
TRACK 2.0

W.A. Houlberg, P.I. Strand

July 1, 2002

1 Introduction

The TRACK module has been in continuous use since the early 1980’s, although it has experienced occa-
sional revisions. The present version is written in Fortran 90/95, using features that are relatively easy to
adapt to different Fortran compilers and to link to other languages. In addition, the algorithms for stepping
along a line segment and finding intersections and tangencies have been extensively reworked in the present
version for greater clarity and computational efficiency. TRACK requires geometry information (conver-
sions between Cartesian, cylindrical and magnetic flux coordinates) that must be obtained from an MHD
equilibrium interface. The 2D and 3D conversions for inverse coordinate representations that were included
in the original version of TRACK have been moved to the AJAX module, and are called directly from
TRACK. In addition, the module AJAX XPLASMA maps the AJAX calls to the 2D MHD equilibrium
interface routines in XPLASMA. We are indebted to D. McCune for running test cases and correcting
some faults in the stepping algorithm, and to A. Pankin for the generic makefiles.

Following is a description of the TRACK module, its availability, and its F90/95 features. The module
is actually named TRACK MOD and the primary routine in the module is TRACK. However, in this
documentation the module will be referred to by its root name TRACK. In subsequent sections we describe
each of the routines in the module. Also included are sections on revision history, limitations and known
problems, future extensions, and simplified code diagrams.

In this documentation teletype style identifies names of Fortran modules, routines, variables and other
coding.

Description of TRACK

The TRACKmodule tracks a segmented path (a connected series of straight segments in real space) through
a 3D toroidal plasma and finds the intersections with a set of magnetic flux surfaces. Although originally
written to map the wave damping along rays generated by an RF code in order to provide a radial profile
of plasma heating, it has been used for other source applications that need plasma information along a line
of sight in real space (e.g., neutral beam and pellet injection), and for inversion of chordal diagnostics to
obtain profiles – see Ref [1] for the original computational algorithms, an example of inverting chordal
CO2 interferometric data to obtain the evolution of density profiles from pellet injection, as well as other
applications.

1

There are a couple of auxiliary routines in the module that are called called by the main TRACK routine
and are declared PUBLIC for possible use in other applications. One provides the length of the segment
and its unit length vector. The other gives the coordinates (Cartesian, cylindrical and flux) of a point located
a distance d along a segment characterized by its initial point and unit length vector.

Public Routines

• TRACK
• TRACK D

• TRACK G

2

Availability

This module is available with:

• Stand-alone test driver
• Test cases used in the development
• External documentation
• IDL graphic procedures for viewing results of the test cases

When all documentation and testing is complete enough for release, these should be obtained through the
Module Library:

http://w3.pppl.gov/rib/repositories/NTCC/catalog/

For a beta release version, comments, suggestions, or other information, contact:

Address: Wayne A. Houlberg

Fusion Energy Division

Oak Ridge National Laboratory

P.O. Box 2009

Oak Ridge, TN 37831-8071

Phone: 865-574-1350

Fax: 865-576-7926

e-mail: houlbergwa@ornl.gov

3

Fortran 90/95 Features

This module uses Fortran 90/95 features that enhance portability, flexibility and efficiency. For the most part
we have following the recommendations in the document ’European Standards for Writing and Documenting
Exchangeable Fortran 90 Code,’ which is available on the Web at:

http://www.met-office.gov.uk/research/nwp/numerical/fortran90/f90_standards

These are accomodated by:

• Use of KIND to declare the precision of all REAL variables:

— Replaces REAL*4 and REAL*8, which are deprecated in Fortran 90/95

— Set in a companion module, SPEC KIND MOD

• There are no COMMON blocks or any other coding features that are deprecated in Fortran 90/95

• PRIVATE features are used to minimize conflict with other parts of linked coding:
— Data

— Computational methods and numerical procedures

• Generic names are used for all intrinsic functions
• Use of optional I/O in the arguments to routines allows a user to:

— Reduce allocation and CPU for information that is not necessary for a specific application

— Let the routine use default assumptions

— Extend the application to add other optional I/O information without changing existing calling
routines that do not need the new information

— SUBROUTINE GETINFO(a,b,c,X,Y,Z) with required I/O a, b, c, and OPTIONAL I/O
X, Y, Z can be called in various ways from another Fortran 90/95 routine:

CALL GETINFO(a1,b1,c1,x1,y1)

CALL GETINFO(a1,b1,c1,Y=y1,X=x1)

where the variable names with 1 appended are variables in the calling routine. These calls obey
the rules that all required I/O appears first in the list of arguments and must be called in sequence.
Optional variables can be called in sequence without using GETINFO names as keywords, but
the OPTIONAL arguments may be accessed in any order if keywords are used.

• Dynamic and automatic allocation of local variables are used to reduce storage:
— Dynamic allocation is invoked by an ALLOCATE statement that uses input information (vari-
able that sets the number of elements to be included in array operations, or a check of the SIZE
of an array when all elements are to be operated on), and always deallocated if it is not necessary
to store the information for future calls

— Automatic allocation is accomodated in the declarations at the beginning of a routine using input
variables to set the dimension of arrays

• Compilation in either fixed or free format for portability

4

• Array syntax is used to simplify coding by removing many DO loops and to allow the compiler to
generate more optimum coding, e.g.,

— Initialization of a fourth rank array to zero, and all fourth rank elements with the first three
indices i = 1, j = 3, k = 5 set to unity with the precision PARAMETER rspec set in
SPEC KIND MOD:

f(:,:,:,:) = 0.0_rspec

f(1,3,5,:) = 1.0_rspec

— A volume integral of the product of density and temperature over plasma zones 13—20 for plasma
species 2 can be written as:

i1 = 13

i2 = 20

energy = SUM(den(2,i1:i2)*temp(2,i1:i2)*vol(i1:i2))

where the first rank of the density and temperature arrays indicates species and the second rank
indicates radial grid

5

Coding Style

The coding style in this and other related Fortran 90/95 transport simulation modules developed at ORNL
is followed fairly strictly, so that once a few basic rules are learned, the code is much easier to decifer, modify
and debug (for other users as well as the original developers). Among the major style features are:

• All variables are declared, including the INTENT of all I/O arguments to each routine

• All arguments to a routine are described in a comment block at the beginning of the routine, including
their units enclosed in square brackets, [units]

• There is no I/O to external devices in general physics modules; all I/O with external resources is
handled by routines that are designed specifically for that purpose

• Error handling uses an error flag (iflag < 0 for warnings, > 0 for errors, and = 0 for no problems) and
message (message) system with no termination while inside the module

• Although Fortran is not case sensitive, upper case is used to emphasize all reserved words and proce-
dures, i.e.,

— System calls

— Internal Fortran functions

— FUNCTION and SUBROUTINE names

— Names of optional arguments

otherwise all variables are in lower case

• There is extensive use of naming conventions to improve readability and facilitate debugging:
— Routines in a module begin with the module root name (i.e., minus the MOD descriptor)

— Underscores in a name generally indicate some characteristic of the variable that is often desig-
nated as a subscript or superscript in mathematical notation, description of the variable describing
the rank of an array, etc.

— Options begin with k

— Logical variables begin with l

• Comments, indentation, and blank lines are used to identify blocks of related coding
• There is ony one exit to each routine, with any early exits sent to a line:

9999 continue

followed by any relevant deallocations or other closing activities before exiting

• All DO and END statements are identified, i.e.:

MODULE Y

CONTAINS

SUBROUTINE X

...

DO i=1,n !Over radial nodes

...

ENDDO !Over radial nodes

END SUBROUTINE X

END MODULE Y

6

• Compatibility with free and fixed formats is accomodated by using & in column 80 of the line to be
continued (free form requirement of & at the end of a line, and fixed form restriction that anything
beyond column 72 is ignored), and using a second & in column 6 of the continued line (fixed form
requirement of placement, and an allowably redundant free form continuation symbol). Although this
is not very elegent, it is an often used transitional step between free and fixed form codes.

• Indentation to identify code structure:
— DO loop constructions

— IF constructions

7

Figure 1: The Cartesian (x, y, z), cylindrical (R,φ, Z), and magnetic flux (ρ, θ, ζ) coordinate systems showing
their relative orientations.

2 Public Routines

The coordinate systems used in the TRACK module consist of three right-handed systems: Cartesian
(x, y, z), cylindrical (R,φ, Z), and magnetic flux (ρ, θ, ζ). These are illustrated in Fig. 1 along with their
relative orientations. Note that the cylindrical and magnetic flux toroidal angles are assumed to be identical,
ζ = φ, with the positive direction being counterclockwise when viewed from above the torus. The positive
direction of the poloidal angle in magnetic flux coordinates is down on the outside of the torus with θ = 0
at the outside midplane.

TRACK(n rho, rho, n seg, r seg, n int, irho int, s int, iflag,message,
K SEG, IZONE INT,RFLX INT,RCYL INT,RCAR INT, SDOTB INT,
SDOTPHI INT)

General Description

TRACK steps along a segmented path specified by nseg nodes in (default) cylindrical coordinates, nrseg, to
find the intersections, nint, with a user-supplied set of nρ flux surfaces, ρi, i = 1, nρ. The first flux surface
may or may not define the magnetic axis (ρ1 = 0), but the surfaces are assumed to be simply nested with
the ρi monotonically increasing. It is also possible to specify a single surface. In addition to the indices of
the surfaces at the intersections, iρ,int, the distances from the beginning of the path to the intersections are
returned, sint. As an option, the user can use Cartesian or flux coordinates to define the segments. There
are also optional output variables that characterize the set of intersections. The set of intersections includes
the segment endpoints, which are identified by iρ,int = 0.

The basic algorithm consists of stepping along each segment of the path in sequence. It uses the radial flux
coordinates of the step end points to determine whether a flux surface of interest has been passed. It also

8

uses the derivatives of the flux coordinates at the endpoints to determine whether the segment is headed
inward or outward with respect to the magnetic axis and to determine whether tangencies have been passed.
Because it is possible that portions of the path may be far outside the plasma where the flux coordinate
determination is not valid, the stepping algorithm allows for invalid transformations and assumes those points
are outside the plasma. One possible failure is when an invalid coordinate transformation occurs while the
segment is known to be inside the domain of the set of flux surfaces of interest, which means the plasma
geometry and/or conversion routines represented by AJAX or XPLASMA is at fault.

Mathematical Description

There are three levels of position notation in the algorithm that need to be clarified. Let s represent the
distance from the beginning of the segmented path, let d represent the distance from the beginning of a
straight segment in the path, let 0 refer to the beginning of a step within the segment, and let 1 designate
the end of the step. All the output refers to the distances represented by s; the distances within a segment
and information about an individual step are only used as private information for obtaining s. Information
for each of these three levels needs to be initialized.

Path Initiation

The general initialization consists of three steps: setting characteristic lengths, nulling the output arrays,
and setting the cylindrical coordinates defining the segments. The characteristic major and minor radii of
the toroidal plasma, R0 and ρmax respectively, are obtained from the MHD equilibrium interface (AJAX or
XPLASMA) and used to set upper and lower limits on step sizes and characteristic gradients:

6R = 10−4 (1)

∆smin = 6RR0 (2)

∆smax = 102∆smin (3)

∆ρmin = 6Rρmax (4)

∂ρ

∂s min

=
∆ρmin
∆smax

(5)

After setting all the output arrays to null values, the cylindrical coordinates defining the segments are set:
using the input values if the default cylindrical coordinate specification is used, or converted from input
magnetic flux or Cartesian coordinates by appropriate calls to AJAX or XPLASMA when the optional
input switch is set to kseg = 1 or 2 for magnetic or Cartesian specification, respectively.

Segment Initialization

The next stage of initialization consists of setting information at the beginning of the first segment for the
loop over segments. The position of the first segment relative to the beginning of the path is given by
sseg = 0. The Cartesian and flux coordinates of this point are determined using appropriate calls to AJAX
or XPLASMA. The largest flux surface that satisfies the condition ρ0 ≥ ρi is located and designated
i = low, allowing for the possibility that the point lies on a flux surface if it is within the tolerance,
|ρ(ilow) − ρ0| < ∆ρmin. The fixed and optional output variables at this starting point are then recorded:
nint = 1, sint(1) = 0, the plasma zone being entered iz,int, the magnetic flux, Cartesian and cylindrical

9

coordinates, the sine of the angle of intersection with the magnetic field dl̂ · nB/|B|, and the sine of the
angle with respect to the toroidal direction dl̂ · φ̂. The latter two are useful for determining the pitch
angle of particles for Fokker-Planck calculations or parallel momentum input and toroidal momentum input,
respectively.

Step Initiation

The loop over segments contains a loop over steps within a segment, and includes the possibility that a step
need to be reduced because it is too long (using the step halving counter, mh, discussed later). Prior to
stepping along the segment, the general segment information and information at the beginning of the first
step needs to be set. The segment length, dseg, and unit length vector along the segment, dl̂, are set by calling
TRACK G. A call to the auxiliary routine TRACK D sets the Cartesian, magnetic flux and cylindrical
coordinates at the beginning of first step, along with dρ/ds|0, the 2-D Jacobian, τ0, and derivatives of R and
Z with respect to the flux coordinates. If the Jacobian fails, we set dρ/ds|0 = 0, and if |dρ/ds|0| > dρ/ds|min
we set it to the minimum value with the appropriate sign. This allows us to use the null condition to indicate
a bad Jacobian. The step reduction coefficient and position of the end of the step are initialized: mh = 0
and d1 = 0, respectively.

Step Loop

The step loop is terminated by error exit when there are too many halvings of the step size (set to mh > 5),
or terminated normally when the end of the previous step (d1) is within the minimum step size of the end
of the segment:

d1 > dseg −∆smin (6)

Otherwise the new step size is set by the following algorithm that uses ilo to designate the index of the next
lower flux surface below point 0:

∆s = ∆smax, for
∂ρ

∂s 0

<
∂ρ

∂s min

(7)

= ∆smax, for
∂ρ

∂s 0

< 0, ilo = 0 (8)

= 1.2
ρ1 − ρilo
∂ρ/∂s|0 , for

∂ρ

∂s 0

< 0, ilo W= 0 (9)

= 1.2
ρilo+1 − ρ1
∂ρ/∂s|0 , for

∂ρ

∂s 0

> 0, ilo < nρ (10)

= ∆smax, for
∂ρ

∂s 0

> 0, ilo ≥ nρ (11)

where the factors of 1.2 have been found to be reasonably optimal for stepping just past the next surface,
noting that the radius of curvature may be increasing and to ensure that the algorithm doesn’t leave the
point always short of the target surface. The step size is adjusted to ensure that it doesn’t go past the end
of the segment, and is halved in case the step size has been determined to be too large on the previous step:

∆s =
min(∆s, dseg − d0)

2mh
(12)

A second check is then made to ensure that the step size is at least the minimum, ∆s ≥ ∆smin, and the
coordinates and other relevant information at point 1 are determined by a call to TRACK D.

10

Figure 2: In Case I the Jacobian of the initial point (the left end of each horizontal line) is invalid and
assumed to be outside the plasma. The stepping proceeds until a valid point just outside the plasma is
obtained. An x designates an invalid Jacobian, a + designates a valid Jacobian, and a square designates the
intersection with a surface.

There are three conditions on ∂ρ/∂s at each endpoint that yield nine basic cases. Each of these has several
subcases determined by whether a surface of interest has been hit, whether a tangency has been passed,
whether the step needs to be reduced, and whether to advance the step. The algorithm is set up this way
to allow for either concave or convex local curvature of the surface, which can occur in either axisymmetric
or non-axisymmetric plasmas. Because ∂ρ/∂s is used in the algorithm to determine the step size and the
set of cases, we must be careful in the vicinity of ∂ρ/∂s = 0. For an invalid Jacobian we set ∂ρ/∂s = 0 and
reset ∂ρ/∂s to the minimum value with the appropriate sign if it is smaller than the minimum but otherwise
valid.

These nine cases and their subcases are illustrated in Figs 2—4. Cases I, II, and III refer to the conditions
∂ρ/∂s invalid, > 0, and < 0, respectively, at the start of the step, point 0. Cases A, B, abd C refer to the
conditions ∂ρ/∂s invalid, > 0, and < 0, respectively, at the end of the step, point 1. For each line representing
the step, the initial position (point 0) is on the left, and the endpoint is labelled by a number representing
the subcase. We now go through the decision process on a case-by-case basis, setting appropriate flags and
parameters that dictate actions at the end of the set of cases. Let ihit designate the index of a flux surface
that has been intersected, in which case d1 is reset to the position of the intersection. The condition ihit = 0
will be taken to mean that no surface has been hit. Let mh = 0 be the condition that the step has been
successfully completed and doesn’t have to be retaken. Otherwise, it needs to be incremented to halve the
step size.

Cases I.A

The Jacobian at both 0 and 1 is invalid and the only action is to proceed with the next step:

ihit = 0

mh = 0 (13)

11

Cases I.B

The Jacobian at 0 is invalid and the segment is headed outward at 1. There are two conditions at 1 that
lead to subcases 1 and 2: even though the segment is headed outward at 1 and 0 is assumed to be outside
the plasma, the step may have been large enough to cross a flux surface and pass a tangency.

In Case I.B.1 point 1 is outside the target surface and the step can be completed:

ihit = 0

mh = 0 (14)

By default (in not meeting other subcase conditions) then in Case I.B.2 point 1 is inside the plasma and the
step should be shortened to get a valid point just outside the plasma so the location of the intersection can
be found by interpolation:

ihit = 0

mh = mh + 1 (15)

Cases I.C

The Jacobian at 0 is invalid and the segment is headed inward at 1. The same subcases considered in I.B
are applicable.

In Case I.C.1 point 1 is outside the target surface and the step can be completed:

ihit = 0

mh = 0 (16)

By default then in Case I.C.2 point 1 is inside the plasma and the step should be shortened to get a valid
point just outside the plasma so the location of the intersection can be found by interpolation:

ihit = 0

mh = mh + 1 (17)

Cases II.A

The segment is headed outward at 0 and the Jacobian is invalid at 1. There are two subcases that depend
on whether point 1 is inside or outside the outermost flux surface supplied by the user.

In Case II.A.1 point 0 is outside the outermost surface and, because it is headed outward, it is assumed the
step simply entered a region further out where the Jacobian is bad. So the step can be completed:

ihit = 0

12

Figure 3: In Case II the segment is directed outward at the initial point (the left end of each horizontal line)
and information at the other (right) end of the segment is used to determine whether the segment continues
outward (B) or passes a tangency and turns inward (B), and whether it intersects a surface of interest in
between. In Case II.A the Jacobian at the right end is invalid and the step must be reduced to obtain a valid
point for interpolation. The notation is the same as in Case I, except with the addition of an o to designate
a tangency.

13

mh = 0 (18)

In Case II.A.2 point 0 is inside the outermost surface and the step should be shortened to get a valid point
at 1 so the location of the intersection can be found by interpolation:

ihit = 0

mh = mh + 1 (19)

Cases II.B

The segment is headed outward at both 0 and 1, leading to 5 subcases that must be considered in sequence.

In Case II.B.1 point 0 is outside the outermost surface (and presumably 1 is also because it is also headed
outward) so there can be no intersection and the step can be completed:

ihit = 0

mh = 0 (20)

In the other subcases the point 0 is then inside the outermost surface and point 1 can meet one of four
conditions relative to the target surface.

In Case II.B.2 point 1 has hit the target surface, ρilo+1, within the tolerance ∆ρmin. A hit can be recorded,
a new target surface identified, and the step completed. The position of the hit along the segment is
extrapolated from the conditions at 1 (which should be closer to the target surface than point 0 in virtually
every case), the value of d1 is overwritten with the hit position, and the step size reset:

ihit = ilo + 1

mh = 0

ilo = ilo + 1

d1 = d1 +
ρhit − ρ1
∂ρ/∂s|1

ds = d1 − d0 (21)

In Case II.B.3 the point 1 has crossed more than 1 target surface and the step needs to be halved until only
one target surface is crossed:

ihit = 0

mh = mh + 1 (22)

In Case II.B.4 the point 1 has crossed a single surface. The position of the hit is recorded using a finite
difference approximation to ∂ρ/∂s at the two end points by overwriting the distance to the intersection, the
target surface is advanced to the next larger surface, and the step size is reset:

ihit = ilo + 1

mh = 0

14

ilo = ilo + 1

d1 = d1 +
ρhit − ρ0
ρ1 − ρ0

ds = d1 − d0 (23)

By default then in Case II.B.5 no surfaces have been crossed and the step is advanced:

ihit = 0

mh = 0 (24)

Cases II.C

The segment is headed outward at 0 and inward at 1, meaning that it has passed a tangency. The subcases
have to consider whether an intersection has also been passed, so the position of the tangency is first estimated
from the end point derivatives, and the step size is reset:

d1 =
d1

∂ρ
∂s 0

− d0 ∂ρ∂s 1
∂ρ
∂s 0

− ∂ρ
∂s 1

ds = d1 − d0 (25)

The coordinates at the tangency are determined by a call to TRACK D at the new position 1, and ∂ρ/∂s
is overwritten to be the minimum value past the tangency:

∂ρ

∂s 1

= −∂ρ
∂s min

(26)

In Case II.C.1 the lower bound surface is the outermost surface and no surface could have been hit so the
step is advanced:

ihit = 0

mh = 0 (27)

In Case II.C.2 the tangency lies within the tolerance of a hit on the target surface, ρilo+1, within the tolerance
∆ρmin. Note that the lower bounding surface remains ilo+1 and the direction of progress has already been
forced to be beyond the intersection. A hit can be recorded and the step completed:

ihit = ilo + 1

mh = 0 (28)

In Case II.C.3 ρilo+1 has been passed before the tangency. The hit is recorded as a linear interpolation
between 0 and the tangency, the next outer surface is targeted, the forced gradient at point 1 is unforced by
setting it to twice the minimum, and the step completed:

ihit = ilo + 1

mh = 0

15

Figure 4: In Case III the segment is directed inward at the initial point (the left end of each horizontal line)
and information at the other (right) end of the segment is used to determine whether the segment continues
inward (C) or passes a tangency and turns outward (C), and whether it intersects a surface of interest in
between. In Case III.A the Jacobian at the right end is invalid and the step must be reduced to obtain a
valid point for interpolation if the initial point is outside the plasma, or fails if the initial point was inside
the plasma. The notation is the same as in the previous cases.

ilo = ilo + 1

d1 = d0 + ds
ρhit − ρ0
ρ1 − ρ0

ds = d1 − d0
∂ρ

∂s 1

= 2
∂ρ

∂s min

(29)

By default then in Case II.C.4 no surface was crossed and the step can be completed:

ihit = 0

mh = 0 (30)

16

Cases III.A

There is a valid inward solution at 0 and an invalid solution at 1. There are only two subcases to consider.

In Case III.A.1 point 0 is outside the plasma and we can proceed with another step:

ihit = 0

mh = 0 (31)

By default then in Case III.A.2 point 0 is inside the plasma, and since the segment was headed further
inward at that point, a valid ransformation should have been obtained at 1. Since the solution is invalid at
1 we set the error flag to indicate a fatal error and exit TRACK.

Cases III.B

There is a valid inward solution at 0 and a valid outward solution at 1, meaning that a tangency has been
passed. The tangency is again estimated from the end point derivatives and the step size is reset:

d1 =
d1

∂ρ
∂s 0

− d0 ∂ρ∂s 1
∂ρ
∂s 0

− ∂ρ
∂s 1

ds = d1 − d0 (32)

The coordinates at the tangency are determined by a call to TRACK D at the new position 1, and ∂ρ/∂s
is overwritten to be the minimum value past the tangency:

∂ρ

∂s 1

=
∂ρ

∂s min

(33)

The primary difference from the corresponding outward Case II.C is to consider whether the tangency is
inside the innermost surface (axis not specified as one of the surfaces) or if the axis is specified, to not bother
finding the intersection there. This leads to five subcases.

In Case III.B.1 tangency is inside the innermost surface and the step can be completed:

ihit = 0

mh = 0 (34)

In Case III.B.2 the inner surface is within ∆ρmin of the axis and its possible intersection is ignored and a
new step taken:

ihit = 0

mh = 0 (35)

17

In Case III.B.3 the tangency is within ∆ρmin of the surface and its intersection is recorded and the step
completed:

ihit = iilo

mh = 0 (36)

The index of the lower surface is not advanced because that surface still bounds the zone for the beginning
of the next step.

In Case III.B.4 surface ρilo has been crossed before the tangency. The hit is recorded as a linear interpolation
between 0 and the tangency, the next lower surface is targeted, the forced gradient at 1 is unforced by setting
it to twice the minimum, and the step is completed:

ihit = ilo

mh = 0

ilo = ilo − 1
d1 = d0 + ds

ρhit − ρ0
ρ1 − ρ0

ds = d1 − d0
∂ρ

∂s 1

= 2
∂ρ

∂s min

(37)

In the default Case III.B.5 none of the above conditions are satisfied, and no surface has been crossed. The
step can be competed:

ihit = 0

mh = 0 (38)

Cases III.C

The segment is headed inward at both 0 and 1. The subcases are similar to Case II.B where both are
outward, except for considerations at the lowest surface that may be the axis or away from the axis as in
Case III.B. There are six subcases to consider.

In Case III.C.1 the lowest surface is away from the axis and point 1 has not passed a tangency to rehit the
lowest surface so the step can be completed:

ihit = 0

mh = 0 (39)

In Case III.C.2 the lower surface is within ∆ρmin of the axis and its possible intersection is ignored and the
step completed:

ihit = 0

mh = 0 (40)

18

In Case III.C.3 point 1 is within ∆ρmin of the lower surface, the hit is recorded, the index of the next lower
surface is reset, and the step completed:

ihit = ilo

mh = 0

ilo = ilo − 1 (41)

In Case III.C.4 more than one surface has been crossed and the step needs to be reduced:

ihit = 0

mh = mh + 1 (42)

In Case III.C.5 surface ρilo has been crossed, the intersection is recorded, the next lower surface is identified,
point 1 is reset to the intersection, the step to the intersection is reset, and the step completed:

ihit = ilo

mh = 0

ilo = ilo− 1
d1 = d0 + ds

ρhit − ρ0
ρ1 − ρ0

ds = d1 − d0 (43)

In default Case III.C.6 none of the above subconditions have been met so no surface has been crossed and
the step is completed:

ihit = 0

mh = 0 (44)

Step Completion

The step completion consists of two actions, recording information at an intersection when ihit W= 0, and
advancing the step when mh = 0. In recording the intersection, which is at point 1, we want to note the
possibility of a forced gradient at 1 to get past a tangency in the degenerate situation where the intersection
is at a tangency within the specified tolerances. The gradient at 1 is temporarily stored while the coordinates
and other information are obtained at 1 by a call to TRACK D, then used to overwrite the value returned
by TRACK D, which may have found the point short of the tangency within numerical accuracy. The
output is recorded and ihit is reset to 0. If the step is not to be halved (mh = 0) the coordinates and other
information are copied from point 1 to point 0.

(

Segment Completion

At the end of the segment the starting position of the next segment is advanced, sseg = sseg + dseg, and the
output information is recorded with iρ,int = 0.

19

I/O

!Input:

! n_rho -number of radial nodes [-]

! rho(n_rho) -radial nodes [-]

! n_seg -number of points defining the segments = segments+1 [-]

! r_seg(3,n_seg) -coordinates defining the segments (see K_SEG)

!Output:

! n_int -number of nodes + intersections [-]

! irho_int(n_int) -radial nodes of intersections [-]

! =0 if point is a node of the ray

! s_int(n_int) -length along path to intersections [m]

! iflag -error and warning flag [-]

! =-1 warning

! =0 none

! =1 error

! message -warning or error message [character]

!Optional input:

! K_SEG -option for coordinates specifying the segments [-]

! =1 flux coordinates (rho,theta,zeta)

! =2 Cartesian coordinates (x,y,z)

! =else default cylindrical coordinates (R,phi,Z)

!Optional output:

! IZONE_INT(n_int) -zone being entered [-]

! RFLX_INT(3,n_int) -flux coordinates [rho,rad,rad]

! RCYL_INT(3,n_int) -cylindrical coordinates [m,rad,m]

! RCAR_INT(3,n_int) -Cartesian coordinates [m,m,m]

! SDOTB_INT(n_int) -cos of angle between path and B [-]

! SDOTPHI_INT(n_int) -cos of angle between path and phi [-]

20

TRACK D(d, r cars, g cars, r flx, r car, r cyl, drhods, g cyl, tau, iflag,message)

General Description

TRACK D determines the flux (nρ), Cartesian (nx), and cylindrical (nr) coordinates at a distance d along a

straight segment characterized by an initial point, nx0, and the unit length vector along the segment, dl̂. It
also returns the derivative of the radial flux coordinate along the segment, dρ/ds, an array of the potentially
non-trivial derivatives of the cylindrical coordinates with respect to the flux coordinates, (dR/dnρ, dZ/dnρ),
and the 2D Jacobian of the conversion from flux to cyindrical coordinates, τ , at the end point.

Mathematical Description

The starting position of the segment in Cartesian coordinates, the gradients along the segment, and distance
determine the position of the end point in Cartesian coordinates:

nx1 = nx0 + d dl̂ (45)

The cylindrical and flux coordinates at the end point are obtained from calls to AJAX or XPLASMA cylin-
drical to flux coordinate conversion routines. These also return the derivatives of the cylindrical coordinates
with respect to the flux coordinates and the 2D Jacobian, τ = RθZρ−RρZθ. The rate of variation of ρ along
the chord, dρ/ds, is useful for determining whether the segment is proceeding inward or outward with respect
to the flux surfaces, and for setting an estimate of the step size to intersect the next surface. Successive
application of the chain rule gives:

dρ

ds
= ρRx− ρφ

R
y

1

R
dl̂x + ρRy +

ρφ
R
x

1

R
dl̂y + ρZdl̂z (46)

ρR = −Zθ
τ

(47)

ρZ =
Rθ
τ

(48)

ρφ =
RζZθ − RθZζ

τ
(49)

where subscripts on the variables designate derivatives with respect to that variable. It is worthwhile to note
here the distinction between the two toroidal coordinates φ and ζ, even though we assume φ = ζ. In applying
the chain rule in any given coordinate system the derivative with respect to one coordinate is taken while
the other two coordinates in that system are held constant. Therefore, in a non-axisymmetric plasma Rζ is
generally non-zero because the derivative is taken tangent to the surface, while Rφ vanishes everywhere. In
an axisymmetric plasma, of course, Rζ = Rφ = Zζ = Zφ = 0.

I/O

!Input:

! d -distance along segment [m]

! r_cars(3) -Cartesian coordinates of start of segment [m]

! g_cars(3) -unit length vector along segment [-]

21

!Input/output:

! r_flx(3) -flux coordinates (rho,theta,zeta) [rho,rad,rad]

!Output:

! r_car(3) -Cartesian coordinates (x,y,z) [m,m,m]

! r_cyl(3) -cylindrical coordinates (R,phi,Z) [m,rad,m]

! drhods -drho/ds at position d along the chord [rho/m]

! g_cyl(6) -R,Z derivatives

! =(R_rho,R_theta,R_zeta,Z_rho,Z_theta,Z_zeta)

! [m/rho,m, m, m/rho,m, m]

! tau -2-D Jacobian in phi=zeta=constant plane [m**2/rho]

! iflag -error and warning flag [-]

! =-1 warning

! =0 none

! =1 error

! message -warning or error message [character]

22

TRACK G(r cyl0, r cyl1, d, g car)

General Description

TRACK G determines the length of a segment, d, specified by two points in cylindrical coordinates, nr0 and nr1.
It also determines the unit vector along the segment in Cartesian coordinates, dl̂.

Mathematical Description

The input cylindical coordinates, nr0 = (R0,φ0, Z0) and nr1 = (R1,φ1, Z1), are first converted to Cartesian
coordinates, (x0, y0, z0) and (x1, y1, z1), by calling the appropriate AJAX or XPLASMA conversion routines.

From the Cartesian oordinates the segment length, d, and unit length vector, dl̂, are trivially determined:

d = (x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 1/2
(50)

dl̂ =
dnx

ds
(51)

=
x1 − x0
d

,
y1 − y0
d

,
z1 − z0
d

(52)

I/O

!Input:

! r_cyl0(3) -cylindrical coordinates at start of segment [m,rad,m]

! r_cyl1(3) -cylindrical coordinates at end of segment [m,rad,m]

!Output:

! d -length of segment [m]

! g_car(3) -unit length vector along segment [-]

23

3 Files and Test Cases

From the tarred/zipped files you should get the directory structure:

\track -main directory plus configure and make files

\bin -binaries

\dat -data

\doc -documentation

\lib -libraries

\results -results

\src -source code

There are two versions of the test code — one that links to AJAX and one that links to XPLASMA — and
each of these has test cases. Each test case generates 3 output files:

1d s track.dat 1D output along path for IDL postprocessing
sum track.dat 1D output along path for viewing with editor
msg track.dat Error, warning and other messages

Sample output files for each test case have a case name appended and either 4 or 8 designating the precision
set in SPEC KIND.MOD, which can be editted to change the precision. TRACK/AJAX can be run
in either ’single’ or ’double’ precision through the use of KIND declarations, and TRACK/XPLASMA
can only be run in ’double’ precision throught the use of REAL*8 declarations. The precision parameters
are therefore set to ’double’ in the distribution to cover both.

TRACK/AJAX and TRACK/XPLASMA on a UNIX system

On a UNIX system you can configure the makefile with the command:

./configure --with-library-path=[library source]

where [library source] is needed for the TRACK/XPLASMA option and includes the xplasma and
pspline libraries available through the NTCC library (at PPPL these are located at /usr/ntcc/lib). Also,
the lapack and blas libraries are needed.

For SUN Solaris systems the f77compat library needs to be specified, if the library is not in the standard lib
directory (/usr/lib, /usr/local/lib, /lib, and etc). For example, for the PPPL Orion workstation it takes the
form:

./configure --with-library-path=/usr/ntcc/lib/ \
--with-f77compat-library=/afs/pppl.gov/sun4x 56/opt/SUNWspro/SC5.0/lib

The f77compat library is not required for non-SUN systems and configure will look like:

24

./configure --with-library-path=/usr/ntcc/lib/

Then make can be run with the following options:

make ajax to make TRACK/AJAX
make xplasma to make TRACK/XPLASMA
make atesttok to run TRACK/AJAX on generic tokamak case
make atestnstx to run TRACK/AJAX on NSTX tokamak case
make atestncsx to run TRACK/AJAX on NCSX stellarator case
make xtestnstx to run TRACK/XPLASMA on NSTX tokamak case
make clean to remove *.o, *.mod files
make realclean to remove *.o, *.mod plus library and binary files

The output from each test case is compared with the reference output and the results are stored in the
results directory

TRACK and AJAX Sources and Test Cases

Source routines:

TRACK AJAX DR.F90 Driver for TRACK coupled to AJAX
SPEC KIND.F90 Precision specification module
TRACK MOD.F90 TRACK module
WRITE MOD.F90 Formatted output module
SETUP AJAX.F90 AJAX setup routine
AJAX MOD.F90 AJAX module
LINEAR1 MOD.F90 1D linear interpolation module
SPLINE1 MOD.F90 1D spline interpolation module

Test Cases:

Simple tokamak test case.

Copy nml track tok.dat to nml track.dat and execute.

NSTX (low A tokamak) test case.

Copy nml track nstx.dat to nml track.dat and execute. This case gets VMEC inverse coordinate ex-
pansion coefficients from in nstx 8.dat.

NCSX (stellarator) test case.

Copy nml track ncsx.dat to nml track.dat and execute. This case gets VMEC inverse coordinate ex-
pansion coefficients from in ncsx 8.dat.

25

TRACK and XPLASMA Sources and Test Case

Source routines:

TRACK XPLASMA DR.F90 Driver for TRACK coupled to AJAX
SPEC KIND.F90 Precision specification module
TRACK MOD.F90 TRACK module
WRITE MOD.F90 Formatted output module
SETUP XPLASMA.F90 AJAX setup routine
AJAX XPLASMA MOD.F90 Conversion of AJAX calls to XPLASMA calls

In addition, you will need the libraries discussed above.

Test case:

NSTX (low A tokamak) test case.

Copy nml trackx nstx.dat to nml track.dat and execute. This case gets inverse coordinate expansion
coefficients from 11114p06.treq data.

Documentation

This documentation was generated in LaTeX. Contact me (houlbergwa@ornl.gov) for the LaTeX source files.

4 Revision History

TRACK 2.0 is a major rewrite of an earlier version that includes the following:

• Conversion to an F90/95 module
• Cleaner implementation of the stepping algorithm
• Replacing the root finding algorithms for intersections and tangencies with much faster, but slightly
less accurate interpolations. The step sizes have been reduced to compensate and test cases typically
yield mm accuracy — well within experimental resolution.

5 Limitations and Known Problems

In the coupling to XPLASMA there is a potential compatibility issue between the KIND specification in
the F90/95 modules and the REAL*4 and REAL*8 specifications in the F77 routines.

26

6 Future Extensions

None planned.

7 Code Variables and Mathematical Symbols

d d distance from start of segment
d0 d0 distance from start of segment to start of step
d1 d1 distance from start of segment to end of step
drhods dρ/ds gradient
drds min dρ/ds|min minimum gradient
drds0 dρ/ds|0 gradient at beginning of step
drds1 dρ/ds|1 gradient at end of step
drho min ∆ρmin flux surface resolution
ds ∆s step size
dseg dseg length of segment
ds max ∆smax maximum step size
ds min ∆smin minimum step size

g cars dl̂ unit length vector along segment
ihit ihit index of fux surface intersected
ilo ilow index of surface below start of step
irho int iρ,int indices of flux surfaces intersected
izone int iz,int indices of zones entered at intersections
k seg kseg option for coordinates specifying segments
mhalf mh step size halving exponent
n int nint number of intersections with surfaces
n rho nρ number of flux surfaces
n seg nseg number of segments in path
r000 R0 characteristic major radius of torus
r car nx Cartesian coordinates
rcar int nxint Cartesian coordinates of intersections
r cars nxo Cartesian coordinates at beginning of segment
r cyl nr cylindrical coordinates
rcyl int nrint cylindrical coordinates of intersections
r flx nρ flux coordinates
rflx int nρint flux coordinates of intersections
rho ρ set of flux surface labels
rhomax ρmax radial grid at plasma boundary
r seg nrseg coordinates of segment nodes
s int sint distance from beginning of path to intersections

sdotb int dl̂ · nB/|B| sine of angle of path with B at intersections

sdotphi int dl̂ · φ̂ sine of angle of path with φ at intersections
sseg sseg distance from beginning of path to start of segment
tau τ 2D Jacobian of coordinate transformation
tol 6R tolerance for ∆ρmin and ∆smin

27

8 Code Diagrams

An ∗ before the names of routines each module indicate that they are PUBLIC and can be accessed directly
by the user. If they are listed in the tree of another routine they are not given a separate listing. See the
AJAX documentation for a description of the AJAX . . . routines and the XPLASMA documentation
for a description of the EQ. . . routines.

TRACK_MOD

*TRACK

|--AJAX_B

|--AJAX_CAR2CYL

|--AJAX_CYL2CAR

|--AJAX_CYL2FLX

|--AJAX_FLX2CYL

|--AJAX_GLOBALS

|--*TRACK_D

| |--AJAX_CAR2CYL

| |--AJAX_CYL2FLX

|--*TRACK_G

|--AJAX_CYL2CAR

AJAX_XPLASMA_MOD

*AJAX_B

|--EQ_XCYL

|--EQXYZ_BGET

*AJAX_CAR2CYL

|--EQ_RCYL

*AJAX_CYL2CAR

|--EQ_XCYL

*AJAX_CYL2FLX

|--EQ_INV

|--EQ_GETJAC

*AJAX_FLX2CYL

|--EQ_RZGET

*AJAX_GLOBALS

|--EQ_RHOLIM

|--EQ_RZGET

References

[1] S.E. Attenberger, W.A. Houlberg, S.P. Hirshman, “Some Practical Considerations Involving Spectral
Repersentations of 3D Plasma Equilibria,” J. Comput. Phys. 72 (1987) 435.

28

