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1 Introduction

The current methods of quantum control use shaped laser pulses as photonic
reagents to alter the natural propagation of a system’s wavefunction, driving
the expectation value 〈O〉 of an observable towards the desired value. This can
be used to selectively ionize certain species within a plasma, align molecules,
effect electronic transitions, or break bonds, among other uses.

However, all of this is in the presence of a strong electric field (i.e. the
control pulse) which limits the ability to accurately probe the system or use it
for further experiments. Once the control field is gone, the system’s natural
propagation quickly changes 〈O〉, making it a difficult experimental problem to
measure or otherwise utilize the system while it is still in its “controlled” state.
The goal of this research was therefore to find target states that would not only
satisfy the initial demands on 〈O〉, but would also maintain that value (or guide
it along a chosen path) for as long as possible after the control laser was turned
off.

2 Mathematical Formulation of the problem

The expectation value of an observable is given by the equation

〈O〉 = 〈ψ|O|ψ〉 (1)

However, by Schrödinger’s equation, the wavefunction |ψ〉 varies with time:

|ψ〉t = e
−iHt
h̄ |ψ〉0 (2)

where H is the Hamiltonian of the system once the control laser is off. If we
expand this in the basis of the (normalized) energy eigenstates of the system,
{φn}, such that H|φn〉 = En|φn〉, then this becomes

|ψ〉t =
∑
n

ane
−iEnt
h̄ |φn〉 (3)
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where the coefficients an = 〈ψ|φn〉, and
∑
|an|2 = 1 because |ψ〉 must be

normalized. Plugging this back into equation (1) and writing out each term of
the product yields

〈O(t)〉 =
∑
nm

ana
∗
m〈φm|O|φn〉e

i(Em−En)t
h̄ (4)

=
∑
nm

ana
∗
mOmne

i(Em−En)t
h̄ (5)

where ∗ denotes a complex conjugate. This equation describes how the expec-
tation value of interest, 〈O〉, varies with time. However, each of the matrix
elements Omn and energies En is a property of the system. The problem is
therefore to optimally choose the an values to get as close as we can to the
desired 〈O(t)〉 values. Those an values define an optimal initial state of the
system; the production of that state could then be posed as a more traditional
control problem (allowing the use of control lasers). Although in reality H and
O are infinite in size, for computational reasons I always approximate them
with finite Hermitian matrices, which is equivalent to approximating |ψ〉 using
a finite basis set of eigenstates.

3 Methods of Solution

The definition of “optimal” above has been left intentionally abstract, because
different metrics of “quality” may be necessary for different applications, and
may suggest different methods of solution. One such metric is to define a cost
functional J , which measures how far 〈O(t)〉 is from a chosen function f(t) over
some time interval of interest:

J
def=

∫ T

t=0

[〈O(t)〉 − f(t)]2 dt (6)

This type of metric lends itself to gradient optimization, to find the an values
that minimize J . Using a numerical integration with resolution ∆t = T · 10−3,
this gradient can be computed several times a second, leading to rapid conver-
gence. If we choose a function f(t) that is consistent with equation (5), then
an exact solution exists where J = 0. In those cases, there do not appear to be
any “traps,” i.e. local minima that would prevent a gradient-based algorithm
from finding the global minimum. This behavior did not change even when
random “noise” was added to f(t). However, if f(t) is “un-physical,” i.e. it is
not consistent with equation (5), then traps often appear, making it difficult to
get reliable results.

Alternatively, we can use as a metric the presence or absence of certain
features of 〈O(t)〉 that are important to a given experiment, e.g. certain chosen
coefficients of its Fourier or Taylor series, or certain chosen function values
at a series of time points. Each of these demands can be cast in the form
of an observable, i.e. each demand is of the form 〈ψ|Mk|ψ〉 = ck, for some
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Hermitian matrix Mk and real scalar ck. If these matrices are NxN , we can
make a system of N such equations (one of which is 〈ψ|I|ψ〉 = 1, to ensure that
|psi〉 is normalized). As long as the equations are consistent (i.e. as long as
our demands are not impossible or mutually exclusive), we can then solve that
system of equations iteratively, giving us an initial state which satisfies each of
our demands.

If we pick any metric which can be calculated numerically, we can also choose
to use a “genetic algorithm,” which uses evolution as a model for optimization.
In a genetic algorithm, there is a “population” of possible solutions (in this
case, each member of the population is an initial state vector, |ψ〉0), which
evolves over time. For each “generation” of this population, the “fitness” (a
metric of the degree to which it satisfies our demands, e.g. the J value above)
of each member of the population is calculated. The least fit (e.g. the bottom
60%) are then removed, and those that remain “reproduce” in pairs, where the
“offspring” are a random combination of the two “parents” (in this case, the
offspring have some of the an values of one parent and some of the an values of
the other). The population then undergoes random mutation, after which the
process starts again. This approach is very useful, because its stochastic nature
can avoid falling into the same traps as a gradient algorithm. However, it can
have slow convergence, especially near the peak of the optimization landscape.

4 Findings

Above, the definition of “optimal” was more abstract, but let us consider the
class of problems where we were trying to get 〈O(t)〉 to approximate f(t) = c,
where c is a constant of our choice. For this, we use the squared error metric J ,
as defined in equation (6).

Although the maximum and minimum values that 〈O〉 can take on are de-
fined by the extremal eigenvalues of O (λmax and λmin), the values on the
diagonal of O determine how well and for how long we can set 〈O(t)〉 ≈ c for a
given c value. Consider the following cases:

• c = Okk for some k

We can let |ψ〉0 = |φk〉 (the kth eigenstate), which yields

〈O(t)〉 = |ak|2Okke
0 (7)

= Okk (8)

which is independent of time. In general, the kth pure energy eigenstate
yields an 〈O〉 value that is constant at the kth value on the main diagonal
of O.

• Omn = 0 for some n and m

We can choose to limit our wavefunction to a superposition of only the nth

and mth eigenstates, i.e. |ψ〉0 = an|φn〉+am|φm〉, where |an|2 + |am|2 = 1

3



by normalization. We then have:

〈O(t)〉 = |an|2Onn + |am|2Omm + 2 · Re
[
ana

∗
mOmne

i(Em−En)t
h̄

]
(9)

= Omm + |an|2 (Onn −Omm) (10)

This expression is constant in time, and can be tuned to any value between
Onn and Omm by choosing |an|.

• En = Em (i.e. |φn〉 and |φm〉 are degenerate eigenstates)

Again, we let |ψ〉 = an|φn〉+ am|φm〉, where |an|2 + |am|2 = 1, yielding

〈O(t)〉 = |an|2Onn + |am|2Omm + 2 · Re
[
ana

∗
mOmne

0
]

(11)

Separation of the complex values an, a∗m, and Omn into their magnitude
and phase components yields:

〈O(t)〉 = Omm + |an|2 (Onn −Omm) + 2 · Re
[
|an|eiθn |am|e−iθm |Omn|eiθmn

]
(12)

= Omm + |an|2 (Onn −Omm) + 2 · |an||am||Omn| cos(θn − θm + θmn)
(13)

This is again constant in time, and we can set θn and θm to any values we
choose. If we choose to set θn − θm + θmn = π

2 , then we are back to the
previous case, and we can set 〈O(t)〉 to be any constant between Onn and
Omm. However, we can also reach values outside that range (to a degree
that increases non-linearly with |Omn|) by manipulating the θ values.

Beyond these special cases, it is easier in general to set 〈O(t)〉 ≈ c if c
is between the lowest and highest diagonal values of O. If we separate the
time-dependent and time-independent terms of equation (5), we get

∑
|an|2Onn

(which is always between the highest and lowest diagonal values) plus sinusoidal
oscillations in time. Therefore, it is impossible to set 〈O(t)〉 ≈ c for any c
outside of that range without including non-trivial oscillatory terms (which must
increase in magnitude as c gets further away from the nearest diagonal value).
These large oscillations mean that 〈O(t)〉 can’t remain anywhere near a constant
target value over long timescales.

As an additional result, I proved that if we want 〈O〉 to reach its highest pos-
sible value (the highest eigenvalue of O, λmax) at some time t0, that constraint
fully describes the wavefunction at all times. Moreover, 〈O(t)〉 can not be held
constant at λmax for any non-zero length of time. Demanding that 〈O(t)〉 come
close to (but not reach) λmax should also put strict limitations on its future
behavior, but so far I have no quantitative results in that area.

Although I did most of my research on randomly-generated Hermitian ma-
trices, there are some special cases that bear mentioning:
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• [H0,O] = 0

If the Hamiltonian and observable matrices commute, then O is diagonal in
the basis of the energy eigenstates. This means that equation (10) applies
to any pair of diagonal values, since Omn = 0 for any choice of distinct m
and n values. In addition, the diagonal values and the eigenvalues are the
same. This means that (in the absence of a field) 〈O(t)〉 = 〈O(0)〉, and so
we can set c equal to any value between λmin and λmax and hold 〈O〉 at
that value indefinitely.

• Alignment

One of the goals of laser-based control is to align linear systems along
a chosen axis. For this, we consider the observable O = cos2(θ), where
θ is the angle between the symmetry axis of the system and the chosen
alignment axis, and the system is approximated as a rigid rotor. For any
rotational state |J〉, the only non-zero matrix elements off of the main
diagonal are 〈J |O|J−2〉 and 〈J |O|J+2〉, meaning that equation (10) can
be applied extensively. The lowest and highest diagonal values of O are
O11 = 1/3 and O22 = 0.6, respectively, and O21 = 0. This means that
we can find an exact solution for |ψ〉0 that satisfies 〈O(t)〉 = c for any
c between 1/3 and 0.6. Interestingly, this solution requires only the two
lowest energy states, making it an easy target if the system is sufficiently
cold.

• Particle in a box

Another special case of interest is a particle confined in a one-dimensional
box of length L, with the position x as the observable. All of the diagonal
values of O in this case equal L/2. 〈O〉 is linearly dependent on any given
coefficient an, but in most cases trying to adjust a second coefficient am
at the same time introduces second-order terms. But in this case, Omn

is always zero if m 6= n and m − n is even. This means that if we hold
the even-numbered a values constant, we can adjust any number of the
odd a values without introducing second-order dependencies (i.e. there is
no |a1||a3| term, so changing the value of a1 doesn’t change the value of
∂〈O〉/∂a3). This makes the problem linear, except for the normalization
requirement. However, the equations for the time derivatives of 〈O〉 can
be linearized in the same way, and so they can be set to zero by solving
a system of linear equations (and values equal to zero are unaffected by
normalization).

5 Conclusion

To some extent, an expectation value 〈O〉 can be held near a chosen value c after
the control laser has been turned off. However, the duration for which it can
be held there decreases rapidly as c gets farther away from the nearest diagonal
value (and closer to the extremal eigenvalues) of O. Such demands are fulfilled
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only by a very small fraction of all possible wavefunctions, which gives us less
flexibility in attempting to fulfill additional demands. For example, if c is close
to λmax, then |ψ〉 must be similar to the corresponding eigenstate of O. This
restriction makes it impossible to hold 〈O〉 near c for any significant duration.
However, for less demanding values of c, the methods listed here can find initial
states which maintain that expectation value for much longer than a random
wavefunction. By taking into account the propagation of the wavefunction after
the control laser is turned off, instead of only considering the instantaneous value
of 〈O〉 right at the end of the laser pulse, it is therefore possible to extend the
useful “lifetime” of that final state. Previously, the “controlled” state could only
be measured or utilized nearly instantaneously after the control laser was turned
off; however, this would relax that limitation, potentially allowing measurements
and experiments that were previously impossible.

6 Further research

There are several avenues of further research which seem promising.

• Information Theory

By generating random initial wavefunctions and propagating them, we
can see that the states which reach extremely high and low 〈O〉 values
occur very infrequently. It may therefore be possible to cast the demand
〈O(t0)〉 = c in terms of its information content I, and relate our flexibility
in choosing values for 〈O(t)〉 for t > t0 in terms of the remaining infor-
mation entropy of the wavefunction. The key would be to find a way to
calculate the “mutual information” of two or more demands of the form
〈O(t0)〉 = c0 and 〈O(t1)〉 = c1 in terms of the values c0, c1, and t1 − t0.

• Exploring further the relevance of [H,O]

So far, the only result I have with respect to [H,O] is the trivial case in
which [H,O] = 0. However, it seems likely that either [H,O], [O0,Ot]
(where Ot is the observable at time t in the Heisenberg picture), or both
are important to a full understanding of the underlying dynamics of this
problem.

• Quantitative rules governing observed trends

I have identified the trade-offs associated with optimal control in the field-
free regime, and can produce rough estimates for how long a chosen c value
can be held given the system parameters. However, a unifying mathemat-
ical expression that defines the limits of field-free control would increase
the practical usefulness of this research, and may lead to new discoveries
about the underlying principles.
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