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As stated in my proposal for the PPST fellowship, a common goal of quantum control experiments
is to achieve high quality manipulation of a quantum system by searching for an optimal control, typically
drawn from the phases and amplitudes of an applied field. The search for an optimal field occurs on an under-
lying quantum control landscape, which is the observable as a function of the control field variables. Under
certain assumptions the landscape will be free of suboptimal extrema that could prevent search algorithms
from identifying optimal controls. However, one key landscape theory assumption is that no significant
constraints are placed upon the control variables, and constraints on the controls will always be present
in realistic laboratory settings. For example, the Ti: sapphire laser commonly used in quantum control
experiments is centered at 800 nm with a 10 nm bandwidth, which restricts the pulses to only a limited
wavelength range. The effect of restricting control resources on the ability to achieve optimal control is not
well understood, and exploration of this topic is the subject of the research performed over the summer. The
control variables presented are time-independent ’kinematic’ controls, which act as a stand-in for dynamic
controls, simplifying the Schrodinger equation-dependent dynamic controls into a different paradigm. By
considering these kinematic control variables and how they behave when constrained and then mapping this
kinematic control scheme to the traditional dynamic control scheme, we can use this simplified picture to
understand how limiting resources affects the ability to achieve good control. We shall be trying to un-
derstand this kinematic control scheme with the problem of the unitary transformation scheme, wherein a
unitary matrix U is transformed so as to retain its unitarity while attempting to bring it as close to possible
to another unitary matrix W . Through simulations, the results can offer insight into constrained dynamic
control and their optimal control capabilities.

In the traditional dynamic setting, and external control, denoted ε(t) and acting over a finite time
interval [0, T ], consists of a large number of control variables such as amplitudes and phases. the internal
energy of the quantum system may be described by the field-free Hamiltonian H0. The transition dipole µ
dictates the strength of the permitted transitions upon interactions with the external field. We can simplify
the quantum system, which is an infinite dimensional system, to a finite N -dimensional system, where H0

and µ are N × N diagonal and Hermitian matrices, respectively. The time-dependent Hamiltonian that
incorporates the external control ε(t) may then be written using the dipole approximation as:

H(t) = H0 − µε(t) (1)

and the dynamics of the system are represented by the time-dependent Schrodinger equation:

i~
∂

∂t
U(t, 0) = H(t)U(t, 0), U(0, 0) = 1 (2)
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where U(t,0) is a unitary propagator that solves the above equation and assumes the form:

U(t, 0) = τexp(− i
~

∫ t

0

H(t′)dt′) (3)

where τ represents the time-ordering operator. The observable we will use in the defining of this
dynamic and kinematic approach to quantum control is that of the fidelity of the matrix U when compared
to some matrix W , which is defined in a dynamic view as:

M(ε(t)) = ||W − U(T, 0)||2 (4)

where W is the target matrix we are trying to transform U into using the field ε(t) as the control
variable. We evaluate the expression as the Frobenius norm, which means that the equation can be rewritten:

M(ε(t)) = 2N − 2Re(Tr(W †U(T, 0))) (5)

where N is the size of the matrix. The fact that local searches reach the optimal value for this
observable is due to the lack of suboptimal critical points. This can be analytically proven and will now be
summarized. A critical point of the F (ε(t)) landscape corresponds to a point where:

δM

δε(t)
= 0 (6)

is true for all 0 ≤ t ≤ T . The system is assumed to be controllable, meaning there exists a set
of controls that yield any arbitrary observable value. In this formulation, the controls are also assumed to
be unconstrained that they may assume any numerical value. To simplify the analysis of equation (6), we
substitute the identity:

U = exp(iA) (7)

where A is an arbitrary N × N Hermitian matrix. This equality in (7) is the main feature of
the kinematic model, substituting a time-independent formulation of U for the time-dependent dynamic
formulation of U . We then can rewrite equation (5) as:

M(A) = 2N − 2Re(Tr(W †exp(iA))) (8)

This formulation of U is time-independent, so it subsumes the time-dependent Hamiltonian by
setting the following equality as true:

τexp(− i
~

∫ t

0

H(t′)dt′) = exp(iA) (9)
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Now, we can expand equation (6) in terms of matrix elements of A to:

δM

δε(t)
=
∑
j,k

δM

δAjk

δAjk
δε(t)

= 0 (10)

Since we are working under the assumption that the system is controllable, that implies that the
functions δAjk

δε(t) are linearly independent, as any value of Apq is reachable given the controllability of the
system. This means that the following must be true:

δM

δAjk
= 0 (11)

for all j, k, as δAjk

δε(t) cannot be 0, given controllability. An analysis of equation (11) shows that there
exist critical points at M = 0, 4, 8, . . . , 4N , where 0 is where U = W , corresponding to perfect control, and
where 4N is where U = −W . The rest of the critical points, upon further Hessian analysis, are saddle points,
meaning that the only extrema on the landscape are where M is 0 or 4N .

The above schema is both a much simpler way of analyzing the quantum control landscape and
climbing the landscape, but also a valid set of controls. We recognize that there is a method of mapping
the dynamic controls to the kinematic controls, which is from ε(t) → A, which is from many variables to
few, and from kinematic controls back to dynamic controls, which is A → ε(t), which is from few to many
controls. This analysis of the mapping is important, especially from kinematic controls back to dynamic
controls, as we can take the simple time-independent formulation of U and connect it to a physical field.
One method by which we can convert dynamic to kinematic controls is to minimize the cost function:

Jdk = ||U(A)− Udyn||2 (12)

where we are dealing with the Frobenius norm again. By minimizing this over A, we get a mapping
that brings the kinematically defined U , where U is created by solving for A, as close as possible to the
dynamically defined U , through H0, µ, and ε(t). Conversely, the mapping from kinematic to dynamic
controls occurs through the minimization of

Jkd = ||Ukin − U(H(t))||2 (13)

over H(t), where U(H(t)) is the dynamically defined unitary matrix. This mapping is important
because a constrained kinematic control that has been analyzed and understood can be mapped to a con-
strained dynamic control, which is harder to understand than the constrained kinematic control.

Resources are always constrained in some manner. For example, laser pulses in quantum control
experiments are constrained to some operational frequency and limited bandwidth. Thus, we wish to under-
stand more deeply the effect of constraints upon quantum control. The first step to generalizing the impact
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of these constraints is to utilize kinematic controls with the knowledge that the results can be mapped to
a dynamic scenario. The kinematic controls enable a variety of constraints to be considered that not only
reflect external field controls but also constrains of the quantum system itself.

Before introducing the method developed to vary kinematic controls to extremize an observable
subject to constraints, it is worthwhile to examine particular constraint functions that can be considered. In
dynamics, an important control resource is the control pulse energy or fluence:

Fdyn =

∫ T

0

ε2(t), dt (14)

When pulse phases are treated as control variables, the fluence remains constant, as changing the
phase of the pulse will not change the amplitude of the pulse, which is what the energy of the pulse will
be dependent upon. The internal energy of the system and the allowed state transitions, represented by
the matrices H0 and µ, respectively, are assumed to remain constant. In the kinematic picture, since we
subsume ε(t) into the A matrix formulation, we can define the kinematic fluence as:

F = tr(A†A) (15)

We may also limit what state-to-state transitions are accessible during optimization, which entails
fixing the corresponding A matrix elements. This is analogous to allowing only specific transitions by
changing the transition dipole matrix µ in both the W and the Pi→f problem. Another constraint that may
arise in a physical system is that of the bandwidth. For example, for a Ti:Sapphire laser centered at 800 nm
has a bandwidth of ∆λ ≈ 10nm, which represents an important constraint. The kinematic definition of the
bandwidth can be written as:

L =

[∑
j,k A

2
jk(j − k)2∑
j,k A

2
jk

] 1
2

(16)

This can be thought of as addressing the combined strength of the available transitions, as in what
transitions are most favorable.We now address the mathematics developed to incorporate these or other
constraints into kinematic optimization.

To explore the kinematic landscape, we want to use a local gradient-based algorithm called D-
MORPH, which utilizes small diffeomorphic changes to optimize a set of controls. The diffeomorphic pa-
rameter s is used such that A → A(s) so as to ensure a smooth, continuous trajectory on the landscape.
The controls that we are going to be analyzing will be the elements of A, where the elements will be denoted
by the index markers p and q, which indicate what element of A we are analyzing, so each element will be
some Apq. Since, to have the observable M laid out in equation (8) be monotonically decreasing so as to
reach optimal control of M = 0, we want to have dM

ds ≤ 0, which, upon utilizing the chain rule, can also be
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written:
∂M(U)

∂s
=
∑
pq

∂M(U)

∂Apq

∂Apq
∂s

≤ 0 (17)

And we are trying to derive an expression for ∂F (U)
∂Apq

. To do so, we consider that, without any
constraints placed upon the available controls, monotonic decrease of the observable M will occur if the
following condition is met:

dApq
ds

= −βpq
∂M

∂Apq
βpq > 0 (18)

For all pq. Now, we want to try to evaluate ∂M(U)
∂Apq

using our definition of M from equation (8).
First, we write that:

∂M(U)

∂Apq
= −2

∂

∂Apq
Tr[Re(W †U)] (19)

The 2N disappears because it is a constant and not dependent upon the elements of A. We can
bring the derivative inside the Trace and real functions and also consider the fact that W can be defined as
W = eiB where B is a matrix that is just like A, and this shows us that B is not dependent upon A. Now,
we see that (19) is:

∂M(U)

∂Apq
= −2Tr[Re(W †

∂U

∂Apq
)] (20)

Since U = eiA, we can rewrite (20) using the identity:

∂eiA

∂Apq
= i

∫ 1

0

eiA(1−j) ∂A

∂Apq
eiAjdj (21)

and get that:

∂M(U)

∂Apq
= −2Tr[Re(W †i

∫ 1

0

eiA(1−j) ∂A

∂Apq
eiAjdj)] (22)

Now, in equation (22), since W † is not dependent upon j, we can rewrite (22) using W † = e−iB .
Also, considering the fact that:

Re(iZ) =Re(ia− b) (23)

=− b (24)

=− Im(Z) (25)
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Therefore, we have:

∂M(U)

∂Apq
=− 2Tr[Re(i

∫ 1

0

e−iBeiA(1−j) ∂A

∂Apq
eiAjdj)] (26)

=2Tr[Im(

∫ 1

0

e−iBeiA(1−j) ∂A

∂Apq
eiAjdj)] (27)

Since we assume we know what matrix B is, as that is our target matrix to be able to create W, this
equation is only dependent upon our variations in the elements of A, so we have obtained our formulation
for ∂F (U)

∂Apq
and using that in equation (18) with all βpq = 1 then we get:

dApq
ds

= −2Tr[Im(

∫ 1

0

e−iBeiA(1−j) ∂A

∂Apq
eiAjdj)] (28)

which can be solved to obtain a control trajectory for the elements of A that will yield a monotonic
decrease.

Now, we can use this D-MORPH technique if constraints are to be imposed during optimization. To
simultaneously satisfy multiple constraints, we define a constraint column vector C(Apq) that is defined as
C = [C1, C2, . . . , CQ] = 0, which contains Q distinct constraints that are set equal to 0. To simultaneously
maintain C = 0 while decreasing M requires ensuring that:

dCq
ds

= 0 (29)

for all q = 1, . . . , Q. while also satisfying equation (17). We can expand equation (29) in terms of
the Apq, which will yield:

dCq
ds

=
∑
p,q

∂Cq
∂Apq

dApq
ds

= 0 (30)

Now, we may have ∂Cq

∂Apq
be a matrix element of an S ×Q matrix Ω where each column corresponds

to the length-S gradient vector of a particular constraint Cq. S is equivalent to N2 here. To satisfy equation
(30), we can introduce a projector P (s) that fulfills the following:

dApq
ds

= P (s)f(s) (31)

where P (s) is an S × S positive semi-definite projector defined as:

P (s) = 1− Ω(s)(Ωᵀ(s)Ω(s))−1Ωᵀ(s) (32)
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where ᵀ denotes the matrix transpose and f(s) can be any length-S vector. By substituting equation
(31) into equation (17), we will get:

∂M(U)

∂s
=

(
∂M(U)

∂Apq

)ᵀ

P (s)f(s) (33)

and if set:

f(s) = −∂M(U)

∂Apq
(34)

that will ensure that (33) will be monotonically decreasing while fulfilling the Q constraint functions
that have been implemented.

A concrete example of this constrained D-MORPH algorithm is that of the fixed fluence constraint.
If we consider a certain system in which the initial fluence of a real symmetric matrix A is F0 and the goal
is to minimize W while maintaining the following:

F − F0 = 0 (35)

then we must satisfy the condition that:

dF

ds
=

M∑
m=1

∂F

∂Apq

dApq
ds

= 0 (36)

which can be maintained as such if:

∂F

∂Apq
= 2Tr(A

∂A

∂Apq
) (37)

We can then utilize the general constraint formulation detailed previously with Ω, which is the S×1

gradient vector ∂F
∂Apq

, which is used to produce the projector P as defined in equation (32) and write what
dApq

ds is, which is:

dApq
ds

= −P dM

dApq
(38)

which produces both a decrease in the value of M and satisfies the fixed fluence constraint.
To be able to create a mapping from the kinematic to the dynamic picture, we now lay out a

procedure to do so. When using kinematic controls in this unitary transformation problem, optimization
yields sets of kinematic matrices A with corresponding M values. The D-MORPH procedure that had been
laid out elsewhere can be thought of as utilizing the diffeomorphic variable s as an iteration index, such
that for each s, there exists a corresponding N -dimensional A(s), an M value, and another N -dimensional
U(s) = exp(iA(s)). The first step in the mapping between kinematic and dynamic models is to identify the
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dynamic parameters H0 and µ as well as external field ε(t) that produce the initial U(s = 0). The choosing of
these parameters should of course create a whole dynamically defined U matrix that matches the kinematic
U matrix. For the mapping to be both meaningful and easier, it is imperative that the parameters of H0 and
µ relate in some way to A structurally. Even with carefully constructed structural parameters, the chances
of choosing a field ε(t) that maps those to elements to a kinematic U is virtually 0, so we take our defined
H0 and µ values and perform an optimization where we search for the appropriate ε(t). To do so, we can
minimize the cost function Jkd where:

Jkd(s = 0) = ||U(s = 0)− U(H0, µ, ε(t))||2 (39)

Upon optimization, where U(H0, µ, ε(t)) and U(s = 0) are arbitrarily close, we then perform the
same optimization for U(s = 1) and onwards over all of U(s). This will create a dynamic trajectory for the
problem. The next part of this summary includes some of the data that was collected this summer while
laying out further tests that can be run.

Two methods of analyzing the W problem that could provide numerical insight into what hap-
pens with introduction of constraints into quantum control is that of the fixed variable case and the fixed
fluence case, which were detailed earlier. The fixed fluence tests have not performed yet, but I performed
and analyzed the data on the fixed variable case. In this case, we utilized the equation laid out in (5) with
an additional factor of 1

4N multiplied against the equation in (5) so as to normalize the values of M . In this
experiment, I randomly chose one element in A and fixed it while allowing all the other elements to vary so
as to try to minimze M . The results of this experiment for dimension N = 2 to dimension N = 9 are shown
as follows:

Dimension Mean Initial M Mean Final M Upper Deviation Lower Deviation Number of Data Points

2 .171259 .065909863 .121955985 .0522335511 100

3 .202345 .032635216 .048635091 .024051829 100

4 .244387 .009009863 .019769414 .007138511 100

5 .279182292 .003599763 .018578783 .002987605 96

6 .294838889 .001322288 .011378964 .001055606 90

7 .337210769 .00099077 .002879053 .000773067 65

8 .3623 .001369966 .002788328 .001009356 50

9 .367952632 .001518018 .003026978 .001210953 38

Table 1: Table of Relevant Compilated Means and Deviations

The expected behavior was shown, with M going down as dimension increased until we got to di-
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mensions N = 8 and N = 9. So, I ran the tests again for the higher dimensions to see if it happened again
and obtained these results:

Dimension Mean Initial M Mean Final M Upper Deviation Lower Deviation

7 .337 .00113 .00429 .000849

8 .352 .00153 .00268 .00121

9 .389 .00291 .00425 .00208

10 .399 .00102 .00450 .000733

Table 2: Table of Relevant Compilated Means and Deviations

In this experiment, as before, the showed results that were not the expected behavior. After testing
to see if there was any error in the integrator, this anomaly was set aside for further consideration in lieu of
doing other things this summer.

Another case that might be of interest is the bounded fluence case, in which, rather than the fluence
only staying at a certain number, it may vary as long as it stays below a certain value. This also has yet to
be done but will be performed in the future.

Another case that does not involve kinematics exactly but is still useful in defining and analyzing
theW problem is that of the multiplicative update definition of the U matrix. This has the U matrix defined
as, rather than U = eiA, either U = eiAU0 or U = eiAU0e

iA, where U0 is some initial unitary matrix. The
former definition has been analyzed and does not work as the unconstrained formulation is not able to take
some starting matrix U and have it converge to W every time, as the definition causes a loss of symmetric-
ness within a few iterations and thus has difficulty converging to a symmetric W matrix with any sort of
effectiveness. The latter definition will be derived analytically and investigated numerically in the future,
but since I have yet to do it, I will not include it here. It does hold more hope to be effective, as the update
step should maintain the symmetric-ness of U . Also, it is not actually a kinematic definition of the prob-
lem, another reason not to have it, but it could provide numerical insights into the W problem while being
much much faster than the current formulation, so I believe it is worth mentioning. One other method of ex-
amining theW problem that will be explored in the future using kinematic definitions I will outline as follows:

We have defined our U matrix as eiA and our W matrix as some fixed eiB , where B is also real and
symmetric. Rather than trying to have complete fidelity, having the U matrix match the W matrix exactly,
we can try to match a smaller portion of the matrix. For example, if U is some symmetric matrix where the
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entries are complex: 
a b c

b d e

c e f

 (40)

and W is some symmetric matrix where the entries are complex:
g h i

h j k

i k l

 (41)

rather than trying to have U be equal to W , we can have some smaller submatrix of U , such as:

Usub =


a b

b d

c e

 (42)

be equal to the corresponding submatrix of W :

Wsub =


g h

h j

i k

 (43)

While maintaining unitarity of the whole U and W matrices. To measure the distance between the
corresponding submatrices, we want to define the following equation,:

Msub(Usub) = ||Wsub − Usub||2 (44)

Where Usub is the U submatrix and Wsub is the W submatrix. This equation can be rewritten, for
an E ×K submatrix, where E ≤ N and K ≤ N :

Msub(Usub) = 2K − 2Re(Tr(W †subUsub)) (45)

Since we want the following to be true:

dMsub

ds
=
dMsub

dApq

dApq
ds
≤ 0 (46)

for all p, q so that the value of Msub is monotonically decreasing, we want the equation:

dApq
ds

= −dMsub

dApq
(47)
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to be true. We can rewrite Usub as ZUX, where Z and X are some matrices such that:

Usub = ZUX (48)

and U is eiA, an N × N matrix. This makes Z an E × N matrix and X an N ×K matrix. Now,
when we apply d

dApq
to Msub so as to get dApq

ds , we will get:

dMsub

dApq
= −2

d

dApq
Re(Tr(W †subUsub)) (49)

= −2Re(Tr(W †sub(Z
dU

dApq
X))) (50)

= −2Re(Tr(W †sub(Z
deiA

dApq
X))) (51)

= 2Im(Tr(W †sub(Z
∫ 1

0

eiA(1−j) ∂A

∂Apq
eiAjdjX))) (52)

Which makes dApq

ds from equation (47)

dApq
ds

= −2Im(Tr(W †sub(Z
∫ 1

0

eiA(1−j) ∂A

∂Apq
eiAjdjX))) (53)

Solving for this should yield the submatrices being close together without placing a restriction on
the rest of the matrix. This derivation allows for update of the whole A matrix while only trying to make
Usub and Wsub close together. Since A remains symmetric, then U has to remain unitary, as eiA(eiA)† will
be 1 for all symmetric A matrices. And I believe that U only has to remain unitary on the whole, as picking
as a submatrix some rectangular matrix such as we did with Usub in equation (42) makes it impossible to
achieve unitarity for the submatrix as matrices can only be unitary when they are square. I believe this is
a possible formulation of the problem, though possible problems arise in how to properly choose the entries
of Z and X. Simulations will have to be run to see if those matrices can be chosen arbitrarily or if those
matrices must have certain characteristics.

In all, this summer’s work yielded some interesting results and has opened up new avenues of
research, such as the investigation into why the values of M didn’t behave as expected when the dimension
N increases, as well as the various kinds of other constraints that can be used to investigate the effects of
constraints upon this W problem.
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