
The SWIM/SciDAC Plasma State Component Description: Version 2.003.

D. McCune – Version 1.xxx October 2006 – July 2007; Version 2.xxx January 2008 – May 2008.

Abstract:

The Plasma State Component is a software component of the Integrated Plasma Simulator (IPS), being
designed and built as a part of the SWIM (SciDAC) Fusion Simulation Project. It is envisioned as a shared
repository for time evolving plasma simulation data—an instance of the plasma state contains a snapshot of
the data at a single point in time. The Plasma State (PS) Component is also used for sharing of data across
physics models in the IPS which are themselves implemented as separate, independently developed software
components. Generally, data items which need to be shared between components are placed in the plasma
state; data items used internally within a single component would typically not be in the plasma state. The
PS is implemented as a fortran-95 derived data type, the elements of which are elementary fortran types: 64
bit REAL, INTEGER, and CHARACTER*nn scalars and arrays. The type definition and supporting input/
output routines are written from a specification file plasma_state_spec.dat by a python script code
generator. Implementing software provides for interpolation and “conservative rezoning” of profiles
contained in the Plasma State, as will be described. Multiple, separately named state instances can be held
in memory simultaneously.

Version 2.003 Update Summary:

Minor updates to the Machine Description specification; update to document. SWIM has accepted the
version 2.xxx Plasma State and the code has been merged into the main line of development for the SWIM
svn repository.

Version 2.000 Update Summary:

Testing of earlier versions of the software led to some design changes that were agreed at the SWIM
SciDAC Workshop, ORNL, 15-17 October 2007, summarized as follows:

• Split plasma state data into initialization sections and time evolving section. Initialization sections
include:

o Machine Description (invariant over much of lifetime of tokamak device), such as: neutral
beam geometry.

o Shot Configuration (physical data invariant for the duration of a plasma shot), such as:
primary species lists, direction of main toroidal field and current.

o Simulation Initialization (other data associated with initialization of simulation that is
generally time invariant), such as: derived species lists; grids.

• Time evolving sections include:
o State Data (non-profile information expected to vary in time), such as: power on neutral

beams and RF antennas.
o State Profiles (time evolving gridded profile data), such as: profiles describing MHD

equilibrium and field; temperatures, densities, flow velocities; particle, momentum, and
energy source profiles.

• NetCDF I/O standardization: a self describing file format with one-to-one correspondence between
plasma state elements and NetCDF file variables.

• Modifications to species lists:

 1

o Break up of “non-Maxwellian” species by type: neutral beam ions, fusion product ions, RF
minority ions. There is no longer a single “FP” component for all fast species; rather the
fast species are to be evolved by physics components for neutral beams, RF heating, etc.

o Provision of alternate thermal species list which collects all impurity charge state data into
two model impurity species, with effZ and quasineutrality conservation.

• C/C++ interface library—enable access to State software from the FACETS SciDAC project.
• Momentum source profiles (torque densities), to enable the EPA (Equilibrium Profile Advance)

component to include a toroidal momentum balance equation.

The version 2.000 state software and I/O mechanisms are not compatible with version 1.xxx state files. At
present there is no plan to provide a conversion capability.

Contents of Document:

I. Design Philosophy
II. Sections of the State Specification File
III. Methods of Access to Plasma State Data
IV. Design and Implementation Issues
V. Appendix: location of state specification file and test driver; information on linking software to the

plasma state component; C/C++ callable interface.

Document Notation Conventions:

System components (variables, filenames, fortran keywords) are given in Courier-10 fixed width bold font,
such as: REAL.

Not complete in this Document:

Although the document shows argument lists of the more commonly used subroutines, there is not an
exhaustive list of all subroutines with all arguments. The reader is referred to the extensively commented
source code (plasma_state/plasma_state_mod.f90) as a reference for this purpose. The appendix
gives further information on where to find the source code, Python code generator, etc.

Related working document (version 1.xxx epoch):

Use of plasma state for PTRANSP client/server communications:
http://w3.pppl.gov/~dmccune/SWIM/PTRANSP-client-server.doc

 2

http://w3.pppl.gov/%7Edmccune/SWIM/PTRANSP-client-server.doc
http://w3.pppl.gov/%7Edmccune/SWIM/PTRANSP-client-server.doc

I. Design Philosophy

The Plasma State (PS) Component is meant to serve as a communications mechanism in a multi-component
fusion physics research code. It is in the nature of the research that the precise contents of the PS cannot be
fully anticipated, and in fact will require numerous changes over a long period of time; therefore, it is crucial
that modifications to the PS definition can be carried out in a straightforward and convenient manner. At the
same time, many of the objective features of the PS—allocation and copying of data structures, setup of
interpolation for profile data— repeatedly expose features of the data, such as array rank and naming, which
can be mechanistically related to a simple specification of the data contents. The details of implementation
of code changes derived from changes in the PS definition involve repetition—error prone for humans, easy
for machines. Therefore, a code generator, written as a python script, is used to generate the implementing
code for the plasma state component. It is expected that ultimately the PS will contain 100s, if not 1000s, of
individual data elements.

The procedure for modifying the plasma state contents definition is as follows:

1. Edit the state specification file plasma_state_spec.dat;
2. Run the python code generator to create the plasma state implementation code;
3. Rebuild codes that make use of the plasma state software.

In order to assure compatibility of Plasma State files across software revisions, it is recommended that each
change to the Plasma State contents definition, when committed to the source repository, be accompanied by
a modification of the State version ID (e.g. from “2.002” to “2.003”).

It is expected that the various physics components involved in SWIM will each contribute to the contents of
the plasma state. Every variable in the state specification is attributed to a component. Component authors
will need to develop the portion of the PS for which their component is responsible, i.e. the representation of
the “output” physics of their components. This will consist mainly of profiles defined over grids which are
specific discretizations of spatial coordinates. Components select their own grids, and each is responsible
for initialization of its own portion of the PS. If a given component is absent from a simulation, the
corresponding PS arrays are unallocated and corresponding array dimension variables are left at zero. The
PS supports an incremental allocation strategy consistent with the requirement for distributed initialization
of state implied by this architecture.

The coordinates defined in the October 2006 implementation of the state software are as follows:

Symbol Domain []min max:x x Description

ρ []0 :1
Normalized Radial Toroidal Flux Coordinate:

()bdy
ϕ

ϕ

Ψ

Ψ

θ []:π π− or []0 : 2π Poloidal Angle Coordinate (depends on equilibrium representation).

R []min max:R R Major Radius—distance from machine center, m.

Z []min max:Z Z Elevation relative to horizontal plane through center of machine, m.

It will not be difficult to add support for additional coordinates as may be needed by physics components of
the SWIM project.

Coordinate grids are specific discretizations of coordinates—a sequence of strict ascending numbers:

 3

 { } { } 1 1 min; 1, 2,..., ; ; ;j j j maxNx j N x x x x x−∈ < = x=

It is important to notice in particular that each grid must cover the entire range []min max:x x of the coordinate
of which it is a discretization.

Physics component profiles are defined over grids defined by the component. Since profiles typically
require interpolation to be used by other components, these profiles must also cover the entire range
specified by the grid. Unless a “step function” representation is used, this may require that codes providing
the profile perform a half-zone-width extrapolation, extending the profile so that it meets flush with the
endpoints of the coordinate grids.

Aside from grids and profiles, the plasma state will also contain any additional data that physics components
specify, such as scalars and arrays describing such items as lists of plasma species and/or other salient
features of tokamak experiments such as sets of RF antennas or neutral beams, and such aspects of their
respective geometries as needs to be shared amongst software components through the state.

Within the plasma state, an important distinction is drawn between time invariant data which is generally set
up during initialization of a state-based simulation, and, time varying data, which evolves throughout the
course of a simulation. The following sections of the plasma state, introduced in version 2.000 of the
software, are provided for time invariant initialization data:

• Machine_description: physical quantities “bolted on” to a specific tokamak. For a given
machine, these quantities do not change, even from shot to shot. Changes may occur when a
tokamak is given a major upgrade. Examples of machine description quantities: location and
geometry of limiters, divertors, vacuum vessel, coils; number, position and orientation of neutral
beam injectors and RF antennas; also specified here are the pairs of quantities { }min max,R R and

{ }min max,Z Z defining the range of a rectangular mesh needed to cover the plasma and vacuum
region of the device.

• Shot_configuration: physical quantities that are time invariant within a shot but can vary
from shot to shot. Examples of shot configuration data: lists of thermal plasma species, impurity
species, beam-injected fast ion species, fusion product species, and RF minority species; direction of
main toroidal field and toroidal current: +1 for “counter-clockwise viewed from above” and -1 for
the reverse. Example of consequence: position of neutral beams is determined by the machine
description; whether a beam is injecting “co” or with the plasma current depends both on the
machine description and shot configuration (direction of current).

• Simulation_initialization: quantities that are “normally” time-invariant. These may be
physical quantities that are derived from the machine description and shot configuration, or,
quantities—such as specific grid discretizations—that describe the numerical framework for a
simulation. This section may include some quantities which under special circumstances can be
modified during the course of a simulation, e.g. in a dynamic regridding operation. However, such
operations will require special code support, e.g. to re-interpolate profiles built over dynamically
modified grids.

The time dependent data sections of the state are:

• State_data: non-profile quantities which do normally vary in time, such as: power and voltage
on each neutral beam injector; power and frequency on each RF antenna; time step controls; scalar

 4

quantities derived from MHD equilibrium, such as the magnetic axis location and the { }min max,R R

and { }min max,Z Z of the last closed flux surface at the boundary of the core plasma.

• State_profiles: time dependent profile quantities (defined over one or more gridded
coordinates), such as: thermal plasma temperatures, densities, and flow velocities; distribution
function moments of non-thermal species; profiles describing the MHD equilibrium and field;
profiles of sources of particles, momentum, and energy due to neutral beams, applied RF wave
fields, cold neutral gas flow across the plasma boundary, pellet injection, etc., etc.

The PS software supports a locking mechanism for time-invariant initialization data sections; plasma state
I/O operations will flag an error condition if an unexpected change is detected in a locked data section.

The machine_description and shot_configuration sections can be loaded from commented
namelist files; the section to be loaded must be unlocked, and is then locked after the namelist data is read.

The PS exposes all state data to all physics components. As envisioned in the SWIM SciDAC software
design, the parts of these components that interact with the state will be written in fortran-95 and will
contain the header statement:

 USE plasma_state_mod

This will define several named structures (instances) of derived type (plasma_state): ps and psp,
corresponding to the current and prior plasma states, respectively, as well as additional copies of the plasma
state as may be needed: e.g. saw0 and saw1 for states at the start and end of a sawtooth event, respectively.

The plasma state inherits REAL(KIND=rspec) from SWIM—this specifies in effect a 64 bit IEEE floating
point data type, and is the only floating point (FP) data type used throughout the Plasma State Component.

The FP scalars ps%t1 and psp%t1 = ps%t0 give the times of the current and prior states, respectively. It is
thought that the plasma state snapshots—or at least the ones for which files are saved and full interpolation
capabilities are supported—will only be provided relatively infrequently in time. Some individual
components will need to operate on much finer time scales than will be resolved by the plasma state
evolution, and will need their own internal data structures to support this.

Integers specify array dimensions—i.e. the sizes of grids, the number of plasma species, the number of
neutral beams, the number of RF antennas, etc. Generally, these array sizes will not change in time, and in
fact the initial implementation of the PS component does not allow them to change in time, although this
restriction could be relaxed in the future if applications warrant.

Here are some examples of array dimensions, derived from the prototype state specification: ps%nspec_th
gives the number of thermal ion species, and for plasma parameter profiles ps%nrho gives the number of
radial grid points (radial zone boundaries), and the one-dimensional FP array ps%rho(1:ps%nrho) gives
the radial grid points themselves. Grids with the “rho” designation will correspond physically to a specific
flux coordinate ρ as defined above.

Thermal plasma parameters are dimensioned accordingly (here shown as zone oriented step function
representations of the parameters such as is typically used in finite difference codes):

 ps%ns(1:ps%nrho-1,0:ps%nspec_th) ! specie densities (0 for electrons)
 ps%Ts(1:ps%nrho-1,0:ps%nspec_th) ! specie temperatures (0 for electrons).

 5

Components will be responsible for the time evolution of profiles they own. Profile arrays when first
allocated within ps are set to zero. At the beginning of a cycle for time advance of the state, all profiles
will have their values from the prior time step. As components execute their respective time steps, more and
more of the state profiles will be updated. When all are up to date, the cycle is complete, the current state
becomes the past state, and the cycle is repeated for the next time step.

The state structures contain information to help track whether all component variables have been updated—
see the appendix, description of changes in the January 2007 release of the plasma state software.

The SWIM PS design supports a distributed architecture. Both the current and prior states can be saved to
and/or restored from NetCDF files. In plasma_state_mod, the following declaration defines the path to
the state files:

 CHARACTER*256 :: state_path = ‘ ’ ! blank (default) means $cwd

By default, state files are read and written from the current working directory. The filename is used to
indicate the type of state, as outlined in the following table:

name filename Description
ps cur_state.cdf Current working state.
psp prev_state.cdf Prior (committed) state—from previous time step cycle.
saw0 saw0_state.cdf State at start of sawtooth event.
saw1 saw1_state.cdf State at end of sawtooth event.
pel0 pel0_state.cdf State at start of pellet event.
pel1 pel1_state.cdf State at end of pellet event.
output output_state.cdf Intermediate state for output.

The following methods related to file-level plasma state I/O are defined in plasma_state_mod:

 SUBROUTINE ps_get_plasma_state(ierr) ! read ps state from file

SUBROUTINE ps_store_plasma_state(ierr) ! store updated ps state to file

It is envisioned that some physics components, running as separate processes or as scripts with pre- and
post-processing codes, will use these methods to read and write state. However, this can only be done for
components that are infrequently called and sufficiently time consuming in their own computations to
warrant the I/O cost. Fast components that are called frequently using small time steps will not be able to
afford this coupling technique, and will need to be more tightly integrated into the SWIM simulation—i.e.
linked into a larger executable, enabling memory-based communication.

It should be noted that all public plasma state component calls return a status code ierr. A non-zero value
indicates that an error occurred.

The subroutines ps_get_plasma_state and ps_store_plasma_state also accept the following optional
arguments:

 CHARACTER*(*), intent(in), optional :: filename ! full path

 ! if this is set, the state is read from or written to (filename);
 ! otherwise the filename is constructed based on the state instance

 6

 ! being read or written.

 TYPE (plasma_state), optional, target :: state

 ! read/write data to/from THIS state, if argument is present
 ! otherwise read/write to/from "ps" state.

Profiles can be defined over up to three coordinate grids. Components which provide state profile data
control both the grid and the “standard” interpolation method for the data. Components which use profile
data have three options:

1. Use the recommended interpolation provided with the state;
2. For profiles over certain coordinates, “rezone” with conservation of select integral properties.
3. Use the data on the provider’s grid, perhaps combined with private interpolation methods.

The recommended interpolation is part of the state definition. State implementation software supports four
choices for interpolation methods

1. Step function (data is zone oriented, size reduced by 1 in each coordinate dimension);
2. Piecewise linear, C0 (continuous);
3. Cubic Hermite, C1 (continuous 1st derivative);
4. Cubic Spline, C2 (continuous 2nd derivative).

The chosen method is indicated in the specification file swim_state_spec.dat. Here are some examples
of specifications:

R|units=m^-3|step ns(~nrho,0:nspec_th) ! thermal specie density
R|units=keV|step*ns Ts(~nrho,0:nspec_th) ! th. specie temperatures

These specifications define a set of density profiles with step function interpolation or rezoning with
conservation of the volume integral of ns, and, a set of temperature profiles with step function interpolation
or rezoning with conservation of the volume integral of ns*Ts. In the dimensioning, ~nrho is used as a
shorthand for nrho – 1, the dimensioning needed for zone oriented step function data.

The following specifications define a 1d cubic spline and a 2d bicubic spline respectively:

R|units=T*m|Spline_00 g_eq(nrho_eq) ! equilibrium R*|B_phi|
R|units=Wb/rad|Spline PsiRZ(nR,nZ) ! Psi(R,Z)

The designation Spline_00 denotes a cubic spline with an axial boundary condition:
0

lim 0
ρ ρ→

∂
=

∂
. Unless

otherwise specified, non-periodic spline boundary conditions default to “not-a-knot”, which means,
continous 3rd derivative at the nodal point 1 in from the boundary, a popular choice for spline interpolation.
At present no other control over spline boundary conditions is available, but it is not infeasible to add more
control in the specification language and code generator.

For every profile or array of profiles, an integer id or array of id values are defined:

 g_eq(nrho_eq) => ps%id_g_eq
 ns(~nrho,0:nspec_th) => ps%id_ns(0:ps%nspec_th)

 7

These generated integer values are maintained by the state software and are available as “handles” for
interpolation and conservative rezoning. These integer id values are provided as arguments to the
interpolation and rezoning routines provided with the state software. For example:

 CALL ps_intrp_1d(<target rho values>, ps%id_g_eq, <results>, ierr)

This routine will interpolate the current state g_eq profile to the user provided target rho values. The routine,
defined in plasma_state_mod, supports optional arguments that enable selection of current or prior state,
and derivatives up to the level supported by the providing component’s defined interpolation method. As of
January 2008, interpolation for profiles defined over 1 or 2 coordinates are implemented.

For quantities defined over the radial flux coordinate grid ρ , a conservative rezoning operation is
supported:

 do ispec=0,ps%nspec_th
 CALL ps_rho_rezone(<my rho grid>, ps%id_ns(ispec), my_dens(:,ispec), &

ierr)
 CALL ps_rho_rezone(<my rho grid>, ps%id_Ts(ispec), my_temp(:,ispec), &

ierr)
 end do

Or, using a vector of profile IDs:

 CALL ps_rho_rezone(<my rho grid>, ps%id_ns, my_dens, ierr)
 CALL ps_rho_rezone(<my rho grid>, ps%id_ns, my_temp, ierr)

For the vector calls, the dimensioning of the target arrays must be:

 my_dens(1:size(<my rho grid>)-1,0:ps%nspec_th) ! same as my_temp.

In these calls the density and temperature are interpolated by rezoning, such that the volume integrals of ns
and ns*Ts are conserved separately for each species, per the state specification. To be precise: what the
prototype denotes as the EQ component defines a profile of volumes; the handle is ps%id_vol. The call

 CALL ps_intrp_1d(<my rho grid>, ps%id_vol, my_vols(:),ierr)

would fetch an array of enclosed plasma volumes on the user’s grid. Then the following summations will
yield the same result (to machine precision), regardless of the number and spacing of points in <my rho
grid>:

 tsum(:) = 0.0_rspec

dsum(:) = 0.0_rspec

 DO ispec=0,ps%nspec_th
 DO irho=1,size(<my rho grid>) – 1
 dsum(ispec) = dsum(ispec) + &
 my_dens(irho,ispec)*(my_vols(irho+1)-my_vols(ihro))
 tsum(ispec) = tsum(ispec) + my_dens(irho,ispec)*
 my_temp(irho,ispec)*(my_vols(irho+1)-my_vols(ihro))

 END DO
 END DO

 8

This means that the volume rezoning is conservative with respect to an interpolation of the profile of
enclosed volumes ()Vol ρ (or ()Area ρ for current density rezoning) as defined by the EQ component.
With respect to the state’s internal (bicubic spline) representation of the equilibrium flux surfaces, the
volumes are exact to machine precision at the nodal points of the EQ component’s ρ grid, ps%rho_eq.

In the October 2006 state implementation prototype, ns and ts are step functions. If a rezone is done to a
grid finer than the one on which ns and ts are provided, the rezoned profile will show the behavior of the
underlying step function, with strong effect on the radial derivatives. This should be considered in deciding
whether a step function is the desired representation. However, ps_rho_rezone has an optional logical
argument zonesmoo that allows the step function to be smoothed with conservation of global integral
properties; e.g. for power densities the smoothing preserves the total power, and power over any subregion
will match that of the unsmoothed data over a subregion whose endpoints match within half a zone-width of
the original data.

Rezoning is allowed over profiles vs. (ρ) regardless of interpolation method—although the conserved
volume integral of an interpolating function will deviate slightly from the finite difference approximation of
the same quantity, as may be used in the component code’s internal representation of the data.

An important detail of the “rezone” calls is that the grid provided corresponds to zone boundaries (it actually
defines limits of numerically computed definite integrals), while the values returned correspond to zone
centers; therefore, the number of values returned is one less than the size of the grid provided. If the array
argument sizes do not follow this rule, or if <my rho grid> contains out of range points or is not in strict
ascending order, the subroutine will report an error condition.

The name ps_rezone is actually an alias (defined by a fortran-90 interface statement) to a family of
routines that allow rezoning of a single profile, or (in a single call) of a vector or even 2d array of profiles.
The following subroutine declaration shows only the version used for a single profile, but with all optional
arguments shown. The optional argument state allows selection of state instances other than ps:

 SUBROUTINE ps_rho_rezone(rho, id, ansv, ierr, &
 state, curdens, nonorm, zonesmoo, zonediff)

 !-------------- required arguments…
 REAL(KIND=rspec), dimension(:), intent(in) :: rho ! rezone target
 ! rho MUST span range [0:1]

 INTEGER, intent(in) :: id ! ID of profile to rezone

 REAL(KIND=rspec), dimension(:), intent(out) :: ansv ! results
 ! size(ansv) = size(rho) – 1 REQUIRED!

 INTEGER, intent(out) :: ierr ! completion code (0=OK)

 !-------------- optional arguments…
 TYPE (plasma_state), optional, target :: state
 ! operate on THIS state, if argument is present;
 ! otherwise use "ps" state.

 logical, intent(in), optional :: curdens ! T if quantity is a current
 ! density (area normalization); default is F (volume normalization).

 logical, intent(in), optional :: nonorm ! T to suppress density

 9

 ! normalization of ansv(); default is F.
 ! e.g. for heating profile return W/m^3 if F or defaulted; W/zone if T

 logical, intent(in), optional :: zonesmoo ! T to apply 1/2 zone width
 ! integral smoothing operator. Default is F. This option is not
 ! recommended unless mapping coarse step function data to a fine grid
 ! with requirement to remove step structure from smoothed interpolant.

 REAL(KIND=rspec), dimension(:), intent(out), optional :: zonediff
 ! the array of finite difference volumes (or AREAs if curdens=.TRUE.)
 ! corresponding to the rho(...) grid provided.
 ! size(zonediff) = size(rho) – 1 EXPECTED!

An additional general rezoning capability was added to the state software in April 2007, which allows the
user to conservatively rezone any profile function defined over one ρ grid to another ρ grid. This set of
routines, available under the alias ps_user_rezone, only uses the plasma state for equilibrium metric
data. As with ps_rho_rezone, the operation can be applied to a single profile, or a vector of profiles, or even
a 2d array of profiles. For simplicity, the example given will refer to only a single profile:

 call ps_user_rezone(<rho_orig>, <rho_target>, <f_orig>, <f_target>, ierr)

If the size of the input grid and input profile array are the same, the profile is assumed to be treated with
piecewise linear interpolation; this can be overridden with an optional argument. If the input profile array
size is one less than the grid size, it is treated as a zonal step function. The output <f_target> is always a
zonal step function and its array size must be one less than size of the target grid <rho_target>. The full
argument list for use with a single profile is shown below. Note that weighting profiles can be provided in
an optional argument. A weighting profile must not change sign. If the weighting profile is identically zero,
it is ignored, and <f_orig> is mapped without weighting. Typically, a density weighting is applied e.g. if a
profile to be mapped is a temperature or average energy.

If the routine is used with a vector of profiles, both arrays <f_orig> and <f_target> must contain
matching 2nd dimensions representing the number of profiles to be mapped; weighting profiles <w_orig> if
present must also have the same dimensioning. If the routine is used with a 2d array of profiles, then, the 2nd
and 3rd dimensions of <f_orig>, <f_target>, and <w_orig> (if present) must match.

 SUBROUTINE ps_user_rezone1(rho_orig, rho_target, f_orig, f_target, ierr, &
 w_orig, interp, &
 state, curdens, nonorm, zonesmoo, zonediff)

 !-------------- required arguments…
 REAL(KIND=rspec), dimension(:), intent(in) :: rho_orig ! input profile rho
 ! rho_orig MUST span range [0:1]
 REAL(KIND=rspec), dimension(:), intent(in) :: rho_target! output profile rho
 ! rho_target MUST span range [0:1]

 REAL(KIND=rspec), dimension(:), intent(in) :: f_orig ! input profile
 ! dimensioning must be consistent with rho_orig.
 REAL(KIND=rspec), dimension(:), intent(out) :: f_target ! results
 ! size(f_target) = size(rho_target) – 1 REQUIRED!

 INTEGER, intent(out) :: ierr ! completion code (0=OK)

 !-------------- optional arguments…
 REAL(KIND=rspec), dimension(:), intent(in), optional :: w_orig ! input

 10

 ! weighting profile; e.g. if <f_orig> and <f_target> are temperatures give
 ! <w_orig> as a density, to conserve n*T*dV in the mapping.
 ! dimensioning must be consistent with rho_orig.

 integer, intent(in), optional :: interp ! interpolation control for
 ! input profiles. Default, zonal step function, is REQUIRED if
 ! size(f_orig) = size(rho_orig) – 1; if size(f_orig) = size(rho_orig)
 ! the default is piecewise linear. Set interp=1 for C1 cubic Hermite
 ! interpolation, or C2 for C2 cubic Spline interpolation instead, if
 ! desired. These latter settings are only allowed if
 ! size(f_orig) = size(rho_orig)

 TYPE (plasma_state), optional, target :: state
 ! use metric data from THIS state, if argument is present;
 ! otherwise use "ps" state.

 logical, intent(in), optional :: curdens ! T if quantity is a current
 ! density (area normalization); default is F (volume normalization).

 logical, intent(in), optional :: nonorm ! T to suppress density
 ! normalization of f_target(); default is F.
 ! e.g. for heating profile return W/m^3 if F or defaulted; W/zone if T

 ! **NOTE** if the input data <f_orig> is present and <w_orig> is absent,
 ! AND if <f_orig> is a zonal STEP function,
 ! nonorm=T is taken to mean that the input data is also un-normalized, i.e.
 ! map W/zone W/zone (if nonorm=T); W/m^3 -> W/m^3 (if nonorm=F).
 ! if <w_orig> is present and nonorm=T AND <w_orig> is a zonal step
 ! function, it is assumed that <w_orig> is un-normalized—e.g. ptcls/zone
 ! not ptcls/m^3.

 logical, intent(in), optional :: zonesmoo ! T to apply 1/2 zone width
 ! integral smoothing operator. Default is F. This option is not
 ! recommended unless mapping coarse step function data to a fine grid
 ! with requirement to remove step structure from smoothed interpolant.

 REAL(KIND=rspec), dimension(:), intent(out), optional :: zonediff
 ! the array of finite difference volumes (or AREAs if curdens=.TRUE.)
 ! corresponding to the rho_target(...) grid provided.
 ! size(zonediff) = size(rho_target) – 1 EXPECTED!

Volume and Area elements associated with ps_rho_rezone and ps_user_rezone operations can be
fetched in separate calls using ps_rho_metric:

 call ps_rho_metric(“rho”,”dVol_eq”,dvols(1:ps%nrho-1),ierr)

retrieves volume elements, as used by the rezone routines, on the ps%rho grid. In the above example,
“rho” identifies the ps%rho grid; “dVol_eq” specifies ()Vol ρ defined over the ps%rho_eq (in the
ps%vol profile) which is used by the rezone routines. Another way to use ps_rho_metric, here to
retrieve area elements, is shown:

 call ps_rho_metric(“User1”,”dArea_eq”,dareas(1:ps%nrho-1),ierr, &
 user_rho_grid = ps%rho)

 11

In this case, the prefix “User” in the first argument is interpreted to mean that the rho grid is supplied
explicitly—the array values are provided via optional argument user_rho_grid, rather than the first
argument being a name reference to a grid defined in the state.

II. Sections of the State Specification File

The current state specification file plasma_state_spec.dat is distributed with the Plasma State source
code (i.e. in the SWIM svn repository; copies of the source are also in the TRANSP development system
and in the NTCC modules library distribution). A copy will also be placed in the component description
document section of the CSWIM website http://www.cswim.org. The file is heavily commented
with details of syntax, most of which will not be repeated here. Instead, a discussion of the purpose and
rationale for each section will be provided. Those interested in further details should obtain a copy of the
state specification file.

The specification file is split into sections, each of which will be described separately. The sections are:

1. Version_ID
2. Header
3. Components
4. Constants
5. Machine_Description
6. Shot_Configuration
7. Simulation_Init
8. State_Data
9. State_Profiles

Sections 4-9 contain multiple data element specifications, each of which maps to one or a set of primitive
data type elements in the plasma state (or PARAMETER declarations in the case of constants). The following
table shows the codes for element data types found in the various sections of the specification file:

Specification
Code

Fortran Declaration Description

I INTEGER Integer scalars and arrays.
R REAL(KIND=rspec) Floating point scalars and arrays and profiles.
N CHARACTER*32 32 character “names”—scalars and lists.
F CHARACTER*256 256 character “file paths”—scalars and lists.
C*nn CHARACTER*nn Character strings of specified length nn—scalars and lists.
L CHARACTER*32 List of named physical items, e.g. neutral beams.
S (mix) Species lists: names, integers, and floating point arrays are

allocated.
G REAL(KIND=rspec) Gridded discretizations of coordinates, over which profiles are

defined.

Not every data type is permitted in every section. For example, grids are expected to vary from simulation
to simulation, and so cannot be found in “Constants”. Also, grids define a resolution which generally refers
to a level of approximation, e.g. the number of zones in a finite difference scheme. Therefore, these
specifications, which vary from simulation to simulation, won’t be part of the “Machine description”.

 12

http://www.cswim.org/

The compound designators “L”, “S”, and “G” all define array dimensions which can be used subsequently to
dimension data and profile arrays. Arrays that use “G” dimensions are profiles and can only be given in the
State_Profiles section of the specification.

In what follows, each section of the plasma_state_spec.dat file is briefly described:

Version_ID:

A single line specifies a version ID with syntax n.mmm where n is the major version number and mmm the
minor revision number. For example, a version ID of 2.000 indicates the initial revision of version 2 of
the Plasma State software. This is written as a variable in any Plasma State NetCDF file and it is checked
whenever a state file is read, to determine if the file version ID matches that of the current software. It is
recommended that the Version_ID be incremented whenever the definition of state contents are modified,
i.e. when data elements are added, removed, or re-dimensioned. A Version_ID modification is not
required for updates to comments, header, or constants sections (described below).

Header:

Here, any header lines needed by plasma state generated code elements are provided verbatim. At present
this contains only a reference to “swim_global_data_mod”; the parameter “rspec” defining precision of
REAL variables is most widely used in the generated code. This root module also defines a fortran I/O unit
number for messages.

Components:

Here a list of named software components is specified. Every state element, while publicly accessible to all
components, is nominally owned by just a single specific component. The software generates an integer
index parameter for each component, which is used to enable selection of component subsets of the state
data, in display programs such as cstate.

Constants:

Here is given a list of definitions of constants which map to public PARAMETER definitions, visible to codes
which use plasma_state_mod. By convention, all named constants start with the prefix “ps_”. The
element data types that can occur in this section: R, I only.

Machine_Description:

Here, state elements are defined that correspond to a physical description of tokamak hardware. These are
items that are “bolted on” to the machine: not only time invariant within a simulation, but also unchanging
from shot to shot, usually for years in the lifetime of actual experimental devices. Generally, machine
description quantities would change only in case of a major hardware upgrade of the tokamak. Examples of
elements of the machine description are: vacuum vessel, limiter, divertor geometries; coil positions and
geometries, orientation and geometry of neutral beams, RF antennas, and diagnostics sets. (Note: As of
version 2.000 of the state software, the machine description is far from complete). The following element
data types can occur in this section: L, R, I, N, F, C*nn. In plasma_state_mod, the subroutine
ps_mdescr_read can be used to read a namelist containing a plasma state machine description. Within
each state, the element ps%lock_machine_descr indicates the lock status of the machine description:
ps_locked or ps_unlocked (see constants section). After initialization of a simulation, this section
should normally be locked.

 13

Shot Configuration:

Here are defined a set of physical quantities that are time invariant within a shot, but can vary from shot to
shot for a given tokamak experimental device. Examples of shot configuration information: the list of
plasma species (including impurities and ionization charge states) expected in the shot; the species injected
by each neutral beam; fusion product species; RF minority species. Also, the direction of the main toroidal
field and main toroidal current are specified here: the elements ps%kccw_Bphi and ps%kccw_Jphi are set
to +1 to indicate toroidal field and toroidal current flowing counter-clockwise, as viewed in the torus from
above, respectively. The following element data types can occur in this section: S, R, I, N, F, C*nn.
In plasma_state_mod, the subroutine ps_sconfig_read can be used to read a namelist containing a plasma
state shot configuration. Within each state, the element ps%lock_shot_config indicates the lock status
of the machine description: ps_locked or ps_unlocked. After initialization of a simulation, this section
should normally be locked.

Simulation_Init:

This section contains additional initialization data. This includes some information derived from the
machine description and shot configuration (e.g. the list of distinct beam species based on the species listed
as being injected by each individual neutral beam), and, it contains the specification of grids. The level of
approximation involved in a simulation is often tied to the fineness of its grids—this can vary from
simulation to simulation and is a “numerical” initialization rather than an initialization of a time invariant
physical quantity. The responsibility for initialization of this section is likely to be dispersed amongst the
implementing components, and so, there is no namelist. The following element data types can occur in this
section: G, S, R, I, N, F, C*nn. Within each state, the element ps%lock_sim_init indicates the
lock status of the machine description: ps_locked or ps_unlocked. After initialization of a simulation,
this section should normally be locked. However, this section might be unlocked e.g. to perform a dynamic
regridding operation. Such an operation would have to not only change the grid but arrange for re-mapping
of all profiles defined over the grid—requiring special coding.

State_Data:

Here are given specifications of scalar data and non-profile arrays that vary in time over the course of a
simulation. Examples are: the powers and voltages on each neutral beam; the powers and frequencies on
various RF antennas; equilibrium derived information such as the location of the plasma magnetic axis. The
element data types that can occur in this section: R, I, N, F, C*nn. Note that there are no array
dimension definitions here; these are all given in the initialization sections.

Profile_Data:

Here, profiles are defined. All are of type “R” and map to REAL(KIND=rspec) allocatable arrays.

Profiles have at least one and may have up to three grid dimensions.

Pure profiles (arrays with no “S” or “L” dimensioning) are to be enclosed in groups which should bring
together related items—although a group of length one is perfectly acceptable. Each group needs a physical
units label specification. In the state object, along with an allocatable array declaration for each specified
pure profile prof_name the python code also generates a scalar integer id_prof_name which can be used
as a handle for interpolation or rezoning of the profile.

 14

Profile arrays (arrays with “S” and/or “L” dimensioning) are declared outside group designators; these arrays
form their own groups with a separately named profile for each combination of indices of the non-grid
dimensions; each profile array also needs its own separate physical units label. In addition to the multi-
dimensional allocatable array prof_name, an integer allocatable array id_prof_name (with just the “S”
and/or “L” dimensioning) is provided for use as a handle for interpolation or rezoning of any of the
constituent profiles of the profile array.

This may best be illustrated by example. In the prototype plasma_state_spec.dat file, the specification

 R|units=MW/m^3|step picrf_srcs(~nrho_icrf,nicrf_src,0:nspec_alla)

will define an array of 1d profiles with “step function” interpolation; the “~” in the grid dimension signifies
the reduction by one of size in each grid dimension for zonal step functions. This declaration makes use of
the list and grid array dimensions from prior declarations in prior sections:

L|icrf_source icrf_src_name(nicrf_src) ! #, names of ICRF sources

 S|specie ALLA(0:nspec_alla) ! all species abridged (reduced impurities)

 G rho_icrf(nrho_icrf) ! rho grid for ICRF

These specifications will lead to declaration of elements in the plasma_state type definition:

 INTEGER, DIMENSION(:,:), ALLOCATABLE :: id_picrf_srcs

REAL(KIND=rspec), DIMENSION(:,:,:), ALLOCATABLE :: picrf_srcs

The dimension declarations provide label array declarations

 CHARACTER*32, DIMENSION(:), ALLOCATABLE :: alla_name
 CHARACTER*32, DIMENSION(:), ALLOCATABLE :: icrf_src_name

and are used to generate separate names for each profile element, needed by the state implementation
software; in particular, the profile data associated with the array slice:

 ps%picrf_srcs(1:ps%nrho_prf-1, irf_src, ispec)

will have internal name:

 ‘picrf_srcs_’//trim(rf_src_name(irf_src))//’_’//trim(alla_name(ispec))

and the interpolation handle array element

 ps%id_picrf_srcs(irf_src,ispec)

will be available to specify interpolation or rezoning of the corresponding profile information. It is
presumed that the integer indices irf_src and ispec are within ranges (1:nicrf_src) and
(0:nspec_alla), respectively.

The requirement that each profile have a unique name is enforced now to support anticipated future use in
visualization of output of running SWIM simulations.

All profiles include an interpolation method designation, and an optional weighting specification to define
the conservation properties of rezoning integrals. If there is no weighting designated, then, either the

 15

volume integral or the cross sectional area integral of the quantity (for current densities) will be conserved,
depending on an optional user-provided argument in the ps_rho_rezone call at runtime. If weighting is
designated in the specification file, the dimensioning of the weighting expression must exactly match the
dimensioning of the item being weighted.

Some discussion of interpolation methods and the relationship of profiles to grids is in order. For many
codes—i.e. finite difference codes, it is natural to represent profiles as zone oriented quantities—e.g. the
density, temperature, velocity, or source density covering an entire zone of finite extent. But, for any
continuous or continuously differentiable interpolating function, it is more natural to start with boundary
oriented data—indeed, it is necessary to do this at least at the end points in order to define an interpolating
function which covers the entire domain of the coordinates over which the profile data is defined.

In the plasma state, all grids are boundary oriented, in the sense that they are each required to cover the
entire range of the underlying coordinate—never just the entire range less half a zone width on either end of
each dimension.

As it becomes necessary to share data across codes with disparate grids, each physics component (or author)
needs to consider how that data should be made to appear. To avoid the “jaggedness” of a step function
representation, a zonal representation needs to either be mapped to a zone boundary grid prior to setup of an
interpolating function for use within the PS, or, augmented zonal data can be used with additional points
provided to meet the end points of underlying grids specifically set up for this purpose.

Of course, the use of continuous interpolating functions implies generally small changes in profile
“normalizations”, e.g. volume integrals, compared to underlying zonal representations. Are such differences
important? Probably not in determining the behavior of an overall simulation, but, a failure to appreciate the
sources of such small differences could lead to confusion during debugging of the data connections between
physics components (e.g. a failure of power to be conserved to 10 digits accuracy in a transfer between
components involving interpolation). Also, issues with conservation of volume or area integrals can be
sensitive in the axial region, where differential area and volume elements approach zero.

To summarize profiles—the PS provides a capability for sharing of profile data, either directly on the
provider physics component defined grid, or, indirectly via interpolation. Indeed it provides a range of
methods for doing this, and a code generator method that allows techniques to be swapped easily.
Nevertheless, each component will need some consideration of strategy for the handling of its output, and,
some degree of adaptation to the PS requirement that all profiles cover the entire range of their underlying
coordinates.

III. Methods of Access to Plasma State Data

(Author’s note: some of the subroutines present in version 1.xxx of the Plasma State have been removed.
Generally, the information returned by those routines is now available by reading state elements directly).

The individual elements of plasma state instances are publicly available—they can be read or written by any
component. Although the software checks at various times for modifications to elements of locked sections,
and will report errors in case of such modifications, there is no such thing as a “private element” that cannot
be modified in the first place. Similarly, while certain protocols for proper sharing of state data may become
apparent—e.g. that component outputs only be set by software that implements the component—these
protocols will not be enforced by the Plasma State software itself.

 16

So, in many instances, access to state data is simply a matter of reading and/or writing elements of an
instance of the plasma state.

Here, for example, are some state elements which are meant to broadly identify a simulation:

Label element Declaration Meaning
ps%tokamak_id “N”: CHARACTER*32 Name of tokamak—short, no imbedded blanks.
ps%shot_number “I”: INTEGER Shot number.
ps%runid “N”: CHARACTER*32 Name of simulation—short, no imbedded blanks.
ps%global_label “C*80”: CHARACTER*80 Brief description of simulation.

In the above, ps%tokamak_id is part of the machine description, ps%shot_number is part of the shot
configuration, and ps%runid and ps%global_label are part of the simulation init section. This
information may be of use to components in generating informative messages and output about the
simulation, in their own local formats.

In addition to direct access to state elements, a number of routines are provided by the Plasma State, to
implement such functionality as I/O, memory allocation, and facilities such as interpolation and rezoning of
profiles.

In the rest of this chapter, the fortran-95 public interface to the Plasma State component is described in
detail—as defined in plasma_state_mod. (An appendix will describe the C/C++ interface). The
following table summarizes the available routines:

Name Category Summary Description
PS_mdescr_read Initialization Read machine description namelist.
PS_sconfig_read Initialization Read shot configuration namelist.
PS_alloc_plasma_state Initialization Incrementally allocate state arrays.
PS_get_plasma_state Time loop Read updated state from file.
PS_store_plasma_state Time loop Write newly updated state to file.
PS_state_memory_update Time loop Update interpolation functions but do not write.
PS_write_update_file Time loop (component) Write plasma state: changed elements only.
PS_read_update_file Time loop (driver) Read file containing state updates.
PS_copy_plasma_state Time loop (events?) Copy the state. Partial copies now allowed.
PS_commit_plasma_state Time loop (completion) Copy current state to past time step and save file.
PS_update_equilibrium Time loop Update MHD equilibrium from G-eqdsk file.
PS_intrp_1d Interpolation (general) Generic—Interpolate 1d profiles.
PS_intrp_2d Interpolation (general) Generic—Interpolate 2d profiles.
PS_intrp_3d (not yet implemented) Generic—Interpolate 3d profiles.
PS_rho_rezone Conservative rezone Generic—Rezone profiles of form f(rho).
PS_rhoth_rezone (not yet implemented) Generic—Rezone profiles of form f(rho,theta).
PS_user_rezone Conservative rezone Generic—Rezone user provided profiles f(rho).
PS_default_filepath Utility Default file path associated with state object.
PS_init_user_state Utility Register a user-provided state object.
PS_rho_metric Utility Return metric flux surface averages or integrals.
PS_cclist_add Utility Add component to list of components.
PS_cclist_remove Utility Remove component from list of components.

 17

Detailed descriptions and explanation of subroutine arguments follow for some of these routines. For the
remainder, see the source code, location of which is given in the appendix.

 SUBROUTINE PS_MDESCR_READ(filename, ierr, state, g_filename)

 !---
 !
 ! PS_MDESCR_READ
 !
 ! Read machine description namelist into (empty) state.
 ! Optionally specify a G-eqdsk file which can override the namelist
 ! Rmin/max, Zmin/max, and limiter contour.
 !
 ! Read this namelist BEFORE reading SCONFIG namelist!
 !---

 !--
 !
 ! Declare argument variables
 !
 !--

 character*(*), intent(in) :: filename ! name of file to read

 integer, intent(out) :: ierr ! exit status code (0=OK)

 TYPE (plasma_state), optional, target :: state
 ! write from THIS state, if argument is present
 ! otherwise write from "ps" state.

 character*(*), intent(in), optional :: g_filename ! G-eqdsk file name
 !---

The above routine reads the machine description namelist.

 SUBROUTINE PS_SCONFIG_READ(filename, ierr, state)

 !---
 !
 ! PS_SCONFIG_WRITE
 !
 ! Read shot configuration namelist into (nearly empty) state.
 ! Read this namelist only AFTER reading MDESCR namelist!
 !
 ! When done, complete species lists: make calls to:
 ! ps_label_species
 ! ps_merge_species_lists
 ! ps_neutral_species
 !
 ! NOTE: state elements state%Z0max, state%Zimp1, and state%Zimp2
 ! affect these last 3 calls:
 ! Z0max: max atomic number of recycling neutral species
 ! Zimp1: lower limit on Z of low-Z impurity for reduced species list
 ! Zimp2: upper limit on Z of high-Z impurity for reduced species list
 ! Defaults are in the state definition: Z0max=2; no lower limit, no
 ! upper limit. For other choices, caller must reset these values

 18

 ! BEFORE calling PS_SCONFIG_READ.
 !---

 !--
 !
 ! Declare argument variables
 !
 !--

 character*(*), intent(in) :: filename ! name of file to read

 integer, intent(out) :: ierr ! exit status code (0=OK)

 TYPE (plasma_state), optional, target :: state

 ! read data into THIS state, if argument is present
 ! otherwise read data into "ps" state.

The above routine reads a shot configuration namelist. The machine description namelist should be read
first. Additional species list initialization is performed, with options that can be controlled by user settable
state elements, as described in the comments.

 SUBROUTINE PS_ALLOC_PLASMA_STATE(ierr)

 !---
 !
 ! PS_ALLOC_PLASMA_STATE
 !
 ! incrementally allocate current state arrays
 ! allocate arrays for which non-zero dimensions are defined.
 ! Once allocated, the array size cannot be changed!
 !
 ! Generally used only during initialization of a simulation.
 !---

 integer, intent(out) :: ierr ! exit status code (0=OK)

Use PS_alloc_plasma_state to incrementally allocate arrays in the plasma_state object ps. The routine
only allocates arrays for which all dimensions are non-zero. At present, ps element arrays can only be
allocated once—once allocated, their sizes cannot be changed. To use this routine, explicitly set the array
dimensions prior to making the call. For example:

 ps%nrho_eq = 51
 ps%nth_eq = 101
 call PS_alloc_plasma_state(ierr)

This sequence will allocate arrays whose sizes are now fully determined due to the specification of the two
additional array dimensions. When ps is first instantiated, all its array dimensions are zero.

This routine is used only during initialization. State arrays can also be allocated by other means—e.g.
reading a state file which contains the necessary dimensioning information.

 SUBROUTINE ps_get_plasma_state(ierr, filename, state)

 !---

 19

 !
 ! PS_GET_PLASMA_STATE
 !
 ! This subroutine reads a plasma state file and puts the data into the
 ! semi-public variables declared in plasma_state_definitions_mod
 !
 ! It also updates the prior state-- from file if available, otherwise
 ! by copying the current state.
 !
 ! PS_GET_PLASMA_STATE is to be called from GET_PLASMA_STATE_<COMP>
 ! routines
 !
 !---

 INTEGER, INTENT(out) :: ierr ! exit status code (0=OK)

 CHARACTER*(*), intent(in), OPTIONAL :: filename ! full path to file to
 ! read (overrides default file path if specified).

 TYPE (plasma_state), OPTIONAL :: state ! state object to be updated from
 ! file – updated state is the “ps” state if this is defaulted.

The above routine reads the current plasma state (or user specified state if the optional state argument is set).
Arrays are allocated if necessary. Each state has a standard filename and the directory (file path) is given in
the global variable state_path (default value: blank for “current working directory”).

 SUBROUTINE ps_store_plasma_state(ierr, filename, state)

 !---
 !
 ! PS_STORE_PLASMA_STATE
 !
 ! This subroutine updates the internal state representation and
 ! writes a plasma state file.
 !
 ! PS_STORE_PLASMA_STATE is to be called from PUT_PLASMA_STATE_<COMP>
 ! routines. These must re-allocate the output arrays of semi-public data
 ! and load the semi-public data from the output of the component code
 !
 !---

 INTEGER, INTENT(out) :: ierr ! exit status code (0=OK)

 CHARACTER*(*), intent(in), OPTIONAL :: filename ! full path to file to
 ! write (overrides default file path if specified).

 TYPE (plasma_state), OPTIONAL :: state ! state object to be written out
 ! to file – the “ps” state if this argument is defaulted.

The above routine checks and updates any interpolating functions, and stores the plasma state in a disk file.

 SUBROUTINE ps_state_memory_update(ierr, state)

 !---
 !
 ! PS_STATE_MEMORY_UPDATE

 20

 !
 ! This subroutine updates the internal state representation but does
 ! not write a state file-- better performance when a state update is
 ! required for cooperation of components that are co-resident in memory
 ! e.g. within a single process.
 !
 !---

 INTEGER, INTENT(out) :: ierr

 TYPE (plasma_state), OPTIONAL :: state ! state object to be updated –
 ! the “ps” state if this argument is defaulted.

The above routine checks and updates any interpolating functions, without writing a state file. This is more
efficient and may be useful for state updates between cooperating physics components running within the
scope of a single executable program.

 SUBROUTINE ps_commit_plasma_state(ierr, filename)

 !---
 !
 ! PS_COMMIT_PLASMA_STATE
 !
 ! save current state in past time step file;
 ! update past time step copy of state; i.e. copy ps => psp.
 !
 !---

 integer, intent(out) :: ierr ! exit status code (0=OK)

 CHARACTER*(*), intent(in), OPTIONAL :: filename ! full path to file to
 ! write (overrides default file path if specified).

The above routine copies the current state to the prior state (ps => psp) and saves the prior state in the file
filename or “prev_state.cdf” if the optional filename argument is omitted. Note that the current state
is not written to a file as a result of this call.

 SUBROUTINE ps_copy_plasma_state(old_state, new_state, ierr, cclist)

 !---
 !
 ! PS_COPY_PLASMA_STATE
 !
 ! Copy the contents of “old_state” to “new_state”. Any prior contents
 ! of “new_state” are destroyed.
 !
 ! By default, all grids and profiles of “old_state” are copied. However,
 ! by “turning off” individual components in the component list array
 ! (optional argument) “cclist”, grids and profiles may be omitted from
 ! the copy on a component-by-component basis.
 !
 !---

 TYPE (plasma_state) :: old_state ! state object to be copied
 TYPE (plasma_state) :: new_state ! state object copied into.

 21

 ! old contents of new_state are destroyed.

 INTEGER, INTENT(out) :: ierr

 INTEGER, INTENT(in), OPTIONAL :: cclist(ps_ccount)
 ! list of components for which to copy grids and profiles
 ! if omitted, ALL grids and profiles are copied.
 ! copy <component> grids and profiles if
 ! cclist(ps_cnum_<component>)=1
 ! do NOT copy if cclist(ps_cnum_<component>)=0
 ! NOTE: utility routines “ps_cclist_add” and
 ! “ps_cclist_remove” can be used to manipulate cclist.
 ! ps_ccount is the number of known components in the state
 ! see plasma_state_kernel/plasma_state_util_mod.f90

The above routine copies the contents of a plasma state object. By default, the entire contents are copied,
but, the optional array cclist can be used to modify this behavior, as described in the comments (the
reason for this option is to allow a state component’s grids to be redefined, e.g. to change the grid resolution.
Here is some code that illustrates usage:

 USE plasma_state_mod

 INTEGER :: comlist(ps_ccount) ! list of “activated” components
 INTEGER :: iwarn, ierr

 CALL ps_cclist_add(‘*’, comlist, iwarn) ! activate all components except…
 CALL ps_cclist_remove(‘FP’, comlist, iwarn) ! deactivate “FP” component

 CALL ps_copy_plasma_state(ps, aux, ierr, cclist=comlist)

The contents of the “ps” are copied to “aux”, except that the grids and profiles of the “FP” component are
omitted in the copy.

 SUBROUTINE ps_update_equilibrium(g_filename,ierr)

 !---
 !
 ! PS_UPDATE_EQUILIBRIUM
 !
 ! update MHD equilibrium from a G-EQdsk file; update associated
 ! state profile quantities (e.g. metrics and flux surface averages).
 !---

 character*(*), intent(in) :: g_filename ! G-eqdsk filename or MDS+ path
 integer, intent(out) :: ierr ! exit status code (0=OK)

The above routine updates the equilibrium profiles from a G-eqdsk (EFIT style) file. Profiles associated
with the equilibrium—volumes, areas, flux surface averaged metrics and field quantities are also updated,
along with their interpolating functions—but, no file is written. This call is somewhat time consuming and
should not be repeated on too fine a time scale.

 SUBROUTINE ps_intrp_1d(x,id,ans,ierr,state,ideriv,iderivs,iccw_th)

 ! INTERPOLATION of 1d profiles – GENERIC interface

 22

 x (input) is the target of the interpolation – can be scalar REAL(KIND=rspec) or a singly dimensioned
vector of REAL(KIND=rspec). For non-periodic coordinates, the x argument(s) must all be within the
coordinate’s range []min max:x x . Periodic coordinates will be brought into range apply 2π shifts as needed.

 id (input) specifies the profile or profiles to be interpolated – INTEGER, it can be scalar, or a 1d list of
profile ids, or a 2d array of profile ids.

 ans (output) is the scalar or array or multiply dimensioned array receiving the results of the interpolation
– REAL(KIND=rspec), its dimensioning must be precisely consistent with the x and id arguments. If x is
a vector, the size of the 1st dimension of ans must match the size of x precisely. If id is an array,
subsequent dimension sizes of ans must precisely match the corresponding dimension sizes of id.

 ierr (output) is the completion status code (0=OK).
 state (TYPE(plasma_state) OPTIONAL input) specify state out of which to perform the

interpolation; default is the current state.
 ideriv (INTEGER, OPTIONAL input) can be used to specify that derivatives rather than profile values

be returned. The default is 0, no derivative. 1 denotes 1st derivative; 2 denotes 2nd derivative. Derivatives
are with respect to the independent coordinate of the profile.

 iderivs (INTEGER, DIMENSION(…), OPTIONAL input) can be used to control derivatives separately
for each profile, in case multiple profile id values are provided. If this is present, it overrides ideriv.

 iccw_th (INTEGER, OPTIONAL input). This control is germane only for an interpolation of a profile
defined over poloidal angle θ . It specifies the desired orientation of the poloidal angle coordinate as it is to
be interpreted for the current call. Legal values are ps_ccw_select (the default) and ps_ccw_reverse—
these constants defined in plasma_state_mod.

The above describes the generic interface for 1d profile interpolation, where 1d refers to the number of
spatial coordinates over which the profile is defined. For each profile (or array of profiles) an id (or array of
id values) is maintained by the state software, for use in interpolation calls. For example, while

 ps%ns(:,ispec)

contains the densities for species (ispec) over the grid ps%rho(1:ps%nrho), if values are wanted at
different locations, the integer handle

 ps%id_ns(ispec)

is available and can be used for the id argument in the ps_intrp_1d interface.

 SUBROUTINE ps_intrp_2d(x1,x2,id,ans,ierr,state, &
 ideriv1,ideriv2,ideriv1s,ideriv2s,iccw_th)

 ! INTERPOLATION of 2d profiles – GENERIC interface

 x1,x2 (input) is the target of the interpolation – can be scalar REAL(KIND=rspec) or a singly

dimensioned vector of REAL(KIND=rspec). For non-periodic coordinates, the x argument(s) must all be
within the coordinate’s range []min max:x x . Periodic coordinates will be brought into range apply 2π shifts
as needed; all input vectors must be of the same size.

 id (input) specifies the profile or profiles to be interpolated – INTEGER, it can be scalar, or a 1d list of
profile ids, or a 2d array of profile ids.

 ans (output) is the scalar or array or multiply dimensioned array receiving the results of the interpolation
– REAL(KIND=rspec), its dimensioning must be precisely consistent with the x1,x2 and id arguments. If

 23

x1 is a vector, the size of the 1st dimension of ans must match the size of x1 precisely. If id is an array,
subsequent dimension sizes of ans must precisely match the corresponding dimension sizes of id.

 ierr (output) is the completion status code (0=OK).
 state (TYPE(plasma_state) OPTIONAL input) specify state out of which to perform the

interpolation; default is the current state.
 ideriv1,ideriv2 (INTEGER, OPTIONAL input) can be used to specify that derivatives rather than

profile values be returned. The default is 0, no derivative. 1 denotes 1st derivative; 2 denotes 2nd derivative.
Derivatives are with respect to the independent coordinate of the profile (ideriv1 for the 1st coordinate as it is
declared in the state specification; ideriv2 for the 2nd coordinate).

 ideriv1s,ideriv2s (INTEGER, DIMENSION(…), OPTIONAL input) can be used to control
derivatives separately for each profile, in case multiple profile id values are provided. If these are present,
they overrides ideriv1 and/or ideriv2.

 iccw_th (INTEGER, OPTIONAL input). This control is germane only for an interpolation of a profile
defined over poloidal angle θ . It specifies the desired orientation of the poloidal angle coordinate as it is to
be interpreted for the current call. Legal values are ps_ccw_select (the default) and ps_ccw_reverse—
these constants defined in plasma_state_mod.

The above is the interface for 2d interpolation—applicable to profiles are sets of profiles with 2 independent
coordinates as declared in the state specification. The order of coordinates is as declared in the specification,
i.e. coordinate #1 corresponds to the leftmost grid dimension. The use of the id argument is described in the
text for the ps_intrp_1d generic interface.

 SUBROUTINE ps_intrp_3d(x1,x2,x3,id,ans,ierr,state, &
 ideriv1,ideriv2,ideriv3,ideriv1s,ideriv2s,ideriv3s, &
 iccw_th)

 ! INTERPOLATION of 3d profiles – GENERIC interface

 x1,x2,x3 (input) is the target of the interpolation – can be scalar REAL(KIND=rspec) or a singly

dimensioned vector of REAL(KIND=rspec). For non-periodic coordinates, the x argument(s) must all be
within the coordinate’s range []min max:x x . Periodic coordinates will be brought into range apply 2π shifts
as needed; all input vectors must be of the same size.

 id (input) specifies the profile or profiles to be interpolated – INTEGER, it can be scalar, or a 1d list of
profile ids, or a 2d array of profile ids.

 ans (output) is the scalar or array or multiply dimensioned array receiving the results of the interpolation
– REAL(KIND=rspec), its dimensioning must be precisely consistent with the x1,x2,x3 and id
arguments. If x1 is a vector, the size of the 1st dimension of ans must match the size of x1 precisely. If id
is an array, subsequent dimension sizes of ans must precisely match the corresponding dimension sizes of
id.

 ierr (output) is the completion status code (0=OK).
 state (TYPE(plasma_state) OPTIONAL input) specify state out of which to perform the

interpolation; default is the current state.
 ideriv1,ideriv2,ideriv3 (INTEGER, OPTIONAL input) can be used to specify that derivatives

rather than profile values be returned. The default is 0, no derivative. 1 denotes 1st derivative; 2 denotes 2nd
derivative. Derivatives are with respect to the independent coordinate of the profile (ideriv1 for the 1st
coordinate as it is declared in the state specification; ideriv2 for the 2nd coordinate, etc.).

 24

 ideriv1s,ideriv2s,ideriv3s (INTEGER, DIMENSION(…), OPTIONAL input) can be used to
control derivatives separately for each profile, in case multiple profile id values are provided. If these are
present, they overrides ideriv1 and/or ideriv2 and/or ideriv3.

 iccw_th (INTEGER, OPTIONAL input). This control is germane only for an interpolation of a profile
defined over poloidal angle θ . It specifies the desired orientation of the poloidal angle coordinate as it is to
be interpreted for the current call. Legal values are ps_ccw_select (the default) and ps_ccw_reverse—
these constants defined in plasma_state_mod.

The above is the interface for 3d interpolation—applicable to profiles are sets of profiles with 3 independent
coordinates as declared in the state specification. The order of coordinates is as declared in the specification,
i.e. coordinate #1 corresponds to the leftmost grid dimension. The use of the id argument is described in the
text for the ps_intrp_1d generic interface.

The 3d interpolation interface is not implemented as of October 2006.

SUBROUTINE ps_rho_rezone(rho, id, ansv, ierr, &
 state, curdens, nonorm, zonesmoo, zonediff)

 ! “RHO” rezone of f(RHO) profiles – GENERIC interface.

 rho (REAL(KIND=rspec), DIMENSION(:), input) the user ρ grid defining the boundaries of the set
of zones for the rezoning of the data—the number of zones is one less than the number of boundaries. The
rho vector must be in ascending order and must precisely span the range [0:1].

 id (input) specifies the profile or profiles to be rezoned – INTEGER, it can be scalar, or a 1d list of profile
ids, or a 2d array of profile ids.

 ansv (output) is the vector or multiply dimensioned array receiving the results of the rezoning –
REAL(KIND=rspec), its dimensioning must be precisely consistent with the rho and id arguments. The
size of its 1st dimension must be exactly size(rho) – 1. If id is an array, subsequent dimension sizes of
ansv must precisely match the corresponding dimension sizes of id.

 ierr (output) is the completion status code (0=OK).
 state (TYPE(plasma_state) OPTIONAL input) specify state out of which to perform the

interpolation; default is the current state.
 curdens (LOGICAL, OPTIONAL input, default FALSE)—set TRUE to request that the area integral

rather than the volume integral should be preserved by rezoning—i.e. for current density profiles A/m^2.
 nonorm (LOGICAL, OPTIONAL input, default FALSE)—set TRUE to request output in unnormalized

form, e.g. Watts/zone for a heating profile; Amps/zone for a current drive profile.
 zonesmoo (LOGICAL, OPTIONAL input, default FALSE)—set TRUE to request output be treated with a

½ zone width smooth, as may be appropriate when mapping data from a coarse grid to a fine grid.
 zonediff (REAL(KIND=rspec), DIMENSION(:), OPTIONAL, output)—the volumes (or if

curdens=T the cross-sectional areas) of the rho zones defined by the user’s rho grid; size(zonediff) =
size(rho) – 1 is required.

This routine can be used to rezone profiles to a user’s grid, with conservation of integral properties—either a
volume integral (curdens=FALSE) or an area integral (curdens=TRUE). The state specification allows a
weighting profile to be specified for rezoning integrals—using density weighting allows e.g. temperatures

to be rezoned in such a way that the volume integral of T ()nT is conserved.

 25

SUBROUTINE ps_rhoth_rezone(…)

2d flux coordinate rezone – the interface is not yet defined.

SUBROUTINE ps_ mhdeq_derive(action, ierr, state)

 !---
 !
 ! PS_MHDEQ_DERIVE
 !
 ! compute flux surface averages and other profiles derived from
 ! the MHD equilibrium geometry and fields
 !---

 !--
 !
 ! Declare local variables
 !
 !--

 character*(*), intent(in) :: action ! specify action(s) to be taken

 ! computations are performed according to keyword substrings found in
 ! "action" (converted to UPPERCASE in actu).

 integer, intent(out) :: ierr ! exit status code (0=OK)

 !-------------------
 ! OPTIONAL variables...

 TYPE (plasma_state), target, OPTIONAL :: state ! update *this* state
 ! the default is to update the "ps" state.

This subroutine updates the MHD equilibrium derived metric and field flux surface averaged quantities.

In version 2.001 of the Plasma State, metric and field flux surface averages computed in the subroutine
ps_rho_metric (described below) were promoted to be full fledged elements of the Plasma State
definition. These are all 1d profiles defined over the grid ps%rho_geo_eq(1:ps%nrho_geo_eq). The
full set of such profiles can be see in plasma_state_spec.dat ; the following is an example:

 R|units=m^-4|pclin grho2r2i(nrho_eq_geo) ! <|grad(rho)|^2/R^2>

If the rho_geo_eq grid has been defined, these metric profiles can all be checked and updated with the call:

 CALL ps_mhdeq_derive(‘All’, ierr) ! in state “ps”, or…
 CALL ps_mhdeq_derive(‘All’, ierr, state=<user-specified-state-instance>)

The set of available metrics now includes all the quantities needed for the widely used NCLASS
neoclassical model.

 26

SUBROUTINE ps_rho_metric(rho_name, metric_name, answer, ierr, &
 state, user_rho_grid)

This routine can be used to compute metric elements and field averages on any ρ grid. The arguments are:

 CHARACTER*(*), INTENT(in) :: rho_name ! name of ρ grid in the state (e.g. “rho_fp”)
or, a name starting with the prefix “USER” if the grid is to be specified via the optional array input argument
user_rho_grid.
 CHARACTER*(*), INTENT(in) :: metric_name ! name of metric element to compute – see
table.
 REAL(KIND=rspec), DIMENSION(:), INTENT(out) :: answer ! result of calculation.
 INTEGER, INTENT(out) :: ierr ! completion status: 0 = OK

 TYPE (plasma_state), OPTIONAL :: state ! state instance to use for equilibrium. The
default is the current state “ps”.
 REAL(KIND=rspec), DIMENSION(:), INTENT(IN), OPTIONAL :: user_rho_grid !
user provided ρ grid. This must be specified if rho_name starts with the prefix “USER”; it must not be
specified otherwise.

The following table lists some of the available metric elements as of April 2007. The complete list is the set
of metric and field average quantities supported by the XPLASMA NTCC module as documented on the
web under the software catalog at http://w3.pppl.gov/NTCC. This is essentially the list of metric
quantities that have been requested in the TRANSP code over the years. The metric_name is the actual
literal character string to be input as the 2nd argument to ps_rho_metric subroutine call; the size “N”
refers to boundary oriented results (size same as referenced ρ grid); “N-1” refers to zone-oriented results
(size one less than the ρ grid). The metric_name character string is interpreted in a case insensitive
manner, i.e. values “dVol” and “DVOL” will yield identical results.

Flux surface averages are represented by angle brackets; the definition is:

()

()

Rdlf
f Rdl

ρ

ρ

∇
=

∇

∫

∫

metric_name; size Symbol Summary Description; units.
DVOL; N-1 VΔ Volume element, by zone, (exact integration). 3m
DVOL_EQ; N-1

EQVΔ Volume element, by zone, (from ps%vol
interpolation on ps%rho_eq grid).

3m

VOL; N ()V ρ Volume enclosed by flux surface ρ , . 3m
DAREA; N-1 AΔ Cross-sectional area element, by zone, (exact

integration).

2m

DAREA_EQ; N-1
EQAΔ Cross-sectional area element, by zone, (from

ps%area interpolation on ps%rho_eq grid).

2m

AREA; N ()A ρ Cross-sectional area enclosed by surface ρ , . 3m

 27

http://w3.pppl.gov/NTCC

SURF; N ()S ρ Surface area of flux surface, . 2m
LPOL; N Lθ Poloidal path length around flux surface, . m
DVDRHO; N dV

dρ Flux surface averaged differential volume, . 3m
<R>S; N R Flux surface averaged major radius, m .

<R^2>S; N 2R Flux surface averaged 2R , . 2m
<1/R>S; N 1R− Flux surface averaged inverse major radius, 1m− .
<1/R^2>S; N 2R− Flux surface averaged 2R− , . 2m−

<1/R^3>S; N 3R− Flux surface averaged 3R− , . 3m−

<grad(rho)^2/R^2>S; N 2 2Rρ∇
4m− .

<grad(rho)>S; N ρ∇ 1m− .
<grad(rho)^2>S; N 2ρ∇

2m− .

<grad(rho)^2/R^3>S; N 2 3Rρ∇
5m− .

<R^2*grad(rho)^2>S; N 22R ρ∇ Dimensionless.

<1/(R*grad(rho))>S; N ()1 R ρ∇ Dimensionless.

S; N B Flux surface averaged magnetic field, . T
<B^2>S; N 2B 2T .
<1/B>S; N 1B− 1T − .
<1/B^2>S; N 2B− 2T − .
<BZ^2>S; N 2

ZB Flux surface average involving vertical field, . 2T
<grad(rho)^2/B^2>S; N 2 2Bρ∇

2 2m T− − .

<SQRT(1-B/BMAX)>S; N

max

(,)1
()

B
B
θ ρ

ρ
−

Flux surface averaged relation of B to the

maximum B occurring on a flux surface
(dimensionless).

By omitting the “S” suffix, zonal averages of the above quantities can also be returned, but, this is
more expensive computationally; generally the flux surface averages are sufficient in applications.

1N −

The accuracy of the integration results (with respect to the bicubic spline MHD equilibrium representation
given in the state) is close to 64 bit machine precision, except in the case of the expression involving the
square root. In this case, due to the singularity at maxB B= , the accuracy is about one part in . 410−

 28

If more than one integration is evaluated, the speed of evaluation is greatly aided by caching interpolated
equilibrium related information (, ,R Z B and derivatives) at the integration nodal points. This data is
cached within the state internal memory structures separately for each ρ grid on which integrations or flux
surface averages are requested. Such memory caches are flushed each time the state’s MHD equilibrium
changes.

IV. Design and Interface Issues

The most urgent next step is (still) to test whether the Plasma State Component design and prototype
(Version 2.xxx) presented here is within range of meeting the requirements of SWIM and other SciDAC
projects.

To find out, it will be necessary to develop a realistic state specification and deploy it for a real application.
This can be done by any of the FSP-prototype SciDACs, not just SWIM; it can also be done in the
PTRANSP collaboration. It will be necessary, though, for persons other than the immediate authors to have
a careful look at the state specification, and to think through its application.

The version 1.000 prototype state was based on a transcription of appendix 2 of the SWIM IPS design
document, which however has evolved somewhat in the course of testing and development of the prototype.
The state specification will clearly need some further fleshing out.

Version 2.000 arose out of experience using version 1.000 in the SWIM SciDAC project, as were assessed at
the October 2007 SWIM project workshop at ORNL. The major modifications are as outlined at the
beginning of this report, just after the abstract.

Some technical questions come to mind:

• Are LOGICAL state variables needed? There is some advantage to avoiding them—e.g. no LOGICAL
data type in NetCDF files.

• What additional coordinates and grids should be supported? Are items defined over velocity space
coordinates destined for the state?

 29

V. Appendix.

The current plasma state specification, implementing software, and test driver, are now committed in the
SWIM source repository (https://cswim.org/svn/cswim):

• Specification: components/state/src/plasma_state/plasma_state_spec.dat.
• Test driver: components/state/src/test/plasma_state_test.f90.
• Test output: components/state/src/test/plasma_state_test.ref_output.
• Public module: components/state/src/plasma_state/plasma_state_mod.f90.
• Source library: components/state/src/plasma_state/*.f90.
• Python generator: components/state/src/plasma_state/*.py.
• Xplasma2 implementation code: components/state/src/ps_xplasma2/*.f90.
• State definition and kernel: components/state/src/plasma_state_kernel/*.f90.

The plasma state software itself will build into three libraries that are to be linked to applications in the order
shown: plasma_state.a, ps_xplasma2.a, plasma_state_kernel.a. (Slightly different names for
these libraries may be selected by the cswim Makefile system).

Dependencies arise from the xplasma2 implementation, which pulls in NTCC/TRANSP developed libraries
for equilibrium representation and I/O, spline interpolation, etc. The following table gives the list of
libraries in use as of January 2007; the list is subject to change as the implementing software evolves:

Library name Description
xplasma2 Structure for MHD equilibrium and labeled profile storage (dictionary).
geqsk_mds Access to EFIT data formats.
mdstransp Access to MDS+ servers.
vaxonly Legacy utility routines.
nscrunch Utility routines for contouring of free boundary equilibria.
fluxav Flux surface integration service routines.
r8bloat Flux coordinate system extrapolation utility.
pspline Interpolation library: spline, Hermite, linear, step.
ezcdf NetCDF i/o interface library.
lsode ODE integrator for contouring of free boundary equilibria.
lsode_linpack Math routines used by lsode.
comput Legacy utility routines.
portlib Portability library.

The NTCC filename for libaries is lib<name>.a; the TRANSP filename is simply <name>.a. The
directory into which the libraries are placed generally depends on the compiler used to build the libraries.
Two sets of libraries built with Intel fortran (ifc) are on the SGI machine mhd.pppl.gov at PPPL:

 TRANSP-built libraries: /p/xshare/SGI/lib
 NTCC-built libraries: /usr/pppl/ntcc/intel_10.0/lib

Caution: there are known technical problems with intel 9 fortran; please use intel 10.0 or better!

 30

https://cswim.org/svn/cswim

C/C++ interface to the Plasma State Software:

This is in a fairly early stage of development—I defer detailed description pending hardening of the software
design. I will only sketch some general features, which are largely based on advice and technical
demonstration by Dr. Alex Pletzer at Tech-X corporation. The method makes use of the f90 intrinsic
function “transfer”, which allows an object pointer to be exchanged across the language barrier contained in
a mutually supported data type (here, an array of integers).

The library cpps_lib provides a set of free-standing routines with f77-style interfaces that allow access to
plasma_state_mod functionality without having to use the f90 module directly.

The “constructor” and “destructor” routines are:

• F77NAME(ccps_init)(int* iobj, char* psname, int* ierr)
• F77NAME(ccps_free)(int* iobj, int* ierr)

F77NAME is a macro that applies platform-dependent decoration to the base name to reach the global
symbol for the routine provided by the fortran compiler. The fortran routines (whose arguments indicate
what must be behind the passed pointers) are copied below. The key is the object pointer, which is to be
allocated 4 32 bit words (16 bytes total memory). The psname argument should be a short null-terminated
byte string containing alphanumeric characters (case sensitive) with no imbedded white space. It is used to
“label” the state at construction time and it supplies a prefix for default filenames for state I/O methods. The
implementing code follows:

subroutine ccps_init(iobj,bytename,ierr)

 ! construct a state object with passed, null-terminated tag name byte string
 ! this routine to be called from C/C++ constructor

 use plasma_state_mod
 implicit NONE

#include "byte_declare.h"

 integer :: iobj(*) ! (ps_container_size) words are used
 BYTE_DECLARE bytename(*)
 integer :: ierr

 !--------------------------------
 type (plasma_state_container) :: ptr
 character*32 tagname
 type (plasma_state), pointer :: ss
 !--------------------------------

 call cstring(tagname,bytename,'2F') ! fill fortran char string (tagname)

 ! allocate state object

 allocate(ptr%ps_ptr)
 ss => ptr%ps_ptr

 ! initialize with tagname

 31

 call ps_init_user_state(ss,tagname,ierr)

 ! transfer pointer

 if(ierr.eq.0) then
 call unload_ps_container(ptr,iobj)
 else
 iobj(1:ps_container_size)=0
 endif

end subroutine ccps_init

subroutine ccps_free(iobj,ierr)

 ! free a state object -- this routine to be called by C/C++ destructor

 use plasma_state_mod
 implicit NONE

 integer :: iobj(*) ! (ps_container_size) words are used
 integer :: ierr

 !--------------------------------
 type (plasma_state_container) :: ptr
 type (plasma_state), pointer :: ss
 !--------------------------------

 call ccps_argcheck('ccps_free',iobj,ierr)
 if(ierr.ne.0) return

 ! proceed...

 call load_ps_container(iobj,ptr)
 ss => ptr%ps_ptr

 call ps_free_user_state(ss,ierr)

 deallocate(ptr%ps_ptr)

 iobj(1:ps_container_size)=0

end subroutine ccps_free

In addition to plasma_state_mod subroutines, this software makes use of the following methods from the
plasma_state_kernel:

 SUBROUTINE load_ps_container(iarray,ptr)
 INTEGER :: iarray(*)
 TYPE (plasma_state_container) :: ptr

 ptr = transfer(iarray(1:ps_container_size),ptr)
 END SUBROUTINE load_ps_container

 SUBROUTINE unload_ps_container(ptr,iarray)
 TYPE (plasma_state_container) :: ptr
 INTEGER :: iarray(*)

 32

 33

 iarray(1:ps_container_size) = transfer(ptr,iarray(1:ps_container_size))
 END SUBROUTINE unload_ps_container

These routines arrange for the transfer of a plasma state “container”, which contains a pointer to an allocated
state object, from/to an integer array with 4 elements (16 bytes on most modern machines). This allows the
C/C++ code to hold plasma state object pointers in 16 byte arrays, using whatever primitive datatype is
convenient.

The codes make use of some basic C/F77 portability macros that are included in the NTCC library. No
additional subroutine library dependencies are introduced beyond what is already required for fortran use of
the Plasma State software.

[More to be written…]

