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1 Introduction

Optimal control of quantum dynamics phenomena has emerged as an important
research field in the last twenty years. Generally, such control is achieved by
designing laser pulses to maximize the probability of an event (e.g., plasma
ionization) occurring after a chosen time period. The system is assumed to
follow quantum dynamics; subject to this constraint, a laser field is designed
that minimizes or maximizes a cost functional aiming to reach a target state.
This field is usually found through an iterative process of solving the system’s
Euler-Lagrange equations, starting from an initial guess and employing either
probabilistic (e.g., simulated annealing) or deterministic (e.g., gradient search)
methods to evolve towards an optimal control field.

The cost functional-dynamic constraint formulation of controlling quantum
phenomena like molecular dynamics takes its inspiration from optimal control
theory, an engineering discipline; the principal difference is that in engineering
applications, systems are assumed to follow classical mechanics. Yet molecular
systems are often well-described by classical mechanics; if the molecular system
is taken to follow classical instead of quantum dynamics, with a classically-
specified result, the control problem often becomes more numerically tractable,
especially for polyatomic systems. Results from some papers, e.g. [8], suggest
that classical and quantum control methods should give similar results.

It has recently been shown in [5], [6] that the quantum control landscape is
especially “nice” in that for a certain type of cost functional, there are no traps,
or local extrema where a gradient algorithm might get stuck. This mathematical
result followed several papers demonstrating much greater success in quantum
control than might be expected, given the problem’s large dimensionality. In
this project, I worked with Professor Herschel Rabitz and Tak-San Ho to extend
analysis of the quantum control topological landscape to the classical control
one.
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2 Numerical Examples

Throughout this project, I focus on cost functionals of the form

J = Φ(x(T )), (1)

where x = [q, p]T is the system state and T is the fixed final time of the sim-
ulation. The variables q and p represent position and momentum respectively;
there are n of each, where n is the number of system degrees of freedom. The
system dynamics are assumed to be

q̇ =
∂H

∂p
(2)

ṗ = −
∂H

∂q
, (3)

where

H(t) =
1

2
pT Gp + V (q) − D(q)ǫ(t) (4)

is the system’s energy Hamiltonian. Here G is the Wilson G-matrix, V is the
potential energy function, D is the dipole moment function and ǫ is the sys-
tem’s control field, assumed to be aligned with D. For simplicity, let f =
[

∂H
∂p

− ∂H
∂q

]T

. I analyze the optimization problem

min J = Φ(x(T )) (5)

s.t. ẋ = f(x, u) (6)

var. ǫ(t), t ∈ [0, T ]

I ran numerical simulations for three types of systems–linear diatomic, linear
triatomic, and chaotic, with quartic potential. The results all indicated an
absence of numerical traps, though in some cases pushing the cost to 0 required
prohibitive computational time. The algorithm for computing an optimal field
is outlined in Algorithm 1. The s parameter measures the simulation time; it

Algorithm 1 Gradient algorithm to find an optimal control field.

1: Choose a random initial field ǫ.
2: Compute δJ

δǫ
at discrete time points δt, 2δt, . . . , T .

3: Let dǫ
ds

= − δJ
δǫ

. Evolve ǫ accordingly using the fourth order Runge-Kutta
algorithm.

generalizes the iteration number. The standard Euler-Lagrange equations

λ(T ) =
∂J

∂x
(7)

λ̇T = −λT ∂f

∂x
(8)

δJ

δǫ(t)
= λT ∂f

∂ǫ(t)
, (9)
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Figure 1: Control field evolution, target and final (q, p) = (0,0) and (1.728e-5,-
4.50e-6).

as derived in [7], were used to compute δJ
δǫ

. Here λ represents the time-varying
Lagrange multiplier. With this algorithm, the cost decreases throughout the
simulation; there is no indication that it ever gets stuck before cost goes to 0.

Figure 1 shows the initial and final control fields for Hamiltonian

H(t) =
p2

2m
+ D

(

1 − e−αq
)2

− Aqe−ξq4

ǫ, (10)

where m = 1732, D = 0.2101, A = 0.4541 and ξ = 0.0064; this Hamiltonian
models an HF molecule. The final time was 320π a.u., with time-step δt = 10π

9
a.u. The cost functional was

J = p2 + q2, (11)

so that the target state was (q, p) = (0, 0). These results, where the cost was
driven almost to 0, show a typical optimal system. Figure 2 shows how the
cost evolves over the control field evolution. As can be seen, numerical errors
cause cost to oscillate once it gets very small, but the overall trend is still for
the cost to decrease to 0. Figure 3 shows the final position and momentum
trajectories; these oscillation patterns are typical of other simulations. Indeed,
the initial control field probably evolves relatively little is probably because a
small adjustment of the trajectory will lead to a phase shift of the q and p
trajectories, enabling them to hit their target values.

3 Non-singular (Regular) Controls

I define regular controls as those ǫ(t) such that the mapping ǫ → x(T ), where
as above x(T ) represents the final state of the system, is surjective. This means
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Figure 2: Cost evolution, target and final (q, p) = (0,0) and (1.728e-5,-4.50e-6).

Figure 3: Final position and momentum trajectories, target and final (q, p) =
(0,0) and (1.728e-5,-4.50e-6).
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that the 2n×1 Fréchet derivative δx(T )
δǫ(t) must consist of 2n linearly independent

functions, where n is the number of degrees of freedom in the system.
The gradient algorithm attempts to drive the gradient δJ

δǫ
, as computed in

Algorithm 1, to 0. Thus, to find out if the gradient algorithm will ever get
trapped, I need to characterize those points at which δJ

δǫ
= 0. Using the chain

rule,
δJ

δǫ(t)
=

∂J

∂x(T )

δx(T )

δǫ(t)
, (12)

which must be 0 for all t ∈ [0, T ]. Given that this control ǫ is nonsingular, δx(T )
δǫ(t)

has rank 2n, where n is the number of degrees of freedom. Thus, there is no

nonzero vector v satisfying v δx(T )
δǫ(t) = 0 for all t, and δJ

δǫ(t) = 0 implies ∂J
∂x(T ) = 0.

The problem of characterizing the dynamic system’s critical points has now
become the kinematic problem of finding the critical points of J , as a function
solely of x(T ), the system’s final state. To do this, choose

J =
(

O(x(T )) − Ot

)T (

O(x(T )) − Ot

)

, (13)

where O is a vector-valued system observable with length r and target value Ot.
Then

∂J

∂x(T )
= 2

(

O(x(T )) − Ot

)T ∂O

∂x(T )
. (14)

If O(x(T )) − Ot = 0, then J = 0 and the control gives a global optimum.
However, if O(x(T )) − Ot 6= 0 but ∂O

∂x(T ) = 0, then the corresponding control is

a critical point that is not a global optimum. This situation can be avoided if O
has no local extrema in x(T ), possibly reaching a global extremum only at the
target Ot. Even if O does have other extrema, however, this critical point may

not be a non-global minimum. That only occurs if the Hessian δ2J
δǫ(t)2 is positive

definite, positive semidefinite or negative semidefinite (with the latter two cases
requiring higher order derivative tests).

Let us assume ∂O
∂z(T ) 6= 0. If O is scalar, clearly ∂J

∂x(T ) = 0 implies O(x(T )) =

Ot. However, if O is not scalar, then it is possible for
(

O(x(T )) − Ot

)

6= 0

and ∂O
∂x(T ) 6= 0, while ∂J

∂x(T ) = 0. However, this does not happen if the r × 2n

Jacobian matrix ∂O
∂x(T ) has rank r. Letting A = ∂O

∂x(T ) , for that case (14) gives

2
(

O(x(T )) − Ot

)T
AAT (AAT )−1 = (0)AT (AAT )−1 = 0, (15)

where AAT is invertible because it is an r×r matrix of rank r. Then O(x(T ))−
Ot = 0 and this control field is globally optimal. For instance, if Ot is a target

state,
(

∂O
∂x(T )

)T

is a full-rank matrix of 0’s and 1’s, with rank equal to r, the

number of state variables being observed.
Now suppose that the Jacobian has rank k < r. This is always the case if r >

2n, since then rank
(

∂O
∂x(T )

)

≤ 2n < r. We know that
(

O(x(T ))−Ot

)T ∂O
∂x(T ) = 0
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is equivalent to

(

(

O(x(T )) − Ot

)T ∂O

∂x(T )

)T

=

(

∂O

∂x(T )

)T
(

O(x(T )) − Ot

)

= 0, (16)

where
(

∂O
∂x(T )

)T

is a 2n× r matrix of the same rank as ∂O
∂x(T ) and O(x(T ))−Ot

an r× 1 vector. By the rank-nullity theorem, rank
(

∂O
∂x(T )

)T

+ nullity
(

∂O
∂x(T )

)T

= r, so the nullity of
(

∂O
∂x(T )

)T

= r − k ≥ 1. Thus, there exists nonzero

O(x(T )) − Ot such that
(

O(x(T )) −Ot

)T ∂O
∂x(T ) = 0. It is possible, however, for

the required O(x(T )) to be unreachable by any x(T ) in the phase space or for
x(T ) to represent a local maximum or saddle point.

Define the reachable set R to be the set of x(T ) such that there exists
a control history ǫ(t) producing a final system state x(T ), with fixed initial
conditions x(0) and final time T . Then in order for all locally optimal ǫ to
be globally optimal, for any ζ(T ) ∈ R such that O(ζ(T )) 6= Ot, O(ζ(T )) −

Ot 6∈ N

(

(

∂O
∂x(T )

)T

|ζ(T )

)

, where N(·) denotes the nullspace of a matrix. The

geometric intuition is developed below.
Suppose that x(T ) were such that

(

O(x(T ))−Ot

)

is in the nullspace of the

transposed Jacobian
(

∂O
∂x(T )

)T

, i.e.
(

O(x(T )) − Ot

)

is in the cokernel of the

Jacobian. This is just the quotient space O(R)/Im(A), where A is the Jacobian
at x. Note that since

(

O(x(T )) − Ot

)

is in the cokernel of the Jacobian, it
is not in the image of the Jacobian. Defining the differntiable manifold M
to be O(R),

(

O(x(T )) − Ot

)

is orthogonal to the tangent space of M at the
point O(x(T )). Note that M = O(R) is a differentiable manifold if R is an
open set, O is differentiable (which I have implicitly assumed) and O is a local

homeomorphism. The assumption that δx(T )
δǫ

is surjective implies that R is
open. Thus, a sufficient condition for no local minima is that O(ζ(T ))−Ot not
be orthogonal to the tangent space of O(R) at ζ(T ). For instance, if O(R) were
a sphere centered at Ot, this condition would not be satisfied (the radii of a
circle are perpendicular to the tangent space).

The orthogonality condition on O is somewhat stringent and non-intuitive,
so let us check the Hessian matrix to see if all local minima are global minima,
i.e. that critical points not at global minima correspond to local maxima or
saddle points. Critical points that are not local minima offer no trap for the
gradient algorithm and may be ignored. To that end, differentiating (12) yields

δJ

δǫ(t)δǫ(t′)
=

∂J

∂x(T )

δx(T )

δǫ(t)δǫ(t′)
+

δ

δǫ(t′)

(

∂J

∂x(T )

)

δx(T )

δǫ(t)
. (17)

The second term in the summand may be expanded to yield

δJ

δǫ(t)δǫ(t′)
=

∂J

∂x(T )

δx(T )

δǫ(t)δǫ(t′)
+

[

∂2J

∂x(T )2
δx(T )

δǫ(t′)

]T
δx(T )

δǫ(t)
. (18)
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Since ∂J
∂x(T ) = 0 from above, the first term in the summand goes to 0 and

δJ

δǫ(t)δǫ(t′)
=

[

∂2J

∂x(T )2
δx(T )

δǫ(t′)

]T
δx(T )

δǫ(t)
=

(

δx(T )

δǫ(t′)

)T
∂2J

∂x(T )2
δx(T )

δǫ(t)
, (19)

using the fact that ∂2J
∂x(T )2 is a symmetric matrix (this follows from twice con-

tinuous differentiability of J with respect to x(T )). This is same expression as
for the quantum mechanical Hessian in [9]. Local minima then correspond to

those ǫ(t) for which
(

δx(T )
δǫ(t′)

)T
∂2J

∂x(T )2
δx(T )
δǫ(t) has eigenvalues ≥ 0. In fact, one can

show that only a finite number of these eigenvalues are nonzero. This conclusion
follows using the same argument as for quantum mechanical systems in [5].

4 Singular Controls

To analyze singular controls, consider the Pontryagin maximum (or minimum)
principle. Let the dynamics of (6) above be given by ẋ = F0(x(t))+u(t)F1(x(t)),
where x is the state and u = ǫ the control. Define the Pontryagin Hamiltonian

H(t) = πT (t)
(

F0(x(t)) + u(t)F1(x(t))
)

, (20)

where π is analogous to the Lagrange multiplier and satisfies the Euler-Lagrange
equations (7-9). Then the Pontryagin maximum principle states that the cost
functional J is minimized by a control ǫ0 producing state x and π only if the
Pontryagin Hamiltonian H satisfies

πT (t)
(

F0(x(t)) + ǫ0(t)F1(x(t))
)

≤ πT (t)
(

F0(x(t)) + ǫ(t)F1(x(t))
)

(21)

for all times t, i.e. ǫ0 minimizes H . For simplicity, introduce the notation
z = [x, π]T and H(t) = H0(z(t)) + H1(z(t))u(t). For singular controls, H1 = 0,

i.e. δH
δu

does not depend on u. (In fact, this occurs even for regular controls
since all system dynamics considered here are linear in u, from (2-4)). In order
to solve for singular controls, then, one differentiates the equation H1(z(t)) = 0
with respect to time [1], [9]. The differentiation then yields another linear
equation in ǫ, and can be solved for ǫ if the ǫ coefficient is nonzero on an open
dense subset of the time interval [0, T ]. If that occurs, one can differentiate the
coefficient and constant term with respect to time again, setting each derivative
equal to 0. Roughly speaking, the number of times it is necessary to differentiate
equals the order of the resulting control. More precisely, ǫ is of order q if

∃ α = (1, i1, . . . , iq−1, 1) ∈ {0, 1}
q+1

s.t. A(α) is dense in [T1, T2], (22)

where A(α) = {t ∈ [T1, T2] | Hα(z(t)) 6= 0} and | α | is the number of ele-
ments in the vector α. Here H1i1i2...iq

is defined recursively by H1i1i2...iq
=

{

H1i1i2...iq−1
, Hiq

}

, where {·, ·} is the Poisson bracket. This algorithm is anal-
ogous to the one for tracking control proposed in [2], where the control field is
designed so that a system observable follows a given path.
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5 Conclusion and Future Work

Numerical simulations show that classical mechanical systems appear to behave
like quantum mechanical ones: in evolving an optimal control field for a target
state, a gradient algorithm never gets stuck. However, this result has not been
proved generally for classical systems and only applies to systems in pure states.
In particular, [4] uses a cost functional J =

∫

Ω
f(ω)ρ(ω) dω, where ρ(ǫ) is a

probability distribution of states, to show that a local minimum of J with respect
to ρ is always a global minimum. One interesting area of future work would be
linking this conclusion to the Hamiltonian dynamics of a classical system and
constructing the analogy with a mixed-state quantum system, in which traps
may exist [3].

Another interesting area of future work is that of singular control. Even in
the quantum mechanical case, little is known about singular controls, and their
optimality for both types of systems should be interesting to study. Numerical
quantum mechanical experiments have shown no traps, but this result has not
be proven for general systems. It would also be interesting to investigate the
relative densities of singular and regular controls; numerically, regular controls
appear to be quite closely spread throughout the control landscape, but singular
controls are very hard to find without explicitly searching for them.
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