
Chad Smith
10 September 2006

Outline of Summer Work for Professor Edgar Choueiri

This summer I concentrated on a 1-D particle micro-simulator for exploring the

boundary interactions in a plasma finite volume code. One rather substantial difficulty

encountered in computational plasma physics is the vast difference in size scales

encountered in the governing equations. Plasma behavior is partially described by fluid

and particle equations, but the two fields make fundamentally different assumptions; for

instance, a single fluid ‘element’ may comprise millions of particles. The real difficulty

comes in the self-consistency of the equations—particle motions create fields which

induce their motions. Also, electromagnetic forces travel on the time scale of the speed

of light whereas particle collisions occur at an electron and ion thermal energy scales, and

then fluid physics are much slower, based on shock waves and initial behaviors.

Obviously Debye lengths are much smaller than thermal gradients. The goal of my

project was to attempt a somewhat innovative type of simulation, called the ‘Equation

Free’ method that was proposed by Ioannis G. Kevrekidis, C. William Gear, J.M. Hyman,

P.G. Kevrekidis, O. Runborg, and C. Theodoropoulos. Their proposal: Why not simulate

finite-volume fluid code and use particle simulation at the boundaries? Or, essentially

take a snapshot of the particle behavior at various points in the fluid and use it to

extrapolate large scale behavior. Additionally, one won't necessarily need a global

governing equation. My goal was to write a Particle-in-Cell, (PIC), simulation that

would handle the interactions between finite-volume cells. This simulation could yield

important insight into the efficacy of agent based methods for simulation of non-ideal

effects in MHD systems—this would be a critical component in studying how hybrid

methods might be used to incorporate such phenomena as finite-rate ionization, sheath

physics, and plasma-wall interaction into fluid-based plasma simulation.

The goal of my program was essentially to take as inputs the boundary conditions

of two neighboring cells, run a simulation on particle behavior, and then output the flux

of various quantities between the cells. My micro-simulator region was initialized with

Riemann initial conditions where the bulk velocity, bulk density, and temperature of the

left cell are implemented on the left half of the simulation region, and likewise the right

half of the simulation region uses quantities from the cell on the right. This diagram

helps to explain how the initial conditions work:

Here you can see that the left cell has a greater standard deviation of velocities (because

of higher temperature) and the left half actually has twice as many particles (resulting

from a greater bulk density), and both cells here have the same bulk velocity.

The governing equations in 1-D can be simplified to:

along with which are the kinematic equations and Poisson’s equation and that is all the

equations I dealt with.

The general scheme of the program is as follows:

1. Add particles (x,v)i to the simulation region based on the boundary conditions.

2. The particle positions and velocities give the charge and current densities at

gridded points.

3. The charge and current densities yield the electromagnetic fields at the

gridded points.

4. Move the particles according to forces imparted by the electromagnetic fields.

5. Remove particles that have left the simulation region.

6. Calculate statistics based on the particle locations and velocities, etc.

7. Add particles based on the bulk density conditions.

8. Go to Step 2.

Although this program may seem like a typical Particle-In-Cell code, there were

several differences between one and my specific problem that I had to account for. One

complication arises from the fact that the boundary conditions were not periodic; in order

to get around this problem and to ultimately solve the partial differential Poisson’s

equation, I decided that the neighboring fluid cells exhibit no net charge and therefore the

gradient of the electric field at the boundary of the simulation region should be zero.

This allowed me enough equations and few enough variables to solve it by implementing

a tridiagonal matrix inverter. This is different from a PIC code which often uses Fourier

analysis to solve the periodic equation.

Another difference between my code and a PIC code arises from how I

determined to add new particles to the simulation region. In a periodic region, a particle

that moves off one end is put at the other side of the simulation, however, in my

simulation a particle that leaves through one boundary never returns. In order to generate

new particles at the end of each step, then, I devised side simulation regions outside of

the region I was working with. Essentially, these micro-micro-simulation regions took

the bulk velocity (and four standard deviations of that) and times dt one gets both units of

distance and the maximum distance that a particle could travel in a time step, and so these

simulations would probabilistically add particles into the simulation region that naturally

would have come in from the boundaries (an acceptance/rejection scheme). This creates

a constant influx of particles in both halves of the simulation region to even out with the

particles leaving. This allows the simulation to really be focused on neighboring cells

and what sort of flux of particles and statistical characteristics are creating between the

cells.

The simulation runs well with the exception that an error was found in the

equations I was using in the magnetic field solver. I had enough time to write code

around the problem and so a pretty straightforward calculation of particle velocities

should complete the code and correctly determine the magnetic fields. This will enable

the graduate student I was working with, Peter Norgaard, to incorporate my micro-

simulation into a larger-scale finite volume code to determine what effects this method

can show that a standard PIC code cannot.

Lastly, I’d like to thank PPPL for its support this summer, Professor Choueiri for

his help and allowing me to work in his lab, and Peter Norgaard for his guidance on the

entire project—I found it very interesting and in addition to giving me a fine

understanding of plasma physics, I learned a lot about how research at a graduate level is

conducted.

