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Abstract

Quantum control aims to manipulate the dynamics of physical systems by utilizing a shaped

external field. The relation between the control field and the physical objective can be realized

as a high-dimensional quantum control landscape. Quantum control landscape topology, at the

critical points, has been thoroughly explored in previous work, and under suitable conditions,

no suboptimal extrema that could trap local search algorithms are present. Here, we address

the structure of the landscape, away from critical points. It has been found that landscape

structure is highly favorable for optimization of state-to-state transition probabilities, in that

control trajectories take nearly straight, direct paths to global maxima. To explore this issue

further, landscape structure has been codified in the metric R ≥ 1, defined as the ratio of

the length of the control trajectory to the Euclidean distance between the initial and optimal

controls. We extend the state-to-state transition probability results to the quantum ensemble

and unitary transformation control landscapes. The interplay of optimization trajectories with

critical submanifolds, possessing saddle point topology, is relevant here, and it is found that

these submanifolds complicate landscape structure. A fundamental mathematical relationship

of perfectly straight control trajectories is derived, wherein the gradient on the quantum control

landscape must be an eigenfunction of the second-order Hessian. This relation can be explored

as an indicator of landscape structure and may provide a step towards identifying when control

trajectories can achieve perfect linearity. Together with earlier topological results, these findings

on landscape structure may illuminate why optimal quantum controls can be readily identified.

1 Introduction

Quantum optimal control theory (OCT) has vividly illustrated the efficacy of using external control

fields to tune quantum systems and the ease with which such fields are identified [1, 2, 3, 4]. Optimal

control experiments (OCE) has found success as well, thanks to the development of closed-loop

learning algorithms [5] made possible through femtosecond laser pulse shaping technology [6]. The
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dynamics of a closed quantum system upon interaction with the applied field can be described by

the time-dependent Schrödinger equation

i~
∂ |ψ(t, 0)〉

∂t
= H(t) |ψ(t, 0)〉 , (1)

where H(t) is the time-dependent Hamiltonian and |ψ(t, 0)〉 is the state’s wave function with 0 ≤

t ≤ T . Treating the interaction with the dipole approximation, the time-dependent Hamiltonian is

given by

H(t) = H0 − µE(t), (2)

where H0 is the quantum system’s Hamiltonian, µ is the dipole moment operator and E(t) is the

time-dependent control field.

Through Eq. (1), every control field can be mapped to the value of a cost function J [E(t)] =

〈ψ(t)|O |ψ(t)〉, where O is a physical observable. The functional relationship between the cost

function J [E(t)] and the control field E(t) can be cast in terms of a quantum control landscape,

where each point on the landscape corresponds to a certain control field E(t) and the height of the

landscape at that point corresponds to the value the cost function takes for that particular control

field, J [E(t)]. Finding successive control fields that lead to optimal values of the cost function cor-

responds to climbing this landscape. Using a local search algorithm to climb, such as the gradient

ascent algorithm we restrict ourselves to in this work, results in smooth paths up the landscape

that can be parametrized by a continuous variable, which we denote s. Every such path up the

landscape can be projected onto a trajectory through control space. Thus, the initial control field

that evaluates to a poor value of the cost function is E(s = 0, t) and the final control field that

results in an optimal value of the cost function is E(smax, t).

Many prior studies have been devoted to the study of the topology of these quantum control

landscapes. In particular, it has been found that under the assumptions of (i) controllability,

which states that any unitary evolution matrix U(T, 0) can be generated from the closed quan-

tum system by specifying some control field E(t) via the time-dependent equation i~∂U(t,0)
∂t =

H(t)U(t, 0), U(0, 0) = 1, (ii) constraint-free control, which states that every possible control field

is accessible, and (iii) surjectivity, which states that the set of functions
δUij(T,0)
δE(t) are linearly in-

dependent over t ∈ [0, T ], the quantum control landscape contains only trap-free critical submani-

folds [7, 8, 9, 10, 11, 12, 13]. This landscape topology is highly favorable to OCT and OCEs, and

partly accounts for the success they have had in locating optimal control fields.

However, the structure of the quantum control landscape away from the critical points affects

the complexity of the resultant control trajectory and plays an equally important role in these

successes. Landscape structure may be examined by quantifying the linearity of their control tra-

jectories [14]. Prior experimental work examined the linearity of control trajectories maximizing
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second harmonic generation and found that all sampled control trajectories were strikingly close

to being straight [15]. Previous theoretical work has also supported the notion of simple landscape

structure by examining the linearity of control trajectories for a state-to-state transition probability

landscape [14, 16, 17].

In this work, we extend these results to quantum control landscapes induced by two additional

cost functions: (i) J = Tr (ρ(T )O) and (ii) J = ‖W − U(T, 0)‖. The first is the value of a gen-

eral operator O in the presence of an arbitrary density matrix. This cost function allows us to

consider systems that are initially in mixed states, thus allowing for control of a broader class of

physical observables. The second cost function corresponds to the distance from a desired unitary

transformation W , which allows for implementing the quantum analog of logic gates for quantum

information processing [18]. We demonstrate that the structure of these landscapes is also relatively

simple through performing simulations that show that the control trajectories are close to linear.

We also examine the influence of critical submanifolds on landscape structure. Specifically, we find

that the presence of critical submanifolds at intermediate heights on the landscape drives control

trajectories away from straight paths. This phenomenon is illustrated in Figure 1. The trajectory

on the right takes a straightforward path up the landscape, while the trajectory on the left is at-

tracted to the saddle point, thus losing its direct nature. We have also identified a mathematical

criterion that the Hessian and the gradient of the cost function must satisfy in order to achieve a

perfectly straight control trajectory on any quantum control landscape. In particular, the gradient

vector must be an eigenfunction of the Hessian. Furthermore, we show that if ‘straight shot’ tra-

jectories exist, they would lead to the factorization of the kernels of all higher order derivatives of

the gradient function. This leads to a hierarchy of first-order integral equations for straight shot

control trajectories.

The rest of this paper is organized as follows. The linearity measure R of control trajectories

is defined in Section 2. Section 3 gives the gradient-based search algorithm used in this work to

identify control fields that optimize arbitrary observables or achieve unitary transformations. The

existence of saddle points is examined and a metric that gives the distance from a saddle point is

also outlined. In section 4, a detailed description and derivation of the relationship between the

Hessian and the gradient function for straight control trajectories is presented. Section 5 provides

numerical results on the statistical behavior of R and on the effect of saddle points on R for both

types of quantum control landscapes. We then illustrate the Hessian-gradient eigenrelation for

nearly straight control trajectories. Conclusions are furnished in section 6.
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2 The linearity measure R

The goal of the present work is to explore quantum control landscape structure through examining

the control trajectories followed during optimizations. To this end, we construct a ratio R measuring

the linearity of the control trajectory. Specifically, R is the ratio of the path length of the control

trajectory between the initial and final fields, given by

dPL =

∫ smax

0

[
1

T

∫ T

0

(
∂E(s, t)

∂s

)2

dt

] 1
2

ds, (3)

to the Euclidean distance between the initial and final fields in control space, given by

dEL =

[
1

T

∫ T

0
[E(smax, t)− E(0, t)]2 dt

] 1
2

, (4)

where s parametrizes the control trajectory and T is the target time. R is then given by

R =
dPL
dEL

=

∫ smax

0

[∫ T
0

(
∂E(s,t)
∂s

)2
dt

] 1
2

ds[∫ T
0 [E(smax, t)− E(0, t)]2 dt

] 1
2

. (5)

The lower bound for this quantity is R = 1, which holds for trajectories that are straight lines

between E(0, t) and E(smax, t). These correspond to the simplest possible paths an optimization

can take to climb the quantum control landscape J [E(t)], and indicate a lack of complicated struc-

tural features that could interfere with optimization paths. Higher values of R mean that a control

trajectory meanders through control space along a path whose total length is much greater than the

distance between its two endpoints, signifying that the optimization path encountered significantly

rugged structural components of the landscape. To identify an upper bound on R, dPL must be

maximized and dEL must be minimized. An upper bound for the former is given by 2
~smax‖µ‖ [14],

but there is currently no analytical form for a lower bound on the latter quantity.

In a previous work, we found values of R−1 as low as 10−4 on a five level state-to-state transition

probability landscape [14]. By examining the distances between the endpoints of control trajec-

tories, we also observed that trajectories with low and high R values are distributed identically

throughout control space. Furthermore, we found that it was possible to characterize the complex-

ity of low R trajectories through the ‘straight shot’ climbing procedure. This algorithm calculates

the gradient of the control landscape at an initial control field, then proceeds in that direction until

a local maximum is encountered. For suitably low R trajectories, substantially optimal control

fields may be found in this way. We determined that the threshold for this procedure to yield a fi-

nal control field with a corresponding landscape height close to the global maximum is R−1 ≤ 10−2.
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3 Negotiating the quantum control landscape

We describe a general quantum system of interest through a field-free Hamiltonian H0, represented

by an N × N diagonal matrix. Likewise, µ, describing the quantum system’s dipole moment, is

an N × N symmetric matrix. Interpreting the value of J [E(t)] as a height on a landscape over

the space of possible controls, we see that optimizing an external field to achieve the desired value

of J corresponds to climbing the quantum control landscape. Utilizing a gradient-based method

to climb corresponds to following the path of steepest ascent up the landscape, and this makes

D-MORPH a natural choice for the rule that is used to traverse the landscape and consequently to

navigate the underlying control space.

This process can be confounded by the presence of submanifolds of critical points that are

located at intermediate heights on the landscape. These points have the potential to halt any local

search algorithm from reaching a global maximum, but theoretical analyses have revealed that such

‘traps’ do not exist, and that these critical submanifolds posses saddle point topology [8, 9, 12, 13].

However, as we shall illustrate, saddle points can still have a deleterious effect on optimizations by

distorting the linear nature of climbs to the top of the landscape.

We parameterize the trajectory taken by the controls by a continuous variable s ≥ 0 so that

the external field becomes a function of two variables E(s, t). As s is increased, the change in the

cost function can be written using the chain rule as

dJ

ds
=

∫ T

0

δJ

δE(s, t)

∂E(s, t)

∂s
dt. (6)

If we want to maximize J , then we stipulate that dJ
ds ≥ 0, so we will set

∂E(s, t)

∂s
=

δJ

δE(s, t)
. (7)

Likewise, when minimizing J , dJ
ds must be less than or equal to zero, so we set ∂E(s,t)

∂s = − δJ
δE(s,t) .

This optimization procedure is known as the D-MORPH algorithm, and is the algorithm we make

use of in this paper to climb the landscape [19, 20]. The control variables that are adjusted with

increasing s are the amplitudes of the control field E(s, ti) at a set of discretized time points {ti},

i = 1, 2, . . . . In order to ensure that every simulation in this work travels the same distance up (or

down) the quantum control landscape, all the trajectories for which an R value is calculated begin

at the same initial height on the landscape JI and end at the same final height on the landscape

JF . We accomplish this by using D-MORPH to climb down (up) the landscape to JI if an initial

trial field yields a value of J that is above (below) JI . The final height on the landscape JF is then

achieved by E(s = smax, t).

Calculation of the δJ
δE(s,t) requires knowledge of the cost function that generates the landscape.

We will now outline the calculation of the gradient function from the cost functions that result in
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optimization of arbitrary observables and the achievement of unitary transformations. We will also

characterize the critical submanifolds of these landscapes, and give the definition of a metric that

yields the distance to any critical submanifold.

3.1 Quantum ensemble control landscape

3.1.1 Gradient function

The expectation value of an arbitrary observable O at a target time T for a system that is in a

state that can be described by the time-dependent density matrix ρ(t) is given by

〈O〉 = Tr (ρ(T )O) = Tr
(
U(T, 0)ρ(0)U †(T, 0)O

)
. (8)

Our cost function, to be maximized, is J = 〈O〉. By manipulating this expression, it can be shown

that
δ〈O〉
δE(s,t) is given by [11]

δ 〈O〉
δE(s, t)

=
2

~
=
{

TrU(T, 0)ρµ(t)U †(T, 0)O

}
, (9)

where µ(t) = U(t, 0)µU †(t, 0) is the time-dependent dipole matrix. Having set out how to climb

the 〈O〉 landscape, we will now give an account of the critical submanifolds of this landscape.

3.1.2 Enumeration of critical submanifolds

Let us first note that we can consider ρ and O to be in diagonal form without loss of generality [11,

12]. In characterizing the topology of the quantum ensemble control landscape, we will also consider

〈O〉 to be a function of the propagator U(T, 0) and ignore the propagator’s dependence on the time-

dependent control field E(t) for the moment. Utilizing this viewpoint is advantageous as it is simpler

to consider 〈O〉 as a function over the finite dimensional Lie group U(N) than as a functional over

the infinite dimensional set of smooth functions on [0, T ].

At a critical point U0 ∈ U(N) of 〈O〉, first order variations in U0 produce no change in 〈O〉. We

can expand around U0 in the variable s by writing U = U0e
iHs, where H ∈ u(N), where u(N) is

the Lie algebra of U(N) which consists of Hermitian matrices. The condition that U0 is a critical

point is then
d

ds
Tr
(
U0ρU

†
0O
) ∣∣∣∣

s=0

= Tr
(
iH[O,U0ρU

†
0 ]
)

= 0. (10)

Thus we must have [O, ρ(T )] = 0 at a critical point. From this relation, it is possible obtain the

form of the critical U matrices. Carrying out this analysis reveals that the number of critical

submanifolds is in one-to-one correspondence with the number of ways the eigenvalues of ρ can be

permuted such that their overlaps with the eigenvalues of O are different [12]. These permutations,
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induced by the critical propagators U(T ) which correspond to the distinct critical submanifolds,

can be enumerated using contingency tables [12]. These tables possess n rows and m columns and

can be constructed as follows. First, write ρ and O in diagonal form with their eigenvalues in de-

scending order. Then, apply some permutation to the eigenvalues of ρ. The value of the (i,j) entry

in the table will be the number of times the eigenvalue λi of ρ overlaps with the eigenvalue εj of O.

Furthermore, the rows of the contingency table must add up to the degeneracies of the eigenvalues

of O, and the columns of the table must add up to the degeneracies of the eigenvalues of ρ. This

fact can be used to easily construct all possible contingency tables. Further study making use of

the Hessian shows that on the 〈O〉 landscape, all critical submanifolds consist of saddle points,

aside from the two submanifolds corresponding to the top and bottom of the landscape [13].

3.1.3 Distance metric for critical submanifolds

The contingency tables can also be used to calculate a distance from a particular critical subman-

ifold. A short explanation of this metric will be given; for a full discussion, consult Sun et al. [21].

Consider a point on the landscape U ∈ U(N) that is also on some critical submanifold. Divide

U into blocks of sizes oi × pj . Since U can be written as an element of a double coset (c.f. Eq.

(??)), we have a similar expression for each block

Uij = PiπijQ
†
j (11)

where Pi ∈ U(oi), Qj ∈ U(pj), and πij is the block of size oi × pj of the (non-unique) permutation

matrix of the critical submanifold in question. This equation states that Uij and πij have identical

singular values. It can be shown that the blocks of permutation matrices πij have only 0s and 1s

as their singular values, and that the number of 1s is equal to cij , the entry in the ith row and jth

column in the contingency table. The same must be true of the block Uij on a critical submanifold.

This fact will be used to create a notion of distance to each critical submanifold.

Define a diagonal matrix Sij , which has cij 1s in the diagonal:

Sij =

Icij

0

 (12)

To find the distance of an arbitrary point U0 is from the critical submanifold, write each block Uij

in its singular form Σij , with the singular values on the diagonal sorted in descending order. Define

Vij = Sij − Σij . The distance is then

d =

p∑
i=1

o∑
j=1

Tr
(
V †ijVij

)
. (13)
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There is a normalization associated with this metric [22]. Any point U on the landscape can be

assigned a vector of the singular values of its blocks Ujk. Since the squares of these singular values

sum to N , each vector can be thought of as lying in the spherical polygon spanned by the vectors

corresponding to the U matrices of the critical submanifolds. This implies that the point which is the

greatest distance from a critical submanifold is another vertex, which itself corresponds to another

critical submanifold. By calculating the pairwise distances between all the critical submanifolds,

we can find the maximum distance any point can be from a particular critical submanifold, and

then normalize the metric by dividing all distances to that critical submanifold by the maximum

distance. We make implicit use of this normalization later in this work.

3.2 Unitary transformation control landscape

3.2.1 Gradient function

The cost function for the unitary transformation landscape is defined as the distance of the prop-

agator U(T ; 0) from a target unitary transformation W

J = ‖W − U(T ; 0)‖2 = 2N − 2<
{

Tr
(
W †U(T ; 0)

)}
(14)

where ‖·‖ denotes the Frobenius norm. J has a minimum of 0, corresponding to U = W , and a

maximum of 4N , corresponding to U = −W , where N is the number of states in the quantum

system. Note that we would now like to minimize J .

The gradient function for this landscape is

δJ

δE(t)
=

2

~
Tr=

{
W †Uµ(t)

}
. (15)

Where µ(t) = U(t; 0)µU †(t; 0) is the time-dependent dipole matrix. We now proceed to an account

of the topology of the unitary transformation control landscape.

3.2.2 Enumeration of critical submanifolds

We mention that we will again consider the controls from the kinematic point of view, for the same

reasons as before. To characterize the critical points, expand around U0 in the variable s as before

by writing U = U0e
iHs, where H ∈ u(N), the set of Hermitian N ×N matrices. The condition that

U0 is a critical point is then

d

ds
‖W − U = U0e

iHs‖2
∣∣∣∣
s=0

= iTr
(
H
(
W †U − U †W

))
= 0. (16)

This is equivalent to requiring W †U = U †W , or that W †U be Hermitian. W †U is also a unitary

matrix, so at a critical point, the eigenvalues of W †U must be either 1 or -1. As a result, the
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values J can take on at a critical point are Jc = 0, 4, . . . , 4N , implying that there exist N+1 critical

submanifolds, each of which correspond to a certain number of 1s and -1s as the eigenvalues of

W †U . A detailed analysis has shown that, as in the case of the quantum ensemble landscape, all

critical submanifolds except for the ones corresponding to the top and the bottom of the landscape

possess saddle point topology [8, 9].

3.2.3 Distance metric for critical submanifolds

To define a distance to a critical submanifold from an arbitrary point on the kinematic landscape

U0, note that in general the eigenvalues of W †U take values on the unit circle in the complex plane.

Let λi stand for the ith eigenvalue of W †U0, when the eigenvalues are sorted in ascending order by

their real parts. To find the distance to the critical submanifold which corresponds to α -1s and

N − α 1s in the eigenvalues of W †U , we can compare the real part of the smaller α eigenvalues of

W †U with -1, and the real part of the larger N − α eigenvalues with 1 [21]. Quantitatively,

d =
α∑
i=0

(1 + <{λi}) +
N−1∑
α

(1−<{λi}) . (17)

The maximum distance to a critical submanifold in this case is 2N , so we will divide by this quan-

tity and normalize all distances to a maximum of 1.

We have shown how to climb the quantum ensemble and unitary transformation control land-

scapes using a gradient algorithm, and have examined the topology of the critical points of these

landscapes. In the next section, we present a relation that holds for all quantum control landscapes

which must be satisfied for straight control trajectories which make use of a gradient algorithm.

4 ‘Straight shot’ eigenrelation

One of the goals of this work is to examine the conditions under which control trajectories with

R = 1 can be achieved. In this regard, we formulate a mathematical criterion that must be

satisfied in order for ‘straight shot’ trajectories to exist in conjunction with the D-MORPH gradient

algorithm.

Consider a control trajectory that is perfectly straight, i.e., R = 1. This trajectory can be

written [14]

E(s, t) = E0(t) + ρ(s)∆E(t), (18)

where ρ(s) is a monotonically increasing function, as a result of the gradient algorithm, and ∆E(t)

is some function of time. The gradient function along this trajectory is

δJ

δE(t)
[E(s, τ)] = α(s)∆E(t), (19)
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where α(s) = dρ(s)
ds , J is the cost function of the quantum control landscape, which, without loss

of generality, we will maximize; τ is an auxiliary time variable, and the square brackets denote the

argument of the gradient function.

According to Eq. (7), the instantaneous tangent of a control trajectory “points” in the same

direction in control space as the gradient of the quantum control landscape at that point. Along

a straight control trajectory, then, the gradient vector must point in the same direction at every

point on the trajectory; in other words, the gradient functions at two different points on the control

trajectory are related by a scale factor. Additionally, for straight trajectories, the difference between

any two points on the trajectory is always proportional to the same vector. When using a gradient-

based algorithm such as D-MORPH, this vector is the gradient itself. Therefore, in evaluating the

gradient function along a straight trajectory, the argument of the gradient function changes by an

amount proportional to the gradient itself. These two facts form the foundation for the analysis of

this section.

To derive the implications, note that we can use Eq. (19) to relate the gradient function at two

different points along the straight shot

δJ

δE(t)
[E(s′, τ)] =

α(s′)

α(s)
α(s)∆E(t) =

α(s′)

α(s)

δJ

δE(t)
[E(s, τ)]. (20)

Next, let us rewrite equation Eq. (18) to relate the control field at two different points along the

trajectory

E(s, t) = E0(t) + ρ(s)∆E(t) = E0(t) + ρ(s′)∆E(t) +
(
ρ(s)− ρ(s′)

)
∆E(t)

= E(s′, t) +
(
ρ(s)− ρ(s′)

)
∆E(t).

(21)

If we take the two points to be infinitesimally close, we can write ρ(s)−ρ(s′) = α(s′)(s−s′). Then,

combining the two relations above, we have

δJ

δE(t)
[E(s′, τ)] =

α(s′)

α(s)

δJ

δE(t)
[E(s, τ)]

=
α(s′)

α(s)

δJ

δE(t)
[E(s′, τ) + (s− s′)∆E(τ)α(s′)]

=
α(s′)

α(s)

δJ

δE(t)

[
E(s′, τ) + (s− s′) δJ

δE(τ)
[E(s′, τ ′)]

]
.

(22)

We can further expand the argument of the gradient function on the right hand side to lowest order

in s− s′ obtain

δJ

δE(t)
[E(s′, τ)] =

α(s′)

α(s)

(
δJ

δE(t)
[E(s′, τ)] + (s− s′)

∫ T

0

δ2J

δE(t′)δE(t)
[E(s′, τ)]

δJ

δE(t′)
[E(s′, τ)] dt′

)
(23)

where δ2J
δE(t′)δE(t) [E(s′, τ)] is the Hessian. Rearranging, we have∫ T

0

δ2J

δE(s′, t′)δE(s′, t)

δJ

δE(s,′ t′)
dt′ =

α′(s′)

α(s′)

δJ

δE(s′, t)
(24)
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where we have now dropped the argument of the gradient and the Hessian in brackets and shown

the s dependence in the denominator. This equation states that the gradient is an eigenvector of

the Hessian along a straight control trajectory.

We wish to stress that the relations examined in this section were derived without making any

use of quantum mechanics. The functional relationship between the controls and the height on

the landscape has its origin in the quantum control equations set out in Section 3, but the rest of

the analysis only makes use of the gradient climbing rule, Eq. (7), and the straight shot condition

Eq. (19). Therefore, our analysis applies to all landscape gradient climbs which result in straight

trajectories in the underlying space of controls.

5 Results and Illustrations

This section provides numerical illustrations of the details of landscape structure outlined in Sections

2 through 4. Section 5.1 shows that the distribution of R values of control trajectories across the

entire landscape takes on very modest values, rarely ever venturing above 2.0. It also contains

plots that aim to demonstrate that control trajectories with very low and high values of R are

spread evenly throughout control space. The next subsection addresses the effects saddle points

have on optimization paths. We find that encountering additional critical submanifolds between

the top and bottom of the landscape on an optimization path tends to increase R values. The final

subsection provides numerical evidence of the Hessian-gradient eigenrelation discussed in Section

4.1. Dimensionless units are used throughout this section.

5.1 Random sampling of R values

In order to assess the complexity of the quantum ensemble and unitary transformation control

landscapes, random control trajectories were constructed and their R values tabulated. Although

there is no a priori reason to expect values of R at low orders of magnitude since the control space

is typically of very high dimensionality, we find that R values are almost always less than 2. We

also examine the distribution of distances between control fields that result in trajectories with

high and low values of R, and find that they have similar behavior.

5.1.1 Quantum ensemble control landscape

Five different quantum ensemble control landscapes were sampled, and 1000 optimizations of 〈O〉

were performed using each landscape. Two different initial density matrices were used in generating

11



these landscapes:

ρ1 =

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

, ρ2 =

1
4

0 0 0 0 0 0 0

0 1
4

0 0 0 0 0 0

0 0 1
4

0 0 0 0 0

0 0 0 1
4
0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

. (25)

ρ1 is an almost completely degenerate density matrix. On the other hand, ρ2 contains two eigenval-

ues that both exhibit mild degeneracies. The observables used in conjunction with these operators

are

O1 =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 4

9
0

0 0 0 0 0 0 0 5
9

, O2 =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4

17
0 0 0

0 0 0 0 0 4
17

0 0

0 0 0 0 0 0 4
17

0

0 0 0 0 0 0 0 5
17

. (26)

ρ1 and O1, ρ1 and O2, ρ2 and O1, ρ2 and O2 are used to generate four different landscapes. Lastly,

we also made use of

ρ3 =

7
28

0 0 0 0 0 0 0

0 6
28

0 0 0 0 0 0

0 0 5
28

0 0 0 0 0

0 0 0 4
28

0 0 0 0

0 0 0 0 3
28

0 0 0

0 0 0 0 0 2
28

0 0

0 0 0 0 0 0 1
28

0
0 0 0 0 0 0 0 0

O3 =

0 0 0 0 0 0 0 0
0 1

28
0 0 0 0 0 0

0 0 2
28

0 0 0 0 0

0 0 0 3
28

0 0 0 0

0 0 0 0 4
28

0 0 0

0 0 0 0 0 5
28

0 0

0 0 0 0 0 0 6
28

0

0 0 0 0 0 0 0 7
28

(27)

to simulate a completely nondegenerate quantum ensemble control landscape. The optimizations

used the Hamiltonian and dipole operators

H0 =

−10 0 0 0 0 0 0 0
0 −8 0 0 0 0 0 0
0 0 −4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 10 0 0 0
0 0 0 0 0 20 0 0
0 0 0 0 0 0 32 0
0 0 0 0 0 0 0 46

µ =

0 ±1 ±0.5 ±0.52 ±0.53 ±0.54 ±0.55 ±0.56
±1 0 ±1 ±0.5 ±0.52 ±0.53 ±0.54 ±0.55
±0.5 ±1 0 ±1 ±0.5 ±0.52 ±0.53 ±0.54
±0.52 ±0.5 ±1 0 ±1 ±0.5 ±0.52 ±0.53
±0.53 ±0.52 ±0.5 ±1 0 ±1 ±0.5 ±0.52
±0.54 ±0.53 ±0.52 ±0.5 ±1 0 ±1 ±0.5
±0.55 ±0.54 ±0.53 ±0.52 ±0.5 ±1 0 ±1
±0.56 ±0.55 ±0.54 ±0.53 ±0.52 ±0.5 ±1 0

(28)

where the signs on the dipole matrix elements were chosen randomly under the constraint of µ

remaining symmetric. Once these signs were chosen, they remained fixed for the 1000 optimizations

over each individual landscape.

The initial fields of these optimizations were parametrized according to the equation

E(t) =
1

F
exp[−0.3(t− T

2
)2]

M∑
n=1

an sin(ωnt+ φω), (29)

with the target time T being 10. When the eight level landscapes were being sampled, M was set

at 60, to ensure that the initial control field had potential resonances with every possible state to

state transition. For the four level landscape, M = 20. F is a normalization factor, which was

picked so that the initial fluence of each field is set to 1. This is to prevent the onset of the strong

field regime, where small alterations in a control field can cause massive changes in the dynamics
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of the quantum system. Across all the optimizations, this control field was discretized into 1001

time points, and the field amplitude at each of these time points served as the control variables.

We define the limits of our optimizations as follows. Let 〈O〉max denote the maximum value that

J = Tr (ρ(t)O) can assume for a particular pair of ρ and O, and let 〈O〉min denote the minimum

value. When a random field is selected by Eq. (29), it is used to calculate J = Tr (ρ(t)O). If

J < JI = 0.01 〈O〉max + 0.99 〈O〉min, then D-MORPH is used to climb until J = JI ; likewise, if

J > JI , D-MORPH is used to descend the landscape until J = JI . Then, the resultant control

field is optimized using D-MORPH until J = JF = 0.99 〈O〉max + 0.01 〈O〉min, and it is this latter

trajectory, which takes the field from a height of JI to a height of JF on the landscape, that is

used to calculate R. This is done so that each of the optimizations proceeds over a wide swathe

of the landscape and encounters as many structural features as possible. In this regard, we have

numerically shown that for a five level state-to-state transition probability landscape, demanding

increasing fidelity of J at the beginning and end of the optimizations has a diminutive effect on

R [14].

Histograms of the resulting R values from 1000 optimizations over five different landscapes are

presented in Figure 2. Starting at the top-left, the histograms show the results of optimizations

over the landscape generated by (a) ρ1 and O1, (b) ρ1 and O2, (c) ρ2 and O1, (d) ρ2 and O2, and

(e) ρ3 and O3. The distributions are skewed right, indicating that the R values tend to accumulate

near 1.0. The smallest values out of the eight level systems are found in the histogram of subfigure

(a) which has a mean of R = 1.2167. This is followed by the histograms of Figures 2(b) and

2(c), which have means of R = 1.3053 and R = 1.3295 respectively. The landscapes sampled

in these two figures correspond to ρ and O matrices with lower numbers of degeneracies. The

highest values of R are found in the histograms of Figures 2(d) and 2(e), which have mean values

of R = 1.6516 and R = 1.6455, respectively. In Figure 2(d), ρ2 and O2, the combination with the

least amount of degeneracies, was used to generate the landscape sampled, and in Figure 2(e) a

fully nondegenerate landscape was sampled. These statistics illustrate that the lack of degeneracies

lead to more structurally complex landscapes, although evidently only up to a point, evidenced by

the similar resulting histograms in Figures 2(d) and 2(e) between a landscape with four degenerate

values in both ρ and O and a landscape with fully nondegenerate ρ and O. Also pictured in Figure

3 is a histogram of the R values of 1000 optimizations over a unitary transformation landscape

generated by the transformation of Eq. (31). This plot is skewed right and centered near 1.0, with

a mean of R = 1.4142 indicating that the unitary transformation control landscape also contains

minimally complex structural features.

A natural question to consider is whether or not control trajectories that possess low or high R

values are concentrated in some region(s) of control space. To address this issue, pairwise Euclidean
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distances were calculated between (1) all pairs of initial fields, (2) all pairs of final fields, and (3) all

initial and final fields of each control trajectory for the landscape generated by ρ1 and O1. These

distances were calculated using

dijEL =

[
1

T

∫ T

0
[Ei(t)− Ej(t)]2dt

] 1
2

(30)

for control fields Ei and Ej , and the results are displayed in Figure 4. Importantly, in computing

these distances, we used only the 250 trajectories with the lowest values of R and, separately,

the 250 trajectories with the highest values of R out of the 1000 trajectories that were sampled.

This means that R < 1.1725 for the control trajectories used to generate the histograms in Figure

4(a), and R > 1.2558 for the histograms in 4(b). The distribution of distances between initial

fields, in blue, is centered to the left of and is narrower than the distribution corresponding to

the distances between all optimal fields, in red. This implies that the optimal fields are scattered

more widely throughout control space than the randomly picked initial fields. The curve in green

is a histogram of the distribution of distances between all initial-final field pairs, and is centered

in between the other two curves. The most important feature to discern from this figure, however,

is that the distributions generated from the trajectories with low values of R and the distributions

generated from the trajectories with high values of R appear to be very similar. This suggests that

trajectories with low and high values of R are distributed in the same way across control space,

with no deviating behavior becoming apparent as low or high values of R are approached.

5.1.2 Unitary transformation control landscape

1000 optimizations were also randomly carried out over a unitary transformation control landscape.

The target unitary transformation was

W =


1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1

 (31)

and the Hamiltonian and dipole operators utilized were

H0 =


−10 0 0 0

0 −7 0 0

0 0 −1 0

0 0 0 8

 µ =


0 ±1 ±0.5 ±0.52

±1 0 ±1 ±0.5

±0.5 ±1 0 ±1

±0.52 ±0.5 ±1 0

 (32)

where the signs on the dipole matrix were again chosen so that it remained symmetric. The initial

fields were chosen according to Eq. (29), with T = 10 and M = 20. The initial height on this
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landscape was normalized to JI = 0.99 × 16 = 15.84, and the final height was normalized to

JF = 0.01 × 16 = 0.16. Figure 2 contains a histogram of the 1000 R values collected in this way,

with a mean value of R = 1.4142. Although this is smaller than the values contained in Figures

2(a)-(e), the R values for unitary transformation landscapes increases linearly with the size of the

quantum system [16]. The quantum ensemble landscapes considered earlier were for 8 level systems,

while this unitary transformation landscape is only a four level system, suggesting that the unitary

transformation landscape is structurally more complex than any quantum ensemble landscape for

a system of the same size, even one with a minimal number of degeneracies. This is likely because

achieving a unitary transformation entails specifying every matrix element of the propagator, while

optimizing the expectation value of arbitrary observables only places restrictions on the absolute

value of some elements of the propagator.

Figure 5 displays the histograms resulting from calculating the pairwise distances using the

same methodology of Section 5.1.1. Again, the pairwise distances between (1) all initial fields, (2)

all final fields, and (3) all initial-final field pairs were computed using Eq. (30). The two sets of

control trajectories used to produce the histograms in Figure 5(a) and 5(b) satisfy R < 1.3423 and

R > 1.7496, respectively. Significantly, the histograms computed using the 250 control trajectories

with the lowest values of R and the 250 trajectories with the highest values of R are almost

identical, indicating that trajectories with varying values of R are distributed uniformly across the

unitary transformation control landscape as well. This result was also found for a five level state-

to-state transition probability landscape [14], suggesting that the even distribution of high and low

R trajectories is a general property of quantum control landscapes.

5.2 Interactions with saddle points

Although the saddle points of the quantum ensemble and unitary transformation landscapes are

not able to prevent optimizations from reaching a global optimum, they may still significantly

influence the trajectory of the optimizations. In order to examine the extent to which saddle points

affect the climb up the landscape, the metrics set out in Section 3.1.3 and 3.2.3 were used to

calculate the distance to all critical submanifolds on the landscape during optimizations on the

unitary transformation control landscape generated by the transformation of Eq. (31), and also on

the quantum ensemble control landscape generated by the initial density matrix ρ2 and observable

operator O1 from Eqs (25) and (26), respectively. For both of the systems outlined above, 1000

optimizations were performed. The initial fields were parametrized using Eq. (29) with M = 20.

We will first discuss the quantum ensemble control landscape case.
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5.2.1 Quantum ensemble control landscape

The contingency tables of the critical submanifolds of the system are

Cmin =


2 4

1 0

1 0

 , C1 =


3 3

1 0

0 1

 , C2 =


3 3

0 1

1 0

 , Cmax =


4 2

0 1

0 1

 , (33)

with corresponding heights on the quantum ensemble control landscape of Jmin = 0, J1 = 1
9 ,

J2 = 5
36 , and Jmax = 1

4 . This information was used to plot the normalized distances to these four

critical submanifolds, using Eq. (13), during the optimizations with the lowest R value and highest

R values out of the 1000 optimizations performed, which were 1.1724 and 1.5902, respectively. The

magnitude of the gradient vector during the run is also plotted to illustrate the speed of the climb,

as optimizations typically slow down near a critical submanifold.

The results are shown in Figure 6. In panel (a), the run with a small R value appears not to

closely approach any saddle points. This is confirmed by examining the magnitude of the gradient,

which falls slightly only slightly in the middle of the climb and also near the beginning and end of

the climb, where the trajectory approaches the critical submanifolds corresponding to the bottom

and top of the landscape. In contrast, panel (b) shows that the run with a high R value hovers

in the vicinity of two saddle points for an extended period of time, indicated by the distance to

the first and second saddle point manifolds D1 and D2 becoming very small in portions of the

run. Concurrently, the magnitude of the gradient falls drastically in these two areas, and recovers

only when D2 starts to rise, confirming that the run indeed passed closely by a saddle point. The

combination of these two plots suggests that control trajectories with higher R values pass more

closely by saddle points.

5.2.2 Unitary transformation control landscape

Figure 6 also illustrates the distance to critical submanifolds on the unitary transformation control

landscape along with the magnitude of the gradient, plotted using Eq. (17). In panel (c) the run

with the lowest R value of 1.1533 out of the 1000 runs performed is shown, and in panel (d) a run

with a high R value of 1.7300 is displayed. The distance to the first saddle point D1 assumes lower

values during the high R run as compared to the low R run, and correspondingly the magnitude

of the gradient dips when the system approaches the critical submanifold. These plots support the

notion that optimization trajectories generated by a gradient-based search algorithm which pass

closely by saddle point critical submanifolds tend to have higher R values than trajectories that

stay clear of saddle points. One way of interpreting this result is that saddle points tend to attract

the paths of steepest ascent away from proceeding to a global maximum in a straight line. Instead
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they veer towards the closest critical submanifold, and as result take longer to reach an optimal

control due to the drop in the magnitude of the gradient near critical submanifolds.

5.3 Hessian-gradient eigenrelation

The analytical results of Section 4 that apply to straight shot trajectories when using the gradient

rule are striking in that they postulate a novel and unusual connection between the gradient function

and the Hessian along the trajectory. In this section, we provide numerical evidence to verify the

Hessian-gradient eigenrelation for straight shots. In order to obtain a control trajectory with an

R value very close to 1.0, we consider a very simple three level quantum system with Hamiltonian

and dipole matrix

H0 =


−10 0 0

0 −5 0

0 0 5

 µ =


0 −1 −0.5

−1 0 1

−0.5 1 0

 (34)

where the signs of the dipole matrix elements were chosen randomly, and we use the cost function

of Eq. (8), with

ρ =


1 0 0

0 0 0

0 0 0

 O =


0 0 0

0 0 0

0 0 1

 . (35)

This landscape was chosen because empirically, the it contains the least amount of structural

features that would compromise straight shots (c.f. Section 5.1). We then used a stochastic algo-

rithm, the Particle Swarm Optimization (PSO) algorithm [24], to locate a control trajectory for

which R = 1.0026. More information about the PSO algorithm is presented in Appendix B.

Eq. (24) states that along a straight shot, the gradient function is an eigenvector of the Hessian

matrix. To affirm that the gradient vector aligns with some eigenvector of the Hessian, at each

step along the control trajectory, all eigenvectors of the Hessian matrix were found. Then, the

dot product of the unit gradient vector with each unit eigenvector of the Hessian was computed.

In Figure 7, the square of these values are shown as the smaller, multicolored circles. Each color

corresponds to a different eigenvector of the Hessian, although the same color does not correspond

to a unique eigenvector for different values of s. The unit vector which results from the Hessian

acting on the gradient was also computed, and its dot product with the unit gradient vector was

also found for each value of s. The square of these values are displayed as the thicker, wider black

circles in Figure 7. Tr (ρ(T, s)O) is also displayed for reference. Except for a region in the middle

where 0.8 ≤ s ≤ 1.0, the black dots remain very close to 1.0, indicating that the Hessian does not

change the direction of the gradient vector by acting on it, except for up to a sign. Also, for most

of the climb, one of the eigenvectors of the Hessian remains either parallel or antiparallel to the
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gradient vector. The exception is again in the region where 0.8 ≤ s ≤ 1.0 and at the beginning of

the climb. The cause of the discrepancy for 0 ≤ s ≤ 0.2 is unknown. However, for the middle of the

climb, the sign of the eigenvalue of the gradient vector flips. We have observed this by calculating

the dot product of the unit gradient vector with the vector that results when the Hessian acts on the

unit gradient vector for all values of s. In Figure 8, this quantity is represented by the larger black

circles. When the Hessian does not alter the direction of gradient vector by its action, or when the

large black circles in Figure 7 are near 1.0, this quantity is the eigenvalue of the gradient vector.

The eigenvalues of the Hessian matrix are plotted as the smaller multicolored circles against s for

this control trajectory. It appears to follow a particular eigenvalue of the Hessian throughout the

optimization, thus seeming to affirm that the gradient vector is identical to one of the eigenvectors

of the Hessian, up to a scale factor.

Further verification of Eq. (24) is provided by Figure 9. There, the quantity displayed in Fig-

ure 8 is again plotted against the first factor on the right hand side of Eq. (24), ρ′′(s′)
ρ′(s′) . Since the

control trajectory used was not an exact straight shot (i.e., it does not have R = 1.0), the function

ρ′(s) = α(s) obtained from this trajectory is merely a constant t cross-section of the derivative of

the trajectory ∂E(s,t)
∂s . Nevertheless, excellent agreement between the two curves is observed.

6 Conclusions

The novel considerations of landscape structure first performed for state-to-state transition prob-

ability landscapes [14] have been extended by this paper to more general quantum ensemble and

unitary transformation control landscapes. The results considered here also point towards simple

landscape structure, which was first encountered experimentally [15] as well as hinted at by numer-

ical studies [16, 17], all of which made use of the D-MORPH or gradient algorithm.

A confounding feature of the new landscapes considered in this work are additional critical

submanifolds that possess saddle point topology. These submanifolds do not prevent optimizations

from reaching the top of the landscape, but they can have an undesirable effect on their search

effort. By quantifying this effort in the ratio R, we have shown that the presence of saddle points

on the landscape has a small but non-negligible effect on the ease of optimization by means of

distorting the underlying control trajectories. Importantly, the appearance of saddle points has

not caused R to take on values in excess of 2.0 for the quantum systems examined here, indicating

that these quantum control landscapes continue to subvert the ‘curse of dimensionality’ and possess

unexpectedly simple structure.

A condition for the existence of control trajectories with R = 1.0, which would indicate ex-
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ceedingly simple landscape structure, was also delineated. It was found that in order to obtain a

straight control trajectory, the gradient has to be an eigenfunction of the Hessian, in addition to

being separable in s and t. These conditions also happen to imply that all higher order Hessians

possess a common eigenfunction, as well as a separable component. This is a strict requirement

to place on these functions, and points to the great deal of freedom that a set of controls must be

allowed on the control landscape in order to achieve trajectories with R = 1. Future work could

explore the nature of the Hessian-gradient eigenrelation further, perhaps by using it to identify the

conditions under which R = 1 control trajectories exist. Additional simulations exploring landscape

structure on a wider variety of landscapes would also allow us to better understand the conditions

that lead to low values of R. For example, does the fact that achieving unitary transformations

requires control over every matrix element in the propagator lead to higher values of R?

Quantum control landscapes are inherently complex objects, being extremely high dimensional

spaces and representing a highly nonlinear relationship encoded in Schrödinger’s equation between

the unitary propagator and a dynamical set of controls. The intuitive expectation is that opti-

mizations taking place over these landscapes would be considerably difficult, but prior work has

established that the topology of these landscapes is very simple when certain reasonable physical

assumptions are met, paving the way for the success of any potential optimization [3, 7, 25, 26].

This paper has observed and attempted to explain the origin of highly favorable landscape structure

as well, which could mean that any potential optimization is efficiently able to be carried out. This

twofold simplicity of quantum control landscapes provides a foundation for explaining why optimal

controls can be found without a great deal of effort. It is hoped that this paper will provide a

stepping stone for advancing studies of control landscape structure.
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Appendix A: Hierarchy of eigenrelations

A similar approach to deriving the eigenrelation Eq. (24), which lends itself to extending the

relationship to all orders, is now given. Consider expanding the gradient function to first order

along an arbitrary control trajectory

δJ

δE(s+ ds, t)
=

δJ

δE(s, t)
+ ds

∫ T

0

δ2J

δE(s, t′)δE(s, t)

∂E(s, t′)

∂s
dt′. (36)

Now, assume that R = 1 along the trajectory. Invoking Eq. (19) in order to substitute for ∂E(s,t′)
∂s

lets us arrive at Eq. (24). However, we shall dividing both sides by α(s) = ρ′(s) and write

β[2](s)∆E(t) =

∫ T

0

δ2J

δE(s, t′)δE(s, t)
∆E(t) dt′, (37)

where β[2](s) = 1
α(s)

dα(s)
ds . The form of Eq. (37) suggests that the Hessian possesses at least one

eigenfunction that only depends on t. This suggests that the Hessian may be written

δ2J

δE(s, t′)δE(s, t)
= β[2](s)K [2](t, t′) + f1(s, t, t

′) (38)

where the purely time-dependent symmetric kernel satisfies the integral eigenvalue equation∫ T

0
K [2](t, t′)∆E(t′) dt′ = ∆E(t) (39)

and f1(s, t, t
′) is an arbitrary function satisfying∫ T

0
f1(s, t, t

′)∆E(t′) dt′ = 0. (40)

Now consider expanding the Hessian to first order along an arbitrary control trajectory. We can

write this expression as

δ2J

δE(s+ ds, t′)δE(s+ ds, t)
=

δ2J

δE(s, t′)δE(s, t)
+ds

∫ T

0

δ3J

δE(s, t′′)δE(s, t′)δE(s, t)

∂E(s, t)

∂s
dt′′. (41)

Again, we assume that we are on a trajectory with R = 1 and use Eq. (19), and after multiplying

by ∆E(t) and integrating over t′ we obtain

β[3](s)∆E(t) =

∫ T

0

∫ T

0

δ3J

δE(s, t′′)δE(s, t′)δE(s, t)
∆E(t′′)∆E(t′) dt′′ dt′ (42)

where β[3](s) = 1
α(s)

dβ[2](s)
ds . The above equation similarly suggests that we may write the third-order

derivative of J as

δ3J

δE(s, t′′)δE(s, t′)δE(s, t)
= β[3](s)K [3](t, t′, t′′) + f2(s, t, t

′, t′′) (43)

where the time-dependent symmetric kernel K [3](t, t′, t′′) satisfies the equation∫ T

0

∫ T

0
K [3](t, t′, t′′)∆E(t′′)∆E(t′) dt′′ dt′ (44)
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and the arbitrary function f2(s, t, t
′, t′′) satisfies∫ T

0
f2(s, t, t

′, t′′)∆E(t′′) dt′′ = 0. (45)

Continuing to iterate this process, we obtain the following hierarchy of eigenrelations for straight

shot trajectories

β[1](s)∆E(t0) = H [1](s, t0)

β[2](s)∆E(t0) =

∫ T

0
H [2](s, t0, t1)∆E(t1) dt1

β[3](s)∆E(t0) =

∫ T

0

∫ T

0
H [3](s, t0, t1, t2)∆E(t2)∆E(t1) dt2 dt1

...

β[n](s)∆E(t0) =

∫ T

0

∫ T

0
· · ·
∫ T

0
H [n](s, t0, t1, t2, · · · , tn−1)∆E(tn−1) · · ·∆E(t2)∆E(t1) dtn−1 · · · dt2 dt1

...

(46)

with

β[n](s) =
1

α(s)

dβ[n−1](s)

ds
, β[1](s) = α(s) (47)

where the nth order Hessian is defined as

H [n](s, t0, t1, · · · , tn−1) =
δnJ

δE(s, tn−1) · · · δE(s, t1)δE(s, t0)
. (48)

Each of these higher order Hessians can be expressed as the sum of a separable term and a free

function:

H [n](s, t0, t1, · · · , tn−1) = β[n](s)K [n](t0, t1, · · · , tn−1) + fn−1(s, t0, t1, · · · , tn−1) (49)

where the arbitrary function fn−1(s, t0, t1, · · · , tn−1) is symmetric in {ti}n−1i=1 and satisfies∫ T

0
fn−1(s, t0, t1, · · · , tn−1)∆E(tn−1) dtn−1. (50)

This implies each of the purely time dependent symmetric kernels satisfies the following hierarchy

of eigenrelations

∆E(t0) =

∫ T

0
K [2]t1(t0, t1)∆E(t1) dt1

=

∫ T

0

∫ T

0
K [3](t0, t1, t2)∆E(t2)∆E(t1) dt2 dt1

...

=

∫ T

0

∫ T

0
· · ·
∫ T

0
K [n](t0, t1, t2, · · · , tn−1)∆E(tn−1) · · ·∆E(t2)∆E(t1) dtn−1 · · · dt2 dt1

...

(51)
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akin to Eq. (46).

These relationships show that the Hessians of all orders not only must be separable, but must

also have ∆E(t) as a common eigenfunction. These requirements function as additional restric-

tions on a straight control trajectory. They signify that the controls must have sufficient freedom

to achieve factorization of all higher order Hessians in order to proceed along a trajectory with

R = 1.

Appendix B: The Particle Swarm Optimization Algorithm

The Particle Swarm Optimization (PSO) algorithm is a stochastic optimization algorithm that we

employ to identify control trajectories with minimal R values. It creates a swarm of K particles,

or trial control fields, in control space. In selecting the initial set of trial control fields, the PSO

algorithm makes use of Eq. (29). The gradient algorithm is then used on each of these trial control

fields to bring it to the initial landscape height JI , as set out in Section 3. D-MORPH is then used

to climb the landscape for all K trial fields from this initial height until the final normalized value

JF is reached; the resulting climbs from JI to JF are then projected onto control trajectories, and

their R values are computed. The trial control field which resulted in the best, or lowest, value of

R is then labeled by Ebestswarm(t), and this point is then used to stochastically update each particle

so that a new generation of trial control fields is created. The procedure is repeated for this new

swarm, and Ebestswarm(t) is relabeled. In addition, the best trial control field each particle has encoun-

tered in the history of the algorithm’s current run is recorded. That information is also used along

with the location of Ebestswarm(t) in updating the set of trial fields. The algorithm then continues

until a preset number of generations have been computed, and returns the control trajectory with

the lowest value of R found over the course of the algorithm’s execution.

There is no guarantee, however, that this algorithm will identify the trajectory possessing the

globally minimal value of R, because there exists the possibility of the swarm “collapsing” around

local minima of R and failing to explore more remote regions in control space that may contain

trajectories with more optimal values of R. This is due to the PSO algorithm’s stochastic nature,

but also because the nature of the R landscape, that is, the functional relationship between R and

the control field E(t), is not known. The application of the PSO algorithm to searching for trajec-

tories with small R values was first studied in [14]; more information regarding the mechanism of

the algorithm is available in [24].
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Figures

Figure 1: Illustrative sketch of a quantum control landscape (blue surface) and its underlying control space

(colored contour map), displayed as the projection onto the plane spanned by two control variables (in

practice many more are used). The vertical axis represents a cost function that we wish to maximize. The

two optimization paths shown, in green, differ in the nature of their R values. The path on the right climbs

in a straightforward manner to the top of the control landscape. Consequently, its projection into control

space, in black, has a length very close to the length of the straight line between the projection’s endpoints,

shown as a magenta dashed line. This path’s R value is low. On the other hand, the optimization path on

the right is attracted away from proceeding directly to a maximum by the saddle point at the center of the

landscape. As a result, its projection into control space is much longer than the straight line between its

endpoints, and so this path possesses a high R value.
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Figure 2: The distribution of R values for five different quantum ensemble control landscapes. 1000 opti-

mizations were carried out for each landscape. (a) was generated using ρ1 and O1; (b) was generated using

ρ1 and O2; (c) was generated using ρ2 and O1; (d) was generated using ρ2 and O2; and (e) was generated

using ρ3 and O3. For each of these runs, the Hamiltonian operator of Eq. (28) and the dipole of Eq. (28)

were used. All of the plots are centered close to 1.0 and skewed to the right, showing that R values are

pushed to 1.0 across landscapes.
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Figure 3: The distribution of R values for a unitary transformation control landscapes. 1000 optimizations

were carried out, using the target unitary transformationW of Eq. (31) and Hamiltonian and dipole operators

of Eq. (32)and (32). Modest values of R, all still less than 2.0, characterize this landscape’s structure as

well.

28



Figure 4: The distributions of pairwise distances between initial fields, final fields, and initial-final field pairs

for the landscape generated by ρ3 and O3. The top plot was produced using the 250 optimizations with the

lowest values of R, while the bottom plot was produced using the 250 optimizations that had the highest

values of R. The similarity between the two plots suggests that low R and high R trajectories are distributed

in the same way throughout control space.

Figure 5: The distributions of pairwise distances between initial fields, final fields, and initial-final field pairs

for the unitary transformation control landscape. The top plot was produced using the 250 optimizations

with the lowest values of R, while the bottom plot was produced using the 250 optimizations that had the

highest values of R. The similarity between the two plots suggests that low R and high R trajectories are

distributed in the same way throughout control space.
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Figure 6: In (a) and (b), the distances to the critical submanifolds along low and high R valued optimizations

on a quantum ensemble control landscape, respectively, are plotted using Eq. (13). It can be seen in (b)

that the distance to a saddle point becomes exceedingly small along a high R trajectory, indicating that

the saddle distorted the trajectory by acting as an attractor. The norm of the gradient function along the

climb, shown as the thick bright green curve, also noticeably dips in (b), indicating that a saddle point has

been encountered. In (c) and (d), the distances to the critical submanifolds along low and high R valued

optimizations on a unitary transformation control landscape are plotted using Eq. (17). In (c), no saddle

points are encountered, but in (d) the red curve dips sharply along with the norm of the gradient, signaling

the draw of a saddle point and resulting in the corresponding high value of R.
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Figure 7: The thick black circles represent how closely aligned the gradient and the vector which results

from the Hessian acting on the gradient are. Except for the very middle of the climb, where the orientation

of the latter vector flips, they are nearly constantly aligned. The smaller colored circles are the dot product

squared of the gradient with every eigenvector of the Hessian, and they indicate along most of the climb,

the gradient can be identified with an eigenvector of the Hessian.

Figure 8: A plot of all the eigenvalues of the Hessian at every iteration of an optimization with R = 1.0026.

The heavy black dots represent the factor by which the Hessian scales the gradient when it acts on it. Those

dots follow an eigenvalue of the Hessian, indicating that the gradient can be identified with an eigenvector

of the Hessian.
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Figure 9: A plot of the factor the Hessian scales the gradient by when it operates on it, in blue, and a plot

of α′

α = ρ′′

ρ′ , the eigenvalue belonging to the gradient according to Eq. (24). The agreement between the two

values is very good, signifying the validity of Eq. (24).
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