Separatrix library user manual

Johan Carlsson, Tech-X Corporation
teq-users@fusion.txcorp.com

$Id: usermanual.tex,v 1.1.2.2 2006/01/14 08:55:54 carlsson Exp $

The interface to the separatrix library is summarized in the “Introduction”
section. A detailed description follows in the “Interface specification” and
commented usage examples can be found in the “Examples” section.

Introduction

CGS units are used for all quantities. The floating-point precision is deter-
mined by the kind parameter rq, which is defined in the file utils.f£90. By
default rq is chosen to make real(rq) an 8-byte floating-point type. By
changing line 7 of utils.f90 from rq=r8 to rq=r4, real(rq) becomes a
4-byte floating-point type instead.

The separatrix library takes a numerical MHD equilibrium (solution to
the Grad-Shafranov equation) as input and finds the X- and O-points, the
separatrix and an arbitrary set of flux surfaces. The library is accessed
through the interface defined in the module seplib. The interface is con-
stituted by the four subroutines init_sep, exit_sep, find _separatrix and
find _surfaces.

init_sep takes 4 arguments: msrf, mls, geom and sep. msrf is the num-
ber of flux surfaces and mls is the number of coordinate points used to define
the separatrix and each of the flux surfaces. The variables geom and sep
are of derived types. geom holds information about the magnetic geome-
try (including the set of msrf flux surfaces) and sep holds the coordinates
of the separatrix. init_sep allocates memory for the variables geom and sep.

exit_sep takes the same 4 arguments as init_sep and it does the oppo-
site: it releases the memory allocated by init_sep.

init_sep must be called before any other operations on the separatrix
library are performed. exit_sep should be called after all other operations
on the separatrix library have been performed.

find separatrix takes 4 arguments: eq, geom, xpoint and sep, where
all are of derived types. eq holds the numerical equilibrium, geom and sep are
as described above, and xpoint holds the coordinates of the X-point. The
primary input to find separatrix is the numerical equilibrium contained

in eq and the primary output is the X-point and separatrix coordinates con-
tained in xpoint and sep, respectively.

find_surfaces takes geom as its single argument and fills in the coordi-
nates of the flux surfaces held by geom. It must be called after find_separatrix.

Interface specification

The data passed through the interface is encapsulated in the four variables eq,
geom, xpoint and sep, which are all of derived type. The type declarations
are in the seplib module in the file seplib.£90. For eq we have:

! Derived type that describes a numerical equilibrium and its meta data
type :: eq_type
!' R and Z are the gridpoints where psi is given.

real(rq), dimension(:), pointer :: R, Z

! psi is the stream function (poloidal flux / 2pi).

real(rq), dimension(:), pointer :: psi

! Coordinates of magnetic axis, psi at magnetic axis.

real(rq) :: raxis, zaxis, psix

! Limiter point coordinates and psi.

real(rq) :: rlim, zlim, psil

! nsym = 1 for up/down symmetric equilibrium, 2 for asymmetric.
integer :: nsym

end type eq_type

eq is predominantly an input variable and must be initialized before find _separatrix

and find_surfaces are called. Our demonstration driver initializes eq from
an EQDSK g-file:

subroutine read_eqdsk(ioun, goun, eq)

! We need the derived type for the equilibrium (eq_type) from seplib
use seplib, only : rq, eq_type

implicit none
type(eq_type) :: eq

integer, intent(in) :: ioun
character*(x), intent(in) :: goun

real(rq), dimension(:), allocatable :: dummyd

real(rq) :: dr, dz, dummy, ro, rdim, zdim

integer :: i, jm, km, j, k

print *, ioun, goun

open(unit = ioun, file = goun)

read(ioun, ’(52x,2i4)’) jm, km

allocate(eqkpsi(jm * km), eq/R(jm), eqikZ(km), dummyd(jm))
read(ioun, ’(5e€16.9)’) rdim, zdim, dummy, ro, dummy

read(ioun, ’(5e€16.9)’) dummy, dummy, dummy, dummy, dummy
read(ioun, ’(5e€16.9)’) dummy, dummy, dummy, dummy, dummy

read(ioun, ’(5e€16.9)’) dummy, dummy, dummy, dummy, dummy
read(ioun, ’(5e€16.9)’) (dummyd(i), i = 1, jm)

read(ioun, ’(5e€16.9)’) (dummyd(i), i = 1, jm)

read(ioun, ’(5e16.9)’) (dummyd(i), i = 1, jm)

read(ioun, ’(5e16.9)’) (dummyd(i), i = 1, jm)

read(ioun, ’(5e16.9)’) (eqkpsi(i), i = 1, jm * km)
close(ioun)

deallocate (dummyd)

dr = rdim / (jm - 1)
dz = zdim / (km - 1)

eqiR
eqhZ

(/(1, i=0, jm-1)/) * dr + ro
(/(1i, i =0, km - 1)/) * dz - zdim / 2_rq

! Convert to CGS

eqipsi = eqkpsi * 1.0e+08_rq
eqsR = eqiR * 100_rq

eqiZ = eqhZ * 100_rq

end subroutine read_eqdsk

For codes that do not load EQDSK g-files, the initialization of eq will obvi-
ously be implemented differently.

The only components of eq that are not strictly input variables are
eqiraxis, eqlzaxis and eqipsix. If eqiraxis is non-zero, the coordi-
nate (eqlraxis, eq%zaxis) is used as an initial guess for the axis loca-
tion. If eqlraxis is set to zero, the geometric axis is used instead. In
either case eq/iraxis and eqyzaxis are overwritten with the values found by
find_separatrix.

geom has the following type declaration:

! Auxilliary types for geom_type

type :: R_type
! R coordinate, partial derivatives of R WRT theta and psi, respectively,
! and poloidal magnetic field
real(rq), dimension(:), pointer :: coord, theta, psi, Bpol

end type R_type

type :: Z_type
! Z coordinate, partial derivatives of Z WRT theta and psi, respectively,
! and Jacobian
real(rq), dimension(:), pointer :: coord, theta, psi, J

end type Z_type

! Relates cylinder coordinates in configuration space to flux coordinates
type :: geom_type

type(R_type), dimension(:), pointer :: R

type(Z_type), dimension(:), pointer :: Z

! Normalized psi values at the flux surfaces

real(rq), dimension(:), pointer :: psibar
! Poloidal angles along each flux surface where R, Z are calculated
real(rq), dimension(:), pointer :: tswpts

I if wvert is inputted as non-zero then its outputted value is the
! elongation on axis and the bi-polar coordinate used for the flux
! geometry is stretched by that amount:
| z=zaxis+wvert*rho(psi,theta)*cos(theta)
real(rq) :: wvert

end type geom_type

geom is both an input and an output variable. The input components are
geomj),psibar and geomjtswpts. In the demonstration driver they are ini-
tialized like this:

! Note psibar coordinate is stretched at the axis and the edge
geomypsibar=(/(i, i = 0, msrf - 1)/) / (msrf - 1.0)
geom/,psibar=(sin(geom)psibar * pi2))x**2

! Note tswpts must always be uniform (pi2 = pi / 2)
geom),tswpts=(/(4.0 * pi2 * i, i = 0, mls - 1)/) / (mls - 1.0)

geom/psibar is used to determine how the msrf flux surfaces should be dis-
tributed. Similarly, tswpts determines the mls poloidal angles at which the
flux surface and separatrix (R, Z) coordinates are calculated.

The output components are geom/%R and geom),Z, two arrays with msrf
elements each. The elements of geom’R and geomi,Z, one per flux surface,
are themselves arrays with each of their mls elements corresponding to a
poloidal point along the flux surface. In addition to the (R, Z) coordinates,
these elements contain (OR/00,0R/0vy, B,) and (0Z/00,0Z/0%,J) (where
J is the Jacobian), respectively. The values of geom’R and geom)%Z are cal-
culated and filled in by find surfaces. Note that find separatrix must
be called before find_surfaces.

geom/wvert is most likely only of interest to expert users, who are un-
doubtedly capable of parsing the source code to understand how geomwvert
is properly used.

xpoint holds the location of the X-point and associated information.

! Derived type that describes an X-point
type :: x_point_type
! X-point coordinates and psi.
real(rq) :: rxpt, zxpt, pxpt
! rxpr(2) and zxpr(2) define the box in which to search for the X-point
I If rxpr(1) = 0 the search is not limited
real(rq), dimension(2) :: rxpr, zxpr
I If ixpt=2: uses X-point to define plasma boundary
I If ixpt=1: uses X-point or limiter point, whichever is active
I If ixpt=0: does not look for X-point and it better not be active
integer :: ixpt
end type x_point_type

xpoint is both an input and an output variable. The input components are
the flag xpointiixpt and the size-2 arrays xpoint’%rxpt and xpoint¥%zxpt.
The flag ixpt determines how the plasma boundary is defined. If there is
no limiter, we can use the X-point to define the plasma boundary (ixpt
= 2). If there is a limiter, ixpt = 1 tells the separatrix library to use
the limiter point to define the plasma boundary, unless the X-point is in-
side it. Finally, ixpt = 0 can be used if we are not interested in the X-
point but need to call find separatrix before we can call find surfaces.
xpointYrxpr and xpointizxpr can be used to box in the X-point for particu-
larly difficult equilibria, like SSPX. If xpointYrxpr(1) = 0.0, xpoint¥rxpr
and xpointizxpr are ignored; otherwise the search for the X-point is lim-
ited to the box with the corners (rxpr(1), zxpr(1)), (rxpr(1), zxpr(2)),
(rxpr(2), zxpr(2)) and (rxpr(2), zxpr(1)). The output components are
xpointjrxpt, xpointjzxpt (coordinates of the X-point) and xpoint¥%pxpt
(flux at the X-point).

sep is primarily an output variable that holds the coordinates of the
separatrix:

! Derived type that holds the coordinates of the separatrix

type :: sep_type
real(rq), dimension(:), pointer :: R, Z
! theta is the increment in normalized flux away from the separatrix
! at which the plasma boundary is prescribed. That is if theta=0, the
! separatrix is the boundary; if theta=0.01 the 997 flux surface is
! the boundary
real(rq) :: theta

end type sep_type

The input component is sep%theta. For the default value of sep¥theta =
0.0, the library calculates the true separatrix. By slightly increasing the
value of sepltheta, we can tell the library to instead find a flux surface
just inside the true separatrix. For sep/theta = 0.01, it finds the 99% flux
surface, etc. This might be useful in the rare cases where find _separatrix
fails to find the true separatrix. After a successful call to find_separatrix,
the coordinates of the sepjtheta-designated surface are in the arrays sep’%R
and sep%Z.

The complete interfaces of the four subroutines provided by the separatrix
library are as follows:

subroutine init_sep(msrf, mls, geom, sep)
integer, intent(in) :: msrf, mls
type(geom_type) :: geom
type (sep_type) :: sep

subroutine exit_sep(msrf, mls, geom, sep)
integer, intent(in) :: msrf, mls
type (geom_type) :: geom
type (sep_type) :: sep

subroutine find_separatrix(eq, geom, xpoint, sep)
type(eq_type), intent(inout), target :: eq
type(geom_type), intent(inout) :: geom
type (x_point_type), intent(inout) :: xpoint
type(sep_type), intent(inout), target :: sep

subroutine find_surfaces(geom)
type (geom_type), intent(inout) :: geom

Exception handling

Exception handling was added to the separatrix library in early 2006. The
purpose of exception handling is to return control to the driver when an
exception occurs in the separatrix library, i.e when something goes wrong.
The interface to the exception handling consists of the two subprograms
catch_xcpt () and throw_xcpt() declared in the module seperr:

module seperr

logical :: exceptions_enabled = .false.
logical :: stop_on_error = .true.

integer :: error_code = 0

character(len = 128) :: error_msg = ’none’

interface

integer function catch_xcpt(arg)
logical, intent(inout) :: arg
end function catch_xcpt

subroutine throw_xcpt(arg)
integer, intent(inout) :: arg
end subroutine throw_xcpt

end interface

end module seperr

Exception handling is enabled by setting stop_on_error = .false. and
passing the variable exceptions_enabled to the function catch _xcpt (). If
exception handling is supported on the build platform (Linux with either
195, ifort or pgf90 for now), exceptions_enabled is set to .true.. When
catch_xcpt () is explicitly called it returns the integer zero. When the sub-
routine throw xcpt () is called, the execution of the code will appear
to return from catch_xcpt()! The return value of catch_xcpt() is the
argument passed to throw_xcpt (), unless zero is passed to throw_xcpt () in
which case catch xcpt() returns the integer one. Here’s an example from
driver.f90:

! Catch errors that might occur when we initialize the separatrix library
stop_on_error = .false.

ierr = catch_xcpt(exceptions_enabled)

if (ierr /= 0) then

print *, ’The call to init_sep failed, the error message is: ’, &
trim(error_msg), ’. Bailing out...’
stop
end if

! Initialize the separatrix library
call init_sep(msrf, mls, geom, sep)

Here we just print an error message and terminate execution when an excep-
tion occurs, but we could try to handle the exception depending on exactly
what went wrong (determined by the value of ierr), and call init_sep again.

8

The exception handling can be made as fine grained as desired (set up for
every single call to the separatrix library), or more coarse grained (set up for
a block of calls). In the remainder of the driver we use a more coarse-grained
approach and group the calls done for each equilibrium. catch_xcpt () can be
called an arbitrary number of times, a call to throw_xcpt() from anywhere
in the code, no matter how deeply nested the subprogram calls are, will
always return to immediately after the last call to catch_xcpt(). The only
exception (no pun intended) is when catch xcpt () is called in a subprogram
(subroutine or function) that returns before throw_xcpt () is called, in which
case the behavior is undefined.

Examples

For full details about how to use the separatrix library, look at the source
files seplib.f90 and driver.f90. seplib.f90 contains the seplib module
with declarations of the derived types and the subroutines used to access the
library. driver.f90 contains four commented examples of how to call the
library. Here we will give a summary.

From the file driver.£90:

program driver

! The seplib module defines the interface (subroutines and
! associated derived types) to the separatrix library
use seplib

! Some less important lines snipped out...

! The numerical equilibrium
type(eq_type) :: eq

! The set of flux surfaces
type(geom_type) :: geom

! The X-point
type(x_point_type) :: xpoint

! The separatrix
type(sep_type) :: sep

! Some less important lines snipped out...

! Initialize the separatrix library
call init_sep(msrf, mls, geom, sep)

We first use seplib to get access to the separatrix library. Next we declare
the 4 input/output variables eq, geom, xpoint and sep, and then we call
init_sep(msrf, mls, geom, sep) to make the library ready for use. msrf
and mls can be any positive integers, variables or constants. In the driver
they are constants with values 101 and 127, respectively.

Next we set the values of the normalized flux for the set of msrf flux
surfaces and the values of the poloidal angle at the mls coordinate points
along the separatrix and each flux surface:

! Note psibar coordinate is stretched at the axis and the edge
geomj),psibar=(/(i, i = 0, msrf - 1)/) / (msrf - 1.0)
geomj),psibar=(sin(geomypsibar * pi2))**2

! Note tswpts must always be uniform (pi2 = pi / 2)
geom/tswpts=(/(4.0 * pi2 * i, i = 0, mls - 1)/) / (mls - 1.0)

The next step is to load the numerical equilibrium into the variable eq.
In our demonstration driver this is done by reading in an EQDSK g-file (see
the subroutine read_eqdsk for details).

For the up/down asymmetric DITI-D equilibrium used in the first example
there is no limiter, so we need to tell the separatrix library to use the X-point
to define the plasma boundary:

eq/nsym = 2 ! Equilibrium is up/down asymmetric

! We don’t have an estimate of the magnetic axis location
eqsraxis = 0.0; eqkzaxis = 0.0

! There is no limiter
eqsrlim = 0.0; eqkzlim = 0.0

10

xpoint%ixpt = 2 ! Use X-point for plasma boundary

! First get axis, x_point and separatrix
call find_separatrix(eq, geom, xpoint, sep)

! Some less important lines snipped out...

I Next get all the flux surfaces
call find_surfaces(geom)

Note that find separatrix must be called before find surfaces. A plot
of the output is shown in Fig. 1.

In the next example, with an SSPX equilibrium, we impose a limiter but
still let the X-point define the plasma boundary. Also, we help the separatrix
library find the X-point by narrowing down the search region.

! Set limiter
eqlrlim = 50.222
eqhzlim = -14.7758

xpoint%ixpt = 1 ! Use the limiter or X-point for plasma boundary

! Needs X-point boxed in
xpoint¥rxpr(1) = 35.0

xpointyrxpr(2) = 49.0
xpointizxpr(1) = -10.0
xpointizxpr(2) = 50.0

! First get axis, x_point and separatrix
call find_separatrix(eq, geom, xpoint, sep)

The output is plotted in Fig. 2.
In the third example, a FIRE equilibrium, we know that there is up/down

symmetry so we pass that information to the library by setting eq/nsym = 1
before we call find_separatrix.

11

150
100

o0

—20

—100

— 1501

Figure 1: DIII-D equilibrium. The dashed line is the separatrix and the
crosses are the O-point (magnetic axis) and X-point.

12

SSPX

—60 _

10 20 50 40 50 o0
R (cm)

Figure 2: SSPX equilibrium. The dashed line is the separatrix and the crosses
are the O-point, X-point and the limiter. The solid rectangle is the X-point
search region.

13

eq/nsym = 1 ! Equilibrium is up/down symmetric

I Set limiter
eqsrlim = 150.0
eq%zlim = 0.0

xpoint%ixpt = 1 ! Use the limiter or X-point for plasma boundary

! First get axis, x_point and separatrix
call find_separatrix(eq, geom, xpoint, sep)

The output is plotted in Fig. 3. The output from the fourth and final exam-
ple, an ITER equilibrium, is plotted in Fig. 4.

Note that exit_sep is called after all other operations on the library are
done:

! We’re done, release the allocated memory
call exit_sep(msrf, mls, geom, sep)

end program driver

History
The source code for the separatrix library was extracted from the Corsica

code by Donald Pearlstein, LLNL, and Johan Carlsson, Tech-X Corporation,
and converted from Fortran77/Basis to Fortran90.

14

150
100

o0

—50

—100

ool)

160 180 200 220 240 260 280
R (cm)

Figure 3: FIRE equilibrium. The dashed line is the separatrix and the crosses
are the O-point, X-point and the limiter.

15

ITER

400

200

—200

—400

400 500 600 /00 800
R (cm)

Figure 4: ITER equilibrium. The dashed line is the separatrix and the crosses
are the O-point and the X-point.

16

