
MMM Anomalous Transport Model (Version 7.1)

Lixiang Luo (lixiang.luo@lehigh.edu)
Tariq Rafiq (tar207@lehigh.edu)
Arnold Kritz (kritz@lehigh.edu)

Lehigh University, Physics Department
16 Memorial Drive East, Bethlehem, PA 18015, USA

February 9, 2012

Abstract

Multi-Mode anomalous transport module (MMM) is a theory-based transport model which
has been used to predict temperature, density and momentum rotation profiles for tokamak plas-
mas. Significantly advancement on the theoretical foundation of MMM has been achieved since
its first version, MMM95. The latest version, MMM7.1, includes an improved Weiland model
for the ITG, TEM, and MHD modes, the Horton model for short wavelength ETG model and a
new model for the drift resistive inertial ballooning modes (DRIBM). The ETG transport thresh-
old in the Horton model is refined by using threshold obtained from toroidal gyrokinetic ETG
turbulence. They provide contributions to transport in the different regions of plasma discharge.
MMM7.1 is based on an earlier effort called MMM08, which was an attempt to implement similar
physical models inside the PTRANSP code. However, the loose implementation of MMM08 has
prevented its application outside the PTRANSP code. Steps have been taken to unify the interface
and add supplemental features, so that MMM7.1 fully complies with the NTCC standards.

1 Overview

This document contains a brief description of the multi-mode anomalous model (MMM) Fortran 90
software package. The package consists of two parts:

• The MMM module called modmmm7_1, which includes two user-callable subroutines: mmm7_1
and set_mmm7_1_switches

• A simple driver program called testmmm

The core subroutine mmm7_1 evaluates the transport diffusivities for anomalous transport. The sub-
routine calculates the diffusivities based on three internal models:

1. Weiland module by J. Weiland and his group in Göteborg Sweden [1],

2. Drift-resistive-inertial ballooning modes (DRIBM) by [2],

3. Horton model for ETG anomalous transport [3], with the Jenko threshold [4].

1

Results from internal models are combined linearly, where the weights of these internal models are
equal by default. Some model options, such as the switch for turning on the Jenko threshold, are
organized as internal parameters. Both the model weights and internal parameters have their default
values, but can be specified if necessary. This feature is handled by Fortran 90 optional arguments. A
helper subroutine called set_mmm7_1_switches is included in the module to assist users to set
up the argument arrays for internal parameters.

The MMM code package also include a simple driver program, testmmm, along with several
test cases, in which sample input and output files are given. The driver program mainly serves two
objectives. First, it allows users of MMM to verify the integrity of their compilation of MMM.
Second, it can be used as an example or template on how to use MMM.

An important feature of this version of MMM is the extensive use of optional arguments, which
requires Fortran 90 explicit interface. Argument association by keywords is strongly recommended.
See Section 4 for more details.

All floating-point numbers (both variables and constants) in this software package are defined
with a REAL(R8) type, where R8=SELECTED_REAL_KIND(12,100), such that this type is
equivalent to the predefined type DOUBLE PRECISION. Users are strongly encouraged to use con-
sistent data types throughout their own codes. It is not yet possible to use the module with single
precision numbers.

The core subroutine mmm7_1 can be used in parallel programs. In the case that the loop over
plasma radial points need to be parallelized, subroutine mmm7_1 should be called with npoints=1
with the optional argument gelong. This allows the subroutine to do calculation locally (one radial
point at a time).

The MMM7.1 module does not generate its own I/O resource. The only file I/O unit, intended
for diagnostic output, need to be opened and passed as the nprout argument to the core subroutine
mmm7_1 by the main program.

2 Subroutine mmm7_1

The transport equations are assumed to take the transport-diffusion form. For example, the ion tem-
perature (TH) and hydrogenic ion density (nH) equations are given by

∂ (nHT H)

∂ t
= ∇ · (D1nH∇T H)+∇ · (v1 nHT H)+STH ,

∂nH

∂ t
= ∇ · (D2∇nH)+∇ · (v2 nH)+SnH ,

where STH and SnH are the source terms. Other transport equations are assumed to take a similar form.
The task of mmm7_1 is to calculate the diffusivities, such as Di (i = 1,2) and convective fluxes vi in
the equations above. The input argument variables are geometry parameters characterizing equilib-
rium flux surface shapes and plasma profiles and the corresponding gradients of temperature, density,
magnetic q, toroidal and poloidal angular velocity. Output from mmm7_1 includes thermal diffu-
sivities of electron, thermal ions and impurity ions, density diffusivities of electron and hydrogenic
ions, transport coefficients of toroidal, poloidal and parallel momentum, thermal and density fluxes,
thermal and momentum pinches. Both overall diffusivities and their contributing components from
internal models can be obtained, while the latter is optional.

2

2.1 Input Arguments

The majority of input arguments are plasma state profiles, listed in Table 1. All the 1-D arrays
listed therein are assumed to be defined on flux surfaces called radial points or zone boundaries
where the transport fluxes are to be computed. The number of radial points is given by another input
argument npoints. Note that these dummy arguments are defined as assumed-shape arrays. This
allows actual arguments whose sizes are larger than npoints to be passed to the subroutine safely,
although only the first npoints elements are involved in calculations. gelong and rmaj0 are
optional arguments, which should only be used by those codes which use mmm7_1 locally, where
npoints is always 1. If gelong is not provided and npoints is less then 3, an error will be
generated (nerr=MMM_ERR_ETG_NOT_ENOUGH_ZONE).

The remaining input arguments are used for fine control of the subroutine’s behaviors. lprint
controls the verbose level of diagnostic output and nprout specifies the I/O unit number for diag-
nostic output. Because diagnostic output is only used at very few places in the current version, these
two arguments mainly serve as place holders for code developers who may need to debug the code.

cmodel specifies the linear weights for internal models. This is an optional argument and only
the first three elements are used.

• If specified: cmodel(1)~cmodel(3) are assigned as the weights for Weiland20, DRIBM
and ETG, respectively.

• If not specified: equivalent to cmodel=(/1.0,1.0,1.0/).

cswitch specifies internal parameters of REAL(R8) type. This is an optional argument. The
second dimension is corresponding to the index of an internal model (same definition as in cmodel),
and the first dimension to the index of the adjustable parameter for that particular model. For example,
the first real adjustable parameter for the Weiland model should be stored in cswitch(1,1).

• If specified: the real internal parameters are assigned the given values of the actual argument.

• If not specified: all real internal parameters default to internally set values.

An up-to-date list of the real internal parameters is given in Table 2, along with their default values.
lswitch specifies internal parameters of INTEGER type. This is an optional argument. The sec-

ond dimension is corresponding to the index of an internal model (in the same way as in cmodel),
and the first dimension to the index of an integral adjustable parameter for that particular model. For
example, the first integral adjustable parameter for the DRIBM model should be stored in lswitch(1,2).

• If specified: the integral internal parameters are assigned to the given values of the actual
argument.

• If not specified: all integral internal parameters default to internally set values.

An up-to-date list of integral adjustable internal parameters is given in Table 3, along with the default
values. For ON/OFF type integral switches, 0 stands for OFF and a positive integer stands for ON.

Instead of specifying all the lswitch and cswitch elements manually, users of MMM7.1
can use the supplemental subroutine set_mmm7_1_switches. This can also greatly reduce the
chance of human errors. Please refer to Section 3 for more details.

3

Table 1: Input arguments: plasma variables
Name Sym. Unit Meaning
rmin r m Half-width of the flux surface
rmaj R m Major radius to geometric center of the flux surface
rmaj0 R0 m Major radius at plasma axis (scalar)
elong κ Local elongation of flux surface
ne ne m−3 Electron density
nh nh m−3 Hydrogenic thermal particle density
nz nz m−3 Impurity ion density
nf nf m−3 Density from fast (non-thermal) ions
zeff Zeff Mean charge ∑i niZ2

i /∑i niZi

te Te keV Electron temperature
ti Ti keV Temperature of thermal ions
q q Magnetic q-value

btor BT Tesla Toroidal magnetic field (RBtor)/rmaj

zimp Zimp Mean charge of impurities ∑imp nimpZimp/∑imp nimp

aimp Mimp Mean atomic mass of impurities ∑imp nimpMimp/∑imp nimp

ahyd Mh Mean atomic mass of hydrogen ions ∑h nhMh/∑h nh

aimass Mi Mean atomic mass of thermal ions ∑i niMi/∑i ni

wexbs ωE×B rad/s E×B shearing rate [5]
gne gne Normalized ne gradient −R(dne/dr)/ne

gni gni Normalized ni gradient −R(dni/dr)/ni

gnh gnH Normalized nH gradient −R(dnh/dr)/nh

gnz gnZ Normalized nZ gradient −R(dZnZ/dr)/(ZnZ)

gte gTe Normalized Te gradient −R(dTe/dr)/Te

gti gTi Normalized Ti gradient −R(dTi/dr)/Ti

gq gq Normalized q gradient R(dq/dr)/q
vtor vtor m/s Toroidal velocity
gvtor gvtor Normalized toroidal velocity gradient R(dvtor/dr)/vtor

vpol vpol m/s Poloidal velocity
gvpol gvpol Normalized poloidal velocity gradient R

(
dvpol/dr

)
/vpol

vpar vpar m/s Parallel velocity
gvpar gvpar Normalized poloidal velocity gradient R

(
dvpar/dr

)
/vpar

gelong κ ′ Elongation gradient w.r.t. aspect ratio dκ/dρ , where ρ = r/R

4

Table 2: Real internal parameters
Model # Default Meaning Keyword

Weiland 1 1.0 E×B shear multiplier KW20_C_EXB
2 1.0 Momentum pinch scaling

factor
KW20_C_MOM_PINCH_SCALE

3 10−4 Lower bound of electron
thermal diffusivity

KW20_C_XTE_MIN

4 100.0 Upper bound of electron
thermal diffusivity

KW20_C_XTE_MAX

5 10−4 Lower bound of ion thermal
diffusivity

KW20_C_XTI_MIN

6 100.0 Upper bound of ion thermal
diffusivity

KW20_C_XTI_MAX

ETG 1 0.06 Scaling factor for
electrostatic regime

KETG_C_CEES_SCALE

2 0.06 Scaling factor for
electromagnetic regime

KETG_C_CEEM_SCALE

DRIBM 1 0.0 E×B shear multiplier KDBM_C_EXB

Table 3: Integer internal parameters
Model # Default Meaning Keyword
ETG 1 1 Threshold selection

0 - ES: Horton, EM: No threshold
1 - ES: Jenko, EM: No threshold
2 - ES: Jenko, EM: Jenko

KETG_L_NLTHR

5

Table 4: Total diffusivities
Name Unit Meaning
xti m2/s Effective ion thermal diffusivity
xdi m2/s Effective hydrogenic ion diffusivity
xte m2/s Effective electron thermal diffusivity
xdz m2/s Impurity ion diffusivity from the Weiland model
xvt m2/s Toroidal momentum transport from the Weiland model
xvp m2/s Poloidal momentum transport from the Weiland model

Table 5: Component diffusivities
Name Unit Meaning
xtiW20 m2/s Ion thermal diffusivity from the Weiland model
xdiW20 m2/s Particle diffusivity from the Weiland model
xteW20 m2/s Electron thermal diffusivity from the Weiland model
xtiDBM m2/s Ion thermal diffusivity from the DRIBM model
xdiDBM m2/s Hydrogenic ion diffusivity from the DRIBM model
xteDBM m2/s Electron thermal diffusivity from the DRIBM model
xteETG m2/s Electron thermal diffusivity from the Horton ETG model

2.2 Output Arguments

Most of the output arguments are result profile arrays. The only non-array output argument is nerr,
which stores the error code (a negative integer), if any error is encountered, or zero, if the execu-
tion of the subroutine is successful. The dummy arguments for profile output are defined as Fortran
90 assumed-shaped arrays. The actual arguments must be allocated in advance with enough space
(npoints is the minimal dimension) to store all return values. The diffusivities Di are given in
Table 4. They are weighted sums of contributions from internal models, whose weights can be indi-
vidually adjusted (see cmodel in Section 2.1).

Table 5 lists the component output arrays, which give the individual contribution from internal
models. Generally, these arrays are used for diagnostic output only. Because they are optional, users
are not required to associate them with actual arguments. Not specifying the actual arguments for
them does not affect the outputs listed in Table 4. When they are specified, the actual argument arrays
must be allocated in advance with enough space to store the output data (at least npoints elements).
Note that the momentum transport is only provided by the Weiland model (Table 4).

The most unstable Weiland modes are given by gammaW20 and omegaW20, which contain the
the growth rate and its frequency, respectively. Note that there are four growth rates given by the
Weiland model. Similarly, gammaDBM and omegaDBM give the growth rate and the corresponding
frequency for the most unstable DRIBM mode. The exact meaning of these arguments are given in
Table 6.

vflux contains the return values of the total fluxes. vconv contains convective velocities and
momentum pinches. The content of these two argument is explained in Table 7. They are all optional,
whose behavior is similar to the component diffusivities.

6

Table 6: Growth rates and frequencies of the most unstable Weiland and DRIBM modes
Name Unit Meaning

gammaDBM s−1 Growth rate of the most unstable DRIBM mode
omegaDBM rad/s Frequency of the most unstable DRIBM mode

gammaW20(1,:) s−1 Growth rate of the most unstable ion mode in Weiland
positive-frequency direction

omegaW20(1,:) rad/s Frequency of the most unstable ion mode in Weiland
positive-frequency direction

gammaW20(2,:) s−1 Growth rate of the most unstable electron mode in Weiland
positive-frequency direction

omegaW20(2,:) rad/s Frequency of the most unstable electron mode in Weiland
positive-frequency direction

gammaW20(3,:) s−1 Growth rate of the most unstable ion mode in Weiland
negative-frequency direction

omegaW20(3,:) rad/s Frequency of the most unstable ion mode in Weiland
negative-frequency direction

gammaW20(4,:) s−1 Growth rate of the most unstable electron mode in Weiland
negative-frequency direction

omegaW20(4,:) rad/s Frequency of the most unstable electron mode in Weiland
negative-frequency direction

Table 7: Fluxes and pinches
Name Unit Meaning

vflux(1,:) W/m2 Total ion thermal flux (Weiland + DRIBM)
vflux(2,:) m−2s−1 Total hydrogenic ion flux (Weiland + DRIBM)
vflux(3,:) W/m2 Total electron thermal flux (Weiland + DRIBM)
vflux(4,:) m−2s−1 Total impurity ion flux (Weiland)
vconv(1,:) m/s Ion thermal convective velocity (Weiland)
vconv(2,:) m/s Hydrogenic ion particle convective velocity (Weiland)
vconv(3,:) m/s Electron thermal convective velocity (Weiland)
vconv(4,:) m/s Impurity ion particle convective velocity (Weiland)
vconv(5,:) m/s Toroidal momentum pinch (Weiland)
vconv(6,:) m/s Poloidal momentum pinch (Weiland)

7

3 Subroutine set_mmm7_1_switches

This is a subroutine to assist users setting up internal parameters using a “<keyword> = <value>”
approach, instead of manually setting the values of lswitch and cswitch arrays for subroutine
mmm7_1. Users do not need to know the index numbers of specific parameters. Also, only the
parameters of interest need to be specified, while all other parameters will be assigned the default
values automatically. Currently MMM7.1 does not have a large number of internal parameters. How-
ever, as more features are added to the future versions of MMM, the index numbers of the internal
parameters may be subject to change. Because the keywords remain the same even the index num-
bers are changed, users of MMM7.1 do not need to update their codes if they are already using
set_mmm7_1_switches to set internal parameters.

The general syntax of using this subroutine is as follows:

CALL set_mmm7_1_switches(&
cmmm = <cswitch>, lmmm = <lswitch>, &
<keyword 1> = <value 1>, &
<keyword 2> = <value 2>, &
...)

where <cswitch> and <lswitch> are the array variables which will be passed to mmm7_1 sub-
routine. Keywords are listed in Table 2 and 3. Only those parameters that need to be change should
be listed, the subroutine will fill the remaining parameters using their corresponding default values.
Note that if only the integer parameters are involved, the argument for real-type is not required, and
vice versa. For example, if the user only want to turn on E×B shear effects in DRIBM model and
leave everything else by default, they can use

CALL set_mmm7_1_switches(cmmm = cmmm7, KDBM_C_EXB = 1.0)

and then pass cmmm7 as the actual argument for cswitch to mmm7_1:

CALL mmm7_1(... , cswitch = cmmm7)

where all other elements of cmmm7 are already given the default values by set_mmm7_1_switches.
All the integer-type internal parameters will take the default values because no actual argument is
specified for lswitch.

4 Using the module

To use MMM in your own program, the following issues need to be taken care of:

1. Compile the module and generate the static-link library file libmmm7_1.a

2. The USE statement at the beginning of your Fortran program

3. A proper CALL statement of the mmm7_1 subroutine

4. Linking of libmmm7_1.a against other binary object files

8

MMM7.1 module does not have any dependence on external codes. A successful build of the
MMM7.1 module will generate a number of binary files, among them are the two most important,
libmmm7_1.a and modmmm7_1.mod (modmmm7_1.MOD if PathScale compilers are used) in the
libmmm7_1 subdirectory. libmmm7_1.a is the static-link library and modmmm7_1.mod is the
Fortran module file.

The compilation of any source file that use the modmmm7_1 module requires the compiler to cor-
rectly locate the module file (modmmm7_1.mod). Most compiler search *.mod files in directories
listed after the -I option. Module files are generally incompatible among different compilers. You will
not be able to compile the driver program with compiler B if the MMM module is compiled using
compiler A.

Linking of libmmm7_1.a against other binary object files should only involve putting it in the
object file list, as long as the file can be located by the compiler. Note that only static linking is
supported in this version. Please follow the instructions of your Fortran compiler to set appropriate
command line arguments.

No initialization is needed before the CALL statement of the mmm7_1 subroutine. However, one
may want to set up the the internal parameter arrays using the set_mmm7_1_switches subroutine.
Note that MMM7.1 uses optional arguments extensively, thus requiring the use of explicit interface.
If any optional argument is omitted, argument association by keywords must be used. Even in the case
where no optional argument is omitted, the use of argument keywords is still strongly recommended,
considering the large amount of arguments involved. An example of this style of subroutine call is
given in the source file of the driver program testmmm.f90. One clear advantage of argument
keywords is that the compiler can always determine the correct argument association, regardless of
the order and the selection of actual arguments. This also minimize the need to update the user’s
codes if the argument list of MMM is to be changed in the future.

All array dummy arguments are defined as assumed-shape arrays, in contrast to earlier versions of
MMM, which used deferred-shape arrays. Several arguments are optional. Please refer to Section 2
for more details on the selection of optional arguments.

A complete argument keyword association of mmm7_1 can be found in the driver program:

CALL mmm7_1(&
rmin = rmin, rmaj = rmaj, rmaj0 = rmaj(1), &
elong = elong, ne = ne, nh = nh, &
nz = nz, nf = nf, zeff = zeff, &
te = te, ti = ti, q = q, &
btor = btor, zimp = zimp, aimp = aimp, &
ahyd = ahyd, aimass = aimass, wexbs = wexbs, &
gne = gne, gni = gni, gnh = gnh, &
gnz = gnz, gte = gte, gti = gti, &
gq = gq, &
gvtor = gvtor, vtor = vtor, gvpol = gvpol, &
vpol = vpol, gvpar = gvpar, vpar = vpar, &
xti = xti, xdi = xdi, xte = xte, &
xdz = xdz, xvt = xvt, xvp = xvp, &
xtiW20 = xtiW20, xdiW20 = xdiW20, xteW20 = xteW20, &
xtiDBM = xtiDBM, xdiDBM = xdiDBM, xteDBM = xteDBM, &

9

xteETG = xteETG, &
gammaW20 = gammaW20, omegaW20 = omegaW20, &
gammaDBM = gammaDBM, omegaDBM = omegaDBM, &
npoints = npoints, &
lprint = lprint, nprout = hfDebug, nerr = nerr, &
vconv = vconv, vflux = vflux , &
cmodel = cmodel, cswitch = cswitch, lswitch = lswitch)

where the association of actual arguments and dummy arguments are explicitly indicated by a “<dummy
argument> = <actual argument>” form. In fact, the order of arguments has no effect on
argument association, eliminating the frequent and hard-to-debug error which happens when some
arguments are left out. Users can take advantage of the optional arguments, without worrying about
the order of arguments. Consider a much simplified case:

• All internal models are turn on, with default weights.

• Default internal parameters are used.

• Only the thermal diffusivities are needed.

• No diagnostic output is needed.

In this case, the statement can be shortened to

CALL mmm7_1(&
rmin = rmin, rmaj = rmaj, rmaj0 = rmaj(1), &
elong = elong, ne = ne, nh = nh, &
nz = nz, nf = nf, zeff = zeff, &
te = te, ti = ti, q = q, &
btor = btor, zimp = zimp, aimp = aimp, &
ahyd = ahyd, aimass = aimass, wexbs = wexbs, &
gne = gne, gni = gni, gnh = gnh, &
gnz = gnz, gte = gte, gti = gti, &
gq = gq, &
gvtor = gvtor, vtor = vtor, gvpol = gvpol, &
vpol = vpol, gvpar = gvpar, vpar = vpar, &
xti = xti, xdi = xdi, xte = xte, &
xdz = xdz, xvt = xvt, xvp = xvp, &
npoints = npoints, lprint = 0, nprout = 0, nerr = nerr,&
vconv = vconv, vflux = vflux)

As we can see, the unused arguements do not need to be specified at all. This subroutine call can also
be conveniently expanded. For example, if we want to turn off Jenko’s threshold for the Horton ETG
model, we can simply write

CALL set_mmm7_1_switches(lmmm = lmmm7, KETG_L_NLTHR = 0)
CALL mmm7_1(&

10

rmin = rmin, rmaj = rmaj, rmaj0 = rmaj(1), &
elong = elong, ne = ne, nh = nh, &
nz = nz, nf = nf, zeff = zeff, &
te = te, ti = ti, q = q, &
btor = btor, zimp = zimp, aimp = aimp, &
ahyd = ahyd, aimass = aimass, wexbs = wexbs, &
gne = gne, gni = gni, gnh = gnh, &
gnz = gnz, gte = gte, gti = gti, &
gq = gq, &
gvtor = gvtor, vtor = vtor, gvpol = gvpol, &
vpol = vpol, gvpar = gvpar, vpar = vpar, &
xti = xti, xdi = xdi, xte = xte, &
xdz = xdz, xvt = xvt, xvp = xvp, &
npoints = npoints, lprint = 0, nprout = 0, nerr = nerr,&
vconv = vconv, vflux = vflux, lswitch = lmmm7)

The change involves only one variable lmmm7 and a subroutine call to set_mmm7_1_switches
(see Section 3 for more details).

5 Driver program testmmm

The driver program looks for a file called “input” in the current directory and invokes mmm7_1with
the supplied input data. Both the input data and results are then written into a file called “output”
as tables. The input file is written in the Fortran NAMELIST format, such that the variables can be
arranged in any order. Two kinds of input data can be accepted. In the first kind the contents of the
plasma state arrays are given in numbers. The size of arrays must be specified by the npoints vari-
able. With the second kind of input data, the user needs to specify a series of polynomial parameters
for constructing the plasma state profiles.These are mostly parabolic profiles (or an exponentiation
with a specified exponent). Note that this type can only generate trivial (zero) profiles for momentum
profiles (and their gradients). The NAMELIST header of the data file need to be changed according
to the choice of the input type. Use

&testmmm_input_1stkind

if the first kind is given, or use

&testmmm_input_2ndkind

if the second kind is given. The variables listed in Table 8 are expected from the input file, regardless
of the choice of data type.

If first kind is used, all the plasma profiles must be specified using arrays of double precision
numbers. In this case, testmmm expect the input file to provide the arrays listed in Table 1. Note
that rmaj0 is not needed because its value is determined by the first element of array rmaj. The
definition of the corresponding dummy arguments can be found in Table 1. gte, gti, gne, gnh,
gnz and gni can be calculated using their corresponding profile variables by the driver program

11

Table 8: Input variables used by both input file types
Input variable mmm7_1 dummy argument association
npoints npoints
cmodel cmodel
lprint lprint
cW20 cswitch(1:,1)
cDBM cswitch(1:,2)
cETG cswitch(1:,3)
lW20 lswitch(1:,1)
lDBM lswitch(1:,2)
lETG lswitch(1:,3)

instead of being provided by the user. To use this feature, simply assign a value smaller than -
100 to the gradient variable. An example of this feature can be found in the sample input file of
case-hmode.

If the second kind is used, the actual arguments for mmm7_1 are constructed by a number of
parameters. The number of radial points is given by input variable npoints. The minor radius of
plasma is given by input variable k_rminor. The half width of a magnetic surface r is proportional
to the radial index. The major radius for all radial points is given the value of k_rmajor. Plasma
profiles arguments for subroutine mmm7_1 are constructed using polynomials in the following form

f (r) = fedge +
(

faxis− fedge
)
(1−ρ)p ,

where ρ = r/redge is the normalized radius; faxis and fedge are the variable values at the center and the
edge of the plasma; exponent p can be used to control the shape of the profile. The first nine entries
in Table 9 are the plasma profiles directly generated by polynomials, whose gradients are calculated
using the derivative of f (r) by testmmm. The variables with a “axis” and a “edge” suffix indicate
the values at the plasma center and edge, respectively. Their units are given in the first column of the
table. The variables with a “exp” suffix indicate the exponent p, which is dimensionless.

ωE×B is calculated differently, using the following polynomial:

ωE×B = 16ω0
(ρ−a)2 (ρ−b)2

(a−b)4 ,

where ω0 is the maximum flow shearing rate; a is the inner cutoff and b is the outer cutoff. ω0, a
and b take their values from variables wexbmax, xwexbinn and xwexbout, respectively. vtor,
gvtor, vpol, gvpol, vpar and gvpar are always set to zero inside the driver program. The final
four entries in Table 9 lists are the scalar input variables which are used to generate flat profiles as
mmm7_1 arguments.

Effective charge (mmm7_1 argument zeff) is given by this definition:

Zeff =
nh +Z2

impnimp +Z2
finfi

ne
,

where subscript “imp” indicates the impurities and “fi” indicates the fast ions. Electron density
(mmm7_1 argument ne) and fast electron density are calculated according to the pseudo-neutrality

12

Table 9: Variables used in the second kind input. The “Argument” column indicates the corresponding
mmm7_1 dummy arguments.

Meaning Input variables Argument
Ion density [m−3] denhaxis, denhedge, denhexp ni
Average impurity density [m−3] denzaxis, denzedge, denzexp nz
Fast ion density [m−3] denfaxis, denfedge, denfexp
Average charge of impurities chrzaxis, chrzedge, chrzexp zimp
Average charge of super-thermal ions chrfaxis, chrfedge, chrfexp
Electron temperature [KeV] teaxis, teedge, teexp te
Ion temperature [KeV] tiaxis, tiedge, tiexp ti
Magnetic q qaxis, qedge, qexp q
Flow shearing rate ωE×B [rad/s] wexbmax, xwexbinn, xwexbout wexbs
Major radius of plasma axis [m] k_rmajor
Minor radius [m] k_rminor
Local elongation k_elong elong
Toroidal magnetic field [Tesla] k_btor btor
Mean atomic mass of impurities k_amassz aimp
Mean atomic mass of hydrogenic ions k_amassh ahyd
Minimal electron density [m−3] k_denmin
Minimal electron temperature [KeV] k_temin

condition:

ne = nh +Zimpnimp +Zfinfi ,

nfe = Zfinfi ,

where the “fe” subscript indicates fast electrons. The electron density gradient (mmm7_1 argument
gne) is then calculated accordingly. Average ion atomic mass (mmm7_1 argument aimass) is given
by

Mi =
nhMh +nimpMimp

nh +nimp
,

where M represents atomic mass.
The output file is a plain text spreadsheet with clearly defined headers and column numbers. The

first line is a section header, followed by a line of a column index. The third and the fourth line
includes the units and the names of the input profile arrays, respectively. The profiles are organized
in columns, whose names are self-explanatory. The output section also starts with a line of header,
followed by the output profile units and names. All the output arguments of mmm7_1 are listed in
this section. Most of them are self-explanatory as they use the exact same name of the corresponding
dummy argument of subroutine mmm7_1. The growth rates and frequencies of the most unstable
modes are associated in a way given in Table 10. The definition of the dummy arguments therein can
be found in Table 6.

As an example, the output of case-lmode case can be visualized using gnuplot (a freely dis-
tributed plotting tool) by this command run in the case-lmode subdirectory:

13

Table 10: Growth rates and frequencies of the most unstable Weiland and DRIBM modes
Name mmm7_1 dummy argument association

gmaW20ii gammaW20(1,:)
omgW20ii omegaW20(1,:)
gmaW20ie gammaW20(2,:)
omgW20ii omegaW20(2,:)
gmaW20ei gammaW20(3,:)
omgW20ei omegaW20(3,:)
gmaW20ee gammaW20(4,:)
omgW20ee omegaW20(4,:)
gmaDBM gammaDBM
omgDBM omegaDBM

gnuplot> plot ’< tail -n 51 output’ u 1:4 w l

Note that case-lmode has 51 radial points. This gnuplot command extracts the last 51 lines of the
output file and generates an X-Y curve using a solid line, with the the magnetic surface half-width
(column 1) on X axis and the electron thermal diffusivity (column 4) on the Y axis.

6 PTRANSP settings

MMM7.1 can be used with the predictive mode of PTRANSP. It has been installed and tested to
be working correctly in PTRANSP running on PPPL clusters. As for 2011 the predictive model of
MMM7.1 is capable of temperature prediction while density prediction is being developed. MMM7.1
has been included in the PTRANSP source repository maintained by PPPL. To use MMM7.1 as
the anomalous transport model in PTRANSP, NKEMOD and NKIMODA should be set to 19. The
TRDAT variables used by PTRANSP for controlling MMM7.1 is given in Table 11. For switch type
parameters, .F. or 0 means to disable and .TRUE. or 1 means to enable.

References

[1] J. Weiland, Collective modes in inhomogeneous plasma: kinetic and advanced fluid theory, ser.
Plasma Physics. Institute of Physics Publishing, 2000.

[2] T. Rafiq, G. Bateman, A. H. Kritz, and A. Y. Pankin, “Development of drift-resistive-inertial
ballooning transport model for tokamak edge plasmas,” Physics of Plasmas, vol. 17, no. 8, p.
082511, 2010.

[3] W. Horton, P. Zhu, G. T. Hoang, T. Aniel, M. Ottaviani, and X. Garbet, “Electron transport in
Tore Supra with fast wave electron heating,” Physics of Plasmas, vol. 7, no. 5, pp. 1494–1510,
2000.

[4] F. Jenko, W. Dorland, and G. W. Hammett, “Critical gradient formula for toroidal electron tem-
perature gradient modes,” Physics of Plasmas, vol. 8, no. 9, pp. 4096–4104, 2001.

14

Table 11: MMM7.1 related PTRANSP parameters
Name Type Default Purpose

XIMINMMM Real 0.0 Inner boundary for predictions
XIMAXMMM Real 1.0 Outer boundary for predictions
CMMM07(1) Real 1.0 Multiplier for pinches in Weiland model

FACEXB Real 1.0 E×B shear multiplier in Weiland model
L_DRBM Integer 1 Switch for DRIBM model

LMMM07(4) Integer 1 Switch for disabling E×B shear effects in
DRIBM model (0: E×B shear effects
enabled, 1:E×B shear effects disabled)

CMMM07(3) Real 1.0 E×B shear multiplier in DRIBM model
NLETG Logical .T. Switch for Horton ETG model

NLETGJTHR Logical .T. F: Horton threshold, T: Jenko threshold
LMMM07(3) Integer 1 Jenko threshold selection (only used for

NLETGJTHR=.T.)
1: Enabled for electrostatic regime, disabled
for electromagnetic regime
2: Enabled for both electrostatic and
electromagnetic regimes

[5] K. H. Burrell, “Effects of E×B velocity shear and magnetic shear on turbulence and transport in
magnetic confinement devices,” Physics of Plasmas, vol. 4, no. 5, pp. 1499–1518, 1997.

15

	Overview
	Subroutine mmm7_1
	Input Arguments
	Output Arguments

	Subroutine set_mmm7_1_switches
	Using the module
	Driver program testmmm
	PTRANSP settings

