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Basics

The dynamics is given by the Schrodinger equation

_oU(t) B
ih"—= = HOU(),  U0)=1.

Add the interaction to the Hamiltonian
H(t) = Ho — pE(?)
in order to “control” the observable

Py = [{fIU(T30)[3) .
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How to achieve control?

Parameterize the electric field using a continuous variable s.

To require
AP,y _ T 6P 8E(s,t)dt >0
ds o OE(s,t) Os -
we set
ds  J0E(s,t)’
where

B h%{ <z‘ Ut(T;0) ‘f> (r|u@;0) Ut 0uU0)|i) }



Quantum control landscape
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Structure vs. topology

Our work is to examine the
structure, using the linearity

H. Rabitz, M. Hsieh, C. metric R.
Rosenthal Science (2004)
examined the topology of the Figure from J. Roslund and H.

Rabitz Phys. Rev. A (2009)

quantum control landscape.

Results very encouraging: no

sub-optimal extrema!
Results again very encouraging:

landscape is structurally simple.



What is R?

Optimizations are trajectories in control space.

The path length of a trajectory is

=

dpr, = /Osmm [/OT <8E€§z’t)>2dt] 2 ds.

The Euclidean distance is

dpp, = [/OT (E(Smaz,t) — E(0, 1)) dt} :

The ratio R is defined by

dpr,
R=—.
dgr,



Statistical behavior of R

Perform random optimizations and calculate R.

-10 0 0 0 0

0 =7 0 00

Ho=1] 0 0 -3 00
0 0 0 20

0 0 0 0 8

and
0 +1  +0.5 +0.52 +0.53
+1 0 +1 405 4052
pw=| £05 +1 0 +1 405
+0.52 405 +1 0 +1
+0.5% 4+0.52 +0.5 +1 0

Initial field parametrized in the form

Zexp —0.3(t ) Jan sin(w,t + ¢u)-



Statistical behavior of R
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Statistical behavior of R

‘— Distance between initial fields = Distance between final optimal fields = Distance between initial and final optimal fields
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“Straight shot” assessment and algorithm
How straight is “straight”?
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Minimizing R

Use the Particle Swarm Optimization (PSO) algorithm to search
for low R.

Particles updated through
EY = BV ol
Velocities of particles given by
vf = Covl +C1S1 (Bl ' — Byt~ ) +CoSa (Bt =B )

PSO algorithm is a stochastic optimization algorithm.



Minimizing R
With our landscape, R — 1 can be driven down to ~ 10™%, two
orders of magnitude lower than random trajectories.

R can also be maximized, highest values are R ~ 1.7.

— Highest fitness value
— Median fitness value
— Lowest fitness value
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Mathematics of straight trajectories

In order to achieve R = 1, the gradient function must be separable

ds  OE(s,t)

a(s) x B(t).

The slope-intercept equation for a line in infinite dimensions.

0.5

JPI —5
oF

0.0

I

I
-1.0




Mathematics of straight trajectories

If R =1, then the gradient points in the same direction
everywhere on the path.

More precisely, 5P;i5f should be proportional to itself at two points
on the path.

Sliding from point to point involves translating by 51;"5"” itself, so

5Piﬁ\f
Wy

5Pief (5Piaf
oE )
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Mathematics of straight trajectories

This implies that

62Pi—>f 5Pz'—>f
OE0E oF

5Pi—>f
or

[El] XX

[EA]

which appears to say that the gradient is an eigenvector of the
Hessian.

Can we then find the eigenvalue? Exact relation:

52Pi—>f
SE(t)SE(t)




Mathematics of straight trajectories
We can factor the Hessian
52Pi%f

OE(s,t")dE(s,t)

= B8(s) x KPI(t, 1)

where K2I(t,t) is a symmetric kernel that leaves the gradient
invariant, and P(s) = %(SS))
More generally, every higher-order derivative factors
5npi—>f
O0E(s,ty)---0E(s,11)

- 5[“](5) « K["}(tn,--- )

with K" a symmetric kernel and

gy — L dB"(s) () = afs
) = g T A = als)



Hessian-gradient eigenrelation

R =1.0036
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Cosine of the angle

—Pi

between Hess(grad) and grad

R=1.4814
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Hessian-gradient eigenrelation
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Hessian-gradient eigenrelation
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Hessian-gradient eigenrelation
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Additional optimization objectives

Can optimize unitary transformations
2
J =W U
Gradient is then

52(2) =2Tr %{WTU,u(t)}.

Or optimize arbitrary observables
J=Tr (p(T)o)

Gradient is then



Saddle points

Topology of landscape is now more complex; consequently, so is
the structure.

Kinematics: view landscape as Lie Group U(N).

Additional critical points appear in the middle of the landscape,
but always saddle points.

For W problem, critical submanifolds occur when
T (WiU)=—-N,-N+2,---,N.

For Tr (pO) problem, critical submanifolds correspond to the
double cosets
U ummti(n)

TEP(N)



Saddle points (Tr (pO))
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Saddle points (W)
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