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Outline of Summer Work for Professor Edgar Choueiri 

This summer I concentrated on a 1-D particle micro-simulator for exploring the 

boundary interactions in a plasma finite volume code.  One rather substantial difficulty 

encountered in computational plasma physics is the vast difference in size scales 

encountered in the governing equations.  Plasma behavior is partially described by fluid 

and particle equations, but the two fields make fundamentally different assumptions; for 

instance, a single fluid ‘element’ may comprise millions of particles.  The real difficulty 

comes in the self-consistency of the equations—particle motions create fields which 

induce their motions.  Also, electromagnetic forces travel on the time scale of the speed 

of light whereas particle collisions occur at an electron and ion thermal energy scales, and 

then fluid physics are much slower, based on shock waves and initial behaviors.  

Obviously Debye lengths are much smaller than thermal gradients.  The goal of my 

project was to attempt a somewhat innovative type of simulation, called the ‘Equation 

Free’ method that was proposed by Ioannis G. Kevrekidis, C. William Gear, J.M. Hyman, 

P.G. Kevrekidis, O. Runborg, and C. Theodoropoulos.  Their proposal: Why not simulate 

finite-volume fluid code and use particle simulation at the boundaries?  Or, essentially 

take a snapshot of the particle behavior at various points in the fluid and use it to 

extrapolate large scale behavior.  Additionally, one won't necessarily need a global 

governing equation.  My goal was to write a Particle-in-Cell, (PIC), simulation that 

would handle the interactions between finite-volume cells.  This simulation could yield 

important insight into the efficacy of agent based methods for simulation of non-ideal 

effects in MHD systems—this would be a critical component in studying how hybrid 



methods might be used to incorporate such phenomena as finite-rate ionization, sheath 

physics, and plasma-wall interaction into fluid-based plasma simulation. 

The goal of my program was essentially to take as inputs the boundary conditions 

of two neighboring cells, run a simulation on particle behavior, and then output the flux 

of various quantities between the cells.  My micro-simulator region was initialized with 

Riemann initial conditions where the bulk velocity, bulk density, and temperature of the 

left cell are implemented on the left half of the simulation region, and likewise the right 

half of the simulation region uses quantities from the cell on the right.  This diagram 

helps to explain how the initial conditions work: 

 



Here you can see that the left cell has a greater standard deviation of velocities (because 

of higher temperature) and the left half actually has twice as many particles (resulting 

from a greater bulk density), and both cells here have the same bulk velocity. 

 

The governing equations in 1-D can be simplified to: 

 

along with which are the kinematic equations and Poisson’s equation and that is all the 

equations I dealt with. 

 

The general scheme of the program is as follows: 

1. Add particles (x,v)i to the simulation region based on the boundary conditions. 

2. The particle positions and velocities give the charge and current densities at 

gridded points. 



3. The charge and current densities yield the electromagnetic fields at the 

gridded points. 

4. Move the particles according to forces imparted by the electromagnetic fields. 

5. Remove particles that have left the simulation region. 

6. Calculate statistics based on the particle locations and velocities, etc. 

7. Add particles based on the bulk density conditions. 

8. Go to Step 2. 

Although this program may seem like a typical Particle-In-Cell code, there were 

several differences between one and my specific problem that I had to account for.  One 

complication arises from the fact that the boundary conditions were not periodic; in order 

to get around this problem and to ultimately solve the partial differential Poisson’s 

equation, I decided that the neighboring fluid cells exhibit no net charge and therefore the 

gradient of the electric field at the boundary of the simulation region should be zero.  

This allowed me enough equations and few enough variables to solve it by implementing 

a tridiagonal matrix inverter.  This is different from a PIC code which often uses Fourier 

analysis to solve the periodic equation. 

Another difference between my code and a PIC code arises from how I 

determined to add new particles to the simulation region.  In a periodic region, a particle 

that moves off one end is put at the other side of the simulation, however, in my 

simulation a particle that leaves through one boundary never returns.  In order to generate 

new particles at the end of each step, then, I devised side simulation regions outside of 

the region I was working with.  Essentially, these micro-micro-simulation regions took 

the bulk velocity (and four standard deviations of that) and times dt one gets both units of 



distance and the maximum distance that a particle could travel in a time step, and so these 

simulations would probabilistically add particles into the simulation region that naturally 

would have come in from the boundaries (an acceptance/rejection scheme).  This creates 

a constant influx of particles in both halves of the simulation region to even out with the 

particles leaving.  This allows the simulation to really be focused on neighboring cells 

and what sort of flux of particles and statistical characteristics are creating between the 

cells. 

The simulation runs well with the exception that an error was found in the 

equations I was using in the magnetic field solver.  I had enough time to write code 

around the problem and so a pretty straightforward calculation of particle velocities 

should complete the code and correctly determine the magnetic fields.  This will enable 

the graduate student I was working with, Peter Norgaard, to incorporate my micro-

simulation into a larger-scale finite volume code to determine what effects this method 

can show that a standard PIC code cannot. 

Lastly, I’d like to thank PPPL for its support this summer, Professor Choueiri for 

his help and allowing me to work in his lab, and Peter Norgaard for his guidance on the 

entire project—I found it very interesting and in addition to giving me a fine 

understanding of plasma physics, I learned a lot about how research at a graduate level is 

conducted. 


