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1. Introduction 
In the 70’s, an interesting phenomenon was observed in the upper ionosphere: O+

 and H+ ions were accelerated to 
very high velocities—their velocities increasing by a factor of 30 (from around 0.3 eV to about 10 eV). Papers such 
as [1] described how this process may be explained as a result of interaction with multiple electrostatic waves which 
propagate along the geomagnetic field. Subsequent research in this area revealed that this process is most effective 
when the electrostatic waves differ in frequency by an integer times the cyclotron frequency. In other words: if we 

have two beating waves with frequencies 1 and 2, they should satisfy the equation cnωωω =− 12  [2].  The 

advantages of using two beating waves are (a) that their frequencies do not have to be close to the ion’s thermal 
velocity, and (b) the ions can start off with arbitrarily low initial velocities [3]. This is in contrast to acceleration by a 
single wave, where the ions have to be at a certain velocity already in order to be subject to the acceleration effects 
of the electrostatic waves (see p3). Spektor and Choueiri [4] then determined that there were additional criteria for 
this effect to occur and determined the necessary and sufficient conditions required of the particles’ trajectories in 
phase space. I studied Slava Spektor’s review of the relevant research in [3, 4, 5] and then  proceeded to explore the 
difference between on-resonance cases (where the normalized frequencies of the electrostatic waves are not integers 

– i.e. Ζ∈==
cc ω

ω
ω
ω νν 21

21 , ) and the off-resonance cases (where Ζ∉21,νν ). 

 
 

2. Mathematical prelude 
The mathematical framework for our system is quite simple. Our system will 
consist of electrostatic waves propagating perpendicular to a uniform magnetic 
field. Without loss of generality, we will assume that the magnetic field is in the 
z direction and the electrostatic waves are in the x direction (Fig. 1), with our 
waves having amplitudes Ei, wave numbers ki and frequencies i Our particle 
will be orbiting perpendicular to the magnetic field in the xy plane, with its 
Larmor radius , and its phase angle .   FIG.  1. Our system of a particle rotating 

in a magnetic field, interacting with 
electrostatic waves. 
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The only force that does work on the particle is the electrostatic waves, so our equation of motion will be  
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From the equation of motion, some lengthy algebra manipulations and Legendre transformations enable us to derive 

the Hamiltonian, given by  +−+=
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Note that the value of  represents the Larmor radius, and is a direct measurement of the particles thermal velocity, 
since particles with higher speeds have larger orbits.  
 
The dimensionless parameters in the Hamiltonian are defined as follows: 
• )/()( 2

1 cii mqEk ωε =  are the amplitudes of the electrostatic waves divided by some constants of the system to get 
a dimensionless measure of the wave amplitudes. 

• cii ωων /= are the normalized frequencies of the waves. In terms of these normalized frequencies, the beating 

criterion may be expressed as n=− 21 νν , where n is an integer. When referring to “on-resonance” cases, we 
mean that the normalized frequencies themselves are integers too, and not just the difference between them. The 
“off-resonance” case covers all cases where i are not integers. 

• 1/ kkii =κ  : so i denotes the ratio of the ith wave number to the first. In my simulations, I assumed all the wave 
numbers were the same, so all i are equal to 1. 

 
 

3. Integration Algorithm 
 
To perform the actual numerical integration, I used Candy & Rozmus’ symplectic integration algorithm for 
separable Hamiltonians [6], as it has a number of advantages in our case over the more popular Runge Kutta 
algorithm. As the name suggests, however, the algorithm requires that the Hamiltonian to be separable, and ours is 
not (there is a ‘ θρ sin ’ term) and so a change of variables from ),( θρH  to Hamiltonian in a Cartesian xy frame of 

reference – ),( qpH – was necessary to use this algorithm. The separable Hamiltonian was thus: 
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which is clearly separable in p and q. 
 
When plotting our results, a convenient framework to use is a Poincaré surface of section, which effectively involves 
taking ‘snapshots’ of a particle’s position in phase space (we will use - space) and accumulating its values of  
 vs.  at regular intervals–the length of the intervals here being an integer multiple of the cyclotron period. The 
Poincaré section is a standard way of getting a good idea of the nature of the motion. Trajectories of particles 
undergoing regular motion will typically be neat and regular, whereas particles undergoing chaotic motion will leave 
a random, noisy signature on the Poincaré section. 
 
 

4. Results for a single wave 
In order to appreciate the advantages of using two beating waves, we should look briefly at the results for a single 
wave.  In the plots below (Fig. 2), 60 particles were placed at random positions in phase space and their trajectories 
were traced over time. No collisions or interactions between particles were taken into account. As is evident from 
these  plots, in both off-resonance (Fig. 2a) and on-resonance (Fig. 2b) cases there is a threshold at around  = 20, 
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below which particles do not undergo any acceleration, but rather drift along the Poincaré surface, maintaining the 
same value for  (some particles undergoing this type of motion have been colored different shades of green). Only 
once above this threshold do they undergo acceleration stochastically: if a particle starts off at, say,  = 20, it will 

jump around the stochastic domain at random and attain an average  of around 50. The black points on each of the 
plots are the signature of one particle jumping around the stochastic domain. Here is where we see a slight 
difference between the two plots. Whereas the stochastic domain in the off-resonance case appears totally random, 
the motion of particles in the on-resonance case tends to remain in certain regions of the stochastic domain. 
 
Above a certain value of , though (around  = 80), the stochastic acceleration effects diminish rapidly. In the off-
resonance case, they follow complex but regular stochastic webs, while in the on-resonance case the particles trace 
out squares in phase space. (some of these particles have been colored blue so their trajectories can be made out). In 
both cases there is no net gain in , and thus no net increase in velocity.1 
 

5. Two waves: Off-resonance ( ∉∉∉∉ Z). 
As we can immediately see from the Poincaré section on 
the right (Fig. 3), we the ‘regular motion domain’, 
(which, in the single-wave case consisted of straight 
lines) now consists of trajectories which mostly move 
upwards towards the hyperbolic point (labeled H), and 
from there they escape to the stochastic domain, where 
they undergo acceleration chaotically. However, as Slava 

noted [3], not all of the particles make it to the stochastic 
domain: there is a trapped region in which particles never 
escape to the stochastic domain. The trapped region is 
defined by all those particles that are between the elliptical 
point (labeled E, and located at 2/νρ =  ) and the 

hyperbolic point (located at ενρ −= ) when πθ = . The 

                                                 
1 Note that in the on-resonance case, the ‘blue’ region is more more continuous with the stochastic domain than in 
the off-resonance case, and compare this with the beating-waves later. 

FIG. 3. A typical off-resonance plot. The normalized wave 
amplitude, , is 5.0, while 1, the frequency of the lower-
frequency wave is 24.3. The trapped region is centralized 
around an elliptical point (labeled E) and the stochastic 
domain begins from the vicinity of the hyperbolic point 
(labeled H) 

H 

E 

FIG.  2. Single wave results for the off-resonance (a) and on-resonance (b) cases. Between around  = 20 and  = 75 in both plots particles 
undergo chaotic motion and typically attain an average of about  = 50. In both plots, the trajectory of one particle in this region has been 
colored black to demonstrate its random nature. Below this region, the particles undergo regular motion. Above this region, particles follow 
undergo a slightly chaotic pattern, but their average velocity does not change. 

(b) (a) 
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particles in this trapped region orbit around the elliptical point and never escape to the stochastic domain. All 
particles not in this trapped region eventually make it to the stochastic domain. It is possible that a particle, moving 
chaotically in phase space may drop back into the regular motion domain. If it falls into the trapped region, then it 
will remain there, but if it does not, it will eventually escape back into the stochastic domain.  
 

One or two hyperbolic points? 
My plots also initially seemed to confirm that there 
was a single hyperbolic point located at εν − . 
However, a closer and more careful inspection of the 
region around the hyperbolic point (involving tracing 
trajectories of individual particles – Fig. 4) revealed 
that there seem to be two hyperbolic points from which 
the particles enter the stochastic domain, one on each 
side of the central ‘hump’. All the particles that I 
traced that left the regular-motion domain only did so 
at these two points, and never from the center. This is 
rather surprising, as the analytical solution predicts 
only one hyperbolic point in this case..  
 
 

Higher values for  – stochastic 
domain 
If we look at the off-resonance 
case for values of  above these 
hyperbolic point(s), we can see 
that there are two “streaks” 
(indicated by the dashed arrows 
in Fig 3a.) which have a lower 
density of points, starting almost 
from the center ( πθ = ), and 
moving out towards the sides. 
Tracing the paths of individual 
particles on either side of these 
low-density streaks (Fig. 4b) 
shows that there is a strong 
tendency for the particles to stay 
on their ‘own’ side of them. Even though the motion of the particles is thus random, there are thus still certain 
bounds on its movement in the  direction in the Poincaré section.  

Higher values for  – beyond the 
stochastic domain 
As we get to higher values of  we reach the end of the 
stochastic domain (defined2 as ( ) ( ) 3/23/12 4ενρ π=ub ) [1], 
which, for  = 24.1 and  = 5 is about 52, and so from 

                                                 
2 This formula is for the upper bound for the stochastic domain  
for a single wave, but some experimentation has shown that it 
applies to some degree of accuracy to the beating waves case as 
well. For , I used 1.  

FIG. 4. Poincaré section for  = 5.0, 1 = 24.3. Trajectories of 
various particles leaving the regular-motion domain are given 
different colors. The particles apparently do not leave from a 
single point, but rather from two points equidistant from  = , 
each labeled by an arrow. 

30

28

26

24

22

20

18

3.63.43.23.02.82.6

E = 5. Nu = 24.3

FIG. 6. Plot for 1 = 24.1, illustrating the flat webs at high 
values of , and the low-density ‘streaks’ which seem to 
converge to  =  / 2 and  = 3 / 2. 

FIG.  5.  Plots for  = 24.1. There are two ‘streaks’ indicated by arrows in (a) with a lower 
density of points. Color coding of individual particles in (b) indicates that there is very little 
exchange across these low density streaks. The ‘green’ particles tend to stay on the outside, 
while the ‘blue’ particles tend to stay on the inside. 

(b) (a) 
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around this point upward the behavior of the particles is not due to stochastic effects, but rather to the nature of 
phase space (as defined by the parameters of the system, such as ).  
At these higher values of , we see (Fig. 6) that the Poincaré plot resolves into flat, wavy webs, but the webs never 
seem to cross the low-density ‘streaks’.  We also notice that these ‘streaks’ converge towards 2/πθ =  and 

2/3πθ = . Thus, for high values of , we can divide phase space into two domains: the ‘inner’ domain [/2,  3/2] 
and the outer domain [0, ] ∪ [3/2, 2] (these last two are obviously connected at  = 0). 

A closer look at a single web 
The unusually large gaps between the two domains at the top of the plot in Fig. 6 is not because of any intrinsic 
nature of the motion at higher values of , but because many of the trajectories at the center are ‘trapped’ in smaller 
orbits of their domain. This becomes clearer if we zoom in to take a closer look at just one of some of the horizontal 
webs, at a very high value for , say  = 300.  
 
This close-up view (Fig. 7) 
reveals that there two main 
types of trajectories: Most of 
the particles follow a simple 
(rather wavy) web and are 
confined to their own domain. 
However, the particles at the 
edge of the domains follow a 
rather different path, and are 
able to jump from one domain 
to the other. It will be 
interesting to compare these 
two types of paths to those of 
the on-resonance case (see 
p7). These horizontal webs are not discernible in the region of  = 30 or so, since there stochastic effects can easily 
cause particles to jump to higher or lower webs – something they can not do above the stochastic domain. 
 
Thus, we may understand the stochastic domain in the off-resonance case (between  = [20, 50] in Fig. 6) as a 
combination of two effects. First, there are the regular horizontal webs (whose boundaries grow from around πθ =  
to  2/3 and 2/ ππθ = ). Second, this effect is complicated by a ‘veil’ of stochasticity, which obscures most of the 
webs, except for the low-density streaks in between the two domains. 

Back to the hyperbolic point  
Even though the low-density streaks converge 
towards 2/3 and 2/ ππθ = , they start out close to 

πθ =  at the bottom of the stochastic domain. Their 
exact path is difficult to tell because of the stochastic 
effects, but if we take a low  plot3 (Fig. 8) , we can 
make out that these ‘streaks’ seem to originate from 
the region of the main hyperbolic point(s), and in 
fact, it might have something to do with the fact that 
there are two hyperbolic points instead of the one as 
predicted by the analytical solution. Depending on 
the mathematical explanation behind these streaks, it 
may or may not provide us with some insight into 
this anomaly.  

                                                 
3 There is a threshold value for  below which stochastic effects are reduced drastically [2], given by 4/4/3νε ≅th   
(which is  2.7 when  = 24.3). As we can see from Fig. 6, this threshold is not as simple for the beating wave case, 
but by dropping  to 2, we can see what happens in the central domain much clearer than before. 

FIG. 7.  A close up view of one of the horizontal webs in Fig 4. Most of the particles’ 
trajectories (such as light blue, dark blue, light green and dark green) remain in their own 
“domain”, bounded by  =  / 2 and  = 3 / 2. Only particles which are on the edge of their 
domain (such as black) can pass to the other. 

FIG. 8. A low  plot for  = 24.3, illustrating how the low-density 
streaks seem to originate from the dual hyperbolic point noted above. 
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6. On-resonance (  Z). 
 
When we look at a typical Poincaré section of the on-resonance 
case (Fig. 9), we find a very different picture from the off-
resonance case. There are many differences in the particles’ 
paths, but two things stick out in particular: 
(1) the presence of numerous hyperbolic points on the 

boundary of the stochastic domain, from which particles 
leave the regular-motion domain.  

(2) the diagonal, V-shaped webs, which center around 
πθ = and extend upwards towards the sides of the graph. 

 

Hyperbolic and elliptical points on the 
border of the stochastic domain 
If we look closely at the border of the stochastic domain, we note a discrete number of hyperbolic points. We should 
expect, then, that there should be a corresponding number of elliptical points in between them (otherwise, a particle 
could leave the regular-motion domain at any point, and not only at a hyperbolic point). But it is difficult to see 
these elliptical points in Fig. 9, for two reasons: (1) All the particles being simulated start off from very far away 
from these elliptical points, 
and so do not enter the 
‘trapped’ region around 
them. (2) At our value of , 
the stochastic domain 
completely overlaps these 
points, and so particles can 
stochastically enter and exit 
these ‘trapped’ regions, 
making them invisible on a 
Poincaré section. However, 
if we remove these two 
factors by (1) setting our 
starting conditions precisely 
in the vicinity of these 
elliptical points, and (2) 
lowering the value of  
below the stochastic 
threshold (mentioned above – it was about 2.7), then 
we can see these elliptical points quite clearly (Fig. 
10a). Taking similar plots for different values of  
reveals a direct relationship between the number of 
elliptical points and the value of  (see Fig. 10b and 
10c). There are, in fact, precisely 2 elliptical points 
in each plot. There are, then, also 2 hyperbolic 
points in between them, through which the particles 
escape into the stochastic domain (although at this 
low value of , there is no stochastic domain). 
This is reminiscent of the single wave case, where 
the boundary between the regular and stochastic 
domain was not a simple straight line, but was made 
of what looked like hyperbolic and elliptical points, 
the number of which was directly proportional to  
(Fig. 11). 

FIG. 11. Plot for a single wave,  = 5,  = 24.0. Just as with two 
waves (with low ) as above, the number of elliptical points at the 
border of the stochastic domain is related to . Here, in the single 
wave case it is, in fact, exactly equal to . 

FIG. 10. Plots of the boundary between the regular and stochastic domain for  = 14.0 (a),  = 24.0 
(b) and  = 34.0 (c). These plots at very low values of , so that these elliptical points are visible on 
the Poincaré plot. Although counting the elliptical points can become slightly ambiguous in the 
region of  = , a careful count of the bottom row of elliptical points shows that there are exactly 2 
of them, and thus 2 hyperbolic points in between them as well. 

(a) 

(b) 

(c) 

FIG. 9. A typical on-resonance case.  
Here,  = 10, 1 = 24.0 
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The V-shaped webs 
Another characteristic feature of the on-resonance 
case is the V-shaped webs which dominate the 
plots. The plot in Fig. 12 is taken at a very high 
value of , where stochastic effects are negligible, 
and we can thus see the nature of the motion with 
the stochastic elements removed. As in the case 
of off-resonance, there are two main types of 
trajectories: There are particles which remain 
‘trapped’ around elliptical points (colored in 
various shades of green), and there are particles 
which manage to weave their way between all the 
elliptical points (colored black and grey), and are 
not bound to any particular values of . Most of the 
particles, though, actually lie somewhere in 
between these two extremes, and weave their way 
in a fixed web which encompasses a number of elliptical points (colored various shades of blue). 

Height of the V-shaped webs and  
The height of the V-shaped webs (I have defined the height of a web as πθθ ρρ == −0 , i.e. the difference between the 
highest and lowest possible points of the ‘black’ particle in Fig. 12) is determined by how many elliptical points a 
particle has to ‘weave’ its way around to get to the top of the web. Thus, we expect that the height should increase 
with higher values of , since we have seen above that the number of elliptical points (i.e. in a horizontal direction – 
between  = 0 and  = ) is 2. 
 
Indeed, if we look at a couple of on-resonance plots with different values of  (Fig. 13) this is exactly what we find: 
We see that as  increases, the height of the webs grows, proportional to the increase in .  

 
In other words, since the structure of phase space is such that there are more elliptical points (in the  direction) with 
a higher , a particle will ‘step over’ more elliptical points and will thus travel further up or down for higher values 
of . More precisely, since the particle starting from πθ = passes precisely  elliptical points as it works its way to 

0=θ , we should expect the height of the webs to be H = h, where h is height of a single elliptical point.4 
Extensive numerical exploration reveals, interestingly enough, that the value of h does not seem to have any 
dependency on  or  (or ), and remains a constant height of approximately 3.3 ± 0.05. The total height of the web 
from top (at 0=θ ) to bottom (at πθ = ) is thus 3.3. Numerical exploration also confirms that the shape of these V-
shaped webs does not change at all for higher values of . 

                                                 
4 It is easiest to measure this near  = 0 or  =   where the height of the ‘steps’ is more distinct. 

FIG. 13. Plots for different values of  ( = 5.0). In each plot, one of the webs has been colored black, so that the difference 
between the heights is more apparent. As expected, the height of the V-shaped webs increases in direct proportion to . 

FIG. 12. On-resonance plot illustrating the V-shaped webs, and the 
various types of trajectories possible for a particle in them: fixed webs 
around a single elliptical point (green), unbounded paths weaving in 
between the elliptical points (black), and paths that are a combination of 
these (blue). 
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Upper boundary of the stochastic domain and  
As is the case for a single wave, the value of  affects the upper bound of the stochastic domain. As mentioned 
above, the predicted upper bound for the single wave case is ( ) ( ) 3/23/12 4ενρ π=ub  [2]. For beating waves, the upper 
boundary of stochastic domain also increases with increasing , and it does follow the predicted upper bound in a 
general sense, but if we look carefully we see it is a little more complex (Fig. 14): Particles may rise above this 
boundary around  = 0 (and  = 2), but this is presumably due to them following the V-shaped webs mentioned 
earlier. (This is supported by the observation that open circles—indicating the presence of elliptical points—appear 
prominently only above ub in the region of  = 0. This is a good indication that the stochastic effects have dropped 
significantly, since in the stochastic domain particles can randomly jump in out of elliptical points, making them 
invisible on a Poincaré section.) However, around  = , the border of stochastic domain drops significantly below 
ub. In this respect, the boundary of the stochastic domain deviates somewhat from that in a single wave. 
 

 

“Half-Resonance” 
I will note briefly here the interesting ‘half-resonance’ 
case, i.e. where 5.241 =ν  (Fig. 15). Even though it is 
not an on-resonance case, it displays—to a lesser 
extent—some of the characteristic features of the on-
resonance case: (1) It has some diagonal webs 
(colored blue), although they are not as long and clear 
as in the on-resonance case. (2) There are numerous 
elliptical points (colored green) which fit together, 
curiously, in a tessellating diamond-shape. 
(3) It has a number of hyperbolic points along the 
bottom border of the stochastic domain. 
 
On the other hand, the ‘half’-resonance case also 
bears many similarities to the off-resonance case – in 
particular, for high values of , we see horizontal 
webs in addition to the V-shaped webs. It appears that 
the “half-resonance” case is an interesting hybrid of 
the off and on-resonance cases. 

 

FIG. 15. “Half-resonance” case of  = 24.5. This plot has 
numerous similarities to the on-resonance case: some short 
diagonal webs (blue) reminiscent of the V-shaped webs; many 
elliptical points (green) which here are diamond-shaped instead 
of circular; and numerous hyperbolic points can be found on the 
border of the stochastic domain. 

FIG. 14. On-resonance plots for different values of . The predicted value of the upper bound of the stochastic domain 
(for a single wave) is marked on each line by a horizontal line. The stochastic domain appears to end below this line at  
 = , and go above it at  = 0. 
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7. Approaching Resonance 
 

 
As is evident from Fig. 16 above, there are many stark differences between the off-resonance and on-resonance 
cases. For example, the numerous hyperbolic points on the border of the stochastic domain in the on-resonance case, 
versus the one (or two) in the off-resonance case. Also apparent is the V-shaped webs in the on-resonance case, 
versus the horizontal webs in the off-resonance case, both of which we have explored above. However, despite 
appearances, these differences are not a sudden, discrete jump, but rather a continuous process, which we can watch 
in ‘slow motion’ if we look at the cases very close to resonance, such as 24.1 and 24.01. By doing so, we will 
hopefully gain an intuitive understanding of how, as we approach resonance,  the two cases merge into a beautiful 
continuum. 
 

(a) The appearance of hyperbolic points 
 
If we watch the border of the stochastic domain, near 
the hyperbolic point(s) of the off-resonance case, we 
find that even as we approach 24.2 and 24.1, we 
notice the border of the regular-motion domain 
becoming more jagged (Fig. 17), hinting to us where 
the hyperbolic points will appear. In fact, already at 
1 = 24.1,  tracing individual particles shows that 
particles do not only leave from the center, but also 
from near the sides.  
 
 

 

FIG. 17. Plots of 1 = 24.3, 24.2 and 24.1. As we get closer to resonance, the boundary gets more ‘jagged’, giving us a clue as to 
where the hyperbolic points will be. In the 24.1 case, various particles have been traced, and the place where they have left the 
regular motion domain has been marked with an arrow. 

FIG 16. The sharp contrast between the off-resonance (left) and on-resonance (right) plots. 
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(b) The change in size of the trapped domain. 
One of the consequences of the appearance of many 
hyperbolic points is that the trapped domain begins to 
shrink in size. Trajectories which otherwise might have 
remained in the trapped domain can now escape via one 
of the new hyperbolic points. In Fig. 18, we can see how 
the ‘blue’ particles, which might otherwise have 
remained in the trapped domain, are now able to escape 
through a new hyperbolic point. 
 
(Note: The slight ‘dip’ in the top of the trapped domain 
seems to be a consequence of the elliptical point just 
above it at the border of the stochastic domain. The 
presence of the elliptical point affects the particles’ 
trajectories around it.) 
 
In the plots in Fig. 19 (below), we can see the way that the trapped domain changes as we get closer to resonance. 
All the trajectories of particles that eventually escaped to the stochastic domain have been removed, and so the 
trapped domain is clear and unambiguous. There are separate graphs for different values of , but each graph has 
plots for various values of  superimposed, ranging from 24.1 (light blue) to 24.0 (black). For relatively low values 
of  ( = 5 and  = 10) we can see–for each plot–how the trapped domain gets smaller as we get closer to resonance 
(as we go from light blue to dark blue to black).   
As Slava showed in [1], increasing the value of  also causes the trapped domain to diminish in size, but we see here 
that this is only part of the picture. Firstly, that result was taken for off-resonance plots: in contrast, we can see how 
the on-resonance plots (all the black traces from Fig. 19a-d) get consistently larger for larger , and at some point 
they start growing sideways in weird and wonderful ways.  But even for the off-resonance plots, the trapped domain 

FIG. 18. Plot for  = 24.0, demonstrating why the trapped 
region diminishes in size in the on-resonance case. The 
‘blue’ particles can now escape through one of the new 
hyperbolic points, leaving only the ‘green’ particles in the 
trapped region.  

FIG. 19. Superpositions of the trapped regions in different Poincaré plots. In these plots, I excluded all paths of particles which eventually 
escape to the stochastic domain. 
(a) Poincaré plots for  = 5, for 1 = 24.1 (lightest blue), 1 = 24.01 (sky blue), 1 = 24.001 (dark blue) and the on-resonance case of 1 = 

24.0 (black). 
(b) Poincaré plots for  = 10, for 1 = 24.1 (lightest blue), 1 = 24.01 (sky blue), and the on-resonance case of 1 = 24.0 (black). Note 

that the trapped region of the on-resonance case is slightly larger for  = 10 than for  = 5. 
(c) Poincaré plots for  = 30, for 1 = 24.1 (blue), and 1 = 24.0 (black). Since the trapped regions for these two cases overlap so much, I 

included just the outlines of these regions for the sake of clarity. 
(d) Poincaré plots for  = 60, for 1 = 24.1 (blue), and 1 = 24.0 (black). Here, we see that the trapped region is larger for the on-

resonance case. 

(a) (b) 

(c) (d) 
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gets smaller only up to a point (somewhere between  = 10 and  = 60), but then it starts growing again, eventually 
looking taking on the blue dressing-gown shape in Fig. 19d. As these changes occur, the upper boundary of the 
trapped domain at πθ =  seems to drop lower and lower, and conversely, almost as if in compensation for this, the 
trapped domain starts to expand at the sides. For  = 30, we have the interesting case that the size of the trapped 
domain in the off and on-resonance cases is about the same. 
 
Thus, if we are looking for as small a trapped domain as possible, we would be interested either in low values for  
with resonance, or at   30 with off-resonance. 
 

(c) Horizontal  Diagonal webs  
Another critical way in which the on-resonance case differs from the off-resonance case is in the behavior of the 
particle at high values of . Whereas the particles in the off-resonance case travel along paths of more or less 
constant  (Fig. 20a), in the on-resonance case the particles travel along V-shaped stochastic webs (Fig. 20b), and 
can a have significant increase (or decrease) in their value of .  

 
This abrupt change between the on- and off-resonance cases may initially be surprising, but we can find an intuitive 
approach to understanding it by looking closely at how the horizontal (off-resonance) webs change as we get closer 
to resonance. 
 
With  = 24.1, we note that the horizontal webs are completely independent of one another (Fig. 21a).  Each web is 
quite ‘wavy’, but although the webs almost seem to overlap, there is no crossing over between one web and the ones 
just above or below it.  However, with  = 24.01 (Fig. 21b), we notice that the trajectories of many of the webs seem 
to cross over what were before (in the 24.1 case) different, separate webs. This effect is even more pronounced in 
the case of  = 24.005 (Fig 21c). It seems that as we get closer and closer to resonance, there is more and more 
crossing over between the different horizontal webs, until eventually we get a continuous, diagonal chain which 
forms the characteristic V-shape of the on-resonance case. 

 
 

FIG. 20. Plots at high  for the off-resonance (a) and on-resonance (b) cases reveal major differences between the two cases. A particle in 
the on-resonance case travels along V-shaped webs, while the off-resonance case sees particles moving in horizontal webs. 

(a) (b) 

FIG. 21. Plots for values of  closer and closer to resonance:   = 24.1 (a),  = 24.01 (b) and  = 24.005 (c).  As we get closer and closer 
to resonance, adjacent  horizontal webs connect more and more connected. These plots are taken at very high values for , so stochastic 
effects do not play any role here. 

(a) (b) (c) 
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8. Conclusion: Applications for Plasma Acceleration  
 
After looking at some of the basics of the beating wave phenomenon, it is useful to stop and assess what we have 
gleaned so far from the plots, particularly with regard to the problem of acceleration particles in a plasma. When 
considering how to relate the theory to practice, a number of thoughts come to mind:  
 
1) When searching for the region in parameter-space which gives the most favorable results for acceleration, we 
should keep in mind that ideally, we would like the trapped domain to be as small as possible. As Slava showed in 
his paper [3], collisions between particles may actually reduce the effect of the trapped domain, since particles may 
be knocked out of it via collisions in the plasma. However, we have to consider plasmas that may be hot enough to 
be collisionless, and thus the size of the trapped domain is a factor must take into consideration. The relationship 
between , , and the size of the trapped domain is quite complex, as noted above, and might warrant further 
investigation. 
 
2) The average speed is determined by the upper bound of the stochastic domain. A particle starting out at arbitrarily 
low velocity can reach up to 50 times its original speed by stochastic acceleration. However, the efficiency of this 
process is, again, governed by our parameters. For high values of , even though they may have a higher average 
velocity, the stochastic domain begins much higher, and the particles may move much slower in the regular-motion 
domain, such that it may take up to 100 times longer to get to the stochastic domain. 
 
3) Although it has been commonly agreed upon [2] that a particle interacting with electrostatic waves can only 
accelerate stochastically, it is very tempting to try utilize the V-shaped webs of the on-resonance case as a ‘loophole’ 
to this rule. A single particle that starts out at πθ = will on average attain a higher speed than it’s initial speed 
(climbing up the diagonal web). However, a particle that starts out at 0=θ will experience the reverse effect, and its 
average speed will decrease. Thus, if we place a whole set of particles randomly in phase space (above the stochastic 
domain) and watch the energy vs. time, on average we would see no net energy change. However, if we could find a 
process which treats the [/2, 3/2] and [0, /2] ∪ [3/2, 2] domains asymmetrically, such that it results in more 
particles at πθ = than at 0=θ , then it might be possible to use this process in conjunction with the on-resonance 
case to produce an acceleration affect without stochasticity.  
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