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lon dynamics in a field-reversed configuration are explored for a highly elongated device, with
emphasis placed on ions having positive canonical angular momentum. Due to angular invariance,
the equations of motion are that of a two degree-of-freedom system with spatial vagiaidg.

As a result of separation of time scales of motion caused by large elongation, there is a conserved
adiabatic invariant],,, which breaks down during the crossing of the phase-space separatrix. For
integrable motion, which conserveg, an approximate one-dimensional effective potential was
obtained by averaging over the fast radial motion. This averaged potential has the shape of either a
double or single symmetric well centered ab@ut0. The condition for the approach to the
separatrix and therefore the breakdown of the adiabatic invariarkg®tlerived and studied under
variation of J, and conserved angular momentum, . Since repeated violation af, results in
chaotic motion, this condition can be used to predict whether aridoristribution of iong with

given initial conditions will undergo chaotic motion. ®004 American Institute of Physics.
[DOI: 10.1063/1.1638751

I. INTRODUCTION r andz degrees-of-freedom. The LLF work considers oblate
devices and axis-encircling orbits only. Rather than restrict-
Field-reversed configurationgRCg occur in plasmas ing attention to individual resonances and/or large gyroradius
of astrophysical, planetafyand laboratory scales. In all orbits, the present paper aims to find a more general condi-
these cases, conditions may exist where the particles are calon on chaotic motion by considering the slowing-down in
lisionless and their Larmor orbits of size comparable to theprbital radial frequencygw, , which is shown to occur for a
spatial scale of the magnetic field. Finite-Larmor-radiusclass of trapped particles. Boundaries between regular and
(FLR) conditions are particularly important to the FRC as achaotic motion and the structure of phase space have been
fusion reactof our primary interest. This paper elucidates explored in depth by Kim and CarkC)*? for a linear FRC
the phase-space structure of particle motion in an axisymgeometry. This linear geometry possesses an additional sym-
metric prolate FRC and derives the boundary between reginetry that allows “scaling away” the conserved canonical
lar and stochastic behavior for trapped-particle orbits. Undermomentum in the linear direction, reducing the number of
standing stochastic behavior of particle orbits in the FRCfree parameters to one, ellipticity. The present paper studies
essential to issues of macroscopic stabflitgpnfinement, jon orbits in an elongated Hill's vortex FRC where the tor-
and heating, is necessary to explain experimental observgidal geometry introduces an additional parametgr quali-
tions of laboratory FRC%,” such as those which show sta- tatively changing the ion dynamics in the device. Also, the
bility for times much longer than predicted by magnetohy-g|ongated Hill's vortex is an elliptic geometry which allows
drodynamic(MHD) theory” exploration of the effects on orbit stability of axial field cur-
Particle orbits in FRC and FRC-like geometries haveyaiyre, expected to provide more macroscopic stability than
been previously studied. The phase-space structure i@ thene racetrack geomet#). The boundary for chaotic behavior
=0 subspace is investigated by Wang and Mi®YM).° iy an elongated Hill's vortex is obtained computationally by
Throughout this paper we use a cylindrical coordinate SYSHayakawa, Takahashi, and Kond@HTK) for several val-
tem (r,z,¢), with r the radius of the device, armithe dis-  yes of energy. An approximate analytic criteria for stochas-
tance along the axis from the midplanezat0. Motion in  +icity applicable for many cases of interest was obtained for
this subspace is integrable, hence the WM study did not elug g passing through the midplane by Belova, Davidson, Ji,
cidate conditions for stochastic behavior or stability to per-ynq YamaddBDJY).13 After deriving the averaged shape of

turbation out of the s%bspace_. FitthLovelace, L(l";llrrabee, the potential, the present paper proceeds to obtain a general
and FleischmandLLF),” and Finn and SudafFS)™ treat  4na)ytic expression for the transition to chaotic motion that

orbit stochasticity in toroidal FRCs by using perturbation can he applied to any set of initial conditions or distribution
techniques in situations where resonances occur between th,ctions.

A Newtonian formulation is applied to charged particles
dElectronic mail: landsman@princeton.edu in an elongated Hill's vortex FRC by Hugrass and Tutfey
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and used to study a limited range of regular orbits for the  For this study we use an analytic FRC equilibrigahon-
axisymmetric situation. Phase-space structure is not studiedated Hill's vortex or Solov'ev equilibriufY) described in
The present paper uses a Hamiltonian approach, analytylindrical coordinatesr(,z,) by a flux function
techniques from nonlinear dynamics, and more extensive ) 5

. : ; : : : r r< z
single-particle numerical simulations to find the shape of the Hr,2)=rA,=oo| = || 1- =— = 1)

. . . . ’ ) ol » 2 AR
averaged potential and find a criteria for the existence of an r re z
adiabatic invariant for those orbits which do not cross the . L .
. . =VXA=VyX

phase-space separatrix. It should not to be confused with thvc\e”th the magnetic field given bB=VXA=VyxV4, the

Hill’s vortex magnetic-field separatridg,,, which separates cgnsiantdfo— Bor.s/2, andBp the magnetlc f|g|d stre_ngth at
i . ) . . r=z=0. There is an elliptic separatrig,,, with radiusrg
open from closed field lines in configuration space.

. . 617 o . and half-lengtte,, x-points atr =0, z= +z., and an o-point
Our numerical simulatiort$’ use Hamilton’s equations atr=r./\Z. g is positive insideS, and negative outside
and follow the full three-dimensional motion of a single ion. S - YIS p 9 :

Unlike that earlier work, this paper does not treat rotating'vIUCh of our work is based on the assumption of a highly

magnetic fields, leaving the system axisymmetric and timeprOI""te(Or large elongationFRC, where

independent. An ion moving in such fields possesses two re

exact invariants: energ and canonical angular momentum €= Z_s<1' 2
p,. Due to a second invariant, the Hamiltonian can be re-

duced to four canonical variables,p,, z, andp,, and the | | . _
motion can be viewed as that of a particle moving in a two-'S 9iven in CGS units by

dimensional potential wellV4(r,2). Since this is a two- 1 q )2
dimensional system, the motion is generally nonintegrable, H(r,p;,z,p;,py)= >m Ps— Et//) 1
except in cases where there is a third, perhaps adiabatic,

invariant. A particle in a highly-elongated FRC possess an @)
additional invariant which arises when its frequency of mo-with canonical momentap;, satisfying Hamilton's equa-
tion alongr is much higher than along leading to an adia- tions,

batic invariant, the radial actiod,=¢ p,dr/2w, for that dx dH dp, 9H

class of orbits. Breakdown of this invariance occurs at the —=-—, —=——  x=(r,z2,¢),

crossing of the phase-space separ#fitfithat bounds cyclo- dt Jp dt X

tron orbits from figure-8 orbits, and which in the paper will Pi=(Pr.Pz.Py)- (4)
be referred to simply as the separatrix. . . .

Section I pregeynts the quations of motion, a simples'nce.|-| IS mdep_endem 0b, p, Is conserved, and the system
physical picture explaining orbit stability, and, following describes motion with two degrees-of-freedom in an
WM, reviews types of orbits in the FRC midplane. New positive-definite effective potential
types of axis-encircling orbit are classified. Section Il dis- 1 q \2
cusses the stability of all orbit classes to small axial dispace- Veir= —2( Py~ Py lﬂ) .
ments. By averaging over the fast motionrinan approxi- 2mr
mate averaged one-dimensional potential is derived for To simplify the discussion and elucidate the physics, we
regular motion. The shape of this averaged one dimensionalefine scale factors,
potential is either a double or single potential well centered B ma2r2
aboutz=0 and depends on energy along theegree-of- QOEE’ 0 0 =
freedomH, , and an exact invarianp, . The averaged one- mc 8
dimensional potential gives a qualitative picture of ion dy-(, is the cyclotron frequency of a particle in a uniform
namics and clarifies the trapping of particles in one of themagnetic field of strengtB,; V, is the energy of a particle
two potential wells along. Section IV uses the shape of the in such a field with a gyration radius of/2; andp, is the

averaged potential to derive a general criterion for the exismomentum of a particle with kinetic energy,. Next we
tence of an adiabatic invariant, which leads to regular orbitsgefine scaled displacements and canonical momenta,

Though all the results herein could apply equally well to

S S

The Hamiltonian for a single ion of massand charge

1
pr2+P§+r—2

®)

Po=(2mVp)*? (6)

electrons, their orbits in most FRCs are predominantly of the p= r - z o= Pr = Pz = %_
small-gyroradius type which we treat only in passing. Sec- rs' ' P pe’ Y pet Y Ay

tion V summarizes our conclusions and discusses the rela- @)
tionship between our criterion and that of BDJ. p and ¢ are the fractional radial and axial distances to the

magnetic separatrix. With these definitions, the effective po-
tential can be expressed as

Il. TYPES OF MIDPLANE PARTICLE ORBITS fz(p ¢ 77¢)
Ver=Vov(p,,my), v(p,{imy)=—"o—",
In this section we present the basic equations for the e =Vov (p.£,7) (p.Lmy) p?
FRC field and Hamilton's equations for the particle motion, ¢ 21— g2 g2 8
introduce appropriate dimensionless variables, and describe a | (P& @) =my=p"(1=p"={%) ®)
classification of orbits in the FRC midplane. and the Hamiltonian becomes

Downloaded 22 Feb 2004 to 198.35.5.64. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys.

xl07!

FIG. 1. Possible shapes of the scaled effective potem(al0,7,) as a

function of the scaled radiysin the {=7,=0 invariant subspace for four
values the scaled angular momentury, representative of four distinct
I my=-0.12,
m4=—0.04,asymmetric double well; lllzr ,=0.05, double potential well

cases.
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single asymmetric well touching zero;

with both minima touching zero; IVir ,=0.375, raised potential well.

H=V,e, 8E7T§+7T§+U. 9

Applying Hamilton’s equations to Eq3), we obtain

(.15:% f(p,é,wd,) .

2

p

2

(10

Thus ¢ changes sign whef (and thereforev) vanishes.
Applying Hamilton’s equations, Eq4), to the Hamiltonian,
Eqg. (9), where the partial derivative dfl is taken with re-
spect toZ, we get a force along:

Regular and stochastic orbits of ions . . . 949

. .0l
[Hil=0, 0;=eQp’b=e1(p.Limy). (1)

From the equation above, it can be seen thdtad, the ion
does not experience a force alofigso that given the initial
condition {=m,=0, the ion will remain in the=0 sub-
space. Equatiorill) has a simple harmonic form, though
with a nonconstant coefficient multiplying For low-energy
cyclotron orbits, the frequency,, is close to the cyclotron
frequency(},. Unlike w, in Eq.(11), w, is not proportional

to ¢ so that for small values of, there is a separation of
frequencies withw ;> w,. This holds except at the approach
to the separatrix, where, slows down. This case and the
resultant violation of an adiabatic invariant will be discussed
later in this paper. For orbits not close to the separatsix,
>w, holds, so that we can averagés [see Eq(11)] over
one period of oscillation irp to obtain an averaged force
along . In general, the fast motion can be averaged when-
ever there is a large separation in frequencies of mdtion.
Sincew?ocpzqs, the {-motion is stable or unstable to pertur-
bations from{=0, depending on the sign ¢p¢).

Consider orbits in the invariant subspaée= 7,=0,
some of which have been explored by WNThe orbits are
that of a particle in a 1D effective potential/g
=Vo(p,0,74) and are therefore integrable. Figure 1 shows
four possible shapes of the scaled potential energfpr
representative values of ,. Figure 2 shows particle orbits
projected onto the—¢ plane for each of these cases. Our
orbit classification is presented in order of increasing values
of my.

Case | m,<—-1/12. The scaled potential energy
v(p,0,m,4) has a minimunv(p,0,74)=0 at p?=1/2+(1/4
—m4) Y2 and —w for p—0, o, resulting in a single well.
Figure Z1) shows three representative orbits for this case,

FIG. 2. (Color Particle orbits in the

15 potentials of Fig. 1 withrg=10cm,
and e=scaled energy. le=0.01(a);
0.2(h); 0.4(c); Il: e=0.1(a); 0.18(b);

0.4(c); ll: £=0.05(a); 0.05(h);
0.2(c); and IV: £=0.035(a); 0.2(b);
0.4(c).
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with low, medium, and high energy. Orbita), with e=0.01, -
and (b), with £=0.2, are both cyclotron orbits outside the -
o-point atr =7.07. They have negative averag@p and are E
therefore unstable to small perturbationgirOrbit (c), with ¥
£=0.4, extends over a wider range @fincluding both in-
side and outside the o-point, forming a figure-8. The orbit
shown has negativép?¢), but similar shaped orbits may
have positive(p?¢).

Case It —1/12<m4<0. In addition to the zero of as i
in case |, there are extrema@t=[1= (1+ 12w ,)'?]/6, re-
sulting in a double well. Figure(8) shows three represen-
tative orbits for this case. Orb{), with £=0.1, is trapped
near the bottom of the outer well. Orlib), with £=0.18,
oscillates about the inner minimum and is axis-encircling <

orbit. Orbit (c), with £=0.4, extends over both minima, 3 6 o 7 8 B
forming a figure-8 with the inner lobe encircling the axis. All x10

; o2
of these orbits have negatiVp“¢) and are therefore un- 5 5 wW(p. &, 4) Vs p for ,=0.23, Case I, with¢=0.0, 0.1, 0.2, and
stable to small perturbations i 0.3. Form,>0, the barrier in the double potential drops|gkincreases,

Case IlIt 0<my<1/4. There are two minima where  pg v(p,{m4) turns into a single raised potential wefh.is negative in the
=0, at p?=1/2+(1/4— T4) Y2 Figure 21Il) shows three interval between the two zeros and positive elsewhere. For the raised poten-
representative orbits for this case. Orbi and (b) both tial ¢ is everywhere positive.
have the same scaled energy0.05, with (a) oscillating
about the outer well, outside the o-point, aftl about the

inner well, inside the o-point. Both execute cyclotron Orbits’reducing the time spent by the ion in the negatjb/epart of
and both have negativép?). Orbit (c), with £=0.2, ex- the trajectory. With a finitg-velocity directed away from the
tends over both wells, resulting in a figure-8 shape, withmidplane, the positiver,, ion eventually will reach a region
positive averagep®$. This is the case discussed in greatof ¢ wherev(p,¢) has the shape of a raised single potential
detail in this paper, since the transition between cyclotrofye||, There ¢ will be positive everywhere along the trajec-
and figure-8 orbits which occurs in this rangemf and the  tory and ion will experience a positive restoring force at all
resultant crossing of the separatrix results in the breakdowRgints along its trajectory. In ion dynamics, the traversal over
of an adiabatic invariant which is otherwise conserved in thighe parrier between wells and the resultant crossing of the
low e system. Thus, from now on, positive, figure-8 orbits  separatrix corresponds to a change of orbit from cyclotron to
will be referred to simply as figure-8 orbits. figure-8. If the initial 7, is high enough for the particle to
Case IV 1/4<r, . There is a single potential well with yeach the single raised-potential-well region, the orbit will

a raised minimumumy >0. Figure ZIV) shows three repre- then become betatron. The restoring force algngropor-
sentative orbits for this case, with=0.035, 0.2, and 0.4. All  ti5nal to the averagep2¢, increases with absolute value

betatron orbits havey>0. of ¢.

_ For negativer, orbits[cases | and II, Fig. @), 1(11)],
lll. ORBIT STABILITY AND THE r-AVERAGED #<0 on the left part of the trajectory along, since
POTENTIAL )

v(p,{,7,4) has only one zero in this range of,, so that¢

Transitions between the orbit types enumerated in Sec. Ithanges sign only once. In this case, ion motion to higher
may occur when particles move out of tfje-7,=0 sub-  absolute value of does not necessarily increase the restor-
space. Accordingly, we now consider the stability of orbits toing force, as occurs in the ;>0 cases, Il and IV.
perturbations out of this subspace. For a highly prolatésmalle) FRC, w,> w, for all orbits

Figure 3 shows the shape ofp,{,m,) vs p for four ~ whose energy is not too close to the separatrix, i.e., to the top
elevations in{ for case Ill. The radial zeroes of are found  of the potential barrier that divides the double well. In other
from Eq. (8), words, the conditionw,> w, applies for all orbits which are

1 not close to the transition between cyclotron and figure-8

_ P*=H(1- 27 =[(1-07)°— 4my ). (12 motion, since such a transition coincides with a slow-down
¢ is negative in the interval between the two zeros and posief frequencyw,, much as the frequency of a pendulum
tive elsewhere. For the raised potential it is everywhere posislows down as it approaches the top along a trajectory that
tive. From Eq.(11), the force alongl is stabilizing for ¢ separates oscillating from circulating motion. In cases where
>0, thus the raised potential well exerts a stabilizing forcethe conditionw,>w, holds, the average force constant for
on the ion. Equatiori12) shows that the destabilizing region motion along{ can be found by using Eq11) and integrat-
between the zeros vanishes ffr>1— (4m,4)Y2 It follows  ing €2Qof p?¢dt over one period of oscillation ip. This
that any ion withm4>0 moving to largef{| is subject to a  provides a qualitative picture of the potential well in which
restoring force towards th&=0 midplane as the central bar- an ion moves after averaging over fast motiopirsince the
rier in the double potential well lowers, as seen in Fig. 3,sign of the radial-weighted average azimuthal dxifi?¢),
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determines the stability to perturbation out of ##*0 plane,
cyclotron orbits which do not encircle the major axis, all of
which have a clockwise angular drift, are unstable. High-
energy figure-8 orbits drift counterclockwise and are there-
fore stable to perturbations; lower energy figure-8 orbits drift
clockwise and are therefore unstable to perturbations out o
the subspace. The clockwise drift is due to the fact that lower .,
energy figure-8 orbits spend more of their time near the cen- ®
tral barrier separating the double potentisée case Il in &
Fig. 1) where ¢ is negative and therefore get a net negative
angular drift. The fact that the central barrier in the symmet-
ric double potential gives a negative contribution to angular
drift also explains why positiver , ions show better confine-
ment. The symmetric double well becomes more narrow anc
the potential barrier drops with increasing absolute value of
¢, as shown in Fig. 3. As cyclotron orbits move away from
¢=0, their energy is eventually high enough to cross the -
separatrix whose area shrinks with increasjtigand turn E
into figure-8 orbits. As the barrier alongfalls further, they
will eventually turn into figure-8 orbits with positive average
p?¢, feeling an attractive force towards=0.

For orbits away from the separatrix, whevg>w,, we
can obtain a quantitative picture of the averaged potentialg” _
along ¢ in which an ion moves after averaging over the fast of
motion in p. Segregating the-dependent parts to Eq7)
yields

x10

2
v(p,L,my)=—[p*(1—p?) —my]L%+ %§4+ a(p),

(13) — L 1 A Lo L l:‘

wherev(p,{,7,) is a scaled potentidlEq. (8)], and the( Z8

independent parts of the expression are segregated under . . :
For reqular motion. a new effective scaled potential FIG_. 4. Phase—spa(_:e plots_g VS ¢, f_or a high and a low radial-energy ion

9(p). ) 9 . ’ . ; p . “*having regular motion(a) High radial energy: The shape of averaged po-

(v(?)), is obtained after averaging over fast oscillationp.in  tential along? is a single potential welkb) Low radial energy: The shape of

The variable of fast motiorp, drops out andr, is always a  averaged potential alongis a double potential well.

constant of motion, so thdv ({)) represents averaged mo-

tion in a one-dimensional potential aloggThe shape of the

averaged potential alongfor 7,>0 ions is either a single pﬁ: H(1- ) +[(1- 2%+ 12w¢]1/2}. (15)

or a double well centered arourde-0. Figures 4a) and 4b) ) )

show numerically calculated phase-space plogss, vs z, ~ K€eping only the lowest order terms in EG.0) and drop-

for higher and lower amplitudes of oscillation alopgre- ~ Ping the subscript oA,

spectively. It can be seen that the potential algimg either a p~pn+Acosw(t—tg), (16)

single or a symmetric double potential well, with the location ) )
of the minima determined by, and the energy of oscilla- wherepy,, A, andw are functions of. Calculating averaged

2 _ 2. 1p2 M_ 45 272, 3p4 _
tion alongp. Fast oscillations due to the fagtmotion are terms (p%) = piy+ zA° and(p”) = p= 3pjA"+ 5A", and sub
superimposed on the closed curvesripvs ¢ phase space in  Sttting for p into Eq. (13) produces, after dropping all
Fig. 4.J, is a scaled adiabatic invariant, which will be dis- ¢-independent and oscillatory terms,

cussed in much detail in the next section, and the motion is pi 2
regular. ()= >t —§2<Pﬁ(1—9ﬁ)—77¢
A figure-8 orbit can be approximated as executing a non-
linear {-dependent oscillation: A? o 3 4>
+ 5 (1-6ph) — =A%/, (17
. 2 8
P=Ph+n§_:1 A cosna(t—to), (14 The first term in the coefficient fof? is positive since
- pn<1 and it can be shown graphicallfig. 5), that at{=0
where p;, is the location of the top of potential barrier that 2 2
separates the two potential wells for@r,< %, see Fig. 1. It Ph(1=pp) = ms=0 (18)
is computed by finding dv(p,{,7,)/dp=0 where forall 0<m,< i
*v(p,¢,m4)l9p?<0: Using Eq.(15), it can be easily shown that forz3<1
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.25

125

125 .25
To

20 20 4
FIG. 5. pf(1—pf) andm,, vs . Intersection occurs at the critical point, 40 z, ¢
1
Ty=7-
FIG. 6. The solid black line is the averageedirected kinetic energy,
V0<7-r§), obtained using Eq17) with py, given by Eq.(21). The oscillating
curve isv0w§ obtained from the full-Hamiltonian numerical simulation. In

l—6pﬁ<0 (19) both casesw,= 1—16, a=0._2, a_nd e_lmplitgde of oscillation_ al_ong is
A=0.5028. The full-Hamiltonian simulation shows fgsbscillations su-

at all value ofm,. It follows that the contributions from Perimposed on the averaged potential.
amplitude of oscillation termsh, to ¢? are positive, at least
for smaller values ot. Thus for higher amplitudes of oscil-

. where D and L are positive coefficients. Completing
lation alongp such that

the square shows that the potential aldhas minima at

) 5 A2 ,. 3 {==*./L/2D, resulting in a symmetric double potential well
pr(1=ph) = my<— - (1=6pp)+ §A4 (200 alongy.
For > 3, the coefficientL is negative, even foA
the coefficient multiplying;? is positive and=0 is a global =0, thus(v(¢)) is minimized at=0 and all betatron orbits

stable minima of the-averaged motion. Thus at higher am- oscillate in a single potential well ig. This is perhaps not
plitudes of oscillationA, alongp, the averaged motion along surprising Sinceﬂ¢>% is a raised potential i, so p?¢

{is in a single well with a potential given bfv({)). At >0 everywhere along the orbit, exerting a stabilizing force,
lower values ofA, the {? term in Eq.(17) gives a negative Eqg. (12).

contribution, resulting in a double well, symmetric about It can be seen from Eq17) that for higher values of
{=0. To get an approximation for the location of the minima w4, L in Eq. (23) is smaller and the two minima ifv(¢))

of this averaged symmetric double well, we can approximateire located closer together. This can be explained by the fact
A and py, as constants. Faf?<1, Eq. (15 can be approxi- that the potential barrier that separates the two minima of the
mated as double potential irp is lowered with increasingr,, thus the

2 2 time spend in the destabilizing region, whebec0, is less-
pi=(Ka= KoL), @D ened, leading to stabilization at low.
where K;=3(1+C,), K,=35(1+(1/Cy)), and C,=(1 Figure 6 shows the ion kinetic energy along\/owﬁ, Vs
+12m,) 12 1t follows that K,;>K, for all positive Ty £, from numerical simulation using the full Hamiltonian
Dropping the second term: equations and also from motion in the approximate averaged
) potential given by Eq(17) with p,, given by Eq.(21). Agree-
ph=Ki. (22 ment between the two is good at smaller absolute valués of

where the/?<1 assumption holds. The full Hamiltonian
simulation shows a smaller maximum excursion algrtlgan
that of the estimate, E¢19), which does not take account of
higher order terms ird.

The above derivation assumed figure-8 orbits. However,
as previously noted all cyclotron orbits eventually move into
the { region where the barrier of the double potential along
is sufficiently low so that they are able to cross it and there
(v(0))y=DZ*-LZ? (23 become figure-8 orbits. Then the same approximation as

The criterion {?<1 is a reasonable assumption, except in
cases wherd is low and 7, < . This is due to the fact that
lower values ofA and 7, mean highef| for the location of

a minima. Substituting Eq22) into Eq.(17) and assuming

is independent of, we see that for smallek the coefficient

of % in Eq. (17) is negative, andv(¢)) can be approxi-
mated as
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FIG. 7. (Color) The curves on the graph indicate the
location along{ where the separatrix is approached for

corresponding values df, . Each curve corresponds to
3

0.4 e and cyclotron® =, ) a different value ofr,, wherem ;= % 8 i and .
(Stochastich "+, Lower values ofr, have highel intercepts. The curve
disappears at the critical value,= %4. For 7= %,

numerical simulations of orbits were made at four val-
ues ofJ, at closely spaced values ¢f The red stars

. indicate cases where the orbits were stochastic and the

blue stars where the orbits were integrable. Foy

1 = %, the region above the curve is marked as contain-

E5l § |6 7% 1,* ing regular(figure-§ orbits and that below containing

nk P stochastidboth figure-8 and cyclotrgrorbits.

used in Eq.(17) can be applied withp, evaluated at the p, Fig. 3, and its frequency, will slow down. For smooth
location of transition of cyclotron to a figure-8 orbit. Figure Hamiltonians, the nonlinear frequenay, near the separatrix
7, discussed more fully in the next section, shows gHe- has the following forn?*

cation, as a function ad, where the transition of cyclotron
to figure-8 orbits occurs for different values of; .

For a particular orbit, the/ location of a minima in
(v(&)) occurs where the averag€¢ over one period of
oscillation inp is equal to zero. Higher amplitudes of oscil- Where F and G are constants that depend dy, h=(E
lation, A, alongp lead to lower absolute values ot which ~ —Es)/Es, andEs is the p directed energy at the separatrix:
the minima in(v(¢)) occurs since the amount of time spent Es=Vov(pn,¢,7y). At the approach to the separatrix, the
in a >0 part of the trajectory increases relative to time frequencyw, slows down. Under these conditions, thg

spend in thep<0 part of a trajectory for higher values Af > g crlterlqn no longer hplds a_ndp cqnservgtlon IS vio-

see Fig. 1, curve lll. Thus higher valuesAbr higher values Ia}tgd, resulting in stochastic ”.‘0“0”' Since this typ_e of tran-
of , result in a more closely spaced minima of the doublesition occurs for nearly all orbits that are gt any pgmt cyclo-
potential well inZ, until the two wells merge af=0. tron, it can be conclqded that such orb|t§ are, in general,

nonintegrable. There is a very small fraction of very low-

energy cyclotron orbits where the guiding-center theory ap-
IV. SEPARATRIX CROSSING AND BREAKDOWN proximation applies. Excluding this small class of cyclotron
OF THE ADIABATIC INVARIANT orbits, a positivep, ion must, for all times, be in a figure-8

The dynamics described in the previous section for iorP" betatron orbit for integrable motion. Comparing EGs)
motion in both single or double effective-potential wellszin  @nd (26) we can see thab,>w, condition begins to break
apply to cases of integrable motion. For cases whege down around
>w,, there exists an adiabatic invariadf,, which is con- In(G/h
served up to an order af[e is defined in Eq(2)]."%%°J, is En(—||)
the area enclosed by a contour of constant energy, keéping F
and 7, constant:

Qo

@p(h)= In(GI[h)’

(26)

~0(1). (27)

Rearranging the above equation, we can obtain an approxi-
mate form for the distance from the separatfjix terms of
dimensionless energyat which the adiabatic invariance of
J, begins to break down. Labeling this d&swhered is just

the value ofh below whichJ, is violated, we get

1
3= § 7 (24)

J, is the scaled action:

J;

P pOrs.

For a large elongation devicé, is adiabatically conserved In numerical simulations we found that-0.05 is sufficient
except during the crossing of the separatrix, which results ito ensure the adiabatic conservationJgf
transitions between figure-8 and cyclotron orbits. Cyclotron  For figure-8 orbits,J, will be conserved in one of two
orbits feel an average force away frofw0, so that as the cases:

ion moves towards highdg| values, its orbit will begin to Case A The actionJ, is high enough so that the ion
approach the top of the barrier that separates the two wells iexecutes a figure-8 orbit with ,> o, when it passeg=0:

(25 5~0(Ge Fle). (28)
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L | ] | ) \ FIG. 9. Stochastic motion: The amplitude of oscillation in one of the two
5 6 7 3 9 minima along{ was above the critical, resulting in chaotic motie0.2.
P 210" The lower figure is a Poincamurface-of-section.

FIG. 8. Regular motion: Oscillation in one of the two minima grwith
amplitude of¢ motion just below the critical amplitude;=0.2. The lower Case BA more complex case af, adiabatic invariance
figure is a Poincarsurface-of-section. occurs at lower values af, which do not satisfy the crite-
rion of Eq.(21). In this case], can still be conserved if an
ion oscillates in one of the two potential wells fnwith an
1 - 20 12 a!”nplitude low enough so that it does no_t pass into the for-
JP>E é (1+8)v(pp,0my) — <_¢_p(1_p2)) ) dp. bidden lower region ofgl_, where the crossing of the separa-
p trix resulting in a transition to a cyclotron orbit occurs. Fig-
(29) ures 8 and 9 showr, vs { and the corresponding Poincare
The actionJ, is evaluated in the&=0 subspace when the plots for integrable and stochastic motion, respectively, for
energy along is just high enough for the ion to pass over amplitudes of{ oscillation just below and just above the
the energy barrier at some finite speed and execute figure@itical.
orbits. The factor(1+6), with §~0.05, ensures that the mo- Let us refer to the amplitude dfoscillation about one of
tion is not too close to the phase-space separatrix. Figurds nonzero minima along, given by(v(¢)), as the critical
4(a) and 4b) are examples of such orbits. A stochasticity amplitude, if above this amplitude the ion gets close to the
criterion for untrapped particle ions was also derived byseparatrix(\where how close is determined Iy which was
BDJY.23 It sets the boundary on stochastic motion by requir-found numericallys~0.05). This critical amplitude of os-
ing the total energy to be above a certain value for a givertillation, below which the orbits are integrable, is a function
value of 7,. The BDJY criterion while working well for of J,. Critical values of{ where the approach to the separa-
most cases of interest, less accuracy under certain conditiomsx occurs are plotted as a function df, in Fig. 7. The
due to the fact that it uses the total enekgjyrather than the actual crossing of the separatrix corresponds to a transition
energy ofp-oscillation, which determines, . of a figure-8 to cyclotron orbit. The curves were obtained by
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- _ To check that the oscillations above the critical ampli-
e tude in one of the two minima along result in stochastic
orbits, numerical simulations using the full Hamiltonian code
were made. For example, at,=3/16, numerical simula-
tions of orbits at four values af, were made, each for 5-10
closely spaced values ¢f The red stars indicate cases where
the orbits were stochastic and the blue stars where the orbits
were integrable. These results show the approximate conser-
vation of the adiabatic invariad, for oscillations inZ below

the critical amplitude.

Figures 10 and 11 show, vs { [Eq. (7)] for critical
amplitudes of{ oscillation for two values of],. In both
SHRIRT figures, J, is approximately conserve(fluctuates by less
. ! ! than 10%. If the oscillations went over the critical ampli-

z.{ tude,J, would change by approximately a factor of 2 due to
the crossing of the separatrix and the transition to cyclotron
motion. The figures show that higher values Jf have a
greater range of amplitudes aloifgand approach closer to
¢=0. Thus, all else being equal, particles with higgmill
have regular motion for a greater rangemfand|{|-values.

For a given value ofr,,, the highest possible value ¢f
where the minimum ofv ({)) occurs can be found by setting
the square root in Eq.12) to zero and solving fog. This
also gives ther-intercept in Fig. 7:

%10

FIG. 10. Phase-space plot for oscillation at the critical amplitude for
J,~0.061.

computingJ,, of an orbit in the vicinity of the separatrix for
a set of values of,

1 Pmax

7T¢ ) ) 2)1/2
== . (v(ph,é,m)—[?—p(l—p —{ )} ] dp,
(30)

where{ and p,, are kept constant during integratippy, is a
function of ¢ given by Eq.(15)]. Equation(30) was evalu- Using the fact that the total energ,is conserved and that
ated for different values oir¢ to find J, for a table of values J, is an adiabatic invariant, except at the crossing of the
of £, Fig. 7. TheZ-intercept in Fig. 7 commdes with the point separatnx and requiring thaig 0 at or below the critical
where the potential barrier indisappears and a single raised amplitude (to avoid the crossing of the separajrixve can
potential forms, the condition necessary for betatron orbitsiow derive a condition for trapped particle orbits that adia-
which feel a force towardg=0 in all cases. It therefore batically conserve,. This is done by finding an upper limit
follows that, for a given value ofr,, the { intercept in Fig. on energy of oscillation along in the averaged potential
7 is the highest possible location of a minima(in(Z)).  (v({)), for a given value ofl,. As was shown in the previ-
Since it is also the location of the critical amplitude fiy  ous sectionJ,, or identically the amplitude of oscillation
=0 in Fig. 7, it can be seen that the critical amplitude ofalong p, A, determine(v({)). Since the total energy of an
Z-oscillation goes to zero a3, goes to zero, resulting in a adiabatic system can be expressed as a functidp ,of, and
single stationary orbit for each value of, . ¢, an upper limit orH can be found that for a given value
of J, will ensure that the energy of oscillation aloggde-
termined by{ and 7, does not exceed critical amplitude.
= - The condition for the adiabatic conservation 8f for
6 S trapped particle orbits thus becomes

P=1-2m2 (31)

x10
3

H<(1+6)Vov(pn(Jy).{c(3p) y), (32

where. can be expressed in terms of the adiabatic invariant
J,, and similarlypy,, which is evaluated &, can also be
expressed in terms df, . The inequality above thus imposes
a constraint orH determined only by the constant of motion
w4 and the adiabatic invariadt, . If this constraint is satis-
fied,J, will be a conserved adiabatic invariant of trapped ion
orbits. To obtain this constraint in terms &f, we begin by
estimating the location of the critical amplitudg,, as a
: function of J,. These values are plotted in Fig. 7 for four
' : : : values of 4. From this figure we can obtain an over-
Zg estimate ory, in all cases by approximating the curves as

FIG. 11. Phase-space plot for oscillation at the critical amplitude for §c=C(Jmax—Jp)1/2, (33
J,~0.02. Thecritical amplitude of oscillation decreases with decreasing
value ofJ,. (Compare with Fig. 10. where
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o 1212
(1-2m,

v Jmax

c= (34)

An overestimate ort. is needed since it ensures that the

separatrix crossing will not occu was obtained by solving
1—2my*=CJHZ,, where -2 is the { intercept in Fig.
7 [see EQ.(31)] and Jna is evaluated atZ=0 for Vg
=Vou(pn,0,m4). Substituting for{, from Eg. (33) into Eqg.
(32, whereuv(py,{c,my) is defined in Eq.(8), using L,
evaluated at=¢., given by Eq.(21) and expanding b/ﬁ
we get, after keeping only lowest order terms of org&and
simplifying the expression

H<(1+ fs)voK—l1 (A= AC%(Jmax—J,)). (35
where

A= (my—Ki(1-Ky))?, (36)

A2=Alﬁ+2Ai’2<K2<1—Kl>+Kl<1—K2)). (37)

K1

Thus, given anion'd,, H, andw,, Eq.(35 determines

u, where o= ul/pors. They are abiabatic invariants up to
the point of a transition. Their invariance is violated near

{~C(JImax— 2:&)1/2 (39

at which pointJ, changes by a factor of2. This neglects a
possible interaction between theand { degrees-of-freedom.
The values of, for which u is violated are shown in Fig. 7.
For figure-8 orbits, it sets the limit on the highest possible
amplitude of oscillation in one of the two symmetric poten-
tial wells that prescribe averaged motion along fhexis.

The stochasticity criterion given by E@5) can be used
to calculate the percentage of stochastic particles for a given
distribution of energies and angular momenta. For example,
a low energy beam parallel to th¢ axis with V0w§<T,
where T is the perpendicular temperature, witfi
=Vov(pn,0,my) and 7,=1/5 will have 85% regular orbits
(regular meaning those that adiabatically conseklye This
calculation was performed by finding the percentage of
figure-8 orbits for this distribution. This particular calcula-
tion can be used when the parallel energy of the beam can be
assumed to be essentially zero, relative to perpedicular tem-
perature. In this case, sinee,~0, all figure-8 orbits of the

whetherJ, is an adiabatic invariant for a trapped figure-8 initial distribution are either at the critical amplitude, or at
orbit. Case A, in the beginning of this section, places a limitthe turning point of oscillation about=0.

on J, for untrapped ion orbits, above which, is an adia-

Figure 12 shows Poincaggots on the/=0 section for a

batic invariant, for those types of orbits. As previously men-range ofJ, values. In polar coordinates, the radius is equal to
tioned J, invariance breaks down for all cyclotron orbits. J, and the angle t@,, which are the action-angle variables
The location along{ of a transition of a cyclotron to a for the p-motion. The selection of thé&=0 plane eliminates

figure-8 orbit is given by Eq(33). At || below {., the orbit

inclusion of particles trapped in the symmetricéipotential

is cyclotron, and above it is a figure-8. It is clear that thewells, e.g., Figs. &), 10, and 11. Each color represents a

above approximation is not valid at low, and energies

different initial condition(different J, values at fixedm ).

where the;?<1 assumption breaks down. For cyclotron or- Taking theJ, and 6, variables as being on the smaller cross
bits, the actiord,, is the same as the scaled magnetic momensection of a torus, we can see that for valuestioé¢ scalegl
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J, less that 0.095, the dots representing cyclotron orbitgoes to zero as the cyclotron radius goes to zero. Sipce
show stochastic behavior. At higher values Jf, closed determines the shape of averaged potential algntpr a
circles occur, representing figure-8 orbits, showing that theiven value ofr,, particle dynamics can be represented on
motion is integrable. The set of clearly-defined closed circles two-dimensional torus with Poincacgoss section o,
c—g, representing integrable motion, begins just above thandJ,. For low values ofJ, [amplitudes of oscillation along
critical value ofJ,, i.e., circleb, and are part of a continuous ¢ below the critical value given by E¢35)], J, is conserved
set of closed KAM curve& The circle labeledb corre-  and Poincareross sections show closed circles. The onset of
sponds to figure-8 orbits with just enough energy to cross thetochastic behavior which occurs at higher values oénd
central barrier olV.¢. The integrability of orbits which ex- island formation can be studied using KAM and perturbation
ecute a figure-8 orbit af=0 is expressed in the condition theories, where the Hamiltonian is expanded around minima
given by Eq.(29). Since these orbits never undergo a transi-in { estimated by Eq(23). Different values ofJ, give a
tion, there is no limit on their amplitude of oscillation along family of nested tori.
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