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1 Introduction

The discovery of new material formulations is a di�cult problem in many �elds of science and

engineering, including plasma physics, due to the need for complex materials with speci�c properties.

Even in complex materials comprised of only three or four components, the number of possible

fractional combinations far exceeds the resources of most laboratories to investigate. Using Random

Sampling-High Dimensional Model Representation (RS-HDMR), we can signi�cantly reduce the

cost of designing multi-component formulations. Used in conjunction with advanced searching

techniques, such as evolutionary-algorithms, RS-HDMR appears capable of dramatically increasing

the e�ciency of discovering new material formulations.

2 Approach

RS-HDMR is an algorithmic approach to high dimensional, non-linear data analysis and interpo-

lation that expresses a model function output, f(x) as a �nite, hierarchical correlated expansion in

terms of the n input variables, (x1, . . . , xn) (Li, et al., 2007):

f(x) = f0 +
n∑

i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + · · · +
∑

1≤i1<···<il≤n

fi1i2...il
(xi1 , xi2 , . . . xil

)

+ · · · + f12...n(x1, x2, . . . xn)
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where f0 is a constant representing the mean of f(x), fi(xi) represents the individual contribution

of the i-th variable to the output and the further component functions represent higher order

interactions amongst the input variables. Each of these is approximated via optimal weighted

orthonormal polynomials.

In the case of complex material formulations, xi is the mole fraction of the i-th material com-

ponent. This relation constrains the system being considered as

n∑
i=1

xi = 1 (i.e. the mole fractions

must sum to unity). This seemingly simple constraint signi�cantly reduces the volume of the space

under investigation , which appears to have an important impact on the success of RS-HDMR in

this context.

Typically, many of the component functions will not be signi�cant to the output function and

these terms may be identi�ed via a statistical F-test and excluded from the approximation. In

practice, only �rst, second and third order functions are often necessary. The individual component

functions are then determined sequentially from lower to higher order, which allows for f(x) to

be represented in terms of the independent and correlated contributions of the material inputs.

Furthermore, we can order the functions in terms of their contribution to f(x) by analysis of the

magnitude of the individual component contributions.

3 Results and Applications

The primary focus of my research has thus far been in modeling arbitrarily constructed data sets

to test the limits of HDMR in terms of both its accuracy and determining the minimal number of

random sampled complex materials necessary to provide a reliable model for eventual application

to the discovery of material formulations. With this goal in mind, we generated a large array of

functions f(x) of di�ering complexity and number of variables and thoroughly examined the quality

of the RS-HDMR maps.
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Figure 1. Plots the average percent error of the HDMR versus the number of sample points used in its construction. The

error bars present are the standard deviations. The percent error is referenced to 2 which is the middle of the dynamic

range (1 to 3) of f(x) in this example.

As a typical illustration, the �gure above presents the error present in an HDMR representing

a material of four components whose observable property is given by the the polynomial f(x) =

3x1 + x2 + x3 + x4 + 3x1x2 + x1x3 + x2x3. One of the primary variables a�ecting the accuracy

of the HDMR is the number of input data points used in its construction. Since the individual

material samples utilized can have a signi�cant e�ect on the accuracy of the HDMR-based model,

multiple HDMR's were constructed for analysis using di�erent sample sizes. As the �gure shows

at 75 points, the average error present in the HDMR representation of f(x) is less than 1% of the

function's midrange value. Even at 25 sample points for HDMR construction, the average error is

only around 3%. This level of accuracy is incredibly high considering the very low number of points

used to construct the HDMR. Importantly, the behavior above was found to be typical of a vast

number of functions up to dimension n = 10, although the number of necessary samples modestly

increases with n.
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Based on these results, HDMR appears to be a valuable tool for e�ciently seeking complex

materials with many components. Utilizing HDMR after making a minimal number of random ex-

perimental compositions and measuring their properties should allow for targeting particularly rich

areas of the composition space. The search for e�ective compositions could be led by an evolution-

ary algorithm guided by the experimentally-generated HDMR. The low number of sample points

required to generate an accurate HDMR can signi�cantly reduce the total number of experiments

required to formulate a speci�c material.

4 Further Investigation

I am currently conducting further research into the applications of HDMR towards complex ma-

terial formulations. Outside of the models utilized and mentioned previously, I am testing more

complex formulations. These include further-constrained systems, i.e. materials with speci�cally

limited components, and samples with random errors. I am also considering alternative sampling

methodology as a method to increase accuracy. I also plan to explore the underlying reasons for

why RS-HDMR appears to be so e�cient; the present hypothesis is that the functional constraint
n∑

i=1

xi = 1 greatly reduces the e�ective sample volume in the component space.
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