers . 2-18
MATLAB Character Strings . 2-18
MEX-File Argument Complexification 2-19
Type Imputation by Process of Elimination 2-19
Version 3.5 MEX-Files . 2-19
Simulink . 2-20
Fortran MEX-File Considerations . 2-20
Rebuilding MEX-Files Loaded in Memory 2-20
Default MEX-File Optimization . 2-20
Debugging MEX-Files . 2-20
MAT-File External Applications . 2-21

Windows Considerations . 2-21
UNIX Considerations . 2-22
Conversion . 2-22

Rebuilding MEX-Files . 2-22
Rebuilding Stand-Alone MAT-File and Engine Programs . 2-23
MEX-File Conversion Flowcharts . 2-23

Recoding C Code for MATLAB 5.0 Compliance 2-27

Introduction
Introduction
This manual describes how to upgrade from MATLAB® 4 to MATLAB 5.0.

Who Should Read This Manual?
If you are upgrading from MATLAB 4 to Release 11 (MATLAB 5.3), read this
manual first. Then read Release 11 New Features for information on how to
upgrade from MATLAB 5.0 to Release 11.

If you are upgrading to Release 11 from MATLAB 5.0, 5.1, or 5.2, you do not
need to read this manual. You should, instead, read Release 11 New Features.

Contents
Chapter 1 describes the new features that were introduced with MATLAB 5.0.
New features that were introduced with later releases of MATLAB and its
associated products are described in the Release 11 New Features document.

Chapter 2 describes the possible code modifications you may need to make to
upgrade MATLAB 4 applications to run with MATLAB 5.0. The Release 11
New Features document describes how to update from MATLAB 5.0 and later
versions to Release 11.
v

vi

New Data Constructs 1-5

Programming Capabilities 1-11

New and Enhanced Language Functions 1-15

New Data Analysis Features 1-21

New and Enhanced Handle Graphics Features 1-24

New and Enhanced Handle Graphics Object
Properties 1-35

Improvements to Graphical User Interfaces (GUIs) . . 1-44

Enhanced Application Program Interface (API) 1-46

New Platform-Specific Features 1-48
1

MATLAB 5.0
Enhancements

MATLAB 5.0 Enhancements 1-2

1 MATLAB 5.0 Enhancements
MATLAB 5.0 Enhancements
MATLAB 5.0 featured five major areas of new functionality:

• Enhanced programming and application development tools

• New data types, structures, and language features

• Faster, better graphics and visualization

• More mathematical and data analysis tools

• Major enhancements to the MATLAB application toolbox suite and to
Simulink®

Enhanced Programming and Application
Development Tools
MATLAB 5.0 provided new M-file programming enhancements and
application development tools that make it easier than ever to develop and
maintain applications in MATLAB. Highlights include:

• Integrated M-file editor

• Visual M-file debugger

• M-file performance profiler

• Search path browser/editor

• Workspace browser

• Web-based online Help Desk/documentation viewer

• GUI builder

• Handle Graphics® property editor

• Preparsed P-code files (P-files)

• Enhanced, self-diagnosing Application Program Interface (API)
1-2

MATLAB 5.0 Enhancements
New Data Types, Structures, and Language
Features
MATLAB 5.0 introduced new data types and language improvements. These
new features make it easy to build much larger and more complex MATLAB
applications.

• Multidimensional arrays

• User-definable data structures

• Cell arrays: multitype data arrays

• Character arrays: two bytes per character

• Single byte data type for images

• Object-oriented programming

• Variable-length argument lists

• Multifunction and private M-files

• Function and operator overloading

• switch/case statements

Faster, Better Graphics and Visualization
MATLAB 5.0 added powerful new visualization techniques and significantly
faster graphics using the Z-buffer algorithm. Presentation graphics were also
improved to give you more options and control over how you present your data.

• Visualization

- Truecolor (RGB) support

- Fast and accurate Z-buffer display algorithm

- Flat, Gouraud, and Phong lighting

- Vectorized patches for three dimensional modeling

- Camera view model, perspective

- Efficient 8-bit image display

- Image file import/export
1-3

1 MATLAB 5.0 Enhancements
• Presentation graphics

- Greek symbols, sub/superscripts, multiline text

- Dual axis plots

- Three-dimensional quiver, ribbon, and stem plots

- Pie charts, three-dimensional bar charts

- Extended curve marker symbol family

More Mathematical and Data Analysis Tools
Withmorethan500mathematical,statistical,andengineeringfunctions,MATLABgivesyou
immediate access to the numeric computing tools you need. New features with
MATLAB 5.0 included:

• New ordinary differential equation solvers (ODEs)

• Delaunay triangulation

• Gridding for irregularly sampled data

• Set theory functions

• Two-dimensional quadrature

• Time and date handling functions

• Multidimensional interpolation, convolution, and FFT’s

• Bit-wise operators

• Iterative sparse methods

• Sparse matrix eigenvalues and singular values

Enhancements to Application Toolboxes
and to Simulink
Significant upgrades to application toolboxes and Simulink introduced with
MATLAB 5.0 were:

• Simulink 2.0

• Image Processing Toolbox 2.0

• Control System Toolbox 4.0

• Signal Processing Toolbox 4.0

• Optimization Toolbox 2.0
1-4

New Data Constructs
New Data Constructs
MATLAB 5.0 added support for these new data constructs:

• Multidimensional arrays

• Cell arrays

• Structures

• Objects

In addition, MATLAB 5.0 featured character arrays that incorporate an
improved storage method for string data.

Multidimensional Arrays
Arrays (other than sparse matrices) are no longer restricted to two dimensions.
You can create and access arrays with two or more dimensions by:

• Using MATLAB functions like zeros, ones, or rand

• Using the new cat function

• Using the repmat function

• Indexing an existing array

MATLAB functions like zeros, ones, and rand were extended to accept more
than two dimensions as arguments. To create a 3-by-4-by-5 array of ones, for
example, use

A = ones(3,4,5)

The new cat function enables you to concatenate arrays along a specified
dimension. For example, create two rectangular arrays A and B:

A = [1 2 3; 4 5 6];
B = [6 2 0; 9 1 3];
1-5

1 MATLAB 5.0 Enhancements
To concatenate these along the third dimension:

C = cat(3,A,B)

C(:,:,1) =

 1 2 3
 4 5 6

C(:,:,2) =

 6 2 0
 9 1 3

You can also create an array with two or more dimensions in which every
element has the same value using the repmat function. repmat accepts the
value with which to fill the array, followed by a vector of dimensions for the
array. For example, to create a 2-by-2-by-3-by-3 array B where every element
has the value pi:

B = repmat(pi,[2 2 3 3]);

You can also use repmat to replicate or “tile” arrays in a specified configuration.

Table 1-1: New Multidimensional Array Functions

Function Description

cat Concatenate arrays.

flipdim Flip array along specified dimension.

ndgrid Generate arrays for multidimensional functions
and interpolation.

ndims Return number of array dimensions.

permute, ipermute Permute the dimensions of a multidimensional
array.

reshape Change size.

shiftdim Shift dimensions.
1-6

New Data Constructs
Cell Arrays
Cell arrays have elements that are containers for any type of MATLAB data,
including other cells. You can build cell arrays using:

• The cell array constructor {}

• Assignment statements (for instance, A{2,2} = 'string')

• The new cell function

Structures
Structures are constructs that have named fields containing any kind of data.
For example, one field might contain a text string representing a name
(patient.name = 'Jane Doe'), another might contain a scalar representing a
billing amount (patient.billing = 127.00), and a third might hold a matrix
of medical test results. You can organize these structures into arrays of data.

squeeze Remove singleton array dimensions.

sub2ind, ind2sub Return single index from subscripts; subscripts
from linear index.

Table 1-2: New Cell Array Functions

Function Description

cell Create a cell array.

cell2struct Convert cell array to structure array.

celldisp Display top-level structure of a cell array.

cellplot Graphically display the structure of a cell array.

num2cell Convert a matrix into a cell array.

Table 1-1: New Multidimensional Array Functions (Continued)

Function Description
1-7

1 MATLAB 5.0 Enhancements
Create structure arrays by using individual assignment statements or the new
struct function.

MATLAB Objects
Object-oriented programming is now available within the MATLAB
environment.

Objects
The MATLAB programming language does not require the use of data types.
For many applications, however, it is helpful to associate specific attributes
with certain categories of data. To facilitate this, MATLAB allows you to work
with objects. Objects are typed structures. A single class name identifies both
the type of the structure and the name of the function that creates objects
belonging to that class.

Objects differ from ordinary structures in two important ways:

Data hiding. The structure fields of objects are not visible from the command
line. Instead, you can access structure fields only from within a method, an
M-file associated with the object class. Methods reside in class directories.
Class directories have the same name as the class, but with a prepended @
symbol. For example, a class directory named @inline might contain methods
for a class called inline.

Table 1-3: New Structure Functions

Function Description

fieldnames Return field names of structure array.

getfield Get field of structure array.

rmfield Remove structure fields.

setfield Set field of structure array.

struct Create structure array.

struct2cell Convert structure to a cell array.
1-8

New Data Constructs
Function and expression overloading. You can create methods that override
existing M-files. If an object calls a function, MATLAB first checks to see if
there is a method of that name before calling a supplied M-file of that name.
You can also provide methods that are called for MATLAB operators. For
objects a and b, for instance, the expression a + b calls the method plus(a,b)
if it exists

Character Arrays
Strings now take up less memory than they did in previous releases.
MATLAB 4 required 64 bits per character for string data. MATLAB 5.0
reduced the memory required to only 16 bits per character.

Table 1-4: New Object-Oriented Functions

Function Description

class Create or return class of object.

isa True if object is a given class.

inferiorto Inferior class relationship.

superiorto Superior class relationship.

Table 1-5: New Character String Functions

Function Description

base2dec Convert base B to decimal number.

bin2dec Convert binary to decimal number.

char Convert numeric values to string.

dec2base Convert decimal number to base.

dec2bin Convert decimal to binary number.

mat2str Convert a matrix into a string.

strcat String concatenation.

strmatch Find possible matches for a string.
1-9

1 MATLAB 5.0 Enhancements
strncmp Compare the first n characters of two strings.

strvcat Vertical concatenation of strings.

Table 1-5: New Character String Functions (Continued)

Function Description
1-10

Programming Capabilities
Programming Capabilities
MATLAB 5.0 included flow-control improvements and new M-file
programming tools.

Flow-Control Improvements
MATLAB 5.0 featured:

• A new flow-control statement, the switch statement

• More efficient evaluation of if expressions

The switch statement is a convenient way to execute code conditionally when
you have many possible cases to choose from. It is no longer necessary to use a
series of elseif statements:

switch input_num
 case –1
 disp('negative one');
 case 0
 disp('zero');
 case 1
 disp('positive one');
 otherwise
 disp('other value');
end

Only the first matching case is executed.

switch can handle multiple conditions in a single case statement by enclosing
the case expression in a cell array. For example, assume method exists as a
string variable:

switch lower(method)
case {'linear','bilinear'}, disp('Method is linear')
case 'cubic', disp('Method is cubic')
case 'nearest', disp('Method is nearest')
otherwise, disp('Unknown method.')

end
1-11

1 MATLAB 5.0 Enhancements
MATLAB now evaluates if expressions more efficiently than before. For
example, consider the expression if a|b. If a is true, then MATLAB will not
evaluate b. Similarly, MATLAB won’t execute statements following the
expression if a&b in the event a is found to be false.

Table 1-6: New Flow Control Commands

Command Description

case Case switch.

otherwise Default part of switch statement.

switch Conditionally execute code, switching among
several cases.

Table 1-7: New Logical Operators

Operator Description

iscell True for a cell array.

isequal True if arrays are equal.

isfinite True for finite elements.

islogical True for logical arrays.

isnumeric True if input is a numeric array.

isstruct True for a structure.

logical Convert numeric values to logical vectors.
1-12

Programming Capabilities
M-File Programming Tools
MATLAB 5.0 added four features to enhance MATLAB’s M-file programming
capabilities.

Variable Number of Input and Output Arguments
The varargin and varargout commands simplify the task of passing data into
and out of M-file functions. For instance, the statement function varargout
= myfun(A,B) allows M-file myfun to return an arbitrary number of output
arguments, while the statement function [C,D] = myfun(varargin) allows
it to accept an arbitrary number of input arguments.

Multiple Functions Within an M-File
It is now possible to have subfunctions within the body of an M-file. These are
functions that the primary function in the file can access but that are otherwise
invisible.

M-File Profiler
This utility lets you debug and optimize M-files by tracking cumulative
execution time for each line of code. Whenever the specified M-file executes, the
profiler counts how many time intervals each line uses.

Pseudocode M-Files
The pcode command saves a pseudocode version of a function or script to disk
for later sessions. This pseudocode version is ready-to-use code that MATLAB
can access whenever you invoke the function.

Table 1-8: New Programming Tools

Function Description

addpath Append directory to MATLAB’s search path.

assignin Assign variable in workspace.

edit Edit an M-file.

editpath Modify current search path.

evalin Evaluate variable in workspace.
1-13

1 MATLAB 5.0 Enhancements
fullfile Build full filename from parts.

inmem Return functions in memory.

inputname Return input argument name.

mfilename Return name of the currently running M-file.

mexext Return the MEX filename extension.

pcode Create pseudocode file (P-file).

profile Measure and display M-file execution profiles.

rmpath Remove directories from MATLAB’s search path.

varargin,
varargout

Pass or return variable numbers of arguments.

warning Display warning message.

web Point Web browser at file or Web site.

Table 1-8: New Programming Tools (Continued)

Function Description
1-14

New and Enhanced Language Functions
New and Enhanced Language Functions
MATLAB 5.0 provided a large number of new language functions as well as
enhancements to existing functions.

Table 1-9: New Elementary and Specialized Math Functions

Function Description

airy Airy functions.

besselh Bessel functions of the third kind (Hankel).

condeig Condition number with respect to eigenvalues.

condest 1-norm matrix condition estimate.

dblquad Numerical double integration

mod Modulus (signed remainder after division).

normest 2-norm estimate.

Table 1-10: New Time and Date Functions

Function Description

calendar Calendar.

datenum Serial date number.

datestr Create date string.

datetick Date formatted tick labels.

datevec Date components.

eomday End of month.

now Current date and time.

weekday Day of the week.
1-15

1 MATLAB 5.0 Enhancements
Table 1-11: New Ordinary Differential Equation Functions

Function Description

ode45, ode23,
ode113, ode23s,
ode15s

Solve differential equations, low- and high- order
methods.

odefile Define a differential equation problem for ODE
solvers.

odeget Extract options from an argument created with
odeset.

odeset Create and edit input arguments for ODE solvers.

Table 1-12: New Matrix Functions

Function Description

cholinc Incomplete Cholesky factorization.

gallery More than 50 new test matrices.

luinc Incomplete LU factorization.

repmat Replicate and tile an array.

sprand Random uniformly distributed sparse matrices.

Table 1-13: New Methods for Sparse Matrices

Method Description

bicg BiConjugate Gradients method.

bicgstab BiConjugate Gradients Stabilized method.

cgs Conjugate Gradients Squared method.

eigs Find a few eigenvalues and eigenvectors.

gmres Generalized Minimum Residual method.
1-16

New and Enhanced Language Functions
Subscripting and Assignment Enhancements
In MATLAB 5.0, you can:

• Access the last element of an array using the end keyword.

• Obtain consistent results for indexing expressions consisting of all ones.

• Use scalar expansion in subarray assignments.

A statement like A(ones([m,n])) now always returns an m-by-n array in which
each element is A(1). In previous versions, the statement returned different
results depending on whether A was or was not an m-by-n matrix.

In previous releases, expressions like A(2:3,4:5) = 5 resulted in an error.
MATLAB 5.0 automatically “expands” the 5 to be the right size (that is,
5∗ones(2,2)).

Integer Bit Manipulation Functions
The ops directory contains commands that permit bit-level operations on
integers. Operations include setting and unsetting, complementing, shifting,
and logical AND, OR, and XOR.

pcg Preconditioned Conjugate Gradients method.

qmr Quasi-Minimal Residual method.

svds A few singular values.

Table 1-14: New Bitwise Functions

Function Description

bitand Bitwise AND.

bitcmp Complement bits.

bitget Get bit.

bitmax Maximum floating-point integer.

Table 1-13: New Methods for Sparse Matrices (Continued)

Method Description
1-17

1 MATLAB 5.0 Enhancements
Dimension Specification for Data Analysis Functions
MATLAB’s basic data analysis functions now enable you to supply a second
input argument. This argument specifies the dimension along which the
function operates. For example, create an array A:

A = [3 2 4; 1 0 5; 8 2 6];

To sum along the first dimension of A, incrementing the row index, specify 1 for
the dimension of operation:

sum(A,1)

ans =

 12 4 15

To sum along the second dimension, incrementing the column index, specify 2
for the dimension:

sum(A,2)

ans =

 9
 6
 16

Other functions that accept the dimension specifier include prod, cumprod, and
cumsum.

bitor Bitwise OR.

bitset Set bit.

bitshift Bitwise shift.

bitxor Bitwise XOR.

Table 1-14: New Bitwise Functions (Continued)

Function Description
1-18

New and Enhanced Language Functions
Wildcards in Utility Commands
The asterisk (*) can be used as a wildcard in the clear and whos commands.
This allows you, for example, to clear only variables beginning with a given
character or characters, as in

clear A*

Empty Arrays
Earlier versions of MATLAB allowed for only one empty matrix, the 0-by-0
matrix denoted by []. MATLAB 5.0 provided for matrices and arrays in which
some, but not all, of the dimensions are zero. For example, 1-by-0,
10-by-0-by-20, and [3 4 0 5 2] are all possible array sizes.

The two-character sequence [] continues to denote the 0-by-0 matrix. Empty
arrays of other sizes can be created with the functions zeros, ones, rand, or
eye. To create a 0-by-5 matrix, for example, use

E = zeros(0,5)

The basic model for empty matrices is that any operation that is defined for
m-by-n matrices, and that produces a result with a dimension that is some
function of m and n, should still be allowed when m or n is zero. The size of the
result should be that same function, evaluated at zero.

For example, horizontal concatenation

C = [A B]

requires that A and B have the same number of rows. So if A is m-by-n and B is
m-by-p, then C is m-by-(n+p). This is still true if m or n or p is zero.

Many operations in MATLAB produce row vectors or column vectors. It is now
possible for the result to be the empty row vector

r = zeros(1,0)

or the empty column vector

c = zeros(0,1)
1-19

1 MATLAB 5.0 Enhancements
Some MATLAB functions, like sum and max, are reductions. For matrix
arguments, these functions produce vector results; for vector arguments they
produce scalar results. Backwards compatibility issues arise for the argument
[], which in MATLAB 4 played the role of both the empty matrix and the
empty vector. In MATLAB 5.0, empty inputs with these functions produce
these results:

• sum([]) is 0

• prod([]) is 1

• max([]) is []

• min([]) is []
1-20

New Data Analysis Features
New Data Analysis Features
MATLAB 5.0 provided an expanded set of basic data analysis functions.

MATLAB 5.0 also offered expanded data analysis in the areas of:

• Higher-dimension interpolation

• Extended griddata functionality based on Delaunay triangulation

• New set theoretic functions

Table 1-15: New Statistical Data Analysis Functions

Function Description

convhull Convex hull.

cumtrapz Cumulative trapezoidal numerical integration.

delaunay Delaunay triangularization.

dsearch Search for nearest point.

factor Prime factors.

inpolygon Detect points inside a polygonal region.

isprime True for prime numbers.

nchoosek All possible combinations of n elements taken k at a
time.

perms All possible permutations.

polyarea Area of polygon.

primes Generate a list of prime numbers.

sortrows Sort rows in ascending order.

tsearch Search for enclosing Delaunay triangle.

voronoi Voronoi diagram.
1-21

1 MATLAB 5.0 Enhancements
Higher-Dimension Interpolation
The new functions interp3 and interpn let you perform three-dimensional
and multidimensional interpolation. ndgrid provides arrays that can be used
in multidimensional interpolation.

griddata Based on Delaunay Triangulation
griddata supports triangle-based interpolation using nearest neighbor, linear,
and cubic techniques. It creates smoother contours on scattered data using the
cubic interpolation method.

Set Theoretic Functions
The functions union, intersect, ismember, setdiff, and unique treat vectors
as sets, allowing you to perform operations like union , intersection

, and difference of such sets. Other set-theoretical operations
include location of common set elements (ismember) and elimination of
duplicate elements (unique).

Table 1-16: New Interpolation Functions

Function Description

interp3 Three-dimensional data interpolation (table
lookup).

interpn Multidimensional data interpolation (table lookup).

ndgrid Generate arrays for multidimensional functions
and interpolation.

Table 1-17: New Set Functions

Function Description

intersect Set intersection of two vectors.

ismember Detect members of a set.

setdiff Return the set difference of two vectors.

setxor Set XOR of two vectors.

A B∪
A B∩ A B–
1-22

New Data Analysis Features
union Set union of two vectors.

unique Return unique elements of a vector.

Table 1-17: New Set Functions (Continued)

Function Description
1-23

1 MATLAB 5.0 Enhancements
New and Enhanced Handle Graphics Features
MATLAB 5.0 provided significant improvements to Handle Graphics. For
details on MATLAB graphics features, see Using MATLAB Graphics.

Plotting Capabilities
MATLAB’s basic plotting capabilities have been improved and expanded in
MATLAB 5.0.

Filling Areas
The area function plots a set of curves and fills the area beneath the curves.

Bar Chart Enhancements
bar3, bar3h, and barh draw vertical and horizontal bar charts. These functions,
together with bar, support multiple filled bars in grouped and stacked formats.

Table 1-18: New and Enhanced Plotting Capabilities

Function Description

area Filled area plot.

bar3 Vertical 3-D bar chart.

bar3h Horizontal 3-D bar chart.

barh Horizontal bar chart.

pie Pie chart.

pie3 Three-dimensional pie chart.

plotyy Plot graphs with Y tick labels on left and right.
1-24

New and Enhanced Handle Graphics Features
Labels for Patches and Surfaces
legend can label any solid-color patch and surface. You can now place legends
on line, bar, ribbon, and pie plots, for example.

Marker Style Enhancement
A number of new line markers are available, including, among others, a
square, a diamond, and a five-pointed star. These can be specified
independently from line style.

Stem Plot Enhancements
stem and stem3 plot discrete sequence data as filled or unfilled stem plots.

Three-Dimensional Plotting Support
quiver3 displays three-dimensional velocity vectors with (u,v,w) components.
The ribbon function displays data as three-dimensional strips.

Table 1-19: New Graph Annotation Functions

Function Description

box Axes box.

datetick Display dates for axes tick labels.

Table 1-20: New Three-Dimensional Plotting Functions

Function Description

quiver3 Three-dimensional quiver plot.

ribbon Draw lines as 3-D strips.

stem3 Three-dimensional stem plot.
1-25

1 MATLAB 5.0 Enhancements
Data Visualization
MATLAB 5.0 introduced many new and enhanced capabilities for data
visualization.

New Viewing Model
Axes camera properties control the orthographic and perspective view of the
scene created by an axes and its child objects. You can view the axes from any
location around or in the scene, as well as adjust the rotation, view angle, and
target point.

New Method for Defining Patches
You can define a patch using a matrix of faces and a matrix of vertices. Each
row of the face matrix contains indices into the vertex matrix that define the
connectivity of the face. Defining patches in this way reduces memory
consumption because you no longer need to specify redundant vertices.

Triangular Meshes and Surfaces
The new functions trimesh and trisurf create triangular meshes and surfaces
from x, y, and z vector data and a list of indices into the vector data.

Improved Slicing
slice now supports an arbitrary slicing surface.

Table 1-21: New Triangular Mesh and Surface Functions

Function Description

trisurf Triangular surface plot.

trimesh Triangular mesh plot.
1-26

New and Enhanced Handle Graphics Features
Contouring Enhancements
The contouring algorithm now supports parametric surfaces and contouring on
triangular meshes. In addition, clabel rotates and inserts labels in contour
plots.

New zoom Options
The zoom function supports two new options:

• scale_factor – zooms by the specified scale factor relative to the current
zoom state (e.g., zoom(2) zooms in by a factor of two).

• fill – zooms to the point where the objects contained in the axes are as large
as they can be without extending beyond the axes plot box from any view.
Use this option when you want to rotate the axes without seeing an apparent
size change.

Graphics Presentation
MATLAB 5.0 provided improved control over the display of graphics objects.

Enhancements to Axes Objects
MATLAB 5.0 added more advanced control for three-dimensional axes objects.
You can control the three-dimensional aspect ratio for the axes’ plot box, as well
as for the data displayed in the plot box. You can also zoom in and out from a
three-dimensional axes using viewport scaling and axes camera properties.

The axis command supports a new option designed for viewing graphics
objects in 3-D:

axis vis3d

This option prevents MATLAB from stretching the axes to fit the size of the
Figure window and otherwise altering the proportions of the objects as you
change the view.

Table 1-22: New Contour Plot

Function Description

contourf Filled contour plot.
1-27

1 MATLAB 5.0 Enhancements
In a two-dimensional view, you can display the x-axis at the top of an axes and
the y-axis at the right side of an axes.

Color Enhancements
colordef white or colordef black changes the color defaults on the root so
that subsequent figures produce plots with a white or black axes background
color. The figure background color is changed to be a shade of gray, and many
other defaults are changed so that there will be adequate contrast for most
plots. colordef none sets the defaults to their MATLAB 4 values. In addition,
a number of new colormaps are available.

Text Object Enhancements
MATLAB 5.0 supports a subset of TeX commands. A single text graphics object
can support multiple fonts, subscripts, superscripts, and Greek symbols. See
the text function in the online MATLAB Function Reference for information
about the supported TeX subset.

Table 1-23: New Figure and Axis Color Control

Function Description

colordef Select figure color scheme.

Table 1-24: New Colormaps

Function Description

autumn Shades of red and yellow colormap.

colorcube Regularly spaced colors in RGB colorspace, plus
more steps of gray, pure red, pure green, and pure
blue.

lines Colormap of colors specified by the axes’
ColorOrder property.

spring Shades of magenta and yellow colormap.

summer Shades of green and yellow colormap.

winter Shades of blue and green colormap.
1-28

New and Enhanced Handle Graphics Features
You can also specify multiline character strings and use normalized font units
so that text size is a fraction of an axes’ or uicontrol’s height. MATLAB
supports multiline text strings using cell arrays. Simply define a string
variable as a cell array with one line per cell.

Improved General Graphics Features
The MATLAB startup file sets default properties for various graphics objects
so that new figures are aesthetically pleasing and graphs are easier to
understand.

Z-buffering is now available for fast and accurate three-dimensional rendering.

MATLAB 5.0 provided built-in menus on X Window systems. Figure MenuBar
'figure' is now supported on UNIX.

Lighting
MATLAB added support for a new graphics object called a light. You create a
light object using the light function. Three important light object properties
are:

• Color – the color of the light cast by the light object

• Style – either infinitely far away (the default) or local

• Position – the direction (for infinite light sources) or the location (for local
light sources)

You cannot see light objects themselves, but you can see their effect on any
patch and surface objects present in the same axes. You can control these
effects by setting various patch and surface object properties.
AmbientStrength, DiffuseStrength, and SpecularStrength control the
intensity of the respective light-reflection characteristics;
SpecularColorReflectance and SpecularExponent provide additional control
over the reflection characteristics of specular light.

Table 1-25: New Figure Window Creation and Control Command

Command Description

dialog Create a dialog box.
1-29

1 MATLAB 5.0 Enhancements
The Axes AmbientLightColor property determines the color of the ambient
light, which has no direction and affects all objects uniformly. Ambient light
effects occur only when there is a visible light object in the axes.

The light object’s Color property determines the color of the directional light,
and its Style property determines whether the light source is a point source
(Style set to local), which radiates from the specified position in all directions,
or a light source placed at infinity (Style set to infinite), which shines from
the direction of the specified position with parallel rays.

You can also select the algorithm used to calculate the coloring of the lit objects.
The patch and surface EdgeLighting and FaceLighting properties select
between no lighting, and flat, Gouraud, or Phong lighting algorithms.

print Command Revisions
The print command was extensively revised for MATLAB 5.0. Consult Using
MATLAB Graphics for a complete description of print command capabilities.
Among the new options available for MATLAB 5.0:

• The –loose option makes the PostScript bounding box equal to the figure’s
PaperPosition property. EPSI (X Window systems) previews are the same
size as the generated PostScript drawing.

• Z-buffer images may be printed at user-selectable resolution.

• The –dmeta option now supports Enhanced Windows Metafiles.

• print –dmfile generates an M-file that recreates a figure.

• Uicontrol objects print by default unless suppressed with the –noui option.
In earlier versions of MATLAB, uicontrols did not appear when you printed
figures. If you specify the –noui option with the print command, MATLAB
ignores uicontrols and prints only axes and axes children.

Additional print Device Options
The print command has several new device options.

Table 1-26: print Command Device Options

Device Description

–dljet4 HP LaserJet 4 (defaults to 600 dpi)

–ddeskjet HP DeskJet and DeskJet Plus
1-30

New and Enhanced Handle Graphics Features
–ddjet500 HP Deskjet 500

–dcdj500 HP DeskJet 500C

–dcdj550 HP Deskjet 550C

–dpjxl HP PaintJet XL color printer

–dpjxl300 HP PaintJet XL300 color printer

–ddnj650c HP DesignJet 650C

–dbj200 Canon BubbleJet BJ200

–dbjc600 Canon Color BubbleJet BJC-600 and BJC-4000

–dibmpro IBM 9-pin Proprinter

–dbmp256 8-bit (256-color) BMP file format

–dbmp16m 24-bit BMP file format

–dpcxmono Monochrome PCX file format

–dpcx24b 24-bit color PCX file format, three 8-bit planes

–dpbm Portable Bitmap (plain format)

–dpbmraw Portable Bitmap (raw format)

–dpgm Portable Graymap (plain format)

–dpgmraw Portable Graymap (raw format)

–dppm Portable Pixmap (plain format)

–dppmraw Portable Pixmap (raw format)

Table 1-26: print Command Device Options (Continued)

Device Description
1-31

1 MATLAB 5.0 Enhancements
Image Support
MATLAB 5.0 made a number of enhancements to image support. These
enhancements include:

• Truecolor support

• New functions for reading images from and writing images to graphics files

• 8-bit image support

Truecolor
In addition to indexed images, in which colors are stored as an array of indices
into a colormap, MATLAB 5.0 now supports truecolor images. A truecolor
image does not use a colormap; instead, the color values for each pixel are
stored directly as RGB triplets. In MATLAB, the CData property of a truecolor
image object is a three-dimensional (m-by-n-by-3) array. This array consists of
three m-by-n matrices (representing the red, green, and blue color planes)
concatenated along the third dimension.

Reading and Writing Images
The imread function reads image data into MATLAB arrays from graphics files
in various standard formats, such as TIFF. You can then display these arrays
using the image function, which creates a Handle Graphics image object. You
can also write MATLAB image data to graphics files using the imwrite
function. imread and imwrite both support a variety of graphics file formats
and compression schemes.

8-Bit Images
When you read an image into MATLAB using imread, the data is stored as an
array of 8-bit integers. This is a much more efficient storage method than the
double-precision (64-bit) floating-point numbers that MATLAB typically uses.

The Handle Graphics image object has been enhanced to support 8-bit CData.
This means you can display 8-bit images without having to convert the data to
double precision. MATLAB 5.0 also supports a limited set of operations on
these 8-bit arrays. You can view the data, reference values, and reshape the
array in various ways. To perform any mathematical computations, however,
you must first convert the data to double precision, using the double function.
1-32

New and Enhanced Handle Graphics Features
Note that, in order to support 8-bit images, certain changes have been made in
the way MATLAB interprets image data. This table summarizes the
conventions MATLAB uses:

Note that MATLAB interprets image data very differently depending on
whether it is double precision or 8-bit. The rest of this section discusses things
you should keep in mind when working with image data to avoid potential
pitfalls. This information is especially important if you want to convert image
data from one format to another.

Indexed Images
In an indexed image of class double, the value 1 points to the first row in the
colormap, the value 2 points to the second row, and so on. In a uint8 indexed
image, there is an offset; the value 0 points to the first row in the colormap, the
value 1 points to the second row, and so on. The uint8 convention is also used
in graphics file formats, and enables 8-bit indexed images to support up to 256
colors. Note that when you read in an indexed image with imread, the resulting
image array is always of class uint8. (The colormap, however, is of class
double; see below.)

If you want to convert a uint8 indexed image to double, you need to add 1 to
the result. For example:

X64 = double(X8) + 1;

Image
Type

Double-Precision Data
(Double Array) 8-Bit Data (uint8 Array)

Indexed
(colormap)

Image is stored as a 2-D (m-by-n) array
of integers in the range
[1,length(colormap)]; colormap is an
m-by-3 array of floating-point values in
the range [0, 1].

Image is stored as a 2-D (m-by-n) array
of integers in the range [0, 255];
colormap is an m-by-3 array of
floating-point values in the range [0, 1]

Truecolor
(RGB)

Image is stored as a 3-D (m-by-n-by-3)
array of floating-point values in the
range [0, 1].

Image is stored as a 3-D (m-by-n-by-3)
array of integers in the range [0, 255].
1-33

1 MATLAB 5.0 Enhancements
To convert from double to uint8, you need to first subtract 1, and then use
round to ensure all the values are integers:

X8 = uint8(round(X64 – 1));

The order of the operations must be as shown in these examples, because you
cannot perform mathematical operations on uint8 arrays.

When you write an indexed image using imwrite, MATLAB automatically
converts the values if necessary.

Colormaps
Colormaps in MATLAB are always m-by-3 arrays of double-precision
floating-point numbers in the range [0, 1]. In most graphics file formats,
colormaps are stored as integers, but MATLAB does not support colormaps
with integer values. imread and imwrite automatically convert colormap
values when reading and writing files.

Truecolor Images
In a truecolor image of class double, the data values are floating-point
numbers in the range [0, 1]. In a truecolor image of class uint8, the data values
are integers in the range [0, 255].

If you want to convert a truecolor image from one data type to the other, you
must rescale the data. For example, this call converts a uint8 truecolor image
to double:

RGB64 = double(RGB8)/255;

This call converts a double truecolor image to uint8:

RGB8 = uint8(round(RGB*255));

The order of the operations must be as shown in these examples, because you
cannot perform mathematical operations on uint8 arrays. When you write a
truecolor image using imwrite, MATLAB automatically converts the values if
necessary.
1-34

New and Enhanced Handle Graphics Object Properties
New and Enhanced Handle Graphics Object Properties
This section lists new graphics object properties supported in MATLAB 5.0. It
also lists graphics properties whose behavior has changed significantly.
Using MATLAB Graphics and the online MATLAB Function Reference provide
more detailed descriptions of each property.

Table 1-27: Properties of All Graphics Objects

Property Description

BusyAction Control events that potentially interrupt
executing callback routines.

Children Enhanced behavior allows reordering of child
objects.

CreateFcn A callback routine that executes when
MATLAB creates a new instance of the
specific type of graphics object.

DeleteFcn A callback routine that executes when
MATLAB deletes the graphics object.

HandleVisibility Control scope of handle visibility.

Interruptible Now on by default.

Parent Enhanced behavior allows reparenting of
graphics objects.

Selected Indicate whether graphics object is in
selected state.

SelectionHighlight Determine if graphics objects provide visual
indication of selected state.

Tag User-specified object label.
1-35

1 MATLAB 5.0 Enhancements
Table 1-28: Axes Properties

Property Description

AmbientLightColor Color of the surrounding light illuminating
all axes child objects when a light object is
present.

CameraPosition Location of the point from which the axes is
viewed.

CameraPositionMode Automatic or manual camera positioning.

CameraTarget Point in axes viewed from camera position.

CameraTargetMode Automatic or manual camera target selection.

CameraUpVector Determine camera rotation around the
viewing axis.

CameraUpVectorMode Default or user-specified camera orientation.

CameraViewAngle Angle determining the camera field of view.

CameraViewAngleMode Automatic or manual camera field of view
selection.

DataAspectRatio Relative scaling of x-, y-, and z-axis data
units.

DataAspectRatioMode Automatic or manual axis data scaling.

FontUnits Units used to interpret the FontSize property
(allowing normalized text size).

Layer Draw axis lines below or above child objects.

NextPlot Enhanced behavior supports add, replace,
and replacechildren options.

PlotBoxAspectRatio Relative scaling of axes plot box.
1-36

New and Enhanced Handle Graphics Object Properties
PlotBoxAspectRatioMode Automatic or manual selection of plot box
scaling.

Projection Select orthographic or perspective projection
type.

TickDirMode Automatic or manual selection of tick mark
direction (allowing you to change view and
preserve the specified TickDir).

XAxisLocation Locate x-axis at bottom or top of plot.

YAxisLocation Locate y-axis at left or right side of plot.

Table 1-29: Figure Properties

Property Description

CloseRequestFcn Callback routine executed when you issue a
close command on a figure.

Dithermap Colormap used for truecolor data on
pseudocolor displays.

DithermapMode Automatic dithermap generation.

IntegerHandle Integer or floating-point figure handle.

PaperPositionMode WYSIWYG printing of figure.

NextPlot Enhanced behavior supports add, replace,
and replacechildren options.

PointerShapeCData User-defined pointer data.

PointerShapeHotSpot Active point in custom pointer.

Renderer Select painters or Z-buffer rendering.

Table 1-28: Axes Properties (Continued)

Property Description
1-37

1 MATLAB 5.0 Enhancements
RendererMode Enable MATLAB to select best renderer
automatically.

Resize Determine if Figure window is resizeable.

ResizeFcn Callback routine executed when you resize
the Figure window.

Table 1-30: Image Properties

Property Description

CData Enhanced behavior allows truecolor (RGB
values) specification.

CDataMapping Select direct or scaled interpretation of
indexed colors.

EraseMode Control drawing and erasing of image objects.

Table 1-31: Light Properties

Property Description

Color Color of the light source.

Position Place the light source within axes space.

Style Select infinite or local light source.

Table 1-29: Figure Properties (Continued)

Property Description
1-38

New and Enhanced Handle Graphics Object Properties
Table 1-32: Line Properties

Property Description

Marker The marker symbol to use at data points
(markers are now separate from line style).

MarkerEdgeColor The color of the edge of the marker symbol.

MarkerFaceColor The color of the face of filled markers.

Table 1-33: Patch Properties

Property Description

AmbientStrength The strength of the axes ambient light on
the particular patch object.

CData Enhanced behavior allows truecolor (RGB
values) specification.

CDataMapping Select direct or scaled interpretation of
indexed colors.

DiffuseStrength Strength of the reflection of diffuse light
from light objects.

FaceLightingAlgorithm Lighting algorithm used for patch faces.

Faces The vertices connected to define each face.

FaceVertexCData Color specification when using the Faces
and Vertices properties to define a patch.

LineStyle Type of line used for edges.

Marker Symbol used at vertices.

MarkerEdgeColor The color of the edge of the marker symbol.

MarkerFaceColor The color of the face of filled markers.

MarkerSize Size of the marker.
1-39

1 MATLAB 5.0 Enhancements
NormalMode MATLAB generated or user-specified
normal vectors.

SpecularColorReflectance Control the color of the specularly reflected
light from light objects.

SpecularExponent Control the shininess of the patch object.

SpecularStrength Strength of the reflection of specular light
from light objects.

VertexNormals Definition of the patch’s normal vectors.

Vertices The coordinates of the vertices defining the
patch.

Table 1-34: Root Properties

Property Description

CallbackObject Handle of object whose callback is currently
executing.

ErrorMessage Text of the last error message issued by
MATLAB.

ErrorType The type of the error that last occurred.

ShowHiddenHandles Show or hide graphics object handles that
are marked as hidden.

TerminalHideGraphCommand Command to hide graphics window when
switching to command mode.

TerminalDimensions Size of graphics terminal.

Table 1-33: Patch Properties (Continued)

Property Description
1-40

New and Enhanced Handle Graphics Object Properties
TerminalShowGraphCommand Command to expose graphics window when
switching from command mode to graphics
mode.

Table 1-35: Surface Properties

Property Description

AmbientStrength The strength of the axes ambient light on
the particular surface object.

CData Enhanced behavior allows truecolor (RGB
values) specification.

CDataMapping Selects direct or scaled interpretation of
indexed colors.

DiffuseStrength Strength of the reflection of diffuse light
from light objects.

FaceLightingAlgorithm Lighting algorithm used for surface faces.

Marker Symbol used at vertices.

MarkerEdgeColor The color of the edge of the marker symbol.

MarkerFaceColor The color of the face of filled markers.

MarkerSize Size of the marker.

NormalMode MATLAB generated or user-specified
normal vectors.

SpecularColorReflectance Control the color of the specularly reflected
light from light objects.

SpecularExponent Control the shininess of the surface object.

Table 1-34: Root Properties

Property Description
1-41

1 MATLAB 5.0 Enhancements
SpecularStrength Strength of the reflection of specular light
from light objects.

VertexNormals Definition of the surface’s normal vectors.

Vertices The coordinates of the vertices defining the
surface.

Table 1-36: Text Properties

Property Description

FontUnits Select the units used to interpret the
FontSize property (allowing normalized text
size).

Interpreter Allow MATLAB to interpret certain
characters as TeX commands.

Table 1-37: Uicontrol Properties

Property Description

Enable Enable or disable (gray out) uicontrols.

FontAngle Select character slant.

FontName Select font family.

FontSize Select font size.

FontUnits Select the units used to interpret the
FontSize property (allowing normalized text
size).

FontWeight Select the weight of text characters.

Table 1-35: Surface Properties (Continued)

Property Description
1-42

New and Enhanced Handle Graphics Object Properties
ListboxTop Select the listbox item to display at the top of
the listbox.

SliderStep Select the size of the slider step.

Style Enhanced to include listbox device.

Table 1-38: Uimenu Properties

Property Description

Enable Enable or disable (gray out) uicontrols.

Table 1-37: Uicontrol Properties (Continued)

Property Description
1-43

1 MATLAB 5.0 Enhancements
Improvements to Graphical User Interfaces (GUIs)

General GUI Enhancements
MATLAB 5.0 provided general enhancements that are useful in the GUI area:

• Starting MATLAB with the –nosplash argument suppresses the splash
screen on UNIX.

• Using the CloseRequestFcn callback can abort a figure close command.

• Stacking of figure and axes graphics objects can be varied to affect the order
in which MATLAB displays these objects.

• The mouse pointer can be set to a number of different symbols or you can
create a custom figure pointer.

• On the Windows platforms, edit controls now have a three-dimensional
appearance.

MATLAB 5.0 provided features that make it easier to create MATLAB GUIs.
Major enhancements includedst box objects to display and select one or more
list items. You can also create modal or non-modal error, help, and warning
message boxes. In addition, uicontrol edit boxes now support multiline text.

Table 1-39: New GUI Functions

Function Description

msgbox Display message box.

dragrect Drag pre-defined rectangles.

inputdlg Display a dialog box to input data.

questdlg Question dialog.

rbbox Rubberband box.

selectmoveresize Interactively select, move, or resize objects.
1-44

Improvements to Graphical User Interfaces (GUIs)
MATLAB 5.0 also added more flexibility in callback routines. You can specify
callbacks that execute after creating, changing, and deleting an object.

Guide
Guide is a Graphical User Interface (GUI) design tool. The individual pieces of
the Guide environment are designed to work together, but they can also be
used individually. For example, there is a Property Editor (invoked by the
command propedit) that allows you to modify any property of any Handle
Graphics object, from a figure to a line. Point the Property Editor at a line and
you can change its color, position, thickness, or any other line property.

The Control Panel is the centerpiece of the Guide suite of tools. It lets you
“control” a figure so that it can be easily modified by clicking and dragging. As
an example, you might want to move a button from one part of a figure to
another. From the Control Panel you put the button’s figure into an editable
state, and then it’s simply a matter of dragging the button into the new
position. Once a figure is editable, you can also add new uicontrols, uimenus,
and plotting axes.

Table 1-40: New Program Execution Functions

Function Description

uiresume Resume suspended M-file execution.

uiwait Block program execution.

waitfor Block execution until a condition is satisfied.

Table 1-41: Guide Tools

Tool Command Description

Control Panel guide Control figure editing.

Property Editor propedit Modify object properties.

Callback Editor cbedit Modify object callbacks.

Alignment Tool align Align objects.

Menu Editor menuedit Modify figure menus.
1-45

1 MATLAB 5.0 Enhancements
Enhanced Application Program Interface (API)
The MATLAB 5.0 API introduced data types and functions not present in
MATLAB 4. This section summarizes the important changes in the API. For
details on any of these topics, see the MATLAB Application Program Interface
Guide.

New Fundamental Data Type
The MATLAB 4 Matrix data type is obsolete. MATLAB 5.0 programs use the
mxArray data type in place of Matrix. The mxArray data type has extra fields to
handle the richer data constructs of MATLAB 5.0.

Functions that expected Matrix arguments in MATLAB 4 expect mxArray
arguments in MATLAB 5.0.

New Functions
The API introduced many new functions that work with the C language to
support MATLAB 5.0 features.

Support for Structures and Cells
MATLAB 5.0 introduced structure arrays and cell arrays. Therefore, the
MATLAB 5.0 API introduced a broad range of functions to create structures
and cells, as well as functions to populate and analyze them. See Chapter 2 for
a complete listing of these functions.

Support for Multidimensional Arrays
The MATLAB 4 Matrix data type assumed that all matrices were
two-dimensional. The MATLAB 5.0 mxArray data type supports arrays of two
or more dimensions. The MATLAB 5.0 API provides two different mxCreate
functions that create either a two-dimensional or a multidimensional mxArray.

In addition, MATLAB 5.0 introduced several functions to get and set the
number and length of each dimension in a multidimensional mxArray.
1-46

Enhanced Application Program Interface (API)
Support for Nondouble Precision Data
The MATLAB 4 Matrix data type represented all numerical data as
double-precision floating-point numbers. The MATLAB 5.0 mxArray data type
can store numerical data in six different integer formats and two different
floating-point formats.

Note: Although the MATLAB API supports these different data
representations, MATLAB itself does not currently provide any operations or
functions that work with nondouble-precision data. Nondouble precision-data
may be viewed, however.

Enhanced Debugging Support
MATLAB 5.0 included more powerful tools for debugging C MEX-files. The
–argcheck option to the mex script provides protection against accidental
misuse of API functions (such as passing NULL pointers). In addition, there is
increased documentation on troubleshooting common problems.

Enhanced Compile Mechanism
MATLAB 5.0 replaced the old cmex and fmex scripts with mex, which will
compile C or Fortran MEX-files. All compiler-specific information was moved
to easily readable and highly configurable options files. The mex script has a
configurable set of flags across platforms and can be accessed from within
MATLAB via the mex.m M-file.

MATLAB 4 Feature Unsupported in MATLAB 5.0

Non-ANSI C Compilers
MATLAB 4 let you compile MATLAB applications with non-ANSI C compilers.
MATLAB 5.0 required an ANSI C compiler.
1-47

1 MATLAB 5.0 Enhancements
New Platform-Specific Features

Microsoft Windows

Path Browser
The Path Browser lets you view and modify the MATLAB search path. All
changes take effect in MATLAB immediately.
1-48

New Platform-Specific Features
Workspace Browser
The Workspace Browser lets you view the contents of the current MATLAB
workspace. It provides a graphical representation of the traditional whos
output. In addition, you can clear workspace variables and rename them.
1-49

1 MATLAB 5.0 Enhancements
M-File Editor/Debugger
The graphical M-file editor/debugger allows you to set breakpoints and
single-step through M-code. The M-file editor/debugger starts automatically
when a breakpoint is hit. When MATLAB is installed, this program becomes
the default editor.

Command Window Toolbar
There is now a toolbar for the Command Window (you can choose whether or
not to display it). The toolbar provides single-click access to several commonly
used operations.:

Using the toolbar icons, from left to right, you can:

• Open a new editor window

• Open a file for editing

• Cut, copy, paste, and undo (standard Windows icons)

• Open the Workspace Browser

• Open the Path Browser
1-50

New Platform-Specific Features
• Create new Simulink model (if Simulink is installed)

• Access the Help facility

New Dialog Boxes
New Preferences dialog boxes are accessible through the File menu. Some of
these were previously available through the Options menu in MATLAB 4.
There are three categories of preferences:

• General

• Command Window Font

• Copying Options

16-bit Stereo Sound
MATLAB 5.0 supports 16-bit stereo sound on the Windows platform.
1-51

1 MATLAB 5.0 Enhancements
UNIX Workstations

Figure Window Toolbar
The MATLAB 5.0 Figure window provided a toolbar with a File pull-down
menu. Selecting the Print option on the File menu activates a set of push
buttons that allows easy setting of the most frequently used print options.
1-52

New Platform-Specific Features
Path Editor
The pathedit command displays a GUI that allows you to view and modify
your MATLAB search path.
1-53

1 MATLAB 5.0 Enhancements
Simplified Installation Procedure
The MATLAB 5.0 installation procedure uses a GUI to select or deselect
products and platforms.
1-54

Converting M-Files to MATLAB 5.0 2-3

Converting MATLAB 4 External Interface Programs to
the MATLAB 5.0 Application Program Interface . 2-18

General Considerations 2-18
Windows Considerations 2-21
UNIX Considerations 2-22
Conversion . 2-22
Recoding C Code for MATLAB 5.0 Compliance 2-27
2

Upgrading to MATLAB 5.0

Upgrading from MATLAB 4 to MATLAB 5.0 2-2

2 Upgrading to MATLAB 5.0

2-2
Upgrading from MATLAB 4 to MATLAB 5.0
MATLAB 5.0 was a major upgrade to MATLAB 4. Although The MathWorks
endeavors to maintain full upwards compatibility between subsequent releases
of MATLAB, inevitably there are situations where this is not possible. In the
case of MATLAB 5.0, there are a number of changes that you need to know
about in order to migrate your code from MATLAB 4 to MATLAB 5.0.

It is useful to introduce two terms in discussing this migration. The first step
in converting your code to MATLAB 5.0 is to make it MATLAB 5.0 compatible.
This involves a rather short list of possible changes that let your M-files run
under MATLAB 5.0. The second step is to make it MATLAB 5.0 compliant.
This means making further changes so that your M-file is not using obsolete,
but temporarily supported, features of MATLAB. It also can mean taking
advantage of MATLAB 5.0 features like the new data constructs, graphics, and
so on.

There are a relatively small number of things that are likely to be in your code
that you will have to change to make your M-files MATLAB 5.0 compatible.
Most of these are in the graphics area.

There are a somewhat larger number of things you can do (but don’t have to)
to make your M-files fully MATLAB 5.0 compliant. To help you gradually make
your code compliant, MATLAB 5.0 displays warning messages when you use
functions that are obsolete, even though they still work correctly.

Note: The changes described here all apply to upgrading from MATLAB 4 to
MATLAB 5.0. If you are upgrading from MATLAB 4 to Release 11
(MATLAB 5.3), you should also read the Release 11 New Features document.

Converting M-Files to MATLAB 5.0
Converting M-Files to MATLAB 5.0
This section describes some changes you can make to your code to eliminate
error messages and warnings due to incompatible and noncompliant
statements.

Table 2-1: Language Changes

Function Change Action

auread,
auwrite

New syntax. Change call to use new syntax.

bessel
functions

The bessel functions no longer
produce a table for vector
arguments of the same
orientation.

For example, in besselj(nu,x),
specify nu as a row and x as a column
to produce a table.

case,
otherwise,
switch

case, otherwise, and switch
cannot be used as variable names.

Rename your variables.

dialog dialog.m now creates a modal
dialog.

Use the msgbox function instead.

echo echo does not display multiline
matrices.

Update code.

end extra end statements. Remove redundant end statements.

eps eps is a function. eps = 0 no
longer redefines eps for other
functions (it makes a local
variable called eps in the current
workspace). Functions that base
their tolerance on an externally
defined eps won’t work.

Change code accordingly.
2-3

2 Upgrading to MATLAB 5.0

2-4
for for loop variable different after
loop for empty loops. In
MATLAB 4:
i = 10;
for i = 1:0, %goes nowhere
end
i
produces i = 10.
In MATLAB 5.0 it produces
i = [].

Protect the for loop with an isempty
call:
i = 10;
if ~isempty(n)
for i=1:n
end
end
i

global Undefined globals Define globals before they are used.
Always put the global statement at
the top of the M-file (just below the
help comments).

MATLAB 4 produced a link in the
workspace to an uninitialized global. It
shows up in whos but exist returns 0.
Do not use exist to test for the first
time the global has been accessed. Use
isempty.

gradient gradient no longer produces
complex output.

Use two outputs in the 2-D case.

input input('prompt','s') no longer
outputs an initial line feed.
Prompts now show up on the
same line.

Update code accordingly if this causes
a display problem. Add \n in the
prompt string to force a line feed.

Table 2-1: Language Changes (Continued)

Function Change Action

Converting M-Files to MATLAB 5.0
interp1 The old interp1 syntax
(interp1(x,n)) no longer calls
interpft. A warning was in place
in MATLAB 4.

Update code accordingly.

interp1 now returns a row vector
when given a row vector. It used
to return a column vector.

Transpose the output of interp1 to
produce the MATLAB 4 result when
xi is a row vector.

interp1('spline') returns NaN’s
for out of range values.

Use spline directly.

interp2 The old interp2 syntax
(interp2(x,y,xi)) no longer calls
interp1. A warning was in place
in MATLAB 4.

Update code accordingly.

interp3 The old interp3 syntax
(interp3(z,m,n) or
interp3(x,y,z,xi,yi)) no longer
calls griddata. A warning was in
place in MATLAB 4. interp3 is
now 3-D interpolation.

Update code accordingly.

Automeshing
interpolation
commands

Interpolation automeshing has
changed. griddata, interp2,
interp3, interpn, and bessel*
now automesh if (xi,yi) or
(nu,z) are vectors of different
orientations. Previously they
automeshed if the vectors were
different size.

When xi and yi are vectors of the
same orientation but different lengths,
change calls such as
interp2(...,xi,yi) to
interp2(...,xi,yi').

isempty A == [] and A ~= [] as a check
for an empty matrix produce
warning messages.

Use isempty(A) or ~isempty(A). In a
future version A == [] will produce an
empty result.

Table 2-1: Language Changes (Continued)

Function Change Action
2-5

2 Upgrading to MATLAB 5.0

2-6
isspace isspace only returns true (1) on
strings. isspace(32) is 0 (it was 1
in MATLAB 4).

Wrap your calls to isspace with char.

logical Some masking operations where
the mask isn’t defined using a
logical expression now produce an
out of range index error.

Wrap the subscript with a call to
logical or use the logical expression
A~=0 to produce MATLAB 4 behavior.

Boolean indexing is no longer
directly supported.

Use logical to create the index array.

matlabrc On the PC, MATLAB no longer
stores the path in matlabrc.

MATLAB for PC and UNIX now uses
pathdef.m.

max max(size(v)), as a means to
determine the number of
elements in a vector v, fails when
v is empty.

max ignores NaNs.

Use length(v) in place of
max(size(v)).

min min ignores NaNs. Change code if necessary.

nargin, nargout nargin and nargout are
functions.

nargout = nargout–1 (and any
similar construction) is an error. To
work around this change, assign
nargin to a local variable and
increment that variable. Rename all
occurrences of nargin to the new
variable. The same holds true for all
functions.

Table 2-1: Language Changes (Continued)

Function Change Action

Converting M-Files to MATLAB 5.0
ones A(ones(size(A))) no longer
produces A.

This statement produces copies of the
first element of A. Use
A(ones(size(A))~=0) or just A to
produce the MATLAB 4 behavior.

No longer accepts column vector. Size vector must be a row vector with
integer elements.

Functions such as ones, eye,
rand, and zeros give an error if
supplied with a matrix argument
(such as zeros(A)).

Use the syntax ones(size(A))
instead.

polyfit Second output now a structure. Change code to access structure
component.

print –ocmyk is now –cmyk.

–psdefcset is now –adobecset.

GIF format no longer supported.

Texture mapped surfaces do not
print with painter’s algorithm.

Update code accordingly.

Update code accordingly.

Use alternate format.

Use –zbuffer.

rand rand('normal') and
rand('uniform') no longer
supported.

Use randn for normally distributed
and rand for uniformly distributed
random numbers.

round Subscripts must be integers. To reproduce MATLAB 4 behavior,
wrap noninteger subscripts with
round(). Strings are no longer valid
subscripts (since they are not integers
in the strict sense).

slice slice no longer requires the
number of columns (ncols)
argument.

Update code accordingly.

Table 2-1: Language Changes (Continued)

Function Change Action
2-7

2 Upgrading to MATLAB 5.0

2-8
sound Doesn’t autoscale. Use soundsc.

strcmp
strncmp

strcmp and strncmp now return
false (0) when any argument is
numeric. They used to perform an
isequal.

Call isequal for all nonstrings you
want to compare.

wavread,
wavwrite

New syntax. Change call to use new syntax.

zeros No longer accepts column vector. Size vector must be a row vector with
integer elements.

Note: The following language changes do not directly apply to specific functions.

a(:) = b where a doesn’t exist
creates an error. This used to do
the same thing as a = b(:) when
a didn’t exist.

Either initialize a or use a = b(:)
instead.

Must use an explicitly empty
matrix to delete elements of an
array, as in a(i) = [] or
a(i,:) = []. This syntax works
for all built-in data types
(including cell arrays and
structures).

Change code accordingly.

The syntax a(i) = B, when B is
empty, no longer deletes
elements.

Use a(i) = [] instead.

An attempt to delete elements of
an array outside its range is no
longer (incorrectly) ignored. An
error is generated.

Change code accordingly.

Table 2-1: Language Changes (Continued)

Function Change Action

Converting M-Files to MATLAB 5.0
Undefined variables. To reproduce MATLAB 4 behavior,
initialize your variable to the empty
matrix ([]) or empty string ('').

Undefined outputs. To reproduce MATLAB 4 behavior,
initialize your outputs to the empty
matrix ([]).

Indices must be integers. Strings
are no longer valid indices.

Use a(round(ind)) to get MATLAB 4
behavior.

_,^,{, and } are now interpreted,
not displayed.

Use _,\^, \{, and\}.

Concatenating a string and a
double truncates the double.

Use double to convert the string before
concatenating.

Input arguments are no longer
evaluated left to right.

Evaluate input arguments before
passing them to a function.

String handling difference.
In MATLAB 4
a = 32*ones(1,10);
a(1:5) = 'hello' produces
'hello'.
In MATLAB 5.1, it produces:
104 101 108 11 32 32 32 32 32.

Initialize a to be a character array or
convert it after assignment.

Using inline matrix constants and
continued matrix constants inside
function calls:
fun(arg1,[1 2 3
3 4 5,
5 6 6])
is a syntax error.

Put continuation dots and semicolon
after each matrix line.

Table 2-1: Language Changes (Continued)

Function Change Action
2-9

2 Upgrading to MATLAB 5.0

2-1
Table 2-1: Obsolete Language Functions

Obsolete Function Action

casesen Remove the call.

csvread, csvwrite Use dlmread(filename,',') and dlmwrite(filename,',').

ellipk Replace with ellipke.

extent Replaced by Extent property.

figflag Use findobj.

finite Rename to isfinite. finite was removed in Release 11
(MATLAB 5.3).

fwhich Use which.

hthelp hthelp works in Release 11 (MATLAB 5.3), but will not be further
developed or supported. Use helpwin.

htpp Use helpwin.

inquire Use set and get to obtain the current state of an object or of
MATLAB.

inverf Rename to erfinv.

isdir Use dir.

layout No replacement in Release 11 (MATLAB 5.3).

loadhtml Use helpwin or doc.

matq2ws Replaced by assignin and evalin.

matqdlg Replaced by assignin and evalin.

matqparse Replaced by assignin and evalin.

matqueue Replaced by assignin and evalin.

menulabel Bug in Handle Graphics is now fixed.

mexdebug Rename to dbmex.
0

Converting M-Files to MATLAB 5.0
ode23p Use ode23 with no left-hand arguments or set an output function
with odeset.

polyline, polymark Use the line object or plot.

printmenu No replacement in Release 11 (MATLAB 5.3).

saxis Use soundsc.

ws2matq Replaced by assignin and evalin.

Table 2-1: Obsolete Language Functions (Continued)

Obsolete Function Action

Table 2-2: Graphics Function Changes

Function Change Action

 figure In MATLAB 4 if a figure extended
past the top of the window, it was
adjusted to be visible. MATLAB
5.0 performs no adjustment.

Avoid hardcoded Figure positions.

get get(h,'currentfigure') and
get(h,'currentaxes') no longer
create a Figure or an Axes if one
doesn't exist. They return [] in
that case.

gcf and gca always return a valid
handle. Use gcf and gca instead of the
get function in this context.

In MATLAB 4 you could
determine if a graphics object had
a default value set by passing its
handle in a query like
get(gca,'DefaultAxesColor').

In MATLAB 5.0 make the query on the
object’s ancestor, e.g.,
get(gcf,'DefaultAxesColor') or
get(0,'DefaultAxesColor')
2-11

2 Upgrading to MATLAB 5.0

2-1
plot MATLAB 4 plots may have
elements that are the wrong color.
MATLAB 5.0 defaults to a white
background on all platforms.
(MATLAB 4 defaulted to black)

Use colordef to control your color
defaults. Typically, you will put a call
to colordef in startup.m. To get the
MATLAB 4 defaults, use colordef
none.

plot line styles c1 through c15
and i are no longer supported

Use a 1-by-3 RGB ColorSpec instead. i
is the same as get(gca,'color') or
get(gcf,'color') when the Axes
color is 'none'.

rotate rotate alpha is reversed from
MATLAB 4.

If your call looked like
rotate(h,[theta phi],alpha),
change to
rotate(h,[theta phi],–alpha[0 0
0]).

text text(S) when S is a multirow
character array formerly
produced one handle per row.
Now it produces one multiline
text handle.

Rewrite code so that it doesn’t assume
a specific number of handles.

Table 2-2: Graphics Function Changes (Continued)

Function Change Action
2

Converting M-Files to MATLAB 5.0
uicontrol The default Uicontrol text
horizontal alignment is centered
in MATLAB 5.0. (In MATLAB 4
we used to left align text and
ignore the alignment property.)

Explicitly set the horizontal alignment
when you create Uicontrol Text
objects.

In MATLAB 4, Uicontrols of style
'edit' executed their callback
routine whenever you moved the
pointer out of the edit box. In
MATLAB 5.0, edit controls
execute their callbacks after you
perform a specific action.

The callback is called when:

• Return key is pressed (single-line
edits only)

• Focus is moved out of the edit by:

-Clicking elsewhere in the Figure
(on another Uicontrol or on
another graphical object)

-Clicking in another Figure

-Clicking on the menu bar (X
Window systems only)

Note: The following change does not directly apply to a specific function.

MATLAB 5.0 sets font size
selection to match platform
conventions. A MATLAB 4 font
selection may be a different size
in MATLAB 5.0.

Resize font appropriately.

Table 2-3: Graphics Property Changes

Property Object Type Change Action

AspectRatio Axes Obsolete Replace with
DataAspectRatio and
PlotBoxAspectRatio.

BackgroundColor Uimenu Obsolete Do not use.

Table 2-2: Graphics Function Changes (Continued)

Function Change Action
2-13

2 Upgrading to MATLAB 5.0

2-1
CurrentMenu Figure Becoming obsolete. No
warning message
produced.

Replace with the
function gcbo.

EraseMode Image,
Line, Patch,
Surface,
Text

Now use xor against the
Axes color rather than
the Figure color.

For non-normal
erasemode, MATLAB
recomputes Axes limits
only when you fully
update the display (e.g.,
with a drawnow
command).

Modify code as
appropriate.

Set the Axes limits (and
other properties you
depend upon) before
using non-normal
modes to create
animation.

ExpFontAngle Axes, Text Obsolete Do not use.

ExpFontName Axes, Text Obsolete Do not use.

ExpFontSize Axes, Text Obsolete Do not use.

ExpFontStrikeThrough Axes, Text Obsolete Do not use.

ExpFontUnderline Axes, Text Obsolete Do not use.

ExpFontUnits Axes, Text Obsolete Do not use.

ExpFontWeight Axes, Text Obsolete Do not use.

FontStrikeThrough Axes, Text Obsolete Do not use.

FontUnderline Axes, Text Obsolete Do not use.

Table 2-3: Graphics Property Changes (Continued)

Property Object Type Change Action
4

Converting M-Files to MATLAB 5.0
LineStyle Line, Patch,
Surface

Setting the LineStyle
property to a marker
value (such as '+') now
produces a warning.

Setting the marker style
of a line now affects the
Marker property instead
of the LineStyle
property. Although you
will be able to set a line
marker using the
LineStyle property
(with a warning), you
will not be able to get
marker style
information from
LineStyle.

Set the Marker property
instead. Note that plot
will continue to take
line-color marker line
styles.

If your code relies on
markers in the
LineStyle, you'll have to
change it to use the
Marker instead.

NextPlot Axes, Figure Use of value 'new' is
obsolete. Produces
warning message.

Use HandleVisibility
to protect user interfaces
from command line
users.

PaletteMode Image,
Patch,
Surface

Renamed Use CDataMapping

RenderLimits Axes Obsolete Do not use. Limits are
now always accurate.

SelectionType Figure Right mouse button
went from Extended in
MATLAB 4 to Alternate
in MATLAB 5.0.

None required.

Table 2-3: Graphics Property Changes (Continued)

Property Object Type Change Action
2-15

2 Upgrading to MATLAB 5.0

2-1
Units Axes,
Figure, Text,
Uicontrol

Units/Position is always
order dependent for all
objects. In MATLAB 4, it
was inconsistent.

The Units property
should precede any
properties that depend
upon it. A command
such as
axes('position',[100
200 300 100],'units',
'pixels') is not the
same as
axes('units','pixels,
'position',[100 200
300 100]). In the first
case the numbers are
interpreted in
normalized coordinates.

WindowID Figure Possibly becoming
obsolete.

May be removed in a
future release.

XLim, XTick Axes Values must be
monotonically
increasing.

Sort the ticks:

set(gca,'xtick',
sort ([3 2 1])

XTickLabels Axes Renamed Use XTickLabel

YLim, YTick Axes Values must be
monotonically
increasing.

Sort the ticks:

set(gca,'ytick',
sort ([3 2 1])

YTickLabels Axes Renamed Use YTickLabel

Table 2-3: Graphics Property Changes (Continued)

Property Object Type Change Action
6

Converting M-Files to MATLAB 5.0
ZLim, ZTick Axes Values must be
monotonically
increasing.

Sort the ticks:

set(gca,'ztick',
sort ([3 2 1])

ZTickLabels Axes Renamed ZTickLabel

Table 2-3: Graphics Property Changes (Continued)

Property Object Type Change Action
2-17

2 Upgrading to MATLAB 5.0

2-1
Converting MATLAB 4 External Interface Programs to the
MATLAB 5.0 Application Program Interface

MATLAB 4 External Interface programs, including MEX-files, MAT-file
programs, and Engine programs may run without any modification on the
MATLAB 5.0 Application Program Interface (API), or they may require
modification and/or recompilation. The following pages and flowcharts describe
how to determine which of these possibilities applies in your situation and how
to choose the appropriate conversion technique.

General Considerations

Non-ANSI C Compilers
MATLAB 4 let you compile External Interface programs with non-ANSI C
compilers. MATLAB 5.0 API header files include strict prototyping of API
functions and require an ANSI C compiler.

MATLAB Character Strings
MATLAB 4 and MATLAB 5.0 represent string data in different ways.
MATLAB 4 supported only one data type. All data was represented as
double-precision, floating-point numbers, even individual characters in a
string array. A numerical array and a character array differed only by how
MATLAB displayed these values. MATLAB 5.0 represents each character in a
string array as an mxChar, a 16-bit unsigned integer data type. If the mxArray’s
class is mxCHAR_CLASS, the API treats each number in the mxArray as an
element from the current character set. Character sets are platform specific.

External Interface programs that call the API routines mxGetString() and
mxCreateString() to manipulate strings continue to work. All MEX-files that
directly manipulate strings must be rewritten. MAT-file and Engine
applications that directly manipulate strings need not be rewritten. However,
to recompile these applications under MATLAB 5.0, any code that directly
manipulates strings must be rewritten. We highly recommend that you use the
API string access and creation routines to do this. To help in this endeavor, we
have added a new C routine, mxCreateCharMatrixFromStrings(), in addition
to mxGetString() and mxCreateString(), to make it easy to create
two-dimensional string matrices.
8

Converting MATLAB 4 External Interface Programs to the MATLAB 5.0 Application Program Interface
MEX-File Argument Complexification
In MATLAB 4, if one argument to a MEX-function was complex, all arguments
were passed as complex. This is not true in MATLAB 5.0. For example,
consider a MEX-function, myeig(A,B,C), that calculates eigenvalues of three
matrices. In MATLAB 4, if matrix A is complex, B and C are assumed to be
complex matrices as well. In this instance, additional memory is allocated for
the complex part of B and C, and initialized with zero values.

MATLAB 5.0 does not allocate this memory for you. If your MEX-file assumes
argument complexification, you will have to rewrite your MEX-file. Each
argument to a MEX-function needs to be tested with mxIsComplex() to
guarantee that an argument indeed has a complex component.

Type Imputation by Process of Elimination
In MATLAB 4 the only way to determine if a matrix was a full, nonstring
matrix was by a process of elimination. For example, if your code checked a
variable and found that it was a full matrix (nonsparse), and was not a string,
you could also assume that the variable was double-precision, floating-point
and two-dimensional. In MATLAB 5.0, with the addition of several new data
types and support for multidimensional data, this assumption is no longer
valid. mxIs* routines and mxGetNumberOfDimensions() have been added to the
C interface so that now you can explicitly check arguments for specific data
types and shapes. mxIsDouble(), which always returned 1 in MATLAB 4, now
correctly returns 1 only if the mxArray is of type double precision floating point.
mxIsDouble() is available in C as well as Fortran. mxGetN() returns the total
number of elements in dimensions 2-n, and therefore works correctly with
multidimensional as well as two dimensional arguments.

Version 3.5 MEX-Files
MEX-files generated under MATLAB 4 using the –v3.5 switch to the cmex or
fmex script are no longer supported and must be rewritten. Refer to both the
MATLAB 4 External Interface Guide for information on upgrading to the
MATLAB 4 syntax and the section later in this document on recoding for
MATLAB 5.0 compliance.
2-19

2 Upgrading to MATLAB 5.0

2-2
Simulink
By design, Simulink S-functions written in C must be recompiled under the
latest version of Simulink. The code is source compatible, but the binary must
be recompiled. If you attempt to run a Simulink 1.3 C S -function under
Simulink 2.1, you get an appropriate warning message. Simulink S-functions
written in Fortran do not have this restriction.

Fortran MEX-File Considerations
The MATLAB Fortran API has not changed from MATLAB 4 to MATLAB 5.0.
However, Fortran mex users on Windows and the Sun4 must recompile their
applications, using the mex script for programs that call mxCreateString() or
mxGetString(). Only these platforms, which statically link in the Fortran
interface, are affected. No recompilation is required on other platforms.

Rebuilding MEX-Files Loaded in Memory
In MATLAB 4, you could execute cmex or fmex from within MATLAB by using
the ! command or execute in another window. These methods are no longer
supported with MATLAB 5.0. However, the M-file that builds MEX-files,
mex.m, is available on all platforms and can safely rebuild loaded MEX-files by
unloading them before proceeding with the build. The interface provided by the
M-file is identical to the external mex script.

Default MEX-File Optimization
In MATLAB 4 MEX-files by default were built with no optimization flags
passed to the compiler. In MATLAB 5.0 the default is to optimize MEX-files.
See the MATLAB Application Program Interface Guide for more information.

Debugging MEX-Files
The –debug switch to cmex/fmex is no longer supported. Instead, on all
platforms, MATLAB 5.0 supports MEX-file debugging from within a MATLAB
session. (See the debugging sections of the MATLAB Application Program
Interface Guide for more details). In addition, the mex script has been enhanced
with the –argcheck switch. That switch provides a way for C mex users to
generate code to check input and output arguments at runtime and issue
appropriate error messages if invalid data is detected.
0

Converting MATLAB 4 External Interface Programs to the MATLAB 5.0 Application Program Interface
MAT-File External Applications
MAT-file external applications built under MATLAB 4 will continue to work
under MATLAB 5.0. Note that the MAT-file format has changed between
MATLAB 4 and MATLAB 5.0. Although MATLAB will be able to read
MATLAB 4 MAT-files generated by a stand-alone program, stand-alone
programs will not be able to read MAT-files in a MATLAB 5.0 format. You can
generate MATLAB 4 MAT-files from MATLAB 5.0 by specifically passing the
–v4 switch to the save command.

Windows Considerations
MEX-files are generated under MATLAB 5.0 as 32-bit DLLs. The cmex and
fmex batch files have been superseded by mex (a PERL script) and a set of
compiler-specific option files. These compilers are fully supported for creating
MEX or stand-alone applications through MathWorks-supplied option files:

• Watcom C

• Microsoft Visual C++

• Borland C

Microsoft Fortran, currently the only supported Fortran compiler, is supported
for MEX applications only. You will not be able simply to recompile your
MATLAB 4 Fortran MEX-file source with this new compiler. See “Creating
Fortran MEX-files” in the MATLAB Application Program Interface Guide for
further information.

NDP Fortran, previously supported under MATLAB 4, is not supported in this
release.

16-bit DLL MEX-files are no longer supported and cannot be generated.
Existing MATLAB 4 REX MEX-files are usable but cannot be created under
MATLAB 5.0.

See “Fortran MEX-file Considerations” above for Windows-specific restrictions
on creating and accessing MATLAB character strings.

MATLAB 4 C language Engine binaries will not run with MATLAB 5.0.
Programs must be recompiled. MATLAB 5.0 data types are currently not
supported on the PC from an Engine program. There is currently no support
for Fortran Engine or MAT-file programs.
2-21

2 Upgrading to MATLAB 5.0

2-2
See the MATLAB Application Program Interface Guide for instructions on
compiling stand-alone programs in MATLAB 5.0.

UNIX Considerations
The cmex and fmex Bourne shell scripts for building MEX-files have been
superseded by mex, also a Bourne shell script, that sources an options file,
mexopts.sh for all platform compiler-specific information. The options file
contains all the pertinent compiler and linker switches for building ANSI C
and Fortran MEX-file applications. The .mexrc.sh file is no longer supported
and must be converted to the new format. The mexdebug MATLAB command
that allows UNIX users to debug their MEX-files while MATLAB is running
has been changed to dbmex. The behavior of dbmex under MATLAB 5.0 is
identical to mexdebug under MATLAB 4.

See “Fortran Considerations” above for Sun4-specific restrictions on creating
and accessing MATLAB character strings.

You can use your existing UNIX Engine and MAT-file binary files unmodified;
no recompilation is necessary. Note that MATLAB 4 Engine programs have no
access to new MATLAB 5.0 data types. If you try to invoke
engGetMatrix(ep,my_variable), and my_variable is a cell array, structure
array, object, etc., the operation automatically fails.

Conversion

Rebuilding MEX-Files
The simplest strategy for converting C MEX-file programs is to rebuild them
with the special –V4 option of mex. This option uses mex to define a macro
V4_COMPAT that supports MATLAB 4 syntax and function calls. Therefore, any
ANSI C MEX-file source code that compiled cleanly under MATLAB 4 should
compile cleanly with the –V4 option. The resulting MEX-file should run under
MATLAB 5.0 just as it ran under MATLAB 4. For example, given C MEX-file
MATLAB 4 source code in file MyEig.c, recompiling under UNIX with

mex –V4 myeig.c

yields a MEX-file that MATLAB 5.0 can execute. It is also possible to use cmex
and fmex for compiling C and Fortran source code, but both of these functions
simply call mex.
2

Converting MATLAB 4 External Interface Programs to the MATLAB 5.0 Application Program Interface
The obvious advantage to the –V4 strategy is that it requires very little work
on your part. However, this strategy provides only a temporary solution to the
conversion problem; there is no guarantee that future releases of MATLAB will
continue to support the –V4 option. If you have the time, recoding for
MATLAB 5.0 compliance is a better strategy. See “Recoding C Code for
MATLAB 5.0 Compliance” below.

Rebuilding Stand-Alone MAT-File and Engine Programs
If your source code is ANSI compliant, you can recompile your source without
modification by using the compiler flag –DV4_COMPAT. This allows you to avoid
recoding, such as rewriting obsolete function calls as their MATLAB 5.0
equivalents. However, the resulting program will have the same restrictions as
existing binary files.

See the MATLAB Application Program Interface Guide for instructions on
compiling stand-alone programs in MATLAB 5.0.

MEX-File Conversion Flowcharts
The flowcharts below help you determine what steps you should take to run
your MATLAB 4 MEX-files under MATLAB 5.0.
2-23

2 Upgrading to MATLAB 5.0

2-2
Start
Determine if you can use your
MATLAB 4 MEX-file binary

no

Does MEX-file
directly manipulate string

matrices?

Stop

You can use your MATLAB 4

no

Does MEX-file
assume argument
complexification?

yes
yes

Is MEX-file
written in Fortran

?

no

yes

Was MEX-file
built with the–V3.5

switch?

no

no

yes

Are you running
on Sun 4 or
Windows?

noDoes MEX-file
use MATLAB access routines to

manipulate string matrices

Stop
yesRefer to MATLAB 4

API documentation.

Are you running on
VMS

?

yes

no

no

yes

yesDoes MEX-file
identify datatypes by process

of elimination?

no

?

Was MEX-file source
generated by MATLAB

compiler?

no

yes
Stop

Cannot use your

MATLAB 4 MEX-file

Stop
yes

Stop
Cannot use your

binary as is.

binary or source as is.

no

yes

as is.

MEX-file binary as is.

MATLAB 4 MEX-file
Cannot use your

binary as is.
MATLAB 4 MEX-file

Are you using a 16-bit
DLL onWindows

?

yes

no

Was MEX-file
built with MPW C on

I/O routines
?

68K Mac & does it call file

Is C MEX-file
a Simulink
S-function?
4

Converting MATLAB 4 External Interface Programs to the MATLAB 5.0 Application Program Interface
Start

Rebuild your MEX-file sources

using the MATLAB 5.0 script

mex –V4 filename

Stop

Determine if you can rebuild

with the–V4 option ofmex.

Does MEX-file
useprintf

?

Rewrite usingmexPrintf,

make sure to includemex.h.

yes

Does MEX-file
includecmex.h

?

Include mex.h.yes

Does MEX-file
directly manipulate string

matrices?

Convert direct manipulation of

string matrices to use access

and creation routines.

yes

Does MEX-file
contain non-ANSI C code

?

Rewrite non-ANSI C code

as ANSI C code.

yes

Rewrite code so that it does

not assume complexification
yesDoes MEX-file

assume argument
complexification?

Rewrite code so that it

explicitly checks for the data
yes

no

Does MEX-file
identify data types by

process of elimination?

no

no

no

no

no

of arguments.

types you want.

Acquire a MATLAB 5.0

compliant compiler.

no

yes

yes

no

Was MEX-file
source generated by
MATLAB compiler?

Stop
Cannot rebuild with

–V4 option of mex.

Can your platform
compiler generate MATLAB 5

MEX-files?
2-25

2 Upgrading to MATLAB 5.0

2-2
Change allMatrix variables

to mxArray variables.

Determine if you can compile

with mex filename.

Recompile withmex filename.

RewritemexFunction call

to comply with MATLAB 5.0

prototyping.

ChangeREAL to mxREAL, and

COMPLEX to mxCOMPLEX. Rewrite code to explicitly handle

new MATLAB 5.0 data types.

Start

yes

no

Was MEX-file source
generated by MATLAB

compiler?

no

yes

Can your platform
compiler generate MATLAB 5

MEX-files?

yes

no

Is your source
MATLAB 5.0 compliant

?

Rebuild source with
MATLAB 5.0 compatible

Acquire a MATLAB 5.0

compliant compiler.

Stop

Translate obsolete function calls

to their MATLAB 5.0 replacements.

Change allReal variables to

double variables.

Is your source
written in Fortran

?

yes

no

C or Fortran

M-file compiler.
6

Converting MATLAB 4 External Interface Programs to the MATLAB 5.0 Application Program Interface
Recoding C Code for MATLAB 5.0 Compliance
Recoding your MATLAB 4 C code for MATLAB 5.0 compliance involves:

• Rewriting any non-ANSI C code as ANSI C code. (For details, see an ANSI C
book.)

• Changing all Matrix variables to mxArray variables.

The MATLAB 4 Matrix data type is obsolete; you must change all Matrix
variables to mxArray variables. For example, the mxCreateSparse function
returns a Matrix pointer in MATLAB 4:
Matrix *MySparse;
MySparse = mxCreateSparse(10,10,110,REAL);

To be MATLAB 5.0 compliant, change the code to:
mxArray *MySparse;
MySparse = mxCreateSparse(10,10,110,mxREAL);

• Rewriting all function prototypes.

The function prototype of almost every MATLAB 4 function is different in
MATLAB 5.0. The two primary prototype changes are

- All Matrix arguments are now mxArray arguments.

- Pointers to read only data are now declared as const *.

• For MEX-files, rewriting mexFunction to take a constant mxArray * as a
fourth argument.

• Changing REAL to mxREAL and COMPLEX to mxCOMPLEX.

In any function that requires the specification of real or complex data types,
instead of REAL and COMPLEX, use mxREAL and mxCOMPLEX. For example, in
MATLAB 4 you would write
mxCreateSparse(m,n,nzmax,REAL);

to create an m-by-n sparse matrix with nzmax nonzero real elements. In
MATLAB 5.0, the correct syntax for this same function is:
mxCreateSparse(m,n,nzmax,mxREAL);

• Translating obsolete function calls into their MATLAB 5.0 replacements.

A number of functions have become obsolete. However, MATLAB 5.0 offers
replacements for nearly all obsolete functions.
2-27

2 Upgrading to MATLAB 5.0

2-2
• Handling MATLAB 5.0 new data types.

You should explicitly check the data type of your input arguments to ensure
that you have what you want.

Table 3-5 lists MATLAB 4 External Interface functions along with a
description of how to recode those functions to work with MATLAB 5.0.

Table 2-4: Recoding MATLAB 4 Functions for MATLAB 5.0 Compliance

MATLAB 4 Function MATLAB 5.0 Replacement

engGetMatrix engGetArray

engGetFull engGetArray followed by calls to the appropriate
mx* routines

engPutMatrix engPutArray

engPutFull mxCreateDoubleMatrix followed by engPutArray

engSetEvalCallback (Windows platform only) Obsolete in 5.0

engSetEvalTimeout (Windows platform only) Obsolete in 5.0

engWinInit (Windows platform only) Obsolete in 5.0

matGetMatrix matGetArray

matGetNextMatrix matGetNextArray

matGetFull matGetArray followed by calls to the appropriate
mx* routines

matPutMatrix matPutArray

matPutFull mxCreateDoubleMatrix followed by matPutArray

mexAtExit No change

mexCallMATLAB Second and fourth arguments are mxArray *

mexErrMsgTxt No change

mexEvalString No change
8

Converting MATLAB 4 External Interface Programs to the MATLAB 5.0 Application Program Interface
mexFunction Second and fourth arguments are mxArray *
Fourth argument is a const

mexGetEps Obsolete; call mxGetEps instead

mexGetFull Obsolete; call this sequence instead:

mexGetArray(array_ptr, "caller");
name = mxGetName(array_ptr);
m = mxGetM(array_ptr);
n = mxGetM(array_ptr);
pr = mxGetPr(array_ptr);
pi = mxGetPi(array_ptr);

mexGetGlobal Obsolete; call mexGetArrayPtr instead, setting
the second argument to "global". Note: it is
better programming practice to call
mexGetArray(,"global");

mexGetInf Obsolete; call mxGetInf instead

mexGetMatrix Call mexGetArray(name,"caller");

mexGetMatrixPtr Call mexGetArrayPtr(name,"caller");

mexGetNaN Obsolete; call mxGetNaN instead

mexIsFinite Obsolete; call mxIsFinite instead

mexIsInf Obsolete; call mxIsInf instead

mexIsNaN Obsolete; call mxIsNaN instead

mexPrintf No change

Table 2-4: Recoding MATLAB 4 Functions for MATLAB 5.0 Compliance
 (Continued)

MATLAB 4 Function MATLAB 5.0 Replacement
2-29

2 Upgrading to MATLAB 5.0

2-3
mexPutFull Obsolete; call this sequence instead:

mxArray *parray;
int retval;

parray = mxCreateDouble(0,0,0);
if(parray == (mxArray*)0) return(1);
mxSetM(parray,m);
mxSetN(parray,n);
mxSetPr(parray,pr);
mxSetPi(parray,pi);
mxSetName(parray,name);

retval = mxPutArray(parray,"caller");
mxFree(parray);
return(retval);

mexPutMatrix Obsolete; call mexPutArray instead

mexSetTrapFlag No change

mxCalloc No change

mxCreateFull Obsolete; call mxCreateDoubleMatrix instead

mxCreateSparse Returns mxArray *

mxCreateString Returns mxArray *

mxFree No change

mxFreeMatrix Obsolete; call mxDestroyArray instead

mxGetIr First argument is mxArray *

mxGetJc First argument is mxArray *

mxGetM First argument is mxArray *

mxGetN First argument is mxArray *

Table 2-4: Recoding MATLAB 4 Functions for MATLAB 5.0 Compliance
 (Continued)

MATLAB 4 Function MATLAB 5.0 Replacement
0

Converting MATLAB 4 External Interface Programs to the MATLAB 5.0 Application Program Interface
mxGetName First argument is mxArray *

mxGetNzmax First argument is mxArray *

mxGetPi First argument is mxArray *

mxGetPr First argument is mxArray *

mxGetScalar First argument is mxArray *

mxGetString First argument is mxArray *

mxIsComplex First argument is mxArray *

mxIsDouble First argument is mxArray *

Note that MATLAB 4 stores all data as doubles;
MATLAB 5.0 stores data in a variety of integer
and real formats.

mxIsFull Obsolete; call !mxIsSparse instead

mxIsNumeric First argument is mxArray *

mxIsSparse First argument is mxArray *

mxIsString Obsolete; call mxIsChar instead

mxSetIr First argument is mxArray *

mxSetJc First argument is mxArray *

mxSetM First argument is mxArray *

mxSetN First argument is mxArray *

mxSetName First argument is mxArray *

mxSetNzmax First argument is mxArray *

mxSetPi First argument is mxArray *

Table 2-4: Recoding MATLAB 4 Functions for MATLAB 5.0 Compliance
 (Continued)

MATLAB 4 Function MATLAB 5.0 Replacement
2-31

2 Upgrading to MATLAB 5.0

2-3
mxSetPr First argument is mxArray *.

mxSetString Obsolete; MATLAB 5.0 provides no equivalent
call since the mxArray data type does not contain
a string flag.
Use mxCreateCharMatrixFromStrings to create
multidimensional string mxArrays.

Table 2-4: Recoding MATLAB 4 Functions for MATLAB 5.0 Compliance
 (Continued)

MATLAB 4 Function MATLAB 5.0 Replacement
2

Index
A
addpath function 1-13
airy function 1-15
align function 1-45
alignment tool 1-45
AmbientLightColor property 1-36
AmbientStrength property 1-39, 1-41
API

cell array support 1-46
fundamental data type 1-46
multidimensional array support 1-46
nonANSI C compilers 1-47
nondouble data 1-47
stucture support 1-46
See also function, API

Application Program Interface. See API
area function 1-24
array

empty 1-19
string 1-9

AspectRatio property 2-13
assignin function 1-13
assignment enhancements 1-17
asterisk

as wildcard 1-19
auread 2-3
autumn colormap 1-28
auwrite 2-3
axes object 1-27, 2-14
axes properties

AmbientLightColor 1-36
CameraPosition 1-36
CameraPositionMode 1-36
CameraTarget 1-36
CameraTargetMode 1-36
CameraUpVector 1-36
CameraUpVectorMode 1-36
CameraViewAngle 1-36
CameraViewAngleMode 1-36
DataAspectRatio 1-36
DataAspectRatioMode 1-36
FontUnits 1-36
Layer 1-36
NextPlot 1-36
PlotBoxAspectRatio 1-36
PlotBoxAspectRatioMode 1-37
ProjectionType 1-37
TickDirMode 1-37
XAxisLocation 1-37
YAxisLocation 1-37

B
BackgroundColor property 2-13
bar charts 1-24
bar3 function 1-24
bar3h function 1-24
barh function 1-24
base2dec function 1-9
bessel functions 2-3
besselh function 1-15
bicg function 1-16
bicgstab function 1-16
bin2dec function 1-9
bitand function 1-17
bitcmp function 1-17
bit-manipulation 1-17
bitmax function 1-17
bitor function 1-18
bitset function 1-18
bitshift function 1-18
bittest function 1-17
bitxor function 1-18
I-1

Index

I-2
box function 1-25
browser

path 1-48
workspace 1-49

BusyAction property 1-35

C
calendar function 1-15
callback editor 1-45
CallbackObject property 1-40
camera properties 1-26
CameraPosition property 1-36
CameraPositionMode property 1-36
CameraTarget property 1-36
CameraTargetMode property 1-36
CameraUpVector property 1-36
CameraUpVectorMode property 1-36
CameraViewAngle property 1-36
CameraViewAngleMode property 1-36
case statement 1-11, 1-12
cat function 1-5, 1-6
cbedit function 1-45
CData property 1-38, 1-39, 1-41
CDataMapping property 2-15
CDataScaling property 1-38, 1-39, 1-41
cell array 1-5, 1-7

API support 1-46
cell function 1-7
cell2struct function 1-7
celldisp function 1-7
cellplot function 1-7
cells function 1-7
cessen function (obsolete) 2-10
cgs function 1-16
char function 1-9
Children property 1-35
cholinc function 1-16
clabel function 1-27
class function 1-9
CloseRequestFcn property 1-37
color enhancements 1-28
Color property 1-38
colorcube colormap 1-28
colordef 1-28
colormap

autumn 1-28
colorcube 1-28
lines 1-28
spring 1-28
summer 1-28
winter 1-28

compatibility 2-2
compliance 2-2
condeig function 1-15
condest function 1-15
contourf function 1-27
contouring enhancements 1-27
control, flow 1-11
convhull function 1-21
CreateFcn property 1-35
csvread function (obsolete) 2-10
csvwrite function (obsolete) 2-10
cumprod function 1-18
cumsum function 1-18
cumtrapz function 1-21
CurrentMenu property 2-14

D
data analysis features 1-21
data constructs 1-5

cell array 1-5, 1-7
multidimensional array 1-5

Index
object 1-5
structure 1-5, 1-7

data hiding 1-8
data visualization 1-26
DataAspectRatio property 1-36
DataAspectRatioMode property 1-36
date functions 1-15
datenum function 1-15
datestr function 1-15
datetick function 1-15, 1-25
datevec function 1-15
dblquad function 1-15
dbmex function 2-10
dec2base function 1-9
dec2bin function 1-9
delaunay function 1-21
DeleteFcn property 1-35
device options

print command 1-30
dialog box

modal 1-44, 2-3
non-modal 1-44

dialog function 1-29, 2-3
DiffuseStrength property 1-39, 1-41
dimension specification 1-18
DithemapMode property 1-37
Dithermap property 1-37
dlmread function 2-10
dlmwrite function 2-10
double integration 1-15
dragrect function 1-44
dsearch function 1-21

E
echo function 2-3
edit function 1-13

editor
callback 1-45
menu 1-45
property 1-45

editor/debugger
for Windows 1-50

editpath function 1-13
eigs function 1-16
ellipk function (obsolete) 2-10
ellipke function 2-10
empty array 1-19

checking for 2-5
multidimensional 1-19

empty matrix 1-19
checking for 2-5

Enable property 1-42, 1-43
end statements, extra 2-3
engGetFull function 2-28
engGetMatrix function 2-28
engPutFull function 2-28
engPutMatrix function 2-28
engSetEvalCallback function 2-28
engSetEvalTimeout function 2-28
engWinInit function 2-28
eomday function 1-15
eps 2-3
EraseMode property 1-38, 2-14
erfinv function 2-10
ErrorMessage property 1-40
ErrorType property 1-40
evalin function 1-13
ExpFontAngle property 2-14
ExpFontName property 2-14
ExpFontSize property 2-14
ExpFontStrikeThrough property 2-14
ExpFontUnderline property 2-14
ExpFontUnits property 2-14
I-3

Index

I-4
ExpFontWeight property 2-14
extent function (obsolete) 2-10
eye function 2-7

F
FaceLightingAlgorithm property 1-39, 1-41
Faces property 1-39
factor function 1-21
features

Macintosh 1-52
Microsoft Windows 1-48
platform-specific 1-48
UNIX workstations 1-52

fieldnames function 1-8
figflag function (obsolete) 2-10
figure 2-11
Figure properties

CloseRequestFcn 1-37
Dithermap 1-37
DithermapMode 1-37
IntegerHandle 1-37
NextPlot 1-37
PaperPositionMode 1-37
PointerShapeCData 1-37
PointerShapeHotSpot 1-37
Renderer 1-37
RendererMode 1-38
Resize 1-38
ResizeFcn 1-38

finite function (obsolete) 2-10
flipdim function 1-6
flow control 1-11

case 1-11
switch 1-11

FontAngle property 1-42
FontName property 1-42
FontSize property 1-42
FontStrikeThrough property 2-14
FontUnderline property 2-14
FontUnits property 1-36, 1-42
FontWeight property 1-42
for 2-4
fullfile function 1-14
function, API

dbmex 2-10
engGetFull 2-28
engGetMatrix 2-28
engPutFull 2-28
engPutMatrix 2-28
engSetEvalCallback 2-28
engSetEvalTimeout 2-28
engWinInit 2-28
matGetFull 2-28
matGetMatrix 2-28
matGetNextMatrix 2-28
matPutFull 2-28
matPutMatrix 2-28
mexAtExit 2-28
mexCallMATLAB 2-28
mexdebug 2-10
mexErrMsgTxt 2-28
mexEvalString 2-28
mexFunction 2-29
mexGetEps 2-29
mexGetFull 2-29
mexGetGlobal 2-29
mexGetInf 2-29
mexGetMatrix 2-29
mexGetMatrixPtr 2-29
mexGetNaN 2-29
mexIsFinite 2-29
mexIsInf 2-29
mexIsNaN 2-29

Index
function, API (continued)
mexPrintf 2-29
mexPutFull 2-30
mexPutMatrix 2-30
mexSetTrapFlag 2-30
mxCalloc 2-30
mxCreateFull 2-30
mxCreateSparse 2-30
mxCreateString 2-30
mxFree 2-30
mxFreeMatrix 2-30
mxGetIr 2-30
mxGetJc 2-30
mxGetM 2-30
mxGetN 2-30
mxGetName 2-31
mxGetNzmax 2-31
mxGetPi 2-31
mxGetPr 2-31
mxGetScalar 2-31
mxGetString 2-31
mxIsComplex 2-31
mxIsDouble 2-31
mxIsFull 2-31
mxIsNumeric 2-31
mxIsSparse 2-31
mxIsString 2-31
mxSetIr 2-31
mxSetJc 2-31
mxSetM 2-31
mxSetN 2-31
mxSetName 2-31
mxSetNzMax 2-31
mxSetPi 2-31
mxSetPr 2-32
mxSetString 2-32

functions
time and date 1-15

fundamental data type, API 1-46
FVCData property 1-39
fwhich function (obsolete) 2-10

G
gallery function 1-16
gca function 2-11
gcf function 2-11
general graphics features 1-29
get function 2-10, 2-11
getfield function 1-8
global variable 2-4
gmres function 1-16
gradient function 2-4
graphical user interface See GUI
graphics object

Axes 1-28, 2-14
defaults 1-29
Line 2-11
Patch 1-26
Text 1-28

graphics object properties
BusyAction 1-35
Children 1-35
CreateFcn 1-35
DeleteFcn 1-35
HandleVisibility 1-35
Interruptible 1-35
Parent 1-35
Selected 1-35
SelectionHighlight 1-35
Tag 1-35

griddata function 1-22
I-5

Index

I-6
GUI
general enhancements 1-44
improvements 1-44

Guide 1-45
guide function 1-45

H
HandleVisibility property 1-35
hthelp function (obsolete) 2-10
htpp function (obsolete) 2-10

I
if expressions 1-12
image properties

CData 1-38
CDataScaling 1-38
EraseMode 1-38

image support 1-32
ind2sub function 1-7
inferiorto function 1-9
initializing

outputs 2-9
variables 2-8, 2-9

inmem function 1-14
input function

no initial linefeed 2-4
inputdlg function 1-44
inputname function 1-14
inquire function (obsolete) 2-10
integer bit manipulation functions 1-17
integer subscripts 2-7
IntegerHandle property 1-37
interp1 function 2-5
interp2 function 2-5
interp3 function 1-22, 2-5
interpn function 1-22
interpolation
higher-dimension 1-22
triangle-based 1-22

Interpreter property 1-42
Interruptible property 1-35
intersect function 1-22
inverf function (obsolete) 2-10
ipermute function 1-6
ipolygon function 1-21
isa function 1-9
iscell function 1-12
isdir function (obsolete) 2-10
isempty function 2-5
isequal function 1-12
isfinite function 1-12
islogical function 1-12
ismember function 1-22
isnumeric function 1-12
isprime function 1-21
isspace function 2-6
isstruct function 1-12

L
Layer property 1-36
layout function (obsolete) 2-10
legend function 1-25
light properties

Color 1-38
Mode 1-38
Position 1-38

line object 2-11
line properties

LineStyle 2-15
Marker 1-39, 2-15
MarkerEdgeColor 1-39
MarkerFaceColor 1-39

Index
line styles 2-12
lines colormap 1-28
LineStyle property 1-39, 2-15
ListboxTop property 1-43
loadhtml function (obsolete) 2-10
logical function 1-12
luinc function 1-16

M
Marker property 1-39, 1-41, 2-15
MarkerEdgeColor property 1-39, 1-41
MarkerFaceColor property 1-39, 1-41
MarkerSize property 1-39, 1-41
masking 2-6
mat2str function 1-9
matGetFull function 2-28
matGetMatrix function 2-28
matGetNextMatrix function 2-28
matPutFull function 2-28
matPutMatrix function 2-28
matq2ws function (obsolete) 2-10
matqdlg function (obsolete) 2-10
matqparse function (obsolete) 2-10
matqueue function (obsolete) 2-10
matrix

empty 1-19
max function 2-6

with empty argument 1-20
menlabel function 2-10
menu editor 1-45
menuedit function 1-45
meshes

and triangulation 1-26
methods, sparse matrices 1-16
mexAtExit function 2-28
mexCallMATLAB function 2-28

mexdebug function (obsolete)
obsolete 2-10

mexErrMsgTxt function 2-28
mexEvalString function 2-28
mexext function 1-14
mexFunction function 2-29
mexGetEps function (obsolete) 2-29
mexGetFull function (obsolete) 2-29
mexGetGlobal function 2-29
mexGetGlobal function (obsolete) 2-29
mexGetInf function (obsolete) 2-29
mexGetMatrix function 2-29
mexGetMatrixPtr function 2-29
mexGetNaN function (obsolete) 2-29
mexIsFinite function(obsolete) 2-29
mexIsInf function (obsolete) 2-29
mexIsNaN function (obsolete) 2-29
mexPrintf function 2-29
mexPutFull function (obsolete) 2-30
mexPutMatrix function (obsolete) 2-30
mexSetTrapFlag function 2-30
M-file

profiling 1-13
programming tools 1-13
pseudocode 1-13
variable number of arguments 1-13
with multiple functions 1-13

mfilename function 1-14
min function 2-6

with empty argument 1-20
mod function 1-15
modal dialog box 1-44, 2-3
Mode property 1-38, 2-15
mouse pointer 1-44
msgbox function 1-44, 2-3
I-7

Index

I-8
multidimensional array 1-5
API support 1-46
empty 1-19

multiple functions within an M-file 1-13
mxCalloc function 2-30
mxCreateFull function 2-30
mxCreateSparse function 2-30
mxCreateString function 2-30
mxFree function 2-30
mxFreeMatrix function (obsolete) 2-30
mxGetIr function 2-30
mxGetJc function 2-30
mxGetM function 2-30
mxGetN function 2-30
mxGetName function 2-31
mxGetNzmax function 2-31
mxGetPi function 2-31
mxGetPr function 2-31
mxGetScalar function 2-31
mxGetString function 2-31
mxIsComplex function 2-31
mxIsDouble function 2-31
mxIsFull function (obsolete) 2-31
mxIsNumeric function 2-31
mxIsSparse function 2-31
mxIsString function (obsolete) 2-31
mxSetIr function 2-31
mxSetJc function 2-31
mxSetM function 2-31
mxSetN function 2-31
mxSetName function 2-31
mxSetNzmax function 2-31
mxSetPi function 2-31
mxSetPr function 2-32
mxSetString function (obsolete) 2-32
N
nargin function 2-6
nargout function 2-6
nchoosek function 1-21
ndgrid function 1-6, 1-22
ndims function 1-6
NextPlot property 1-36, 1-37, 2-15
nonANSI C compilers 1-47
nondouble data

API support 1-47
non-modal dialog box 1-44
NormalMode property 1-40, 1-41
normest function 1-15
nosplash 1-44
now function 1-15
num2cell function 1-7

O
object 1-5

axes 1-27
patch 1-26
text 1-28

object-oriented programming 1-8
objects 1-8
obsolete functions 2-10
ode113 function 1-16
ode15s function 1-16
ode23 function 1-16
ode23 function (obsolete) 2-11
ode23p function (obsolete) 2-11
ode23s function 1-16
ode45 function 1-16
odefile function 1-16
odeget function 1-16
odeset function 1-16
odeset function(obsolete) 2-11

Index
ones 2-7
ones function

with matrix inputs 2-7
otherwise function 1-12
outputs

initializing 2-9
overloading 1-9

P
PaletteMode property 2-15
PaperPositionMode property 1-37
Parent property 1-35
patch object 1-26
patch properties

AmbientStrength 1-39
CData 1-39
CDataScaling 1-39
DiffuseStrength 1-39
FaceLightingAlgorithm 1-39
Faces 1-39
FVCData 1-39
LineStyle 1-39
Marker 1-39
MarkerEdgeColor 1-39
MarkerFaceColor 1-39
MarkerSize 1-39
NormalMode 1-40
SpecularColorReflectance 1-40
SpecularExponent 1-40
SpecularStrength 1-40
VertexNormals 1-40
Vertices 1-40

Path Browser 1-48
pathedit function 1-53
pcg function 1-17
pcode function 1-13, 1-14

perms function 1-21
permute function 1-6
pie function 1-24
pie3 function 1-24
plot function 2-11, 2-12
PlotBoxAspectRatio property 1-36
PlotBoxAspectRatioMode property 1-37
plotting capabilities 1-24
plotyy function 1-24
PointerShapeCData property 1-37
PointerShapeHotSpot property 1-37
polyarea function 1-21
polyline function (obsolete) 2-11
polymark function (obsolete) 2-11
Position property 1-38
primes function 1-21
print function 1-30

changes to 2-7
print options

generating M-file to recreate figure 1-30
PostScript bounding box 1-30
Uicontrol objects 1-30
user-selectable Z-buffer resolution 1-30

printmenu function (obsolete) 2-11
prod function 1-18

with empty argument 1-20
profile function 1-14
profiler 1-13
programming

object-oriented 1-8
programming tools 1-13
ProjectionType property 1-37
propedit function 1-45
property

AspectRatio 2-13
BackgroundColor 2-13
CDataMapping 2-15
I-9

Index

I-10
CurrentMenu 2-14
EraseMode 2-14
ExpFontAngle 2-14
ExpFontName 2-14
ExpFontSize 2-14
ExpFontStrikeThrough 2-14
ExpFontUnderline 2-14
ExpFontUnits 2-14
ExpFontWeight 2-14
FontStrikeThrough 2-14
FontUnderline 2-14
Mode 2-15
NextPlot 2-15
PaletteMode 2-15
RenderLimit 2-15
SelectionType 2-15
Style 1-29
Units 2-16
WindowID 2-16
XLim 2-16
XTick 2-16
XTickLabel 2-16
XTickLabels 2-16
YLim 2-16
YTick 2-16
YTickLabel 2-16
YTickLabels 2-16
ZLim 2-17
ZTick 2-17
ZTickLabel 2-17
ZTickLabels 2-17

property editor 1-45
pseudocode 1-13

Q
qmr function 1-17
quiver3 function 1-25

R
rand function 2-7

with matrix inputs 2-7
random number generation 2-7
rbbox function 1-44
Renderer property 1-37
RendererMode property 1-38
RenderLimit property 2-15
repmat function 1-16
reshape function 1-6
Resize property 1-38
ResizeFcn property 1-38
ribbon function 1-25
rmfield function 1-8
rmpath function 1-14
root properties

CallbackObject 1-40
ErrorMessage 1-40
ErrorType 1-40
ShowHiddenHandles 1-40
TerminalDimensions 1-40
TerminalHideGraphCommand 1-40
TerminalShowGraphCommand 1-41

S
saxis function (obsolete) 2-11
scalar expansion for subarray assignments 1-17
Selected property 1-35
SelectionHighlight property 1-35
SelectionType property 2-15
selectmoveresize function 1-44
set function 2-10
set theoretic functions 1-22

Index
setdiff function 1-22
setfield function 1-8
setxor function 1-22
shiftdim function 1-6
ShowHiddenHandles property 1-40
slice function 1-26, 2-7
SliderStep property 1-43
sortrows function 1-21
sound 2-8
soundsc 2-8
soundsc function 2-11
sparse matrices 1-16
SpecularColorReflectance property 1-40, 1-41
SpecularExponent property 1-41
SpecularExponentproperty 1-40
SpecularStrength property 1-40, 1-42
splash screen

suppressing on UNIX system 1-44
sprand function 1-16
spring colormap 1-28
squeeze function 1-7
startup file 1-29
stem function 1-25
stem3 function 1-25
stereo sound

Windows 1-51
strcat function 1-9
strcmp function

with numeric inputs 2-8
string array 1-9
strmatch function 1-9
strncmp function 1-10

with numeric inputs 2-8
struct function 1-8
struct2cell function 1-8
structs function 1-8

structure 1-5, 1-7
API support 1-46

strvcat function 1-10
Style property 1-29, 1-43
sub2ind function 1-7
subscripting enhancements 1-17
subscripts

must be integers 2-7
sum function

dimension specifier 1-18
with empty argument 1-20

summer colormap 1-28
superiorto function 1-9
surface properties

AmbientStrength 1-41
CData 1-41
CDataScaling 1-41
DiffuseStrength 1-41
FaceLightingAlgorithm 1-41
FontUnits 1-42
Interpreter 1-42
Marker 1-41
MarkerEdgeColor 1-41
MarkerFaceColor 1-41
MarkerSize 1-41
NormalMode 1-41
SpecularColorReflectance 1-41
SpecularExponent 1-41
SpecularStrength 1-42
VertexNormals 1-42
Vertices 1-42

surfaces, triangulation 1-26
svds function 1-17
switch statement 1-11, 1-12
I-11

Index

I-12
T
Tag property 1-35
TerminalDimensions property 1-40
TerminalHideGraphCommand property 1-40
TerminalShowGraphCommand property 1-41
TeX commands 1-28
text 2-12
text object 1-28

TeX commands 1-28
TickDirMode property 1-37
time functions 1-15
triangle-based interpolation 1-22
triangular meshes 1-26
triangular surfaces 1-26
trimesh function 1-26
trisurf function 1-26
truecolor 1-32
tsearch function 1-21

U
Uicontrol

text alignment 2-13
uicontrol function 2-13
uicontrol properties

Enable 1-42
FontAngle 1-42
FontName 1-42
FontSize 1-42
FontUnits 1-42
FontWeight 1-42
ListboxTop 1-43
SliderStep 1-43
Style 1-43

uimenu properties
Enable 1-43

uiresume command 1-45
uiwait command 1-45
union function 1-22, 1-23
unique function 1-22, 1-23
Units property 2-16

V
varargin 1-13, 1-14
varargout 1-13, 1-14
variable number of inputs to M-files 1-13
variable number of outputs for M-files 1-13
variable, global 2-4
variables

initializing 2-9
names 2-3

version
compatibility 2-2
compliance 2-2

VertexNormals property 1-40, 1-42
Vertices property 1-40, 1-42
viewing model 1-26
vis3d option 1-27
visualization, data 1-26
voronoi function 1-21

W
waitfor command 1-45
warning 1-14
wavread 2-8
wavwrite 2-8
web function 1-14
weekday function 1-15
wildcard for utility commands 1-19
WindowID property 2-16
winter colormap 1-28
Workspace Browser 1-49
ws2matq function (obsolete) 2-11

Index
X
XAxisLocation property 1-37
XLim property 2-16
XTick property 2-16
XTickLabel property 2-16
XTickLabels property 2-16

Y
YAxisLocation property 1-37
YLim property 2-16
YTick property 2-16
YTickLabel property 2-16
YTickLabels property 2-16

Z
Z-buffering 1-29

printing Z-buffer images 1-30
zeros function

with matrix inputs 2-7
ZLim property 2-17
ZTick property 2-17
ZTickLabel property 2-17
ZTickLabels property 2-17
I-13

	Introduction
	Who Should Read This Manual?
	Contents

	MATLAB 5.0 Enhancements
	MATLAB 5.0 Enhancements
	Enhanced Programming and Application Development T...
	New Data Types, Structures, and Language Features
	Faster, Better Graphics and Visualization
	More Mathematical and Data Analysis Tools
	Enhancements to Application Toolboxes and to Simul...

	New Data Constructs
	Multidimensional Arrays
	Cell Arrays
	Structures
	MATLAB Objects
	Objects
	Data hiding.
	Function and expression overloading.

	Character Arrays

	Programming Capabilities
	Flow-Control Improvements
	M-File Programming Tools
	Variable Number of Input and Output Arguments
	Multiple Functions Within an M-File
	M-File Profiler
	Pseudocode M-Files

	New and Enhanced Language Functions
	Subscripting and Assignment Enhancements
	Integer Bit Manipulation Functions
	Dimension Specification for Data Analysis Function...
	Wildcards in Utility Commands
	Empty Arrays

	New Data Analysis Features
	Higher-Dimension Interpolation
	griddata Based on Delaunay Triangulation
	Set Theoretic Functions

	New and Enhanced Handle Graphics Features
	Plotting Capabilities
	Filling Areas
	Bar Chart Enhancements
	Labels for Patches and Surfaces
	Marker Style Enhancement
	Stem Plot Enhancements
	Three-Dimensional Plotting Support

	Data Visualization
	New Viewing Model
	New Method for Defining Patches
	Triangular Meshes and Surfaces
	Improved Slicing
	Contouring Enhancements
	New zoom Options

	Graphics Presentation
	Enhancements to Axes Objects
	Color Enhancements
	Text Object Enhancements
	Improved General Graphics Features

	Lighting
	print Command Revisions
	Additional print Device Options

	Image Support
	Truecolor
	Reading and Writing Images
	8-Bit Images
	Indexed Images
	Colormaps
	Truecolor Images

	New and Enhanced Handle Graphics Object Properties...
	Improvements to Graphical User Interfaces (GUIs)
	General GUI Enhancements
	Guide

	Enhanced Application Program Interface (API)
	New Fundamental Data Type
	New Functions
	Support for Structures and Cells
	Support for Multidimensional Arrays
	Support for Nondouble Precision Data

	Enhanced Debugging Support
	Enhanced Compile Mechanism
	MATLAB 4 Feature Unsupported in MATLAB 5.0
	Non-ANSI C Compilers

	New Platform-Specific Features
	Microsoft Windows
	Path Browser
	Workspace Browser
	M-File Editor/Debugger
	Command Window Toolbar
	New Dialog Boxes
	16-bit Stereo Sound

	UNIX Workstations
	Figure Window Toolbar
	Path Editor
	Simplified Installation Procedure

	Upgrading to MATLAB 5.0
	Upgrading from MATLAB 4 to MATLAB 5.0
	Converting M-Files to MATLAB 5.0
	Converting MATLAB 4 External Interface Programs to...
	General Considerations
	Non-ANSI C Compilers
	MATLAB Character Strings
	MEX-File Argument Complexification
	Type Imputation by Process of Elimination
	Version 3.5 MEX-Files
	Simulink
	Fortran MEX-File Considerations
	Rebuilding MEX-Files Loaded in Memory
	Default MEX-File Optimization
	Debugging MEX-Files
	MAT-File External Applications

	Windows Considerations
	UNIX Considerations
	Conversion
	Rebuilding MEX-Files
	Rebuilding Stand-Alone MAT-File and Engine Program...
	MEX-File Conversion Flowcharts

	Recoding C Code for MATLAB 5.0 Compliance

	Index

