
TEQ library user manual

Johan Carlsson, Tech-X Corporation

teq-users@fusion.txcorp.com

$Id: usermanual.tex,v 1.3 2007/07/31 20:47:37 pearls Exp $

Introduction

The TEQ library solves the Grad-Shafranov equation to calculate the free-
boundary (or direct) MHD equilibrium. It can also calculate the fixed-
boundary (or inverse) MHD equilibrium. The TEQ library is quite powerful
and flexible.

The TEQ module depends on the separatrix module and on LAPACK.
The latest versions can be downloaded from:

• http://fusion.txcorp.com/~johan/teq.tgz

• http://fusion.txcorp.com/~johan/separatrix.tgz

• http://www.netlib.org/lapack/lapack.tgz

Unpack teq.tgz and see the file README for build instructions.

The floating-point precision is determined by the kind parameter rq,
which is defined in the file utils.f90 in the separatrix module. By default
rq is chosen to make real(rq) an 8-byte floating-point type. By chang-
ing line 7 of utils.f90 from rq=r8 to rq=r4, real(rq) becomes a 4-byte
floating-point type instead.

Free-boundary equilibria can currently either be generated from scratch
(“dead start”) or loaded from ASCII TEQ save files. The “dead start” option
can involve extensive user intervention. The ability to load free-boundary
equilibria from EQDSK a- and g-files will be added in a future release.

Inverse equilibria can be loaded from ASCII TEQ save files or generated
directly from a direct equilibrium.

The remainder of this manual is organized as follows: The user interface
routines are listed on page 2, followed by a full description of the arguments,
i.e., the inputs, outputs, and flags. The interface routines themselves are
described in a bit more detail on page 8. Commented usage examples can
be found in the “Examples” section beginning on page 9. A brief “History”
is given on page 13, followed by a sample output plot. An Appendix on files
for the dead-start procedure is on page 16.

1

Interface

The top-level subroutines are listed below. The catch in their names is an
indication that they enable the user to recover from impending serious failure
modes by executing a longjump to the calling point if stop on error =

.false.. This is ilustrated in the demonstration driver.

(1) call catch dead start(ierr,glb);
as previously mentioned, this call starts up from configuration-specific
input files and could require significant user intervention. Our policy
has been to provide savefiles for new configurations so that a user can
avoid this procedure.

(2) call catch load savefile(ierr,glb,dir,pf,inv,prof);
this call reads in a savefile and calculates the appropriate equilibrium.

(3) call catch inveq(ierr,inv,prof,glb);
this call provides an inverse (prescribed boundary) equilibrium.

(4) call catch direq(ierr,dir,pf,inv,prof,glb);
this call provides a free-boundary equilibrium. It is important to point
out that the inverse equilibrium solver can be used to generate the
plasma current on the (R,Z) mesh and then used by the free-boundary
solver. At convergence the plasma boundary is self-consistent. Again,
this is illustrated in the demonstration driver.

Here the main arguments are the derived types. The definitions (with
comments) of the derived types follow, after which we describe what each
routine does in some detail.

TYPE(profile_type)::prof

TYPE(inv_type) :: inv

TYPE(dir_type) ::dir

TYPE(pf_type) :: pf

TYPE(global_type) :: glb

TYPE :: global_type

INTEGER, POINTER :: logunit,ioun7,ioun12,ioun13

CHARACTER(len=64), POINTER :: logname

2

CHARACTER(len=64) :: filename,tokamak,pfcoil

END TYPE global_type

TYPE :: eq_type

REAL(rq), DIMENSION(:), POINTER :: x,y

REAL(rq), DIMENSION(:,:), POINTER :: f,fx,fy,fs

INTEGER, POINTER :: nx,ny

END TYPE eq_type

TYPE :: inv_type

TYPE(eq_type) :: R,Z

REAL(rq), DIMENSION(:), POINTER :: rbnd,zbnd

REAL(rq), POINTER :: raxis,zaxis,dpsi0,dpsi00,dphi0,dphi00,plc,fwall,cur

REAL(rq), POINTER :: epsrk,x

INTEGER, POINTER :: p,k,eq,nht,mpsi,mth,flag,ls

LOGICAL, POINTER :: fix_bnd

! (R%x,R%y) = (theta,psibar)

! (R%f,R%fx,R%fy,R%fs) = (R,R_theta,R_psi,B)

! (Z%x,Z%y) = (theta,psibar)

! (Z%f,Z%fx,Z%fy,Z%fs) = (Z,Z_theta,Z_psi,Jacobian)

! (raxis,zaxis) = position of axis cm

! (dpsi0,dpsi00)= poloidal flux/radian; (dynamic,desired)

! (dphi0,dphi00)= toroidal flux/radian

! x = position in dimensionless flux beyond which solver adjusts q

! indirectly so as to force FF’=0 at the edge.

! plc = desired plasma current MA

! cur = plasma current A

! fwall = vacuum RBtor gauss-cm

! epsrk = accuracy for polar1 (defaulted to 1e-6)

! k = (0 use qs) (1 use fs) (2 use jts) (3 use jpars) as profile.

! = For a time dependent (predictive mode) Ohm’s law requires

! that the q-profile be inputed.

! p = (-1 use dpsi00) (0 use fwall) (1 use plc) as constraint,

! eq = -2: startup from direct solve, uses internal information,

! = -1; vanilla flavored startup, uses no internal data, and is

! recommended for a "large" boundary change in a sequence

! of inverse solves. If this option fails with inv_k=0,

! q-profile as input, try a current profile. If it still

3

! fails try eq=0. If it still fails contact ldp@llnl.gov.

! = 0; from an existing inverse solve, sets the boundary to

! (inv%rbnd,inv%zbnd); this is the recommended option if

! the boundary is moved.

! = 1; from an existing inverse solve, but the boundary

! relaxes to (inv%rbnd,inv%zbnd); used for time dependent

! evolution predictive mode, not snap shots and is needed

! for numerical stability.

! nht = maximum number of iterations

! mpsi = flux grid size

! mth = theta gridsize

! ls = stretching in psi grid: ls=-22 (sin(i*pi/2))**2; i=1,mpsi

! = 22 quadratic axi; polynomial

! = 11 uniform

! = -1=-22;1=11 anachroism

! flag = 0, uses polar1; 1, uses esc if loaded (libesc.a)

END TYPE inv_type

TYPE :: profile_type

REAL(rq), DIMENSION(:), POINTER :: q,jt,jpar,f,fd,p,pd,bp,rsqi,cu,phi,psi

REAL(rq), DIMENSION(:), POINTER :: qs,jts,jpars,fs,ps,vpr,w,v,psin,r,a,bsq

! (q,qs) = q-profile; (dynamic,desired)

! (jt,jts) = <J.B>/(J,grad phi> amps/cm

! (jpar,jpars) = J.B>/<B.B> amps/cm**2/gauss

! (f,fs) = RBt gauss-cm

! fd = df/dpsi 1/cm

! (p,ps) = pressure ergs/cm**3

! pd = dp/dpsi

! bp = <Bpol> gauss

! bsq = <B**2> qauss**2

! rsqi = <1/R**2> 1/cm**2

! cu = Mu0*I(psi) gauss-cm

! vpr = dV/dpsi cm/gauss

! <w,v> = node values for the two input spline profiles

! Spline at nodes F**2-F(msrf)**2)/(8*pi*dcpsi0*prsx)

! Spline at nodes P/(betaj*prsx)

! psin = dimensionless poloidal flux: input

4

! (a,r) = (minor radius, major radius) of flux surface at

! level of magnetic axis

! phi = dimensionless toroidal flux, output

! psi = dimensionless poloidal flux, input

! <> = surface average

END TYPE profile_type

TYPE :: dir_type

TYPE(eq_type) :: psi

REAL(rq), DIMENSION(:), POINTER :: rxpr,zxpr,alfa,betp,li,betap

REAL(rq), DIMENSION(:), POINTER :: rxps,zxps,pxps,rsep,zsep

REAL(rq), POINTER :: rxpt,zxpt,pxpt,paxis,pbnd,rn,rx,ro,zx,prsx

REAL(rq), POINTER :: betaj,thc,epsj,epsb,aap

INTEGER, POINTER :: ipscl,ipf,ipj,ipp,irl,liml,f_wp,nxps,limd,ixpt,msep

LOGICAL, POINTER :: fix_bnd

!

! (rsep,zsep) = separatrix boundary

! (psi%f,psi%fx,psi%fy,psi%fs)=(psi,psi_r,psi_z,bpol)

! rxpr(2) zxpr(2) = determines box to look for X-point cm

! (alfa(0:1),betp(0:1),aap)= profile factors for analytic forms: see ipp below

! (zxpt,rxpt,pxpt) = Xpoint location and flux/radian cm,cm,gauss-cm**2

! (paxis,pbnd = poloidal flux at on (axis,boundary)

! (nxps,rxps,zxps,pxps) = number, flux, R and Z of Xpoints found by separatrix

! (rn,rx,zx) = boundary of computational grid cm (up/down sym. grid)

! limd = 0 not limited

! ro = radial mid-point of grid (btor=fwall/ro)

! prsx = scaling coefficient need for w,v the spline points

! betaj = scaling factor multiplying the pressure for input forms

! thc = fraction away from X-point in dimensionless poloidal flux

! ixpt = 2 use Xpoint; = 1 if limiter is active use limiter

! ipscl = constrain for dir solve (-1 none 0 plc 1 dpsi00)

! ipj = 0, analytic forms for FF’ and P

! 1 jts,ps arrays

! 2 analytic forms for jt and p

! 3 jpars and ps arrays for input (inv%p constraint choice)

! scaling (ipscl=-1 recommended)

! 4 qs and ps arrays; scaling (see ipscl) not recommended

! 5 qs and ps arrays; no scaling (inv%p constraint choice)

5

! (ipf,ipp) = profile forms for analytic; x dimensionless flux

! = 1; Strickler form exp(-alfa*x)-exp(-alfa) for (FF’,P’);

! = 2; difference of two; 2nd form uses alfa*betp

! = 3; (1-x**betp)**alfa for (FF,P)

! = 4; 3 form but flat out to aap;with betp*(x-aap)/(1-aap)

! = 5; hollow profile: constrained to 2<betp<2.5 and

! SENSITIVE near upper limit.

! = 999; cubic spline for (FF,P); uses (w,v)

! (epsj,epsb) = residual accuracy required, (comp boundary, GS rhs)

END TYPE dir_type

TYPE :: pf_type

INTEGER, POINTER :: ngroup,ncircuit,nbd,jcir,nfbd,nc,jax,kax,nlim,irl,ngp

INTEGER, POINTER :: ircwt,nsym,nsymc,iflxc,limw,lmax,kxp

INTEGER, DIMENSION(:), POINTER :: nrc,nzc,ic,ix,ict

REAL(rq), DIMENSION(:), POINTER :: cc,rc,zc,drc,dzc,ps0,psi

REAL(rq), DIMENSION(:), POINTER :: pci,pc0,rlim,zlim,rlimw,zlimw

REAL(rq), DIMENSION(:), POINTER :: rbd,zbd,rfbd,zfbd,alfbd

REAL(rq), DIMENSION(:,:), POINTER :: pfim

REAL(rq), POINTER :: psix,vltf,cejima,rl,rax,zax,skew,dsep,dsip,rxp,zxp

REAL(rq), POINTER :: rmajor,rminor

! nc = number of coils

! cc = coil current, MA

! (rc,drc) = coil R and width, M

! (zc,dzc) = coil Z and width, M

! (nrc,nzc) = number of filamants= nrc*nzc per coil; code generally

! controls

! (psi,ps0) = flux at coil (calculated, wanted), Wb

! (ic,ix) = grouping of (coils,circuits); if (ic(1)=n and ic(2)=n

! where n=1,2,3,4,... keeps the ratio of current in

! cc(1) and cc(2) fixed;similarly for ix and the coil flux.

! note that max(ic) must be greater or equal to max(ix)

! depending on whether there are additional constraints.

! iflxc = 1 forces psi to ps0 for all ix/=0

! ngroup = number of coil groups, max(ic)

! ncircuit = number of circuits, max(ix)

! (nbd,rbd,zbd) = number of boundary points and values in cm’s, constraints

6

! psix = desired flux at magnetic axis, constraint (units as paxis)

! vltf = desires external flux linkage (VS), constraint

! cejima = Ejima coefficient, constraint;vltf=psires +

! 0.4*pi*cejima*plcm*ro/100, with psires the average

! plasma poloidal flux.

! (rl,irl) = irl=0, required separation between active and inactive

! separatrix in dimensionless flux:(pxpu-pxpl)/dpsi0

! = (irl=1,upper Xpoint active);(irl=-1, lower Xpoint active);

! rl is the required separation between inactive and active

! separatrix in cm’s (>0 outside. <0 inside)

! (kxp,rxp,zxp) kxp/=0 X-point forces to (rxp,zxp)

! (kax,rax,zax) kax/=0 O-point forces to (rax,zax): problematic since

! requires user ingenuity to avoid over-constrainingsing;

! can also be another X-point

! jcir = total number of constraints

! (nfbd,alfbd) = number of fuzzy boundary points and normalization

! (rfbd,zfbd) = value of points in cm’s not as a minimization

! ircwt = -1 minimizes (dI/dz)^2;all coils and in sequence.

! = 1 minimizes (cc-cc0)!(cc-cc0)

! = 2 minimizes cc!cc

! = 3 minimizes j**2=(cc/drc/dzc)^2

! = 4 minimizes cc!pfim*!cc=I!L!I

! = 5 minimizes B!B at the coils

! = 6 minimizes (pfpsi-pfps0)^2;change in flux at coils

! = 7 minimizes pfpsi!cc

! = 11 minimizes (cc*rc)!(cc*rc)

! (rlim(0),zlim(0) = limiter point

! skew = angle between flux aurface axis and vertical axis

! rminor = minor radius

! rmajor = major radius

! dsep = distance bewtween separatrices at outboard midplane

! dsip = distance bewtween separatrices at inboard midplane

! (nsym,nsymc;lmax)= (2,2), up/down asymmetric; lmax=mth

! = (1,1), up/down symmetrix; lmax=mth/2+1

! (rlimw,zlimw) = limiting wall; dimensioned lmax and must be continous.

! (rlim(0),zlim(0)) is set to the limiting point if limw=1

END TYPE pf_type

7

To do a dead start (generate a free-boundary equilibrium from scratch)
call the subroutine catch dead start(ierr,glb). Here the files "glb%tokamp"
and "glb%coils" contain plasma parameters and coil configuration, respec-
tively. The file formats are described in Appendix A.

The TEQ module also comes with a set of ASCII TEQ save files with
input data from pre-calculated equilibria for the major US machines (DIII-
D, C-Mod, NSTX and PEGASUS) and some other ones too (JET, KSTAR,
ITER, etc.). These equilibria are generated by typing make test and are
used by the demonstration driver program. This same driver program also
contains many examples of changing inputs to obtain new equilibria. In
addition it shows how to obtain an inverse equilibrium from an existing free-
boundary equilibrium. Users should resort to a dead start only when gener-
ating a totally new configuration; it should always be sufficient to start with
an equilibrium from one of these supplied files or from a savefile generated
by the user as described next.

The very first equilibrium is generated by calling catch load file which
automatically generates the equilibrium contained in the savefile. To write
a save file once an equilibrium has been generated, call the subroutine
write savefile("foo.in"), which outputs foo.in. It is the user’s re-
sponsibility to first properly initialize all the input variables by calling
catch load savefile(ierr,dir,pf,inv,prof,glb), where glb%filename

is the name of a TEQ savefile. The files in the distribution have a .in ap-
pended to them and are in the teq/input directory. (See the example below.)

A subsequent direct solve, after input values have been changed
for a free-boundary equilibrium, is obtained by calling the subroutine
catch direq(ierr,dir,pf,inv,prof,glb). For extensive examples exam-
ine driver.f90.

An inverse solve, for the fixed-boundary (prescribed-
boundary) equilibrium, is obtained by calling the subroutine
catch inveq(ierr,inv,prof,glb). As before, this call is made after
an initial inverse equilibrium has been computed and input values are then
changed. Note that it is also possible to obtain an inverse solve from an

8

existing direct solve; but first it is necessary to move the plasma boundary
away from an existing separatrix. This is done by setting dir%thc to a
non-zero value and recalculate the direct solve. Next call the subroutine
catch inveq(ierr,inv,prof,glb). The user should examine the detailed
comments in inv type. To handle the common situation where the user
specifies input using a flux coordinate different from the one used internally
in TEQ, the subroutine translate(psuser,qsuser,prof%psi,prof%qs)

is provided. Here psuser must be the user-prescribed dimensionless
poloidal flux and qsuser is the user-prescribed q-profile. Clearly the inverse
transformation is obtained by inverting the order of the arguments.

The user can also interact with the TEQ library by directly setting the
value of the variables listed in the module teqlib input. The teqlib input

module variables are described by extensive, but not yet complete, comments
in the file teqinit.f90. The same is true of the varaibles in the module
teqlib output. It is our intention that the derived types contain all neces-
sary input and output variables; but in the event that this is not the case
the above variables can be accessed. In any case, if users need direct access,
please let us know so that the derived type list can be extended.

Examples

In this section we’ll walk through and comment on selected parts of the
demonstration driver program in driver.f90. The TEQ library is accessed
through the module teqlib. To use the dead-start procedure it is also nec-
essary to use the module deadstart. To access the catch routines, which the
users should look upon as a requirement, it is necessary to use the module
teqerr:

program driver

use teqlib

use deadstart

use teqerr

Next, we load a TEQ save file with an ITER equilibrium and calculate the
equilibrium:

9

integer :: ierr=0

character(len = 64) :: which

glp\%filename="iter.sav

call catch_load_savefile(ierr,glb,dir,pf,inv,prof)

if(ierr/=0) then ! It is in this if block that the user can intervene.

print *, ’An exception occurred, the error message is: ’, &

trim(error_msg), ’. Bailing out...’

stop

end if

Calling set verbosity(level) determines how much output will be
printed: more for larger values of level; zero suppresses all output.

call set_verbosity(0)

inv%mth=81 ! number of points around a flux surface

inv%mpsi=81 ! number of flux surfaces

dir%thc = 0.01! move boundary inside separatrix in dimensionless flux;

! necessary for inverse solves and direct solves if q is

! is the inputted profile: ipj=5

call catch_direq(ierr,dir,pf,inv,prof,glb)

if(ierr/=0) then

print *, ’An exception occurred, the error message is: ’, &

trim(error_msg), ’. Bailing out...’

! user intervenes

stop

end if

! this option is the "adiabatic’’ option

dir%ipj = 5 ! compute from qsave and psave

dir%ipscl = -1! do not scale to fix current or flux

inv%p = 0 ! fixes F on boundary to fwall

! note that in this case the options are the same

! as for the inverse solver

dir%f_wp=999 ! smoothes current at edge, necessary for dir%ipj=5

inv%eq=0 ! in case the starting direct solver was using the

! inverse solver for the solution inside the separatrix

call catch_direq(ierr,dir,pf,inv,prof,glb)

if(ierr/=0) then

print *, ’An exception occurred, the error message is: ’, &

10

trim(error_msg), ’. Bailing out...’

! user intervenes

stop

end if

Next we double the resolution in both the R- and Z-directions and re-
solve:

which="both"

call gridup(dir,pf,inv,prof,glb,which) ! changes grid

call catch_direq(ierr,dir,pf,inv,prof,glb)

if(ierr/=0) then

print *, ’An exception occurred, the error message is: ’, &

trim(error_msg), ’. Bailing out...’

! user intervenes

stop

end if

After re-setting the resolution, we set up some parameters that control the
inverse solve before calling catch inveq(ierr,inv,prof,glb) to calculate
the inverse solution. First, reset the resolution:

which="both"

call griddown(dir,pf,inv,prof,glb,which) ! changes grid

call catch_direq(ierr,dir,pf,inv,prof,glb)

if(ierr/=0) then

print *, ’An exception occurred, the error message is: ’, &

trim(error_msg), ’. Bailing out...’

! user intervenes

stop

end if

Then calculate an inverse equilibrium:

inv%nht = 200 ! maximum number of iterations

inv%epsrk = 1.0e-6 ! required accuracy

call set_verbosity(2) ! iteration output

inv%p = 0 ! fixes F_bound to fwall

inv%k = 0 ! uses q-profile (qsave)

11

inv%eq=-2 ! first time after direct equilibrium, uses internal data

call catch_inveq(ierr,inv,prof,glb) ! first inverse solve

if(ierr/=0) then

print *, ’An exception occurred, the error message is: ’, &

trim(error_msg), ’. Bailing out...’

! user intervenes

stop

end if

Finally the direct (free-boundary) or the inverse (fixed-boundary) solutions
are dumped to a TEQ save file:

call write_savefile("driver.in")

There is also an option, by setting do test=.true. in driver.f90, to
just run a test on the chosen savefile. This option compares a selection of
input values from the savefile to output values from the equilibrium compu-
tation. For these tests the differences need only be “reasonable” since the
savefiles may not be up-to-date or different operating systems can result in
different arithmetic roundoff. (During development, tests are run outside of
the module in CORSICA, and results are required to be preserved to machine
accuracy. Of course, in the event of physics changes, the output can change.
At this point the reference comparisions are updated.) Typical output from
this test follows:

FOR A FIXED-BOUNDARY SOLVE

OUTPUT

q(1) and P(1) 1.788384140457189 82977.31217853323

boundary point 204.2538029631154 72.67016035265463

scaler constraints -dpsi0,cur,fwall- two can be bad since only one is used

-15652756.49175006 501961.4181976991 3421697.351372659

INPUT

q(1) and P(1) 1.783038640755982 82982.90198660560

boundary point 204.2541219352515 72.67004163460653

scaler constraints -dpsi0,cur,fwall- two can be bad since only one is used

-15652697.76714600 501465.0999999830 3421697.027499858

FOR A FREE-BOUNDARY SOLVE

12

OUTPUT

coil currents and pbnd 5.438765524497730 -2.558724001046558

-6.303532171813806 -4.798250513593817 -7.639674164271554

17.19991842458036 2.452762230532624 -9.123417851137118

-20.55179345418781 -20.55179345418781 -11.59032227682597

2.022765962500211 -48862976.54228014

boundary point 726.6345712382119 291.4429930457409

scaler constraints -dpsi0,cur,fwall- two can be bad since only one is used

-1296164840.520250 15017824.62734537 32907637.91750462

INPUT

coil currents and pbnd 5.437318955712755 -2.558168310956238

-6.303835709121671 -4.798670885811258 -7.638831962678855

17.19868055816492 2.448884347692295 -9.119531194828678

-20.55424072858904 -20.55424072858904 -11.58888405527327

2.022972687107095 -48951218.32818943

boundary point 726.6350935926482 291.4434961957248

scaler constraints -dpsi0,cur,fwall- two can be bad since only one is used

-1296950648.964848 15000000.00000000 32860000.00000000

Note that the inverse solver is on a different grid from the input/output
grid; hence there will be grid-error differences. Also, for more details with
regard to the driver, look at driver.f90. A plot of the direct solution from
the file driver.in, generated by the the IDL script teqplot.pro, is shown
in Fig. 1.

It is of course also possible to selectively dump chosen output arrays.
The most commonly used fixed-boundary output arrays are probably the
profiles: prof%f (F), prof%fd (F ′), prof%q (q), prof%jt (Jφ), prof%jpar
(J‖), prof%p (p) and prof%pd (p′). Prime denotes the derivative with respect
to the stream function ψ = ψp/2π (poloidal flux over 2π).

History

The source code for the TEQ library was extracted from the Corsica code
by L. Donald Pearlstein and Richard Bulmer, LLNL, and Johan Carlsson,
Tech-X Corporation, and converted from Fortran77/Basis to Fortran90. The

13

module was first released to users July 2005 (submission to the NTCC Mod-
ules Library awaited documentation).

REVISION HISTORY

TEQ 1 1 0. July 2007. Expanded the documentation of fixed-boundary
and added free-boundary: added a comprehensive list of input and output
variables and defining comments. There are minor changes in the fortran.
This version is the first submitted to the NTCC Modules Library.

14

Figure 1: The direct (free-boundary) solution calculated by the demonstra-
tion driver.

15

Appendix A

The dead-start procedure, calling the subroutine
do dead start("plasma.inp", "coils.inp"), requires the two files
"tokamak.inp" and "coils.inp" to be set up by hand. The file formats
are fairly self-explanatory.

Sample tokamak.inp file:

"KSTAR/DN"

Plasma...

2.00 MA plasma current

1.80 m major radius

0.50 m minor radius

0.00 m Zaxis

1.90 95% elongation

0.30 95% triangularity

0.01 m Dsep (DN)

1.00 poloidal beta

0.73 li

-4.00 Wb External flux linkage

Toroidal field...

3.50 T @ R = 1.80 m

Computational grid...

1.00 m Rmin

2.60 m Rmax

-1.50 m Zmin

1.50 m Zmax

33 x 65 No. grid points (Nr x Nz)

Plot Scales...

0.00 m Rmin

4.00 m Rmax

-2.50 m Zmin

16

2.50 m Zmax

2.00 MA/m^2 Current density for drawing coil cross-sections

Sample coils.inp file:

"KSTAR" PF coil set of 05/01/99 from Kim

14 coils

name Rc [m] Zc [m] DRc [m] DZc [m] n_turn NI_cap B_cap

"PF1U" 0.5610 0.2470 0.2135 0.4764 1 1 1

"PF2U" 0.5610 0.6932 0.2135 0.3808 1 1 1

"PF3U" 0.5610 0.9960 0.2135 0.1896 1 1 1

"PF4U" 0.5610 1.2510 0.2135 0.2852 1 1 1

"PF5U" 1.0850 2.2960 0.3330 0.3808 1 1 1

"PF6U" 3.0900 1.9200 0.1896 0.3808 1 1 1

"PF7U" 3.7300 0.9600 0.1418 0.2852 1 1 1

"PF1L" 0.5610 -0.2470 0.2135 0.4764 1 1 1

"PF2L" 0.5610 -0.6932 0.2135 0.3808 1 1 1

"PF3L" 0.5610 -0.9960 0.2135 0.1896 1 1 1

"PF4L" 0.5610 -1.2510 0.2135 0.2852 1 1 1

"PF5L" 1.0850 -2.2960 0.3330 0.3808 1 1 1

"PF6L" 3.0900 -1.9200 0.1896 0.3808 1 1 1

"PF7L" 3.7300 -0.9600 0.1418 0.2852 1 1 1

17

