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Abstract

The Lower hybrid Simulation Code (LSC) is computational model of lower hybrid
current drive in the presence of an electric field. Details of geometry and the plasma
profiles are treated. Two-dimensional velocity space effects are approximated in a one-
dimensional Fokker-Planck treatment. If LSC is coupled with a model that connects
local toroidal electric field and local current through Faraday’s law, then details of cur-
rent development can be examined. This Fortran 77 code does not call mathematical
subroutines from proprietary libraries, and has been run under several compilers on sev-
eral platforms. Graphical output is available via the public domain Scientific Graphics
library developed at PPPL (sglib) and the gnuplot system, which is also freely available.
LSC is therefore portable. The intent is to operate in double precision so results are
not sensitive to changes between machines with a natural 64 bit word and 32 bit work
stations, but operation in single precision is possible. Operation in double precision
does not depend on compiler switches (for example, -r8) but is set up for the use of
#define REAL real*8 and the standard C-pre-processor.

November 19, 2000
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1 Introduction

Lower hybrid heating has been of interest for some time. Computational analysis perhaps
started with an approach to calculating the spectrum of waves launched from a coupler [1].
The eikonal method [2], or geometrical optics [3], also referred to as ray tracing, was known
to be available to problems in plasma physics, and several workers started investigating the
consequenses of the ray method [4, 5, 6, 7, 8]. Success at driving the toroidal current in
a tokamak [9, 10] following theoretical predictions [11] caused increased interest in theory
[12, 13], modelling [14, 15, 16, 17] and related considerations [18, 19, 20, 21, 22]. A natural
extension was to add to the comprehensive analysis tools such as TRANSP [23, 24] and
TSC [25] the the best models of lower hybrid heating (LHH) and lower hybrid current drive
(LHCD). Such an extension was particularly desirable becasue of a possible investment in
a major new project to operate a tokamak in a steady state mode [26, 27].

A static but magnetically accurate model [28, 29] plus studies of wave chaos and
accessibility [18, 22, 30, 31] revealed many of the important issues.

The Lower hybrid Simulation Code (LSC) is a computational model of lower hybrid
current drive in the presence of an electric field [32] derived from direct forerunners in
references [8] and [15]. Heating of electrons and ions is also computed. Details of geometry
and the plasma profiles are treated, so that the accessibility problems are treated as fully as
possible in the ray model [32, 21]. Two-dimensional velocity space effects are approximated
in a one-dimensional Fokker-Planck treatment [12]. LSC contains a model of an xray camera
to help compare results of the model with the physical camera [33, 34, 35, 36].

Applications include work in references [32], [37] and [38].

The LSC was originally written to be a module for lower hybrid current drive and
heating called by the Tokamak Simulation Code (TSC), which is a numerical model of an
axisymmetric tokamak plasma and the associated control systems [25, 39, 40]. The TSC
simulates the time evolution of a free boundary plasma by solving the MHD equations on
a rectangular computational grid. The MHD equations are coupled to the external circuits
(representing poloidal field coils) through the boundary conditions. The code includes
provisions for modeling the control system, external heating, and fusion heating.

The LSC module can also be called by the TRANSP [23, 24] code. TRANSP rep-
resents the plasma with a axisymmetric, fixed-boundary model and focuses on calculation
of plasma transport to determine transport coefficients from data on power inputs and
parameters reached.

This manual covers the basic material needed to use the LSC. If run in conjunction
with TSC, the “TSC Users Manual” should be consulted [39, 40]. If run in conjunction
with TRANSP, on-line documentation will be helpful.

The few general mathematical subroutines (root finder, matrix invertor, random num-
ber generator) were taken from the the standard “Numerical Recepies” textbook [41]. X
ray cross sections were entered from the literature [42, 43]. Therefore no external libraries
are needed for LSC.

A theoretical background of the governing equations and numerical methods is given
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in section 2. Information on obtaining, compiling and running the code is given in section 3.

This manual can be found at w3.pppl.gov through one or all of ˜ignat, NTCC or
topdac.

At such locations there will be links to the source code.

The manual is available in html written by Ian Hutchinson’s program TtH and in
html written by latex2html. For viewing TtH output with netscape under Unix you will
need to put the following line in either .Xdefaults or .Xresources:

Netscape*documentFonts.charset*adobe-fontspecific: iso-8859-1

Neither html version is meant for printing.

The manual is also available in PostScript as a .ps.gz file and in the Portable Doc-
ument Format pdf with activated internal links as a .pdf file.
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2 Theoretical Background

The following description of the governing equations and numerical methods closely follows
the original paper describing the LSC model [32].

2.1 Geometrical Configuration

A cylindrical coordinate system with R as the radial coordinate, Z as the axial coordinate
and φ as the toroidal symmetry angle is used. In LSC this triple is thought of in as (R,Z, φ),
whereas in TSC this is considered (R, φ, Z). In other words, there can be confusion over
the φ direction.

For LSC and TSC the poloidal flux is minimum in the center of the plasma and
rises toward the plasma boundary. For LSC the BZ at the outer midplane is positive for a
positive current.

2.2 Wave Propagation

2.2.1 Dispersion relation and energy absorption

We assume that the plasma varies sufficiently slowly on a wave period and a wave length
so that the WKB approximation is valid. We therefore assume that the wave electric field
can be decomposed into a set of components indexed by j,

E = ΣjEj(r) exp iΦj , (1)

where the rapid space and time variation occurs through the exponential

Φj ≡
∫

kj(r) · dr − ωt , (2)

which depends on the local wave vector kj and the frequency ω. Additional time behavior
is ignored because the transit time of a wave is short compared to the time scale of plasma
evolution. The mode amplitudes Ej vary much less rapidly. Suppressing the index j, each
mode locally satisfies the matrix equation, [44]

[ kk− Ik2 + κ2
0K(r,k, ω) ] ·E = 0 (3)

where κ0 = ω/c represents the free-space wavenumber, and K is the dielectric tensor, which
has a nontrivial solution for a vanishing determinant

ε(ω,k, r) ≡ |[ kk− Ik2 + κ2
0K(r,k, ω) ]| = 0 . (4)

The dispersion relation (4) connects the vector k and frequency ω at the spatial location
r (explicit time variation of the dielectric properties are assumed negligible from here on).
To proceed it is convenient to choose a local Cartesian coordinate system [44], such that
ẑ×B = 0, and k is contained in the x− z plane:

k = k‖ ẑ + k⊥ x̂ . (5)
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For lower hybrid waves, the ion cyclotron frequency is much less than the wave frequency
which is much less than the electron cyclotron frequency: ωci � ω � ωce, an inequality
assumed throughout. In the Hermitian part of the dielectric tensor we keep only cold plasma
terms, except that the dominant warm-plasma term is carried to guard against singularity
near the lower hybrid resonance.

The anti-Hermitian part of the tensor is retained as a perturbation. For the case at
hand, the principal such term enters as an imaginary correction to Kzz, and describes the
interaction between the component of the wave electric field parallel to B and electrons
whose speed along B matches that of the wave (Landau damping). Thus, the plasma
dielectric behavior is described by the following tensor elements, all other elements being
zero:

Kxx = Kyy = S − αk2
⊥ , (6)

−Kyx = Kxy = iD = i
ω2
pe

ωωce
, (7)

Kzz = P + iKzz,i , (8)

where

S = 1 +
ω2
pe

ω2
ce

−
∑
j

ω2
pi,j

ω2
, (9)

α =
3
4
ω2
pe

ω4
ce

v2
Te + 3

∑
j

ω2
pi,jv

2
Ti,j

ω4
, (10)

P = 1−
ω2
pe

ω2
, (11)

Kzz,i = −π
ω2
pe

ω

∫
dv‖v‖

∂fe
∂v‖

δ(ω − k‖v‖) , (12)

and the new symbols are as follows: ωpe is the electron plasma frequency nee2/(ε0me), ωpi,j
is the ion plasma frequency of the jth species, vTe and vTi,j are electron and ion thermal
velocities (≡ κT/m), and fe(v‖) is a one-dimensional electron velocity distribution function
normalized such that ∫

dv‖fe(v‖) = 1 . (13)

The permittivity of free space is ε0. The thermal term designated by α would be important
near lower hybrid resonance, S = 0. However, in cases treated in this paper S does not
approach zero, and α is not important. This would be true whenever ω2 � ωceωci. The
wave-particle interaction responsible for electron heating and current drive is in Kzz,i. In the
event the lower hybrid resonance should become important, a thermal term representing the
ion wave-particle interaction would have to be added to Kxx and Kyy, but here we assume
such terms vanish.

In the coordinate system of equation (5), we decompose the dispersion relation (4)
into its real and imaginary parts using equations (6) – (12),

ε = εr + iεi = 0 , (14)
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where

εr = −αk6
⊥ + k4

⊥S + k2
⊥ [(P + S)(k2

‖ − κ
2
0S) + κ2

0D
2]

+P [(k2
‖ − κ

2
0S)2 − κ4

0D
2] , (15)

εi =
∂εr
∂P

Kzz,i . (16)

If n ≡ kc/ω � 1 a simplified dispersion relation can be found from the matrix equation
leading up to equation (4) by asymptotically expanding

n̂ ∼ n̂0 +
1
n2

n̂1 +O(
1
n4

) ,

E ∼ E0 +
1
n2

E1 +O(
1
n4

) . (17)

To lowest order, I⊥ · E0 = 0, where I⊥ = I − n̂n̂, so that E0 = n̂0E0. In first order, there
arises the solubility condition

n̂0 ·K · n̂0 = 0 , (18)

which gives the electrostatic limit of the dispersion relation:

εr = −αk4
⊥ + k2

⊥S + k2
‖P . (19)

The consistency condition |E1| = |K ·E0| < n−2|E0| is satisfied for n2
‖ > 1 + (ω2

pe/ω
2
ce).

The extension of the local solutions to a spatially inhomogeneous plasma is accom-
plished by the eikonal method with the useful result that an initial wave field at r with an
initial propagation vector k evolves according to Hamiltonian equations which preserve the
local dispersion relation εr = 0 along the ray trajectories

dr
dt

= −∂εr
∂k

/
∂εr
∂ω

(20)

dk
dt

= +
∂εr
∂r

/
∂εr
∂ω

(21)

As in Hamiltonian mechanics, the spatial coordinates denoted by r are canonically
conjugate to the wave number coordinates denoted by k. For example, in a Cartesian frame
one would have (x, y, z) and (kx, ky, kz) and fields varying as exp i

∫
(kx dx+ ky dy + kz dz);

and in a cylindrical frame one would have (R,Z, φ) and (kR, kZ , l) where R, Z have di-
mensions of length, kR, kZ have dimensions of inverse length (wave number), and l is the
dimensionless toroidal mode number. In the study of the axisymmetric tokamak, it is the
cylindrical coordinate system that is the most natural since the toroidal wave number l is
constant along the ray path ( dl/dt ∝ ∂εr/∂φ = 0).

In formulating εr it is necessary to use the canonical forms by writing k‖ = k ·B/B
and k2

⊥ = k2−k2
‖ where B and B are magnitude and vector quantities of the local magnetic

field.

A spectral component of power W experiences a change in power ∆W over time
interval ∆τ :

∆W = −2 εi/(
∂εr
∂ω

) W∆τ
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= −2
∂εr
∂P

Kzz,i/(
∂εr
∂ω

) W ∆τ

= 2π
ω2
pe

ω

∫
dv‖v‖

∂fe
∂v‖

δ(ω − k‖v‖)
∂εr
∂P

/(
∂εr
∂ω

) W ∆τ . (22)

Note that equations (20), (21), and (22) also carry an index numbering the individual
spectral component, which has been suppressed to improve readability. Given the velocity
distribution and the profiles of macroscopic plasma parameters, the absorption of a lower hy-
brid spectrum can be computed. An actual incident wave spectrum is a continuous function
of the parallel wave number. Computationally, this continuous spectrum is approximated
by assigning the input power to a number of discrete rays as in equation (1), each ray having
a definite initial k‖ and launched power. The number of rays and their distribution over k‖
can be chosen to adequately resolve the spectrum in cases of reasonably strong single-pass
damping. On the other hand, if many passes are required to absorb the power, a very dense
packing of rays into the spectrum might be required to obtain well behaved results.

The plasma is divided up into discrete shells between flux surfaces, typically 20 –
100. For each ray, equations (20) through (22) allow calculation of the needed quantities.
The width of the shells and the detailed trajectory determine ∆τ in equation (22). As a
practical matter, one cannot ensure that the shells are fine enough to keep |∆W | /W < 1,
so this quantity must be monitored and ∆τ adjusted downward the amount necessary to
keep |∆W | < W . The new ∆τ is recorded for use in equation (26) of section 2.3.1.

2.2.2 Changes to k-parallel

In applications of the model to many devices the following features are significant:

1. toroidal effects move the value of k‖ up and down during propagation — a rise helping
absorption, and a fall retarding absorption

2. the rise in k‖ is a stronger effect as density, poloidal field inside the plasma increase,
and as aspect ratio (R/a) decreases

These effects are well established in the literature [14, 18, 19, 20, 21, 32].

An important approximate relationship [18, 19, 21], exact under the electrostatic form
of the cold plasma dispersion relation, between k‖0, the the initial k‖ of a ray when launched,
and k‖max, the maximum possible value at a particular point in the plasma is the following.

k‖max ≤ k‖0 ×
R0/R

1− (Bp/Bφ)(ωpe/ω)S−1/2
. (23)

Here R0 is the initial major radius of the LHCD ray of frequency ω, and R, Bp, Bφ,
ωpe are the major radius, poloidal and toroidal magnetic field, and plasma frequency at
some point of interest. The perpendicular dielectric constant is represented by S, a slowly
varying quantity of order unity. It has been shown, without benefit of approximations [21],
that this maximum tends to be reached in elongated plasmas after many reflections from
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the wall, whereas the maximum may not be reached in similar circular plasmas. It is worth
noting that Kupfer, Moreau, and Litaudon [22] have used physics closely related to the
basis of Eq. (23) to formulate a statistical theory of current drive with lower hybrid waves
under conditions of multi-pass absorption.

2.3 Fokker-Planck Equation

2.3.1 Quasilinear Diffusion Coefficient

An incremental contribution to the quasilinear diffusion coefficient Dql at velocity v‖ from
a wave field of wave number k‖ is given by

Dql(v‖) =
π

2

(
e

me

)2

E2
‖ δ(ω − k‖v‖), (24)

where E‖ represents the amplitude of the wave field parallel to the local static magnetic
field, and the electron charge and mass are e and me [44]. One instructive way to find the
relationship between field E‖ and wave power W is to equate Pql, the energy per unit time
per unit volume going into electrons and out of the wave from the quasilinear point of view,

Pql = −neme

∫
dv‖v‖Dql(v‖)

∂fe
∂v‖

(25)

with the similar quantity from the ray point of view as assembled from equations (12), (16),
(22) to obtain

Dql(v‖) = 2
(
π

ε0

)(
e

me

)2

W
∂εr/∂P

ω∂εr/∂ω

(
∆τ
∆V

)
δ(ω − k‖v‖) (26)

for the incremental Dql from a wave of power W traversing a flux shell of volume ∆V in
time ∆τ .

2.3.2 Kinetic Equation

An electron kinetic equation can be written

∂fe
∂t

=
(
∂fe
∂t

)
c

+
(
∂fe
∂t

)
w

(27)

Here the ()c term is the Coulomb collision operator, and the ()w term is the wave diffusion
(quasilinear) operator. There is no term involving a steady electric field. The wave diffusion
operator is the one-dimensional divergence of the rf-induced flux:(

∂fe
∂t

)
w

=
∂

∂v‖
Dql(v‖)

∂fe
∂v‖

, (28)

where now the term Dql signifies a sum over all waves in existence on a flux surface, with
the appropriate powers and velocities. Note that the use of a simple sum means that we
assume there are no interference effects.
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We employ a one-dimensional collision operator of the form,(
∂fe
∂t

)
c

=
∂

∂v‖

[(
Dc(v‖)

∂

∂v‖
+ νc(v‖)v‖

)
fe(v‖)

]
. (29)

The collisional diffusion and drag coefficients are given by

Dc(v‖) = βZ Γ/vTe [1 + (v‖/vTe)
2]
−3/2

, (30)

νc(v‖) = βZ Γ/v3
Te [1 + (v‖/vTe)

2]
−3/2

, (31)

where Γ = ln Λ nee
4/(4πε20m

2
e) and the normalization coefficient βZ is chosen to yield the

correct value for the electrical conductivity in the absence of rf. Approximately, βZ =
(1 + Z)/5, with Z the effective ion charge. The collision operator has several correct
properties, such as conservation of particles, producing a Maxwellian (with thermal velocity
vTe) in the absence of wave power, and correct asymptotic velocity dependence of the
coefficients for high speeds v � vTe.

In solving for fe we set ∂/∂t = 0 because the time for equilibration between rf power
and the electron distribution is short compared to the time for plasma to evolve. Then the
solution for fe is an integral in velocity space.

fe(v‖) =
1√

2πv2
Te

exp

(
−
∫ v‖

0

νc(v′) v′ dv′

Dc(v′) +Dql(v′)

)
(32)

2.3.3 Some Numerical Details

Our calculation requires a discrete grid in v‖ indexed by iv and many discrete rays indexed
by ir which at each flux shell crossing indexed by iz have a definite ω/k‖ and a power W
at a definite location in the plasma indexed by ip. The delta function δ(ω− k‖v‖) connects
the discrete velocity quantity with the discrete wave number quantity and therefore must
be interpreted to have a width that causes smooth variations in velocity while the spectrum
of waves, represented by a limited number of rays, is not smooth. The width of the delta
function in velocity should be such that for two nearby rays separated by ∆k‖ the range
in velocity ∆v‖ is approximately the relative separation of two nearby rays ∆k‖/k‖ times
the phase velocity ω/k‖. However, some judgment should enter the actual selection of the
width of the smoothing function because k‖ and therefore ∆k‖ can evolve considerably. If
the smoothing range is too narrow in velocity, then non-physical “holes” can appear in the
Dql with a resulting ragged behavior of fe. On the other hand, if the smoothing range
is too great, then a wave of phase speed ω/k‖ interacts with electrons of much different
parallel velocity v‖, especially much lower parallel speed, since there are many more low
speed electrons than high speed electrons. This can lead to spurious power absorption.

The rays do not move monotonically in “radius” (which in our calculation is measured
by poloidal flux ψ ) and in fact typically make many in-out changes of direction. To compute
needed quantities at each flux surface, the motion of ray number ir must be recorded by a
zone number iz, which is sequential with the intersection of that ray with any flux surface.
For each zone index, the index ip of the ψ surface intersected is kept, where ip is 1 at the
center of the plasma, increasing toward the edge. For each trajectory the iz starts at 1
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and increases to a maximum value; but ip starts near its maximum, decreases initially, and
exhibits individual behavior thereafter.

Changes in direction can be of several types. An inward-going ray can change to an
outward-going ray, or vice-versa, because:

1. the roots of the dispersion relation converge (mode conversion);

2. speaking by analogy to a mechanical Hamiltonian system, the radial penetration limit
is reached owing to the inpenetrability of a centrifugal barrier;

3. the root of the dispersion relation approaches zero (cutoff);

4. the ray is captured and specularly reflected near the plasma edge. This is accomplished
by logic in the calculation which senses that a cutoff is approaching.

The quantities Dql;iv ,ip fe;iv ,ip , Wiz ,ir are all made consistent by iteration, beginning
with very small Wiz=1,ir and ramping up toward the full power launched. We use an under-
relaxation algorithm in the iteration of fe, in that the past fe is averaged with the newly
computed fe to get the new function propagated to the next cycle.

2.4 RF-Driven Current

We calculate the current driven on each flux surface according to our equation (33) which
follows the prescription given in equation (21b) of reference (12), except that we drop the
term arising from a non-zero runaway probability, obtaining

Jrf =
−ene
νr

∫
dv‖Dql(v‖)

∂fe(v‖)
∂v‖

· ∂Ws(u)
∂u

. (33)

In the above, νr = Γ/ |vr|3, u = v‖/vr, and vr = −sign(eEdc)
√
meΓ/ |eEdc|, as explained in

the reference [12]. These definitions give as Jrf the current density of stopped electrons, and
use the functionWs(u)/u which is given as a tabulation of coefficients fitting simple algebraic
terms to solution of the complete Fokker-Planck equation in two velocity dimensions (v⊥
and v‖).

The key quantity is Ws(u), the energy (normalized to mev
2
r/2) imparted to the electric

field Edc by an electron as it slows down. The local electric field Edc is either prescribed
for a static simulation (usually set to zero) or supplied by TSC as part of an iteration to
be described.

For very small electric field, Ws(u) can be represented in a power series. From the
first two terms, one finds

Jrf =
−ene

Γ

∫
dv‖Dql(v‖)

∂fe(v‖)
∂v‖

v3
‖ 4

5 + Z

[
µ− 1 + Z/2 + 3µ2/2

3 + Z

v2
‖
v2
r

]
, (34)

where µ = −1 for cooperative current drive, and µ = +1 for current drive into an opposing
field.
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The function Ws(u) behaves in such a way that for u approaching −1, corresponding
to rf current drive cooperating with the ohmic current driven by the ambient electric field
Edc at a velocity near the runaway velocity, the calculated current grows extremely large.
Because of the runaway condition, this is to be expected. Whenever u ≈ −1, the rf-driven
current is not properly calculable from our approach.

It is often necessary to iterate between TSC and LSC for the field and current at the
exact time that LSC is called for power and current information, as follows. Suppose at
time (n−1) the local total current density is J (n−1), the rf-driven current density is J (n−1)

rf ,

and the local electric field is E(n−1)
dc . We want to advance quantities to the new time, (n),

and be consistent with Ohm’s Law: J = σEdc + Jrf , where σ is the parallel neoclassical
conductivity. An initial guess at what the new electric field E

(n−)
dc must be is formed from

the new total current, as advanced by TSC, and the old rf-driven current and old electric
field.

J (n) = σE
(n−)
dc + J

(n−1)
rf (E(n−1)

dc ) , (35)

From the E
(n−)
dc obtained from equation (35) one can find the estimated new rf current

density J
(n−)
rf from equation (33). Its derivative with respect to Edc, (∂Jrf/∂Edc)

(n−), is
formed by numerical differentiation. Algebra yields estimates for the new electric field and
for the new rf-driven current density,

E
(n)
dc = E

(n−)
dc +

J
(n−1)
rf − J (n−)

rf

σ + (∂Jrf/∂Edc)
(n−)

, (36)

J
(n)
rf = J

(n−)
rf +

(∂Jrf/∂Edc)
(n−)

(
J

(n−1)
rf − J (n−)

rf

)
σ + (∂Jrf/∂Edc)

(n−)
. (37)

The new values E(n)
dc and J

(n)
rf may not be consistent. This is checked by assigning

them to the previous step labeled (n−1) and repeating the process until the result is stable
to a chosen accuracy. At that point, it is desired that the electric field is small enough that
the runaway situation does not exist for electrons interacting with the waves. An inequality
expressing this condition, as suggested by equation (20) of reference 12, is

τr−lossṅer
ne

= τr−lossDql(vr)

∣∣∣∣∣∂fe(vr)∂v‖

∣∣∣∣∣ � 1 (38)

where τr−loss is a loss time for electrons pushed by rf waves into a runaway region and
ṅer is rate of increase of the density of runaway electrons owing to the rf diffusion from a
lower velocity. A simple estimate for τr−loss would be the confinement time (∼ 10 msec). If
equation (38) is not satisfied, then the calculation is inappropriate.

Iteration is not necessary if when the ambient electric field is low and the density is
high, such that ω �

∣∣∣vrk‖∣∣∣. In that case the evolution of the electric field and the current
is handled without special attention as the transport calculation evolves.
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2.5 Broadening of rf-Driven Current

The rf-driven current is subject to diffusion across the confining magnetic field. Magnetic
turbulence is often proposed as the dominant mechanism.

Diffusing a velocity distribution is beyond the scope of the LSC, but we have intro-
duced a heuristic approach similar to that used by V. Fuchs and others [17].

The idea is that the actual, diffused, RF-driven current Jd is modified from the
computed RF-driven current Jrf by slowing-down, characterized by an inverse-time νslow,
and a cross-field diffusion, characterized by DJrf .

Assuming for the moment slab geometry with x the spatial variable the diffusion-like
equation we use is:

∂Jd/∂t = νslow (Jrf − Jd) + ∂/∂x (DJrf ∂Jd/∂x) (39)

This can be transformed to a normalized flux coordinate x̂ ≡ (ψ − ψmin)/(ψmax −
ψmin) with standard transformations for curvilinear coordinates. Under the reasonably
good assumption that ψ ∼ r2 the result is:

∂Jd/∂t = νslow (Jrf − Jd) + (4/a2) ∂/∂x̂ (x̂ DJrf ∂Jd/∂x̂) , (40)

where a represents the nominal minor radius of the plasma.

Equation 40 clearly has desirable properties: if DJrf is small then the Jd moves to
Jrf on the νslow time scale; and if DJrf is large then Jd and Jrf can be quite different, in
particular Jd will be smooth compared to Jrf over a length of order

√
DJrf / νslow.

In LSC DJrf on input is one number, constant across the plasma, in units of meter2

per second. Internally, DJrf is an array, so generalization would be simple. The νslow are
found from equation 31 for a particular phase speed, corresponding to n‖ = 2, also constant
across the plasma. The diffusion process is imagined to be complete at each call to LSC,
so that the time derivative is set to zero. Under that condition, the solution for Jd comes
from one inversion of a tridiagonal matrix.

The boundary condition on Jd at the outer boundary is a zero value. At the inner
boundary, the center, the condition of zero flux (zero derivative with respect to radius)
translates to the derivative with respect to x̂ being better behaved than 1/

√
x̂, which cannot

be expressed in a manner practical for the finite difference equations. Instead, we force
dJd/dx̂ to be constant over the first two grid spacings. This is equivalent to specifying a
zero value for a certain linear combination of Jd and dJd/dx̂ at the first interior grid point.

The rf-driven current found Jrf leads directly to the smoothed (diffused) Jd after the
inversion of a tri-diagonal matrix [41].

Note that the integral of Jd over the plasma cross section, or total diffused rf-driven
current, is not constrained to have any particular relationship with the same integral over
Jrf , the total undiffused current. In fact, it seems reasonable that diffusion can in some
circumstances increase current by moving fast electrons to regions of lower collision rate.
However, it appears that the diffused current is less than the undiffused current for many
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actual situations, typically having deposition at mid-radius and mildly peaked density pro-
file.

The heuristic smoothing method of V. Fuchs [17] is similar to the method described
here, but apparently treats DJrf and νslow as constants, sets the change in total current
from an estimate incorporating the formula for νslow, and finds the value needed for DJrf as
an eigenvalue.

Our model is not a simulation of energetic electron diffusion in that it does not
transport fast particles or change the rf wave damping because of their motion.

2.6 Heuristic Power Diffusion Estimate

The undiffused current Jrf was computed from the ray tracing, quasi-linear development of
an electron distribution function in the parallel velocity giving the local power deposition
per unit volume P0, and finally the Karney-Fisch [12] electric field adjustment to current
density.

As explained in the previous section, the diffused current density Jd can be quite
different from Jrf , and therefore quite different in radial distribution from the P0 found from
ray tracing. This situation is contrasts with the intuition that power density is proportional
to current density times background number density. Therefore, we added an option to
spread the deposited rf power according to

P (x̂) = αs
|Jd(x̂)| ne(x̂)∫

|Jd(x̂)| ne(x̂) dV (x̂)

∫
P0dV + (1− αs)P0(x̂) , (41)

where P is the diffused power, P0 is the power deposited from the ray tracing and quasilinear
calculation, αs ranges from 0 (no spreading of P0) to 1 (full spreading), dV is a volume
element.

2.7 X-ray Camera Image

The PBX–M experiment to which we have applied our calculation the most has a 2-
dimensional x-ray camera with an axis roughly tangent to a mid-plane circle just inside
the major radius of the the plasma. The images found by this camera reveal clues to the
behavior of the fast electrons in the plasma. At the same time, such images can be computed
from the electron velocity distribution we establish in our model.

Taking account of obstructions, the actual location of pinhole, focal plane, etc., we
evaluate the 2-d image with the following formula.

Ix−p =
1
dAp

∫
dl dA(l) dΩp(l) ni(ψ(l)) ne(ψ(l))×∫

dv‖v‖fe(v‖, ψ(l))×∫ E(v‖)

0
dE′E′

∂2σei
∂E′∂Ω

[E(v‖), E
′, n̂ · b̂] T (E′) (42)
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In the above, Ix−p is the x-ray intensity on pixel p of area dAp at the camera focal
plane, dl is an element of path length in the plasma on a line passing through the pinhole
and the pixel, dA is an area element for emission into the pixel p, dΩp is the solid angle
subtended by the pinhole as seen from the emitting volume element, ni(e) is the ion (electron)
density at the emitting location, E′ denotes photon energy emitted by an electron of energy
E, ∂2σei/∂E

′∂Ω is the cross section for electron-ion bremsstrahlung differential in energy
and solid angle, n̂ is a unit vector connecting the emitting volume with the camera element,
and b̂ is a unit vector along the magnetic field, and T (E′) is the transmission factor through
vessel windows and other absorbers. The differential cross section used in our calculation is
that given by formula 2BN of Koch and Motz [42]. The significance of “2” is the differential
in energy and angle; “B” is Born approximation; “N” is no screening of the ions. Note
that the distribution function fe is that computed from the one-dimensional Fokker-Planck
model, and is itself not influenced by the electric field Edc. The absorption from vessel and
windows is computed from fits to experimental absorption data [43].
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3 LSC Usage

The LSC code is written in standard Fortran and has run on all Unix/Linux machines
available at PPPL, including the Cray machines at NERSC, and VAXes. There are no
mathematical library calls; interpolators, integrators, root solvers, look-up searchers, and
Bessel function approximations are part of the source code. Routines are taken directly
from Numerical Recipes [41] are: LAGUERnr, ZROOTSnr, RAN3nr, HUNTnr, PIKSRTnr,
and PIKSR2nr, and TRIDAInr. The trailing “nr” denotes the source, where as the
preceding characters are the same as in the book [41].

There are graphics calls embedded in the code for PPPL’s “Scientific Graphics,” or
SGlib, or just SG, and for “gnuplot.”

Information and source for SGlib is at:
w3.pppl.gov/rib/repositories/NTCC/catalog/Asset/sglib.html.

Information and source for gnuplot is at:
www.cs.dartmouth.edu/gnuplot_info.html.

The combination LSC/gnuplot should work on any Unix, VMS, MS-DOS, or Windows
system with a Fortran 77 compiler. Gnuplot for he Macintosh has been reported, but not
found on the Internet in September 2000.

The combination LSC/sglib should work on any Unix or VMS system with a Fortran
90 compiler and a C compiler.

The source for LSC is constructed with calls for both sglib and gnuplot imbedded,
but there are exceptions, as follows. Contour plots and the 3-D-like isometric sketch of
ray paths in the toroid require sglib to be loaded; and, none of the graphs used by the
X ray camera have been converted to gnuplot. Converting contour plots to gnuplot does
not appear to be possible in a satisfactory way with a modest amount of work, and will
probably never be done. Fortunately, these plots never seemed to be particularly useful.
Converting the 2-D plots of the X ray camera to gnuplot is probably easy enough, and can
be done if there is a demand for these graphs under gnuplot.

By default all calls to sglib are compiled into the executable code as no-operations
with the cpp command #ifndef USE_SGLIB. In a similar way the X ray camera is not
compied via the cpp command #ifndef USE_X_RAY_CAMERA.

As mentioned in the introduction, this manual and links to the source code can be
found at w3.pppl.gov, through one of ˜ignat, NTCC or topdac. The source code should
be accompanied by at least one “Makefile” which works in the development environment,
Linux Fujitsu Fortran, for the stand-alone code. Linux GNU Fortran 77 (g77) was also used
in the development, however, the g77 executable is somewhat slower.

LSC is constructed as a subroutine to be called as a module of a transport code
such as TSC or TRANSP, but stand-alone use with a simple driver program is easily done.
The distribution provides a driver, lscdrive.F, and a simplifed mock-equilibrium writer, Wr-
CircEq.F. Stand-alone runs can be extremely useful in studying the behavior and assuring
reasonable convergence with the parameters chosen.
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Naturally, stand-alone computations cannot show the interaction of the current driven
with the electric field generated, reacting to the current, in a complete calculation.

3.1 Input Files

Call to LSC, whether from a transport code or a stand-alone driver, needs to specify

1. The plasma (geometry, fields, density, temperature); This specification is done through
a large, strictly formatted, equilibrium file. The name given this file is arbitrary, but
stand-alone runs have commonly used jardin.d and TSC runs have commonly used
lhcdoua. For TRANSP the “file” is in memory; in other words there are no disk
read/writes for the equilibrium. (Im vague on this; needs checking.)

2. LH parameters such as the frequency, the spectrum, and current/power diffusion. This
specification is done through short NAMELIST (list-directed) file input.lhh under the
namelist name inpvalue

3. Computational paramers such as the step size and the number of steps for each ray,
strategy for smoothing in velocity space , number of iterations in constructing the
distribution function. This specification is done through the same short NAMELIST file
input.lhh under the namelist name inpexprt. (Putting the two namelists in different
files might be a good idea in some cases, and doing so would be simple enough.)

4. Flags to specify graphs and printouts. This specification is also under the namelist
name inpexprt.

5. LHCD power, i/o unit numbers, a flag on the strategy for re-tracing rays, and a flag
which can turn off all plots. This specification comes in the argument list in the
statement calling LSC.

Details follow in the following sub-sections.

3.1.1 Plasma

The data on the plasma (geometry, fields, density, temperature) is read by a subroutine
rdTSC in the source file grapgrd.F.

A header line (informational comments) equhd is read first followed by integers
npsitm, nspc, kcycle, a plasma-time in the calling program, times (which is ignored by
LSC) plasma parameters anecc, tekev, anicc, tikev, amass, achrg, the electric field
(loop voltage) voltlp, and specifications of the equilibrium, rho, vptemp, xsv, pary,
ppary, gary, gpary, nx, nz, isym, iplim, psimin, psilim, xmag, zmag, rgzero,
bgzero, apl.

The meaning of the variables, and units used, are documented in the source.
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3.1.2 LH parameters

The specification is done through the NAMELIST (list-directed) file input.lhh under the
namelist name inpvalue

The namelist variables are documented in source file Inpval.inc.

The number of rays to be launched is nrays, which decomposed into the product
of ntors and npols, so each toroidal spectral component can have a number of poloidal
components, each of which behave somewhat differntly. Defaults are in params.inc.

There are two methods of representing the spectrum, a simple model of Gaussian
shapes, and a calculation stemming from Brambilla paper [1].

Three tables list the LH parameters according to the following plan.

Table 1 lists the most important input paramters, and also the ones needed to specify
a Gaussian spectrum.

Table 2 lists the input parameters to choose a Brambilla calculation of the waveguide
spectrum. Note that some of the parameters of Table 1 are “recycled” for the Brambilla
case, and therefore have a somewhat different meaning: nGrps, powers.

Table 3 lists the input parameters for the heuristic model of current and power diffu-
sion.

Regarding Table 2, the ‘USRSPECn’ waveguides are set equal to TFTRLHCD in the code
as distributed. The intent is for the data statements to be replaced as needed. The format
of the specification of the waveguide coupler is the following: az(i) is the toroidal distance
to the near edge of ith guide in cm; bz(i) is the toroidal distance to the far edge of ith guide
in cm; so that az(2)-bz(1) is the the width of the septum between the first two guides.

3.1.3 Computational parameters

Computational paramers such as the step size and the number of steps for each ray, strat-
egy for smoothing in velocity space , number of iterations in constructing the distribution
function. This specification is done through the same short NAMELIST file input.lhh under
the namelist name inpexprt. (Putting the two namelists in different files might be a good
idea in some cases, and doing so would be simple enough.)

Table 4 gives the computational parameters, and lists the defaults for each one.

3.1.4 Flags for graphs and print files

Typical input namelists, to be found in input.lhh, are found in Table 7.
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Table 1: LSC input parameters related to the launched lower hybrid rays

fghz The launched LH wave frequency (in GHz), typically 2.45 or 4.6 (GHz).

nGrps The number of groups (or couplers, which see) used in calculating the
launch spectrum; the default is NGRPDIM (3).

centers() The location of the peaks in the Gaussian-model spectrum, in n‖; the
three defaults are all 4.0 .

widths() The widths of the model spectrum peaks, as ∆n‖; the three defaults are
all 1.0 .

powers() The relative powers in either the Gaussian-model spectrum components
(if DoBram is zero) or in the couplers (if DoBram is equal to unity); as an
example, if powers(1) and powers(2) are both 1.0, LSC will assign equal
powers to the first two components/couplers, whereas if powers(1) = 1.0
and powers(2) = 0.5, LSC would assign twice as much total power to the
first component/coupler as the second. The default values are 1.0, 0.1 and
0.1 for elements 1, 2 and 3, respectively.

nrays The number of rays LSC will trace; its most natural value (also the default)
is the product of ntors with npols, but if nrays is given as something
different, then a sensible action is taken.

ntors The number of distinct toroidal components in the number of rays (nrays);
the default setting for ntors is NTORDIM (30).

npols The number of poloidal variations to each toroidal variation; in part, this
is a way to increase the number of rays launched from the same Bramilla
spectrum, but also effective for the model spectrum. The default 1.

nparmax,
nparmin

The floating point numbers giving the maximum and minimum values
of n‖ over which to distribute the ntors number of toroidal values when
using the Maxwellian-model spectrum (hence, these inputs are ignored
when DoBram is set to 1). The defaults are 5.5 for nparmax and 2.5 for
nparmin.

npolmax,
npolmin

The floating point numbers giving the maximum and minimum values of
nθ over which to distribute the npols number of poloidal values when using
either the Brambilla or Gaussian spectrum; their default values are 1.0 for
npolmax and -1.0 for npolmin.
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Table 2: LSC input parameters related to lower hybrid rays computed via the Brambilla
method

DoBram INTEGER: If DoBram is equal to 1 (the default), then LSC will perform
the Brambilla calculation, using nGrps as the number of couplers, and the
array powers() as the relative distribution of power between the couplers.
If DoBram is 0, LSC uses Gaussian models for the launched spectrum.

couplers() The dimensions of certain couplers are built into LSC in DATA statements;
hence, all the user must specify is the eight-character name(s). Presently,
LSC will recognize PBXMFAST, PBXMSLOW, TOKDEVAR, SLOWSLOW,
TORSUPRA, TFTRLHCD, JET LHCD, USRSPEC1, USRSPEC2, USRSPEC3 .

phaseDeg() The relative phases (in degrees) applied to the couplers; used in computing
the Brambilla spectrum; the default values are 90.0, 180.0 and 135.0,
respectively.

nslices The number of slices on the Brambrilla spectrum. The default is 301.

Table 3: LSC input parameters related diffusing the deposited power and current

DiffuJrf The heuristic diffusivity for rf-driven current in meter squared per second.
It balances a collision rate, as shown in equation 40. The default is 0.

PrfSpred This governs the heuristic spreading of rf power as given by α in equa-
tion 41. Dimensionless, between 0.0 and 1.0. The default is 0.
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Table 4: LSC computational input parameters

HstpLH The length of the ray integration step in meters. The default is 0.005
(meters).

nstep The maximum number of integration steps (each having length HstpLH)
through which LSC will track a ray; the default is 20,000 steps.

npsi The number of ψ bins used in LSC (during the Dql calculation); npsi can
be either more or less than the npsii from the TSC grid. The default is
NPSIDIM (100).

nzones The number of zone (psi surface) crossings through which LSC will trace
a ray. The default is NZONDIM (2000).

nv The number of parallel velocity bins; the default is NVELDIM (401).

nsmoo The number of velocity bins over which smoothing is to be done. The
default is NSMODEF (9).

nsmw The characteristic width (in number of velocity bins) of the smoothing.
The default is NSMWDEF (3).

nRampUp The number of steps taken in ramping up the power for the iteration of fe,
Dql and Prf ; some of these steps may be with a constant power (controlled
by nFlat, above). The default is NRAMPDIM (200).

nFlat The number of ramp-up iterations with a flat (constant) power. The
default is NFLATDEF (10).

WeghtItr The proportionality of the weighting of the old and new electron distri-
bution functions during each ramp-up iteration. The default is 0.20 — 20
percent new fe and 80 percent old fe.

Do1Rpr This INTEGER flag modifies the way LSC recalculates rays when it is
being called from TSC or TRANSP. If Do1Rpr is equal to 1, then LSC
recomputes only 1 ray per call from TSC/TRANSP after the initial com-
putation of all rays; this smooths the dynamic behavior. If equal to 0,
then LSC recomputes all rays when called by the driving program.

ScatKdeg The angle in degrees by which the perpendicular component of the wave
vector, k⊥, may be rotated on rms average when the ray “bounces” (i.e.
as in off of the wall). If ScatKdeg is 0.00 (the default), then there is no
scattering – the ray is simply reflected specularly.

TurnNegs If this INTEGER flag is set to one, then any “negatively-directed” Bram-
brilla spectrum elements will be turned around; literally, the corresponding
n‖ components will be multiplied by a negative one, which will reverse the
direction of the spectrum element. The default is zero.
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Table 5: LSC flags for plotting and printing: flag number and internal name

Plot Flag PlFlg(number): Descripton

RAYPL 1: Ray position in r, z, φ and in k⊥, k‖; enhancement

SPECPL 2: Launched ray power spectrum vs n‖ and v

RFDPL 3: Pray, Jray at 12 ψ, 6 per page; total Pray Jray vs n‖ and v‖

RFDPSPL 4: Pray Pql Jrf and integrals vs root ψ

DAMPL 5: quasi-linear absorption vs root ψ, 6 rays per page

JRFPL 6: ne Te Edc Itsc dJ/dE(E/J)

PITPRFPL 7: Bz/Bφ, pitch, n‖ enhance, ne Prf vs Rmajor

DQLFEPL 8: Dql fe vs v‖ at several ψ

Write Flag PrFlg(number): Description

RAYWR 1: much ray information in labeled columns

FSTFRCWR 2: fractions of fast particles

NPAPWRWR 3: n‖’s and powers in rays vs index

22



Table 6: LSC input parameters controling output

nfreq After each ray has been traced for an nfreq number of steps, LSC takes
stock of what has occurred. This INTEGER has a default value of 100
(steps).

PlFlg() This INTEGER array is made up of the flags that inform LSC as to which
(if any) of the possible plots should be produced as output; if a particular
plot is desired, then the corresponding PlFlg element should be set to one
(1). The default settings are all zeroes (no plots). For a full description
of the possible output plots, see the section below on LSC Outputs.

PrFlg() This INTEGER array is similar to PlFlg, above, but holds the flags govern-
ing LSC “screen” output. LSC has three output channels which have their
destinations by the driving program, and conceivably any or all of these
channels could be linked with the screen. Alternatively, these channels
could be linked to additional output files. For a more complete descrip-
tion of the channels and the possible outputs, see the section below on
LSC Outputs. The default setting of this array is all zeroes.

idiag() This INTEGER array specifies at which ramp-up iterations the results of
fe and Dql calculations will be ouputted; that is, the first element of idiag
tells LSC at which iteration to produce the first set of plots, the second
element tells at which iteration to produce the second set, etc. idiag starts
out with all IDIAGDIM elements set to zero; the user should (at the very
least) set the first element of idiag to nRampUp – otherwise, LSC does
not know “when” to produce certain outputs, and will not (regardless of
the values set in PlFlg).
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Table 7: Typical LSC namelist inputs

&inpvalue
fghz = 4.6,
nGrps = 1,
powers(1) = 1.00, powers(2) = 1.00,
phaseDeg(1) = 130., phaseDeg(2) = 130., nslices=301,
ntors=15, npols=1,
DoBram = 1,
couplers(1)=’TFTRLHCD’,
couplers(2)=’TFTRLHCD’,
DiffuJrf = 0.00,
/
&inpexprt
HstpLH = .01, nstep = 20000, nfreq = 50, npsi = 100,
nzones = 2000,
nv = 401, nsmoo = 9, nsmw = 3, weghtitr = .2,
plflg( 1) = 0, 1, 0,
plflg( 4) = 1, 0, 0, 0,
prflg( 1) = 0, 0, 0,
incLabls = 1,
/
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Table 8: LSC subroutine arguments, to be supplied by calling program

LhPwrMW Lower Hybrid power in MW passed from calling program,
TSC/TRANSP/etc

nTSCwrit Unit number to which caller writes equilibrium data

nTSCread Unit number from which caller reads Prf , Jrf , etc

nTSCscrn Unit number caller uses for writing to the screen

nTSCgraf Unit number to which LSC commands and data for gnuplot; the name
used is date-time.gnp

nLSCcomm Unit number to which LSC sends screen output

nTSCunus Unit number not used by caller; used internally by LSC

iRayTrsi 0 = use old ray data, old fe(v), and use new Edc for the current; 1 =
calculate new rays and fe(v) from new equilibrium; 2 = use old ray data,
but calculate new fe(v) taking account of new ne and Te and use new Edc
for the current

iPlotsig 0 = do not make plots; 1 = make plot files asked in input.lhh

iError 0 = LSC finishes without errors; 1 = one or more error(s) found; -1 =
LSC found an error; calling program can keep going

3.1.5 Calling arguments

Table 8 lists the arguments that must be supplied by the calling program, and is largely self-
explanatory. The power is the most significant parameter. For use of LSC with a transport
code and determination of both current and electric field in a self-consistent way iRayTrsi
is crucial, and almost always equal to 0 because of the number of iterations needed.
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3.2 Output files

Table 9: LSC output files

Wr2TSC.out Electron power, electron current, E/J dJ/dE, ion power

LSCcomm.out

LSCcom2.out

ray.dat
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3.3 Output graphs

Figure 1: “Graphed” input parameters to LSC for keeping track of the nature of the calcu-
lation by putting important information in the graphics output file.
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Figure 2: A launched spectrum from a Brambilla calculation, including the negative-going
minor components. Upper-right: Bar graph showing relative powers versus v/c . Lower-left:
Same, but represented versus n-parallel. Lower-right: The launched spectrum as smoothed
in velocity by the same smoothing function used in constructing the quasi-linear distribution
function.
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Figure 3: A typical result of the calculation for one ray. Left side: Evolution of n-parallel
(top) and n-perpendicular (bottom) versus square root of normalized poloidal flux. The
dotted line on the top frame indicates the region of strong damping, ie, if the magnitude
of n-parallel is larger than the magnitude shown dotted, then the linear damping is strong.
Quasi-linear damping may not be strong, owing to quasi-linear burn-through. Right side:
Ray trajectory projected onto a poloidal cross section of the plasma. The “roundness”
comes from an idealized test case; in general the cross section is elongated with the correct
Shafranov shift of flux surfaces.
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Figure 4: Power and current deposited without diffusing the current or the power. More
rays would produce a smoother result. Horizontal axis is the square root of normalized
poloidal flux. Left two: Volumetric and integrated power from the ray point of view for 1
MW launched power. Center two: As on left, but from the quasi-linear power deposition
point of view. Right two: Volumetric and integrated current. The negative current stems
from negative-going components of a realistic launched spectrum. The power and current
found represented volumetrically and integrated from the center outwards.
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Figure 5: Power and current deposited with diffusing the current and then the power. The
current diffusion coefficient was set to 0.05 meter-squared per second, and the weighting
of the diffusion effect on the power was 90 percent. Note that the center frames show
un-diffused power.
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Figure 6: A typical electron distribution and quasilinear diffusion coefficient
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4 Appendix: Brief Description of Source Files

The following is a list of the FORTRAN source files for LSC:

Table 10: Names and functions of fortran files for LSC

Name of Module Brief Description of Role in the Computation

AcDc.F Main; changelog; block data; some i/o
Rayini.F Ray initialization
Rayio.F Ray i/o
Raystore.F Ray information stored
Raytrace.F Ray tracing
Wr2TSC.F Write power and current for calling program; other output
WrCircEq.F Write out a ‘practice’ circular equilibrium
XrayCam2.F Predict results for an X ray camera
brambJES.F Compute a launced spectrum from the Brambilla approach
cycle.F Ramp up power to get electron distribution
ezsg.F Scientific Graphics (SG) shell subroutines
fe.F Initialize fe; do smoothing and derivative
fits.F Fits to current response from the Karney-Fisch approach
gnup.F Gnuplot shell subroutines
grap.F Grid interpolations
grapgrd.F Find quantities by interpolation
gridgen.F Generate grids
grids.F Generate grids, also
jrf.F Form rf current
lscdrive.F Call LSC in stand-alone mode
matr.F Manipulate matrices
pbxio.F Output, mostly from PBX days
plasejv.F Find plasama parameters (EJ Valeo)
power.F Develop power deposited by rays
ql.F Develop Dql
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Table 11: Names and functions of include files for LSC

Name of Module Brief Description of Role in the Computation

CGSetc.inc Constants in the cgs system
Doflags.inc Flags for do-options, such as DoBram
DqlBins.inc Quantities for Dql

Escan.inc User-input Edc for stand-alone testing
FeBins.inc Quantities for fe
Implic.inc ‘IMPLICIT NONE’ and #define s for CPP
Inpval.inc Namelist inputs
Jrf.inc Quantities for Jrf
MKSetc.inc Constants in the mks system
PIetc.inc Constants related to π and roots 3/2, 1/2
PlPr.inc Flags for PLotting and PRinting
ProfBody.inc Quantities specifying the plasma
Ramppwr.inc Parameters and quantities governing ramp-up of power
RayBins.inc Quantities for storing ray information
RayWrk.inc Quantities govening ray calculation
TSCgrap.inc Quantities specifying the plasma
WkAry.inc Scratch and miscellaneous arrays
dielec.inc Dielectric tensor elements; quantities for the present ray
gnuI.inc Integers defining gnuplot graphs
gnuR.inc Reals defining gnuplot graphs
params.inc Parameters specifying array sizes
plcmx.inc Steps in R and Z for the equilibrium grid
power.inc Quatities for power deposited
sgIbk.inc Integers defining sglib graphs
sgRbk.inc Reals defining sglib graphs
tscunits.inc Unit numbers and flags from calling program

Table 12: Names and functions of include files for LSC for the X ray camera

Name of Module Brief Description of Role in the Computation

Xray.inc Quantities describing x-ray properties: foils, energy bins, etc
camera.inc Quantities describing the camera
emitter.inc Quantities describing the plasma emitter
emparams.inc Quantities describing the emission calculation
numerics.inc Quantities in common for the x-ray camera
xgraphs.inc Working arrays
xparams.inc Parameters for computational bins
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Table 13: Input files for LSC

Name of File Brief Description of Role in the Computation

input.lhh Parameters for the computation
jardin.d Equilibrium plasma information for test cases
lhcdoua Equilibrium plasma information written by TSC
ray.dat Information on rays from a previous LSC run
input.xry Parameters for the X-Ray camera (optional)

Table 14: Output files for LSC

Name of File Brief Description of Role in the Computation

Wr2TSC.out Power deposition and RF-driven current
ray.dat Information on rays from the present LSC run
date-time.gnp Combined commands and data for gnuplot
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Brief Description the X-ray Camera

Table 15: Typical namelist inputs for the X-ray camera

&inpxry
E_max = 0.20, E_min = 0.01, E_ph_min = 1.0e-6,
FoilCode = ’AG’,
PusherMajor = 1.152, PusherMinor = 0.190
R_bound_max = 2.0, R_bound_min = 1.1,
R_tangent = 1.525, z_tangent = 0.0,
Rpinhole = 2.661, Zpinhole = 0.0, pinhole_size = 0.00625,
pinhole_size = 0.00625,
dE_ph = 0.01, dFoilTCM = 0.0,
dlxray = 0.005, focal_length = 0.495,
iAbsXray = 1,
screen_d = 0.215,
/
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Table 16: Variables used in the X-ray camera: I

E max/min To render the calculations tractible, only the contributions from electrons
in the plasma with kinetic energies within a certain range will be consid-
ered; E min and E max (REAL numbers) specify (in keV) the minimum
and maximum electron energies of this range. If the user does not specify
these energy bounds, LSC will set E min to 0.01 keV and E max to 2.0
keV.

E ph min E ph min specifies the minimum energy that a photon must have in order
for LSC to add its contribution into the line integral. The default value
of E ph min is 1×10−6 keV.

FoilCode FoilCode is a two-CHARACTER parameter specifying the type of metal
foil that the X-Rays must pass through in going from the pinhole to the
film; FoilCode can be one of the following: “CU”, “AG”, “TA”, “MO”, or
“00” for no foil at all. By default, FoilCode is set to “AG” – a silver foil.

PusherMajor PusherMajor, PusherMinor, are the radial positions of the major and mi-
nor “pusher” field coils, as measured from the axis of toroidal symmetry.
Their default values are 1.152 meters and 0.190 meters, respectively.

R bound max R bound max, R bound min, specify the radial extent of the plasma; that
is, the plasma will extend no further in than R bound min, and no fur-
ther out than R bound max. The default values for R bound min and
R bound min are 1.10 meters and 2.00 meters, respectively.

Z bound max Z bound max, Z bound min, are like R bound inputs above, Z bound min
and Z bound max specify the furthest extents of the plasma along z. If
the user does not specify them, Z bound max and Z bound min are set
to 1.00 meters and -1.00 meters. Basically, these six inputs specify the
boundaries at which LSC would stop calculating the line integrals, since
there is no plasma beyond the R or Z bounds or next to the “pusher”
coils.
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Table 17: Variables used in the X-ray camera: II

R/z tangent The pinhole aperture of the X-Ray camera and the point at the center of
the image screen define a line in space; clearly, this line will be tangent to
some circle about the axis of toroidal symmetry; R tangent is the radius
of this circle (with a default value of 1.524 meters), while z tangent is the
z-position (height) of this circle (with a default value of 0.0 meters).

R/zpinhole These three inputs completely specify the coordinate location of the pin-
hole within the torus. The default values for these three are 2.661 meters,
0.0 meters, and 0.0 degrees, respectively.

dE ph The interval between photon energy bins, in keV. The default is 0.01 keV.

dFoilThickCM The thickness of the metal foil, in units of centimeters. The default value
is 0.00 centimeters.

dlxray The default value of this REAL parameter is 0.005 meters.

focal length This is the focal length in meters of the X-Ray camera – literally, this
is the distance from the pinhole to the screen upon which the image is
formed. The default value is 0.4905 meters.

iAbsXrays This INTEGER flag tells LSC whether or not to take account of the
absorption of X-rays by the foil when calculating the X-ray camera image;
the default value of iAbsXrays is 1 (absorption).

nEbins This INTEGER specifies the number of X-Ray energy bins. If left unspec-
ified, the default value is NENDIM.

nMUbins This INTEGER specifies the number of mu bins used in the calculation of
the line integral through the plasma to the pinhole. By default, nMUbins
is set to NMUDIM.

n pixel x/y These REAL input parameters are (respectively) the extent of the X-Ray
camera image, in the x- and y-directions, in number of pixels; that is,
the camera image will be n pixel x pixels ”long” along x, and n pixels y
”long” along y. Their default values are both NPIXDIM.

npoints max By default, npoints max is set to MAXPOINTS.

nr/z source Are the number of sections the plasma cross-section is divided into, radi-
ally and height-wise. The default settings for nr source and nz source are
NRDIM and NZDIM, respectively.

pinhole size The physical size (diameter in meters) of the pinhole; the default is 0.00625
meters.

screen d The ”diameter” in meters of the screen upon which the X-Ray camera
image is formed; screen d is the diameter of the largest circle that can be
inscribed in the screen. By default, screen d is set to 0.215 meters.
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